<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>研究ノート 有機三角格子スピン系 EtMe₃Sb[Pd(dmit)]₂における量子スピン液体</td>
</tr>
<tr>
<td>作者</td>
<td>伊藤 哲明</td>
</tr>
<tr>
<td>引用</td>
<td>低温物質科学研究センター誌（LTMセンター誌）15（2009）3-11</td>
</tr>
<tr>
<td>発行日</td>
<td>2009-12-01</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/153248</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
有機三角格子スピン系 EtMe₃Sb[Pd(dmit)₂]₂における量子スピン液体

Quantum spin liquid in the organic triangular-lattice spin system
EtMe₃Sb[Pd(dmit)₂]₂

伊藤哲明
京都大学大学院 人間・環境学研究科
Tetsuaki Itou
Graduate School of Human and Environmental Studies, Kyoto University,

The family of layered organic salts X[Pd(dmit)₂]₂ are Mott insulators and form scalene-triangular spin-1/2 systems. Among them, EtMe₃Sb[Pd(dmit)₂]₂ has a nearly regular-triangular lattice. We have investigated the spin state of this salt by ¹³C-NMR and static susceptibility measurements. The temperature dependence of the susceptibility is described as that of a regular-triangular antiferromagnetic spin-1/2 system with an exchange interaction J=220–250 K. The ¹³C-NMR measurements reveal that the ground state of this system is a spin liquid state, which has gapless excitation at least down to 1.37 K.

1. はじめに

古典力学では、相互作用する多体粒子系は絶対零度では必ず固体化（すなわち秩序化）をする。これに対し、量子力学の基本原理である不確定性原理は、量子揺らぎを生じさせ、ときに絶対零度においても秩序化しない量子液体状態を実現させることがある。液体ヘリウムや金属中の伝導電子は、これら量子液体状態の良く知られた例であり、過去100年の間長く研究されてきた。

一方で、スピン系に対しても、このような不確定性原理に基づく量子液体状態が実現する可能性があるのではないか？という問いかけがあり、これは物性物理における長い間の大問題のひとつであった。近年有機系（正確には有機電荷移動錯体系）で、このような量子スピン液体が実現していると考えられる物質が見つかってきている。本稿では筆者が手がけているスピン液体物質 EtMe₃Sb[Pd(dmit)₂]₂について紹介し、このスピン液体の物理を解説する。

2. 量子スピン液体

ここでは量子スピン液体の（厳密ではないが）直感的な導入を行う。

スピン間の相互作用の最も基本的な形はハイゼンベルク型相互作用 Σᵢ,j Jᵢ,j Sᵢ·Sⱼ である。反強磁性相互作用 (J > 0) が働く系において、基底状態で何が起こるかを考えてみよう。（この章では三角格子などのフラストレーション格子はまだ考えず、通常の立方格子や正方格子などを念頭におく。）

まず明らかに、古典力学の範囲では、スピンが反対向きに整列した反強磁性秩序状態が最低エネルギー状態となる。しかしながら、この結論は、量子力学的なスピンに対しては、スピン角運動量の x, y, z 成分間に働く不確定性のため、必ずしも自明ではない。以下、S = 1/2 スピンを考える。

ハイゼンベルクハミルトニアンは次のように変形できる。
\[H = \sum_{i,j} J_{ij} S_i \cdot S_j = \sum_{i,j} J_{ij} \{ S_i^+ S_j^- + 1/2 (S_i^- S_j^+ + S_i^+ S_j^-) \} \]

3. 量子スピニン液体の実現とフラストレーション

さて、上記のような導入をすると、量子スピニン液体はかなり普遍的に見出されることのように一見思われるかもしれない。しかしながら実際には、このような量子ゆらぎ（スピニ反転項）の効果は1/2スピニに対しても小さく、通常は古典的反強磁性状態が基底状態で実現すると考えられてきている。実際3次元の立方格子（あるいはそれ以上の次元の超立方格子）では、基底状態における反強磁性秩序の出現は厳密に証明されている[1,2]。一般に次元を小さくすると量子ゆらぎの効果は強くなるが、2次元正方格子では厳密な証明はないものの、基底状態では磁気秩序が実現することはほぼ確実視されている[3]。1次元鎖格子では数学的には量子液体が実現し得るが[4]、このスピニン液体状態は非常に不安定で、僅かなイジング異方性や鎖間相互作用で基底状態は古典的反強磁性秩序に変わってしまう。

（又そもそも、たとえ古典秩序化を免れたとしても、この1次元量子液体は spin-Peierls 不安定性を持ち、安定には存在できず、非様相性に移行してしまう。）

このような事情で、通常の格子では量子スピニン液体の実現は不可能であり、古典的反強磁性秩序が成立する。従って量子スピニン液体の実現のためには、古典的磁気秩序をエネルギー的に不安定にするフラストレーション効果の助けを借りなくてはならず、幾何学的フラストレーションを持つ格子が必要である。幾何学的フラストレーションについては本誌第14号で山下氏が詳しく解説されているので[5]、それらを参照された。

4. 有機電荷移動錯体 EtMe₅Sb[Pd(dmit)₂]₂

前述のように、量子スピニン液体の実現には、フラストレート構子量子スピニン系物質を探索する必要がある。このような目的で無機化合物を中心に長い間フラストレーションスピニ系の研究が行われてきた。しかしながら、無機化合物のフラストレーション磁性体の種類は限られており、又実際に作成できたフラストレート磁性体も、低温でむしろスピリングス的な振る舞いが現れるなど、量子スピニン液体はなかなか実現してこなかった。

このような状況下で、最近有機電荷移動錯体において良質なフラストレーション三角格子1/2スピニン系が実現することが認識されており、その中でκ-(BEDT-TTF)₂Cu₂(CN)₃、EtMe₅Sb[Pd(dmit)₂]₂と相次いでスピニン液体と思われる物質が発見されている[6,7]、ここではそのうちの1つ EtMe₅Sb[Pd(dmit)₂]₂について解説しよう。

Pd(dmit)₂は図1(a)に示すような有機分子である。この分子そのものは多くの有機分子がそうであるように、分子軌道は閉殻となっており、この分子単体で結晶を形成してもただの非磁性バンド絶縁体となるだけである。しかしながら、この分子の1価の閉殻非磁性イオン X⁺と X[Pd(dmit)₂]₂という1:2の組成の二次元積層結晶を形成することが知られている。この結晶中では、図1(b),(c)に示すとお
Pd(dmit)$_2$分子は強く二量体化した[Pd(dmit)$_2$]$_2$というユニットを形成しており，この[Pd(dmit)$_2$]$_2$ユニットの分子軌道上に，Xから供給された電子が1つ入っている。1ユニットで1つ電子を持つため，バンドはhalf-filledとなるが，X[Pd(dmit)$_2$]$_2$では電子間のクーロン反発が大きく，常圧ではMott絶縁体となっている。即ち，二量体[Pd(dmit)$_2$]$_2$上に電子が1つ局在している1/2スピン系となるわけである。この二量体[Pd(dmit)$_2$]$_2$分子軌道間には三角形上に移動積分が働いており，図1(d)のような二次元三角格子1/2スピン系となる。ただし三辺の相互作用の値は全て異なる不等辺三角形である。

![Diagram](image1.png)

図1 (a) Pd(dmit)$_2$分子の構造式。 (b) 層状構造を持つX[Pd(dmit)$_2$]$_2$結晶を横から見た図。Pd(dmit)$_2$分子は3.1Å程度の短いPd…Pd結合（図中塗りつぶしの線）を持つ二量体[Pd(dmit)$_2$]$_2$ユニットを形成している。(c) Pd(dmit)$_2$層を上から見た図。二量体間の移動積分t_Aは二量体間の移動積分t_a,t_b,t_cに比べてるかに大きく，二量体を1つのユニットと見ることが正当化される。 (d) Pd(dmit)$_2$層のスピン系の概念図。二量体上に1つの1/2スピンがいて，スピン間にはt_a,t_b,t_cを反映した交換相互作用J_A,J_B,J_Cが働く。

有機電荷移動錯体の共通の特徴であるが，この物質も1価の閉殻正イオンXを変化させることで，格子長を制御し，結果として三辺の相互作用の大きさを制御することが出来る。表1に示すとおり多くの物質群が知られているが，三角形が正三角形から遠くフラストレーション効果が弱い物質群では，通常の磁性体同様に古典的反強磁性秩序を示す[8]。ただし，格子が正三角形に近づけフラストレーション効果を強くしていくと，この古典的反強磁性秩序形成温度は抑制されていく傾向が確認できる。
眼目は最も正三角格子に近い X=EtMe₃Sb 塩である。以下に述べるとおり、この系では反強磁性秩序は生じず量子液体が実現するのである。

<table>
<thead>
<tr>
<th>種類</th>
<th>tₐ (meV)</th>
<th>tₘ (meV)</th>
<th>tₙ (meV)</th>
<th>Frustration</th>
<th>Tₛ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me₄P</td>
<td>439.5</td>
<td>36.4</td>
<td>33.7</td>
<td>weak</td>
<td>42</td>
</tr>
<tr>
<td>Me₃As</td>
<td>443.5</td>
<td>34.0</td>
<td>32.6</td>
<td>22.8</td>
<td>35</td>
</tr>
<tr>
<td>Et₂MeP</td>
<td>445.8</td>
<td>29.4</td>
<td>29.3</td>
<td>24.3</td>
<td>17</td>
</tr>
<tr>
<td>Me₂Sb</td>
<td>450.1</td>
<td>30.0</td>
<td>28.4</td>
<td>25.4</td>
<td>16</td>
</tr>
<tr>
<td>Et₂Me₂As</td>
<td>446.6</td>
<td>29.6</td>
<td>29.3</td>
<td>24.4</td>
<td>16</td>
</tr>
<tr>
<td>EtMe₃Sb</td>
<td>453.5</td>
<td>28.3</td>
<td>27.7</td>
<td>25.8</td>
<td>strong</td>
</tr>
</tbody>
</table>

表 1 X[Pd(dmit)₂]₂ の移動積分値と古典的反強磁性転位温度（Tₛ）。[7,8]

5. 静磁化率[7]

まず、EtMe₃Sb[Pd(dmit)₂]₂ の 5K-300K におけるスピン磁化率の温度依存性を図 2 に示す。磁化率は典型的なフラストレート磁性体の振る舞い、即ち温度を下げていくと反強磁性相関の成長のため Curie-Weiss 時から磁化率が抑制されていく、ピークをとった後減少していく、という振る舞いが観測される。5K まででの温度域では、磁化率の温度依存性にはキネクはなく、又低温極限の値は有限にとまるようであり、反強磁性秩序の形成もスピンギャップの兆候も見られない。

図中の実線は 1/2 スピン正三角格子ハイゼンベルクモデルの高温短開の計算結果である。J=220K～250K の計算値に比較的良くあてており、この程度の相互作用を持つ系であることがわかる。ただし、完全にこの計算値と実験値が一致しているわけではない。このことは、EtMe₃Sb[Pd(dmit)₂]₂ のスピンハミルトニアンに正三角格子ハイゼンベルクからのいくぶんかの逸脱があることを物語っている。

この原因として 1 つには、格子が完全に正三角格子でなく、三辺が僅かに異なる不等辺三角形であることが挙げられる。またもう 1 つは、スピン間の高次相互作用の存在である。この物質は金属－絶縁体転移の近傍に位置しており、移動積分が電子間のエネルギースケールに比べて極端に小さいわけではない。従って移動積分の高次補正が無視できず、多体交換相互作用や離れたスピン間のハイゼンベルク

![図 2 EtMe₃Sb[Pd(dmit)₂]₂ の基磁率](image-url)
ベルグ相互作用などが効いてくる可能性がある。

実のところ理論的な計算からは、正三角格子ハイゼンベルグモデルではスピンは 120 度構造を持った古典的磁気秩序をすることが実験されており [9-12]。上記の正三角格子ハイゼンベルグモデルからの逸脱がスピン液体の実現に対し重要な役割を果たしているのかもしれない。

6. \(^{13}\text{C}-\text{NMR}\) [7]

上述の通り、磁化率からは 5K まで磁気秩序・スピンギャップの兆候はない。ただし、磁化率にはわずかな不純物キュリーの寄与が見られること（典型的には 0.1%程度）、磁化率のみならずそれらに関して断言するのは難しい。これらの最終判断のためには、ミクロスコピックに内部磁場を判断できる NMR が強力な手段となる。特に有機物質は微小単結晶しか作成できないため、中性子実験が困難であり NMR が最有力な実験手法となる。

NMR の原理は以下の通りである。核スピンを持つ原子核が磁場の元にさらされると Zeeman 分裂を起こし、この分裂に対応するエネルギーの周波数の磁場を照射すると共鳴吸収が起こる。磁場は外部からかける方であるが、電子スピンの秩序化があるとこの電子スピンが作る内部磁場が加わり、共鳴周波数の分布が生じるわけである。これにより磁気秩序の有無が一目瞭然になる。

この説明からわかるように、NMR 実験を行うにあたっては、核スピンを持つ原子核種がプローブとして必須である。このため、図 3 の左上分子式のように Pd(dmit)_2 分子の末端の C 原子を \(^{13}\text{C}\) に置換した試料を作製し、NMR 実験を行った。このサイトの超微細結合定数は 1 MHz/\(\mu_0\) 程度であり [7]。もし磁気秩序・スピン格子化が生じれば、1 MHz オーダーまでのスペクトル線幅の急激な増大が生じるはずである。

図 3 は微小単結晶の集合体に対して 7.65T のもとで測定した NMR スペクトルである。低温に向けての狭い線幅の増大はあるものの（これは次章で詳しく議論する）、磁気秩序に特徴的な急激な線幅の増大は観測されない。線幅も、すなわち未含めもせずに 100KHz 程度を超微細結合定数に比べて非常に小さく、明らかに磁気秩序・スピン格子化がないことが断言できる。測定されたスペクトルの最低到達温度は 19.4mK であり、この温度ではスピンハミルトニアンのエネルギーースケール（\(J = 220 \sim 250K\)）の 1 万分の 1 以下である。従ってこの温度域では、熱の影響の影響は充分に排除され基底状態に到達できているはずであり、量子揺らぎにより古典的磁気秩序が抑制されていると結論できる。

以上により、量子力学的スピン状態が実現していることが明確になった。次に問題

![図3 选択的13C置換を行ったEtMe2Sb[Pd(dmit)_2]の13C-NMRスペクトル](image)
になるのは，低エネルギースピン励起にギャップが開いているか，ギャップレスであるかである。

NMR のスピンー格子緩和率 (T_1^{-1}) は，核スピン系のエネルギーが熱浴（今の場合電子スピン系）に緩和する早さを表している。もし，電子スピン系の励起にギャップが開いていれば，核スピンからエネルギーを受け取るものはギャップを超えて励起されているスピン素励起のみである。ギャップが開いている場合，この素励起数は温度の降下に対し急激に減少していくので，T_1^{-1} も温度に対して急激に減少していくことになる。

図 4 は 4He クライオスタットで測定した 1.37K までの T_1^{-1} の温度依存性である。まず見て取れるのは，T_1 は温度に対して単調に変化しているということである。磁気秩序が生じる際には臨界発散と呼ばれる T_1 の急激な増大が起こるが，このような振る舞いは全く見られない，スペクトルで議論したことの再確認であるが，やはり古典的磁気秩序は生じていないと結論できる，眼目のごギャップ構造に関してであるが，T_1 は 5K 以下ではほぼ一定値に落ち着き，1.37K まで，T_1 が急激に減少するような兆候は全く観測されない。従って，少なくとも 1.37K までの温度域ではスピン励起にギャップは開いていないことがわかる。古典的磁気秩序がないことも併せて考え合わせ，ギャップレス量子スピン液体状態が実現していると結論付けられる。

7. 量子スピン液体状態における欠陥効果の考察

——なぜ量子スピン液体が長い間見つからなかったのか?——

前章までで，EtMe$_2$Sb[Pd(dmit)$_2$] においてギャップレス量子液体が実現していることを示した。ただし，少々気になることとして図 3 で見られるとおり，低温で僅かに線幅の増大が観測されているという点がある。NMR の線幅の増大には，内部磁場が静的に不均一になっている場合と，均一ではあるが内部磁場の揺らぎが非常に遅くなっている場合の二通りの可能性があり得る。両者はスピンースピン緩和率 T_2^{-1} の振る舞いにより識別できる。詳細は省略するが，EtMe$_2$Sb[Pd(dmit)$_2$] の T_2^{-1} は 1ms 程度で温度に依存せず，図 3 の低温における線幅の増大は静的な不均一内部磁場によるものだと結論付けられる，もちろんこの線幅の増大は，先に述べたとおりスピンの秩序化・クラス化で説明できるようなスケールのものではない。面白いことに，全く同様の不均一内部磁場の出現が，もう 1 つのスピン液体物質（BEDT-TTF)$_2$Cu$_2$NCl$_4$ も報告されている[13]。このようなわずかな不均一内部磁場がなぜ生じるのだろうか？まず最初に疑うことは，試料の質がかなり悪いのではないか，ということであろう。しかしながら，一般に有機電荷移動錯体は，ストテキオメトリが非常に良く，欠陥の少ない試料が作ることができることが知られている。（このことは例えば，金属的な有機電荷移動錯体においては
de Haas振動が比較的容易に観測できることなどでもわかる。）質の良い試料ができるはずの有機電荷移動錯体系で見つかっただ量子スピノ液体物質において、いずれも不均一内部磁場が生じていることは、スピノ液体の本質を反映していると捉えるのが自然であろう。この点について次に議論しよう。

一般に局所的な欠陥サイトが生じると、そのサイト周りのスピノ相関長程度の領域に、staggered magnetizationが出現することが良く知られている（図5）。基底状態においてはこの相関長はJ/Δ格子程度になる（J: 交換相互作用、Δ: スピノギャップ）。ギャップがある場合、相関長は発散して、擬長距離相関（モーブスを持つ相関関数）になるはずである。

今回の量子スピノ液体では、ギャップがある（あるいはギャップはあったとしても非常に小さい）ため、スピノ相関はかなりの長距離に渡ることとなる。従って、欠陥が非常に僅かに含まれている場合でも、図6(a)のように、その周りの広い領域にstaggered magnetizationが誘起されてしまうはずである。これがEtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Cu2CN3の両スピノ液体状態で観測されている不均一内部磁場の正体であると筆者は推測している。

![欠陥サイト](image)

図5 欠陥サイトの周りに誘起されたstaggered momentの概念図。格子長を単位として測った相関長ξは、基底状態においてJ/Δ程度である。

![ギャップ}(image)

図6 ギャップ（あるいは非常にギャップの小さい）スピノ液体における欠陥サイト周りのstaggered magnetizationの模式図。星は欠陥サイトを意味する。その周りに誘起したstaggered magnetization領域があり、色の濃さがその振幅を表す。図(a)ごくごく僅かに欠陥サイトを含む非常に綺麗な系：欠陥サイトがごく僅かでも、擬長距離相関のため広い領域に渡りstaggered magnetizationが誘起される。図(b)ある程度の欠陥を含む系：staggered magnetization領域同士が重なり合い、ランダムなスピノ凍結が起こると期待される。
このような立場で考えると、今まで長い間無機系でスピン液体の探索が行われてきてもかわらず、スピン液体がなかなか見つかってこなかったことの1つの解釈ができると思われる。無機系では完全にストイキオメトリックな試料を作製することが難しく、僅かなイオン欠損・過多が生じてしまうことかしばしばある。通常の磁性体のレベルではほとんど無視できるような欠陥量であっても、相関長が非常に伸びているような量子液体の場合、図6(b)で示したように staggered magnetization の領域が重なってき得る。この場合、結果として、試料全体内にたり Spirogram ランダムなスピン凝結が起きてしまうであろう。実際、プラストレート格子を持つ無機物質ではスピログラム的な振る舞いがかなり広く見出されている。これらの試料は本来スピン液体になり得るが、スピン液体が持つ長距離相関のために、欠陥に非常に敏感になっている。欠陥の程度でスピログラム的な状態が実現してしまっている、というのが1つのあり得る可能性ではないだろうか。

8. おわりに

これまで、二次元三角格子1/2 スピン系である $\text{EtMe}_2\text{Sb[Pd(dmit)]}_2$において、量子スピン液体が実現していることを示してきた。この量子スピン液体は少なくとも1.37Kでギャッププレスである。
以上の話は、長らく探索されてきた量子スピン液体の発見という観点で多くの研究者から興味を持っていただけており、これはこれで面白い話であろうと思え解説を行ってきた。しかしながら、実のところ筆者の本音の興味は、これまでの話そのものではなく、その先にある。
ギャッププレス量子液体は、古典的な世界に住む我々の常識では全く想像もつかないエキゾチックな自発的対称性の破れを起こしギャップを獲得することが知られている。超伝導・超流動はまさにこの美しい典型例であり、多くの低温研究者がこの現象に惹かれている。

筆者の興味は、スピン系で実現する量子液体も、通常の粒子からなる量子液体と同様、エキゾチックな対称性の破れを引き起こすのではないかという点である。実際理論的にも、Fermion 系における超伝導・超流動と同様に、スピン励起がベアリング（もう少し詳しく言えば、トリプレット超伝導に対応する Cooper Pairing[14]や、同方向に運動する素励起同士の Amperean Pairing[15]など）が起きる可能性が近年指摘されている。あるいは Laughlin 達の議論から始まったように、カイラル対称性が破れた、カイラルスピン液体が成立する可能性の議論も古くからある[16,17]。このような特異な対称性の低下が実際に生じないだろうか？あるいはさらに、これを実験的に検出・証明できないだろうか？

残念ながら、先行スピン液体物質である κ(BEDT-TTF)$_2$Cu$_2$CN$_3$ は、いくつかの実験結果が報告されているが、この点の議論は錯綜しているようである。 κ(BEDT-TTF)$_2$Cu$_2$CN$_3$について、比熱実験は低温極限までスピン励起はギャッププレスで報告している一方[18]、熱伝導測定は低温で明確にギャップが開いていることを結論付けている[19]。もし仮にスピンギャップの出現が何らかの自発的対称性の破れによるものならば、どこかで相転移がなくてはいけないが、NMR のスピンー-トロを緩和率 T_1 では、現在までの実験では、はっきりとした相転移を特徴付ける明確な異常は見出せていない[6,13]。

その一方で、本稿で解説した $\text{EtMe}_2\text{Sb[Pd(dmit)]}_2$に関する点は紹介しなかったが、筆者は日高溶融機温度域の T_1 を測定しており、上記の問題に対し筆者なりの解答を得つつある。本稿では紙面の制約もあり、この最大のトピックスについて記述できなかったが、この点についてもいずれ機会があれば解説したい。

謝辞

本研究を進めるに当たっての共同研究者であります、田村雅史、加藤信三、小山田明、前川覚の各

山下穂, 京都大学低温物質科学研究センター誌 14, 3 (2009).

