
 1 

 

 

 

 

 

A mutation of the fission yeast EB1 overcomes negative regulation by 

phosphorylation and stabilizes microtubules.  
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Summary: Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein 

(+TIP). We have generated a mutation (89R) replacing glutamine with arginine 

in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in 

vitro has revealed that the mutation confers a higher affinity to microtubules and 

enhances the intrinsic activity to promote the microtubule-assembly. The mutant 

Mal3 is no longer a +TIP, but binds strongly the microtubule lattice.  Live cell 

imaging has revealed that while the wild type Mal3 proteins dissociate from the 

tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 

proteins persist on microtubules and reduces a rate of shrinkage after a longer 

pausing period.  Consequently, the mutant Mal3 proteins cause abnormal 

elongation of microtubules composing the spindle and aster. Mal3 is 

phosphorylated at a cluster of serine/threonine residues in the linker connecting 

the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a 

microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. 

We propose that because the 89R mutation is resistant to the effect of 

phosphorylation, it can associate persistently with microtubules and confers a 

stronger stability of microtubules likely by reinforcing the cylindrical structure. 
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Introduction 

Microtubules are highly dynamic polymers that constantly switch between phases of 

growth and shrinkage [1]. Microtubule dynamics at the plus end, called dynamic 

instability, is important for proper cellular functions, such as cell division, 

differentiation and migration [2-4]. Plus-end tracking proteins (+TIPs), which 

accumulate selectively at growing microtubule plus ends [5-7] are considered to play 

an important role in regulation of stability of microtubules. EB1, originally identified 

as a binding partner of the adenomatous polyposis coli (APC) tumor suppressor [8], is 

one of the +TIPs highly conserved among eukaryotes. The subsequent studies 

demonstrated that most of the other +TIPs that can directly interact with microtubules 

are also able to bind to EB1, suggesting that EB1 may function as a central hub in the 

network of +TIPs [9]. EB1 associates with the microtubule filament as a dimer [10, 

11] via the calponin homology (CH) domain at the amino-terminal [12, 13].  EB1 and 

Mal3, a fission yeast homolog of EB1, can promote microtubule assembly in vitro 

[14-16]. The effects of these proteins on microtubule dynamics vary between the 

experimental systems. While they stimulate growth initiation and suppress 

catastrophes in vivo [10, 17], they stimulate both catastrophe and rescue in 

reconstituted systems [10, 16, 18]. Recent studies have also shown that Mal3 decorate 

the microtubule lattice seams [15, 16, 19], suggesting that binding of EB1/Mal3 

stabilizes the cylindrical structure of the microtubule. 

 As deletion of mal3
+
 gene does not lead to the cell lethality, it provides an 

opportunity to study the effect of loss of function of Mal3 on a number of biological 

processes in fission yeast. Loss of Mal3 leads to abnormal short microtubules [20]. 

Mal3 recruits the kinesin Tea2 onto the cytoplasmic microtubules, and promotes Tea2 

motor activity [21]. Tea2 transports Tip1, the fission yeast homolog of CLIP-170 [22], 
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toward the growing microtubule plus ends in Mal3-dependent manner [17, 18, 23]. 

Like EB1 in higher eukaryotes, Mal3 also plays an important role at the kinetochore 

in fission yeast. It binds Spc7, a member of the conserved Spc105/KNL-1 family of 

kinetochore proteins, required for the integrity of the spindle as well as for targeting 

of MIND complex to the kinetochore [24, 25]. Deletion of mal3
+
 gene results in a 

delay in mitosis, which is dependent on the Bub1-dependent spindle checkpoint. As 

simultaneous deletion of mal3
+
 and bub1

+
 genes causes monopolar attachment of 

sister centromeres, Mal3 cooperates with Bub1-dependent spindle checkpoint to 

promote bipolar attachment [26]. 

 The activity of EB1/Mal3 to stabilize microtubules and promote its assembly must be 

regulated in vivo. We attempted to generate a mal3 mutant, which could deviate from 

regulation. Here we report characterization of such a mutant both in vivo and in vitro.  
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Results 

 

Construction of mal3-89R mutant 

 We aimed to investigate a mechanism to regulate Mal3 and the consequence of a 

failure in such regulation. A pool of the mal3 mutants was generated by error-prone 

PCR and transformed into a wild type fission yeast strain after cloning into pREP81. 

Among approximately 1.610
5
 transformants screened, we obtained a plasmid that 

caused a growth defect upon induction of the gene hereafter designated mal3-89R. 

(Fig.S1A). The growth defect caused by overexpression of the mal3-89R gene was 

largely due to a delay in mitosis Judged by chromosome condensation as a mitotic 

index (MI), 22.3 % of cells were in mitosis when the mal3-89R was overexpressed. 

The wild type mal3
+
 gene did not affect growth (Fig.S1A) or cause a delay in mitosis 

(MI: 2.0 %) when overexpressed from pREP81. Overexpression of mal3-89R in 

mutants defective in the spindle checkpoint function caused a much severer growth 

defect (Fig. S1C), indicating that it activated the checkpoint. 

 The mal3-89R mutant contained a single point mutation replacing glutamine at the 

position 89 with arginine (Q89R) within the CH domain important for microtubule-

binding [12, 13] (Fig. 1A). As shown in Fig. 1B, the mutation of Q89R was predicted 

to locate on the putative microtubule-binding surface in the CH domains. 

Replacement of a polar amino acid to a basic amino acid would affect electrostatic 

interaction with microtubules and might alter microtubule dynamics. To test this 

possibility, we examined the mutant protein for its effect on a microtubule assembly 

assay in vitro. Tubulin was purified from bovine brain and a polymerization assay was 

performed at 37 ºC in the presence of the wild type or mutant Mal3 proteins purified 
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from bacteria. The mutant protein promoted assembly more strongly than the wild-

type proteins (Fig. 1C).  

 

Phenotypes of mal3-89R; abnormal morphology/dynamics of microtubules 

To examine the effects of the mal3-89R mutation under physiological conditions, we 

replaced the mal3
+
 gene with the mal3-89R in a haploid strain. The resulting mal3-

89R mutant, that is identical to wild type strains except for the presence of the 

mutation, could grow at a rate comparable to that of wild type strains at any 

temperature we tested (20, 26, 32 and 37 ºC). Although overexpression of mal3-89R 

caused a delay/arrest imposed by the spindle checkpoint, expression of mal3-89R 

form the native promoter did not do so. In a genetic background defective in the 

spindle checkpoint, the mal3-89R mutant did not exhibit any noticeable phenotypes. 

We also examined the sensitivity to a microtubule poison, TBZ (Thiabendazole) and 

found that the mal3-89R mutant was as sensitive as the wild type strain to the drug 

(Fig. S2). The mal3-89R mutation thus cannot confer resistance to the drug that is 

proposed to target the -tubulin monomer [27]. Closer examination, however, 

revealed a number of defects in events involving microtubule dynamics. In the wild 

type fission yeast cells, cytoplasmic microtubules disappear around the onset of 

mitosis and are replaced with the spindle microtubules associated by short astral 

microtubules at the minus ends. We confirmed this mitotic configuration of 

microtubules in the wild type cells expressing -tubulin tagged with GFP [28] (Fig. 

2A). Remarkably, in the mal3-89R mutant, we noticed robust astral microtubules, 

which often reached the cell tip and further extended along the cell cortex. The 

mitotic spindle was also abnormally extended and bent between the two poles. In 

addition, disassembly of cytoplasmic microtubules was occasionally incomplete in the 
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mitotic cells (Fig. 2A and B). A similar phenotype was observed in klp5 and klp6 

mutants [29]. In interphase, the cytoplasmic microtubules were morphologically 

normal (Fig. 2A). These phenotypes were not artifacts caused by the GFP-tagging as 

abnormal morphology of microtubules in the mutant was confirmed by indirect 

immunofluorescent staining with an antibody to -tubulin (Fig. 2C).  

 We also monitored progression through mitosis after the cdc25-arrest. A cdc25 

mutant and a double mutant, cdc25-22 mal3-89R, both of which were expressing 

GFP-tagged Sid4 as a marker for SPB [30, 31] were arrested at the G2/M boundary 

and released into the permissive temperature 26ºC.As shown in Fig. S3A, 

progression of mitosis was delayed for approximately 30 minutes in the cdc25-22 

mal3-89R double mutant. The delay was also apparent in analysis of the distance 

between the two poles. By 30 minutes after the release, the SPBs did not separate in 

most of the double mutants (Fig. S3B), suggesting that the delay in progression 

through mitosis was largely attributable to the delay in separation of SPBs at the onset 

of mitosis. As shown in Fig. S1B-j, overexpression of mal3-89R form pREP81 

resulted in a mitotic arrest with monopolar spindle, suggesting that Mal3-89R 

inhibited an initial step of the SPB separation (such as interdigitation of the mitotic 

spindle). Even when expressed from the native promoter, it might cause a transient 

delay in the SPB separation. Observation by a time-lapse microscope indicated that 

progression after the onset of mitosis was delayed modestly in the mal3-89R mutant 

(Fig. S3C and D). We also monitored the stability of an artificial chromosome Ch16 

[32] and found it was lower in the mal3-89R mutant andΔmal3 (Table 1). The 

stability was particularly low at 36 ºC. Although speculative, an important process for 

faithful segregation (such as capture of kinetochores by the spindle) may be more 

affected at a higher temperature when microtubule dynamics is not regulated properly. 
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These phenotypes would suggest that Mal3-89R protein might have an elevated 

activity to stabilize and/or to promote growth of microtubules.  

 In order to analyze dynamics of microtubules in vivo, we observed microtubules in 

living cells by a time-lapse microscope. In the wild type cells, growing cytoplasmic 

microtubules shrunk after a pausing period for 30 seconds on an average. 

Microtubules in the mal3-89R mutant were less dynamic. As shown in Fig. 3A and B, 

the pausing period between growth and shrinkage was 140 seconds. We also noticed 

that while microtubules in the mal3-89R mutant grew at a rate similar to that in the 

wild type strain, they shrunk much slower (Fig. 3C). Observation of astral 

microtubules in mitosis also revealed that the pausing period was much longer in the 

mal3-89R mutant (Fig. S4). These results indicated that the mal3-89R mutation 

inhibited disassembly and stabilized microtubules. 

 

Potential binding of Mal3-89R protein to the microtubule lattice 

 We next examined localization of Mal3 by visualizing the GFP-tagged protein. 

Consistently with the previous studies [17, 33], the wild-type Mal3 proteins were 

found as strong patchy signals at the distal microtubule plus ends and also as very 

faint signals along the microtubule lattices. In contrast, the signals of the Mal3-89R 

mutant proteins were found at the ends and much more abundantly along the lattices 

both in interphase and mitosis (Fig. 4A). We monitored the level of Mal3 and Mal3-

89R mutant proteins. As shown in Fig. 4B, the level of Mal3-89R proteins was 

comparable to that of the wild type protein, suggesting that abnormal localization of 

Mal3-89R was not due to an excess of the amount of Mal3-89R proteins.  

 We observed the Mal3 proteins in living cells. In the wild type cells, the florescent 

signal from Mal3 protein was found as patches. As Mal3/EB1 concentrates at the tips 
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of growing microtubules [17, 28], we speculated that these patches represented the 

end of growing microtubules. Indeed, the fluorescent signals moved toward the cell 

tip with comet-like tails (Fig. 4C). Soon after the signals from Mal3-GFP stopped 

moving, the signals diminished. The Mal3-89R mutant proteins were also found on 

microtubules. They however remained even after microtubules stopped growth. In 

mitosis, Mal3-89R also persisted on microtubules composing asters and the spindle 

(Fig. S5). We speculate that this prolonged interaction of the Mal3-89R with 

microtubules is a major cause of the longer pausing time before initiation of shrinkage. 

 

Microtubule-dependent phosphorylation of Mal3  

 As shown in Fig. 4B, the Mal3-89R mutant proteins were detected as a doublet. We 

speculated that they might be phosphorylated and tested this possibility. The Mal3-

89R proteins purified by immunoprecipitation with the antibody to Mal3 were treated 

with the lambda phosphatase. The upper band of the doublet was diminished after the 

treatment with the phosphatase (Fig. S6), indicating that the Mal3-89R proteins were 

indeed phosphorylated. 

 To identify a kinase responsible for phosphorylation of the Mal3-89R protein, we 

attempted to determine on which cell cycle stage Mal3-89R was phosphorylated. We 

first tested if Mal3-89R was phosphorylated in mitosis. As shown in Fig. 5A, the 

upper band of Mal3-89R observed in extracts prepared from cells growing 

asynchronously, was largely diminished in extracts prepared from cells which were 

blocked at early mitosis by shifting to the restrictive temperature for the nda3 

mutation. When shifted back to the permissive temperature, the upper band 

reappeared (Fig 5B). In these experiments we monitored the level of Slp1 that reaches 

a peak around the onset of anaphase and decreases thereafter [34]. These results 
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suggested that Mal3-89R, which was dephosphorylated at early mitosis, was rapidly 

phosphorylated behind the arrest point of the nda3 mutation. However, it was also 

possible that the phosphorylation of Mal3-89R was dependent on the presence of 

microtubules as most of the microtubules were depolymerized in the nda3 mutant at 

the restrictive temperature [35]. To test this possibility, we forced microtubule-

depolymerization in vivo and examined the status of the Mal3-89R proteins. The 

cdc10 mutant arrested at G1 was shifted to 0°C to depolymerize microtubules. As 

shown in Fig. 5C, most of the microtubules were depolymerized in cells after 

incubation at 0°C for 2 hours and reformed soon after incubation at 20°C. 

Examination of Mal3-89R proteins by western blot revealed that the upper band of the 

doublet, which was not detectable in extracts prepared from cells incubated at 0°C, 

was reappeared within 20 minutes after incubation at 20°C (Fig. 5D).  Furthermore, 

addition of a microtubule poison, CBZ (Carbendazim) prevented both reformation of 

microtubules and the reappearance of the upper band when the mal3-89R mutant 

treated at 0°C was shifted back to 20°C (Fig. 5E and F). These results illustrated a 

strong correlation between the phosphorylation of Mal3-89R and the presence of 

microtubules.  

 In order to determine the phosphorylation site(s), the Mal3-89R proteins purified by 

immunoprecipitation were subject to mass spectroscopic analysis. Based on the result 

(Fig. 6A), the threonine residue at the position 149 (T149) was predicted as a 

phosphorylation site. Because the region around T149 is very rich in serine/threonine 

residues (Fig, 6B), it was difficult to precisely determine the phosphorylation site(s).  

We therefore replaced each of serine/threonine residues between the positions 141 

and 155 in the mal3-89R background and tested if the resulting mutant protein was 

phosphorylated. As shown in Fig. 6B, the intensity of the upper band was reduced in 
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some of the mutants. In particular, replacement of S147, T149 and S151 with alanine 

could effectively suppress the phosphorylation, thought the effect was somehow 

limited. These results would suggest that the responsible kinase selects the target site 

sloppily and replacement of the most preferred site (T149) with alanine allows 

phosphorylation of other sites, or that replacement of S147 (or S151) disrupts a 

domain structure to define the substrate specificity.  

  

Non-phosphorylatable and phospho-mimetic mal3 mutants  

To address the biological significance of the phosphorylation, we first replaced the 

three residues S147, T149 and S151 with alanine simultaneously in the mal3-89R 

background and examined the phenotypes of the resulting mutant (mal3-89R 3A). 

Like the mal3-89R mutant, the mal3-89R 3A was constructed by replacement of the 

wild type mal3
+
 gene with the mutated gene and therefore it is identical to wild type 

except for the presence of the mutation. As shown in Fig. 6C, the simultaneous 

replacement effectively suppressed the phosphorylation in the mal3-89R background. 

Observation of the mal3-89R 3A mutant indicated that the replacement of the three 

residues with alanine did not affect the phenotypes associated with the mal3-89R 

mutation (Fig.7A and C). On the basis of these results, we speculated that the 

phosphorylation was not the cause of the phenotypes observed in the mal3-89R 

mutant.   

 We next constructed a mutant (mal3-3A) in which the three residues of Mal3 were 

replaced with alanine in the wild type background. By immunoblot with the antibody 

to Mal3, the wild type Mal3 proteins were detected as a doublet though the intensity 

of the upper band was weaker than that of Mal3-89R (Fig. 6C). By the same 

immunoblot, the Mal3-3A proteins were detected as a singlet. We also analyzed the 
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wild type Mal3 and Mal3-3A proteins by two-dimensional electrophoresis followed 

by immunoblot with the antibody to Mal3. As shown in Fig. 6D, two of the three 

spots of the wild type Mal3 were sensitive to the treatment with the lambda 

phosphatase, indicating that the wild type protein was phosphorylated at two sites. 

Because Mal3-3A yielded a single spot, we concluded that the wild type Mal3 was 

phosphorylated at two of the following three sites; S147, T149 and S151. The 

previous work indeed reported that Mal3 protein was phosphorylated [17]. 

Observation of the mal3-3A mutant indicated that microtubule morphology was 

moderately affected (Fig. 7A). Live cell imaging revealed that while microtubules in 

the mal3-3A mutant grew at a rate similar to that in the wild type strain, they shrunk 

slower (Fig. 7B). The results suggested that the mal3-3A mutant made microtubules 

less dynamic, though the effect on the microtubule morphology was not as strong as 

that of the mal3-89R mutant. Observation of Mal3-3A tagged with GFP uncovered 

that, unlike Mal3-89R and Mal3-89R 3A that were found along the lattice, the 

majority of Mal3-3A was seen as patchy signals (Fig. 7C). The result thereby 

suggested that the mechanism that localizes Mal3-89R along the lattice was 

independent from the phosphorylation/dephosphorylation of the cluster of 

serine/threonine residues of Mal3. 

 Considering the phenotypes of mal3-3A mutant, we speculated that the 

phosphorylation normally regulates Mal3 negatively. To test this possibility directly, 

we replaced the one or two residues of Mal3 (S147 and S151) with glutamate, an 

amino acid that would mimic phosphorylation and examined them in vitro and in vivo. 

As shown in Fig. 7D, replacement of S147 to glutamate (Mal3-147E) slightly reduced 

the activity to promote microtubule assembly in vitro. The simultaneous replacement 

(Mal3-147/151E) reduced the activity much more significantly. Replacement with 
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alanine (Mal3-147/151A, Mal3-147A) did not affect the activity in vitro, indicating 

that replacement did not disrupt the structure of Mal3 and thus the reduction of the 

activity of Mal3-147/151E was likely due to a change of the electrostatic property. 

Furthermore, we measured the binding affinity of Mal3 to microtubules, either by 

copolymerized or prepolymerized microtubule binding assay. In both assays Mal3-

89R had a greater affinity to microtubules than wild type Mal3, whereas Mal3-

147/151E had a reduced affinity  (Fig. 7E and S7C, Table 2). 

 In order to examine the effect of the replacement in vivo, the genes encoding Mal3-

147E and Mal3-147/151E were replaced with the wild type mal3
+
 gene, respectively. 

The resulting mutants, mal3-147E and mal3-147/151E were examined for their 

morphology/dynamics of microtubules. While the mutants did not exhibit any 

phenotypes in interhase, their mitotic spindle elongation was delayed (Fig.7F). The 

result indicated that replacement of S147/151 with a phospho-mimetic amino acid 

inhibits the activity of Mal3 in vitro dramatically, but to a much lesser extent in vivo 

(see discussion). 
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Discussion 

Phenotypes of the mal3-89R mutant: Among the four parameters (growth rate, 

shrinkage rate, catastrophe frequency and rescue frequency) that characterize the 

dynamic behavior of microtubules, the shrinkage rate is apparently affected by the 

89R mutation. We also found that the pausing time is longer at the transition from 

growth to shrinkage. These phenotypes would suggest that the Mal3-89R proteins 

confer a higher stability of microtubules. In the recent structural studies fission yeast 

Mal3 has been localized along the microtubule seam [15, 16, 19]. On the basis of 

these studies, it has been proposed that Mal3 would reinforce the closure of the 

tubulin-sheet at the end of the growing microtubules. The mutant protein Mal3-89R 

may have an elevated activity in this function.  

 A recent study has explored how Mal3 regulates microtubule dynamics in vitro [36]. 

The results have illustrated the two activities of Mal3 that are 1) to reduce the 

shrinkage rate, but not the growth rate and 2) to promote the rescue frequency. These 

activities are observed in a dose-dependent fashion at a range that exceeds the 

physiological concentration of Mal3 in fission yeast. It has been proposed that binding 

of Mal3 to the microtubule lattice plays an important role in exerting these activities. 

Consistently with this hypothesis, the Mal3-89R proteins that bind the microtubule 

lattice expressed at a physiological concentration reduce the rate of shrinkage.  

 Although Mal3-89R influences the microtubule assembly in the in vitro system in 

which Mal3-89R interacts only with purified bovine brain tubulins, we do not exclude 

the possibility that Mal3-89R influences interaction between other proteins and causes 

the cellular phenotypes. Mal3-89R mutant protein may prevent its replacement by MT 

destabilizing factors. This idea is supported by the previous observations that deletion 
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of budding yeast EB1 homologue Bim1 and knockdown of Drosophila kinesin-13 

decrease catastrophe frequency and prolong the pause state of MTs [37, 38].  

  The microtubule morphology of the mal3-89R mutant was affected only in mitosis, 

though the shrinkage rate was reduced and the pausing time was longer in both 

mitosis and interphase. While we propose that a strong competitor with Mal3-89R 

functions in interphase, we also speculate that the environment may influence the 

effect of the mutation on the microtubule morphology. It was shown previously that 

the rates of polymerization and depolymerization are similar in interphase and mitosis 

and that the difference in microtubule dynamics is due to an increase in the frequency 

of transition from growing to shrinking (catastrophe frequency) in mitosis in frog egg 

extracts [39, 40]. If microtubule dynamics is regulated in a similar manner in fission 

yeast, Mal3-89R, that would mask catastrophe by the longer pausing time and lower 

shrinkage rate, may impact more severely mitotic microtubules.   

 

Phosphorylation of Mal3: Mal3-89R is highly phosphorylated at the 

serine/threonine-rich region connecting CH and EB1-like C-terminal motif domains. 

Upon depolymerization of microtubules, the phosphorylation was disappeared in the 

mal3-89R mutant. The observation suggests that Mal3-89R is phosphorylated while it 

is associates with microtubules and dephosphorylated after dissociation from 

microtubules. Simultaneous replacement of three residues (S147, T149 and S151) 

with alanine (3A mutation) in the serine/threonine-rich region resulted in 

disappearance of the upper band, but it did not affect the phenotypes associated with 

the mal3-89R mutation, indicating that the phosphorylation is not a cause of the 

phenotypes. The 3A mutation resulted in disappearance of the upper band not only in 

the mal3-89R mutant, but also in the wild type strain, indicating that the wild type 
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Mal3 is also phosphorylated. We confirmed the phosphorylation of the wild type 

Mal3 by 2D gel electrophoresis followed by the treatment with the lambda 

phosphatase. The phosphorylation is readily detectable in the mal3-89R mutant.  

Unlike the wild type Mal3 that only accumulates at the growing ends, the Mal3-89R 

proteins associate with the entire length of microtubules. It is likely that a larger part 

of the Mal3-89R would remain bound to microtubules and thus be much more 

phosphorylated.  

 Analysis of phospho-mimetic mal3 mutant protein (Mal3-147/151E) in vitro 

indicated that the mutant had a reduced affinity to microtubules and could not 

promote the microtubule assembly. These results indicate that the phosphorylation 

normally regulates Mal3 negatively. The phenotypes of the non-phosphorylatable 

mutant (mal3-3A) and phospho-mimetic mal3 mutant in vivo also support this notion.  

The mal3-3A mutation reduced the rate of shrinkage (thus stabilized microtubules). 

We also found that the time for separation of the poles was longer (thus likely the 

elongation of the mitotic spindle was slower) in the mal3-147/151E mutant.  

Considering the phenotype of cells lacking Mal3 (short interphase microtubules; Fig. 

2A; [17, 20, 41]), the phenotype of the mal3-147/151E mutant was very modest. 

Regulation of Mal3 is complex and a factor may assist Mal3-147/151E in vivo.  

 It has been demonstrated that the serine/threonine-rich region of Mal3 is involved in 

binding to microtubules [10, 15].  A recent study has further elucidated a mechanism 

that regulates interaction between EB1 and microtubules. Removal of the negatively 

charged C-terminal domain from EB1 results in stable association with the 

microtubule lattice in vitro, suggesting that electrostatic repulsion prevents stable 

binding of EB1 with the lattice [42]. The phosphorylation at the serine/threonine-rich 

region would simply add negative charge or change the conformation to further 
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reduce the microtubule-binding activity. We propose the mal3-89R mutation can 

overcome the negative regulation by the phosphorylation.  

 The biological significance of phosphorylation at a cluster of serine residues in the 

linker connecting the CH and EB1-like C-terminal motif domains has first been 

demonstrated in budding yeast. Phosphorylation of Bim1 (a homolog of Mal3/EB1) 

by Aurora kinase during anaphase promotes dissociation from microtubules [43]. We 

show here that the analogous linker domain of the fission yeast Mal3 is 

phosphorylated. While Mal3 might be phosphorylated by Ark1 (the fission yeast 

Aurora kinase), we would not exclude a possibility that another kinase is also 

responsible for phosphorylation of Mal3. The phosphorylation was recovered within 

60 minutes at 20°C after release of the cdc10-G1 block. Most of the cells under this 

experimental condition would be in interphase. Regulation of microtubules in fission 

yeast may be different from that of budding yeast in which major spatial cues are 

dependent on septins and actin, but not microtubules [44].  
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Materials and Methods 

 

Yeast strains, Media, and Transformation 

The Schizosaccharomyces pombe strains are listed in Supplementary table 1. The 

strains were grown in YES (yeast extract with supplement) media and EMM synthetic 

minimal media with appropriate nutrient supplements as described by Moreno et al. 

[45]. All yeast transformations were carried out by lithium acetate methods [46, 47]. 

For synchronization, nda3-KM311
 
cold-sensitive mutant were grown in YPD media at 

32°C, a permissive condition,
 
and then incubated at 20°C for 8 hours, a restrictive 

condition. cdc10-M17 and cdc25-22 temperature-sensitive mutants were grown at 

26°C, a permissive condition,
 
and then incubated at 36°C for 4 hours, a restrictive 

condition. 

 

Mutagenesis of mal3
+
 gene 

The mal3
+
 gene was amplified by PCR using the forward primer 5’-mal3 [5’- 

GGGGGGGCATATG(NdeI)TCTGAATCTCGGCAAGAGC-3’] and the reverse 

primer 3’-mal3 [5’-GGGGATCC(BamHI)TTAAAACGTGATATTCTCATCG-3’]. In 

order to introduce mutations, PCR was performed in the presence of 1.25 mM Mg
2+

 

and 0.25 mM Mn
2+

. The resulting fragments were digested with NdeI and BamHI and 

then cloned into pREP81 to construct a pool of the mal3 mutants. 

 

Construction of mal3-GFP, mal3-89R and other mal3 mutants 

The homologous recombination-based method was used to tag endogenous mal3 with 

GFP at its carboxyl terminus and to generate the mal3 mutants. 
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 The mal3-89R mutation was introduced into a cloned genomic DNA fragment (3025 

bp franked by XhoI and KpnI restriction sites). The resulting fragments were used to 

transform a haploid strain in which the mal3
+
 gene was replaced with the ura4

+
 gene. 

The ura
-
 transformants were selected and the presence of the mal3-89R mutation was 

confirmed by genomic DNA sequencing. Other mutants in which the serine/threonine  

residues in the serine/threonine-rich region of Mal3 were replaced with alanine, were 

constructed similarly.  

 

Fluorescent Microscopy 

For time-lapse observation, living cells expressing Mal3-GFP from the native locus or 

GFP-Atb2 from the native nda3 promoters integrated at the lys1 locus [48] were 

grown to mid-log phase in EMM medium at 30°C and transferred to 35-mm glass-

bottom dishes (MatTek) coated with 0.2 mg/ml lectin (Sigma). Fluorescence 

microscope images were obtained by the Delta Vision microscope system (Applied 

Precision, Inc.) and set up in a temperature-controlled room as previously described 

[49]. This microscope system is based on an inverted fluorescence microscope (IX70; 

Olympus) equipped with a charge-coupled device (CoolSNAP HQ; Photometrics). 

The objective lens used was an oil immersion Plan-Apochromat 60× NA 1.4 lens 

(Olympus). A stack of nine slices (0.3m distance between planes) was projected 

with softWoRx software (Applied Precision, Inc.) using a maximum intensity method 

in Fig. 3, 4C, 7D, S3C and D, S4 and S5. The velocity of microtubule plus-end 

growth and shrinkage was analyzed with softWoRx software (Applied Precision, Inc.) 

by measuring the distance of microtubule plus ends between two time points in Fig. 

3C and 7B. 
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Microtubule-polymerization assay 

Tubulin was isolated from bovine brain as described [50]. DNA fragment of mal3 and 

mutants were cloned into pET30a. Mal3 with an N-terminal His-tag was expressed in 

BL21 (DE3) and purified with Ni-NTA Superflow Cartride (Qiagen) and HiTrapQ 

(GE Healthcare). Tubulin polymerization assay was performed as previously 

described [14]. Briefly, 5 M of tubulin was added to the reaction mixture containing 

2 M Mal3 in PMEM buffer (50 mM K-PIPES, 50 mM MES, 1 mM EGTA, 1 mM 

MgCl2, 1 mM GTP,  [pH 6.8]). The turbidity was recorded as the optical absorbance 

at 350 nm using a JASCO V-630 Bio spectrophotometer in 15 second intervals at 

37ºC. The wild type and various mutant Mal3 proteins were tagged with 6xHis, 

expressed and purified from bacteria. The final preparation of each protein used in the 

assay was shown in Fig. S7A.  

 
Microtubule binding assays 

For the copolymerized microtubule binding assay, 60l mixtures of 5 M of tubulin 

and 0.5-12 M Mal3 were copolymerized in PMEM buffer containing 100 mM NaCl 

at 37ºC for 30 minutes. For the prepolymerized microtubule binding assay, purified 

tubulin was polymerized in PMEM buffer with 10 M Taxol at a concentration of 

50M at 30ºC for 30 minutes as described [12]. Mixtures (60l) of taxol-stabilized 

microtubules and 0.5-12 M Mal3 were incubated in PMEM buffer containing 100 

mM NaCl at 37ºC for 30 minutes. 

All samples (50l) were centrifuged through a 40 % glycerol cushion (250l) for 

7min at 35ºC at 70,000 rpm in a TLA100.3 rotor (Beckman). After centrifugation, 

pellet and supernatant were resuspended in SDS-PAGE loading buffer and analyzed 

by SDS-PAGE. Polyacrylamide gels were stained with Coomassie Brilliant Blue and 
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the images of the gels were recorded using LAS-4000 image reader (Fuji Photo Film). 

Protein bands were quantified using Multi Gauge 3.2 software (Fuji Photo Film). The 

nonlinear fit of the all data were calculated using the program PRISM (GraphPad 

software) as described [15]. 

 

Biochemistry 

Protein extraction and western blotting were performed as described [34]. The anti-

Mal3 rabbit polyclonal antibody was raised against His-Mal3 in this study.  The 

quantitative analysis was performed with ImageJ software (NIH) in Fig. 4B. Lambda 

phosphatase (New England Biolabs) treatment of immunoprecipitates was performed 

according to the manufacture’s instructions. For tow-dimensional electrophoresis, 

Mal3 immunoprecipitates were separated by isoelectric focusing on pH 3-6 

ReadyStrip IPG strips by using the PROTEAN IEF cell (Bio-Rad laboratories) 

according to the manufacture’s instructions. 

 

MS spectrometry 

A mal3 deletion mutant was transformed with pREP1-mal3 or pREP1-mal3-89R. 

Protein extraction was performed as described [34]. Supernatants were incubated with 

anti-Mal3 antibody (generated against His-Mal3 in this study) for 2 hours at 4ºC 

before addition of priteinG-Agarose (Pierce) for a further 1 hour. Beads are washed 

five times with lysis buffer, and boiled in SDS sample buffuer. Immunoprecipitated 

samples were separated on SDS-PAGE gel and the region of the gels containing Mal3 

proteins from about 40K to 30K were cut and analyzed as described [51]. The 

obtained spectra were searched against GeneDB (pombe) database by Mascot (Matrux 
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Science). Some peaks were further assigned manually as described in the legend for 

Fig. 6A. 
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 Legends for Figures and Tables 

 

Fig. 1.  Phenotype of the mal3-89R mutant. (A) Mutation site of mal3-89R. The 

mutation site is shown with a domain structure of Mal3 and the amino acid sequences 

of other members of the EB1 family. Amino acids conserved among all the members 

are shaded in black and in more than three in gray. (B) Location of the mal3-89R 

mutation. Q89R and conserved hydrophobic residues are labeled and shown as ball-

and-stick. The model was built using MODELLER [52] and represented by PyMOL 

Molecular Graphic System (http://www.pymol.org). (C) Effect on in vitro microtubule 

assembly assay. Wild type Mal3 and Mal3-89R proteins were examined for their 

ability to promote the microtubule-assembly.  

 

Fig. 2. Microtubules in the mal3-89R mutant. (A) The -tubulin was tagged with GFP 

(GFP-Atb2) in each strain and morphology of microtubules was observed in 

interphase (I) and mitosis (M) under a fluorescent microscope. (B and C) Frequency 

of abnormal microtubules. The samples observed in (A) were categorized by counting 

more than 250 mitotic cells (B). (C) Morphology of microtubules in mitosis. Mitotic 

microtubules were stained with the antibody to -tubulin, TAT-1. The phenotypes of 

abnormal microtubules were observed in the mal3-89R strain, which was expressing 

non-tagged -tubulin. The bar indicates 5 m. 

 

Fig. 3. Microtubule dynamics in the mal3-89R mutant. (A) The -tubulin was tagged 

with GFP (GFP-Atb2) in each strain and dynamics of microtubules was observed by 

live cell imaging. Each panel shows a 10-sec-interval series of maximal projections of 

the indicated strains. The black arrowheads highlight microtubule tips that will pause 
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for the period indicated by the boxes around the frames. Thus, the microtubule in the 

example of a wild-type cell pauses at the right tip for 30 sec, while in the mal3-89R 

mutant, the microtubule pauses for more than 100 sec. Numbers in the corner of 

panels indicate relative timing in seconds. The white arrowheads indicate microtubule 

tips in the phase of shrinkage. (B and C) The live cell images were analyzed for 

statistics for the pausing time (B) and growth and shrinkage rates (C). The lines are 

the median and the bars indicate the inter-quartile range (nonparametric Mann–

Whitney U test). 18 cells and 30 cells were measured for statistics for the pausing 

time and for growth and shrinkage rates. The bar indicates 5 m. 

 

Fig. 4. Characterization of Mal3-89R protein. (A) The wild type Mal3 and the mutant 

were tagged with GFP and examined under a fluorescent microscope. The images 

were taken and processed in the same way. (B) The cell extracts prepared from the 

indicated strains were subjected to immunoblot analysis with an antibody to Mal3, 

Rheb [53] and TAT-1 (antibody to -tubulin) as a loading control. (C) The strains 

shown in (A) were analyzed by live cell imaging. Each panel shows a 10-sec-interval 

series of maximal projections of the indicated strains. The white arrowheads highlight 

the predicted growing ends of microtubule that will pause for the period indicated by 

the white boxes around the frames. The bar indicates 5 m. 

 

Fig. 5. Phosphorylation of Mal3-89R. (A and B) The nda3-KM311 mutants were 

grown at 32°C, and then incubated at 20°C for blocking at early mitosis. For release 

experiment, the cells were re-incubated at 32°C and collected every 3 minutes (B). (C 

and D) The cdc10-M17 mutants were grown at 26°C, and then incubated at 36°C for 

blocking at G1 phase. Furthermore, the cells were incubated on ice. For release 
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experiment, the cells were re-incubated at 20°C and collected at the indicated time. (E 

and F) The mal3-89R mutant cells were grown at 30°C, and then incubated on ice. For 

re-assembling of microtubules, the cells were re-incubated at 20°C with or without 

CBZ, microtubule-destabilizing drug, and collected at the indicated time. (C and E) 

Immuno-staining of microtubules with the antibody to -tubulin, TAT-1, was 

performed as previously described [34]. 

 

Fig. 6. Identification of Mal3-89R phosphorylation sites. (A) Identification of Mal3-

89R phosphorylation sites by mass spectrometric analysis. The MS/MS spectra of the 

tryptic phosphopeptide amino acids 142–152 of Mal3 obtained by collision-induced 

dissociation of the [M + 2H]
2+

precursor ions, m/z 696.9 is shown. Intense [M + 2H –

2H2O]
2+

 ion (m/z 679.2) and [M + 2H –2H2O-98]
2+ 

ion (m/z 630.5), due to H2O and/or 

neutral loss (H2O + phosphate) of precursor ions were observed, indicating that the 

potential phosphorylated residue is serine or threonine. The evident ion fragment at 

m/z 760.2 is assignable to y6 (boxed) and the following y series assignments are 

reasonable when the peptide is phosphorylated at Thr149. (B) Cells expressing the 

indicated mutant alleles of mal3 were grown at 32°C. (C) The cell extracts prepared 

from the indicated strains were subjected to immunoblot analysis with antibodies to 

Mal3, Rheb and TAT-1. (D) The samples prepared as in (C) were analyzed by two-

dimensional electrophoresis followed by immunoblot with the antibody to Mal3. 

 

Fig. 7. Phenotypes of non-phosphorylatable and phospho-mimetic mal3 mutants. (A) 

The -tubulin was tagged with GFP (GFP-Atb2) in each strain and morphology of 

microtubules was observed in mitosis under a fluorescent microscope. The samples 

were categorized as shown in Fig2B. (B) The live cell images were analyzed for 
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growth and shrinkage rates. The lines are the median and the bars indicate the inter-

quartile range (nonparametric Mann–Whitney U test). 30 cells were measured for 

statistics for growth and shrinkage rates. (C) The Mal3-3A and Mal3-89R3A mutants 

were tagged with GFP and examined under a fluorescent microscope. The images 

were taken and processed in the same way. The bar indicates 5 m. (D) Effect on in 

vitro microtubule assembly assay. Wild type Mal3, phospho-mimetic and non-

phosphorylatable mutant proteins were examined for their ability to promote the 

microtubule-assembly. (E) Effect on in vitro microtubule binding assay. Wild type 

Mal3, Mal3-89R and phospho-mimetic mutant proteins were examined for the 

binding affinity to copolumerized (left) or prepolumerized (taxol-stabilized; right) 

microtubules. (F) Wild-type, mal3-89R and phospho-mimetic mutant strains, each of 

which was expressing GFP-tagged Cnp1 (as a marker for centromere) and mCherry-

tagged Sad1, were observed by a time-lapse microscope. The images were taken 

every 2 minutes and the time required for mitosis (defined as time between SPB 

separation and complete centromere separation) was determined. The lines are the 

median and the bars indicate the inter-quartile range (n = 11, nonparametric Mann–

Whitney U test). 

 

Table 1. Stability of mini-chromosome. Stability of an artificial mini-chromosome 

(Ch16) was examined in a wild-type strain, a strain deleted for mal3
+
 gene and a 

mal3-89R mutant at 26 or 36ºC as described previously [32].  

 

Table 2. Binding affinity of Mal3 mutant proteins. The maximum specific binding 

(Bmax) and equilibrium dissociation constant (Kd) were calculated based on the data 

shown in Fig. 7E by a fitting program PRISM (GraphPad software). 
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 Table 1. mal3-89R mutation affects the stability of non-essential mini-

chromosome 

 

Mini-chromosome loss rate (36ºC） 

 Loss rate per cell division (%) 

Strains 10 20 40 (generations) 

WT 0.54 0.58 1.15 

mal3-89R 0.42 3.60 16.15 

mal3 2.34 20.20 90.37 

    

    

Mini-chromosome loss rate (26ºC） 

 Loss rate per cell division (%) 

Strains 10 20 40 

WT 0.41 0.96 1.07 

mal3-89R 0.53 0.32 1.71 

mal3 0.69 0.97 2.57 

 

 

 Table 2.  Binding affinity of Mal3 to microtubule 

 

 

 

Copolymerized MT Prepolymerized MT 

WT Mal3-89R Mal3-147/151E WT Mal3-89R Mal3-147/151E 

Bmax (M) 3.4 ± 0.6 5.2 ± 0.7 1.8 ± 0.3 5.0 ± 0.7 5.9 ± 0.7 3.5 ± 0.7 

Kd (M) 10.1 ± 3.0 3.9 ± 0.9 15.8 ± 3.5 6.1 ± 1.7 2.1 ± 0.4 8.5 ± 2.6 



Figure Legends 

Fig. S1.  Phenotype of the mal3-89R mutant.  

(A) Growth defect caused by overexpression of mal3-89R. Wild-type and mal3 deletion 

mutant strains were transformed with pREP81 (vector), pREP81-mal3 or 

pREP81-mal3-89R. Each transformant was grown in liquid EMM media containing 

thiamine, and serial dilutions (510
4
 to 510

1
 cells) were spotted on EMM or EMM 

containing thiamine agar plates. (B) Mitotic arrest caused by overexpression of 

mal3-89R. The transformants were grown in the absence of thiamine for 16 hours to 

induce expression of the cloned gene and observed under a fluorescent microscope after 

staining with DAPI (a – f). While the transformants with pREP81 or pREP81-mal3 

could grow exhibiting normal nuclear morphology (a and b), the transformants with 

pREP81-mal3-89R were arrested with nuclear morphology typical of mitotic defects 

such as hyper-condensed chromosomes (c), separated and condensed chromosomes (d), 

“cut”- phenotype (e) and unequally segregated chromosomes (f). Microtubule 

morphology was also observed in mitosis by immuno-staining with the antibody to 

-tubulin, TAT-1 in the cells expressing GFP-tagged Sid4 as a marker for SPB, a 

structure equivalent to centrosome in higher eukaryotes. In the transformants with 

pREP-81 or pREP81-mal3 (g and h), the spindle microtubules (green) were normally 

assembled between the two poles (red). In contrast, most of the transformants with 

pREP81-mal3-89R were arrested with a metaphase-like short spindle with persistent 

cytoskeltal microtubules, as indicated by arrowhead, (i) or monopolar spindle (j). As 

shown in the inset of (j), two SPBs slightly separated. The bar indicates 5 m. (C) mad2 

and bub1 deletion mutant strains were transformed with pREP81 (vector) or 



pREP81-mal3-89R. Each transformant was grown on EMM or EMM containing 

thiamine agar plates. 

 

Fig. S2. mal3-89R mutant strain was as sensitive as the wild type strain. Wild type, 

mal3-89R and mal3 deletion mutant strains were grown in liquid YES media, and serial 

dilutions (510
4
 to 510

1
 cells) were spotted on YES agar plates containing 15g/ml 

TBZ. The strains were grown at 32°C. 

 

Fig. S3. Mitotic defects in mal3-89R. (A and B) Delay in the onset of mitosis. A 

cdc25-22 mutant and a double mutant, cdc25-22 mal3-89R, both of which were 

expressing GFP-tagged Sid4 were arrested at the G2/M boundary. The septation index 

was determined every 10minutes after the release by counting more than 250 cells (A). 

In the samples prepared as in (A), the distance between the two poles was determined 

20, 30 and 40 minutes after the release by counting more than 100 cells (B). The red 

lines are the median and the blue bars indicate the inter-quartile range (nonparametric 

Mann–Whitney U test). (C and D) Time-lapse analysis. A wild-type strain and a 

mal3-89R mutant, both of which were expressing GFP-tagged Cnp1 (as a marker for 

centromere) and mCherry-tagged Sad1, were observed by a time-lapse microscope. The 

images were taken every 2 minutes (C) and the time required for mitosis (defined as 

time between SPB separation and complete centromere separation) was determined (D). 

The red lines are the median and the blue bars indicate the inter-quartile range (n = 11, 

nonparametric Mann–Whitney U test). 

 



Fig. S4. Microtubule dynamics in mitosis. The -tubulin was tagged with GFP 

(GFP-Atb2) in each strain and dynamics of microtubules was observed by live cell 

imaging. Each panel shows a 10 sec-interval series of maximal projections of the 

indicated strains. The black arrowheads highlight the tips of aster that will pause for the 

period indicated by the boxes around the frames. Thus, the astral microtubule in the 

example of a wild-type cell pauses for 30 sec, while in the mal3-89Rmutant, the astral 

microtubule remains stable for more than 160 sec. Numbers in the corner of panels 

indicate relative timing in seconds. 

 

Fig. S5. Characterization of Mal3-89R protein in mitosis. The wild type and the mutant 

Mal3 were tagged with GFP and examined by live cell imaging. Each panel shows a 

10-sec-interval series of maximal projections of the indicated strains. The white 

arrowheads highlight the tips of aster that will pause for the period indicated by the 

boxes around the frames. The red arrowheads indicate a remaining cytoplasmic 

microtubule in mitosis and the yellow arrowheads the SPBs. The bar indicates 5 m. 

 

Fig. S6. Phosphatase assay of Mal3-89R protein. The Mal3-89R proteins purified by 

immunoprecipitation with the antibody to Mal3 were treated with or without 100 units 

of lambda phosphatase (New England Biolabs), and 1mM sodium orthovanadate was 

added as a phosphatase inhibitor. The reaction solution was incubated for 30 minutes at 

30°C. The asterisk indicates a non-specific band. 

 

Fig. S7. Microtubule binding assay. (A) Recombinant protein of Mal3 mutants with an 

N-terminal His-tag was expressed in BL21 (DE3) and purified with Ni-NTA Superflow 



Cartride (Qiagen) and HiTrapQ (GE Healthcare). (B) Typical gel run of bovine brain 

tubulin, presence of GTP with or without taxol, and recombinant protein of Mal3 

mutants for microtubule binding assay. (C) Effect on microtubule binding assay. Wild 

type Mal3, Mal3-89R and phospho-mimetic mutant proteins (added concentration, 

0.5-12 M, are indicated) were measured the binding affinity for copolumerized (upper) 

or prepolumerized (taxol-stabilized; lower) microtubules. S, supernatant fraction; P, 

pellet fraction. 
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Supplementary table. Yeast strains used in this s 

 

Strain Genotype Source 
972 h-  Lab stock 
SP 6 h- leu1-32 Lab stock 
RBC 149 h- mal3::ura4+ ura4-D18 This study
RBC 150 h- mal3::ura4+  leu1-32 ura4-D18 This study
RBC 151 h- pREP81:LEU2 leu1-32 This study
RBC 152 h- mal3-pREP81:LEU2 leu1-32 This study
RBC 153 h- mal3-GFP:LEU2 leu1-32 This study
RBC 154 h- mal3::ura4+ pREP81:LEU2 leu1-32 ura4-D18 This study
RBC 155 h- mal3::ura4+ mal3-pREP81:LEU2 leu1-32 ura4-D18 This study
RBC 156 h- ade6-M210 leu1-32 ch16[ade6-M216] This study
RBC 157 h- mal3::ura4+ ade6-M210 leu1-32 ura4-D18 ch16[ade6-M216] This study
RBC 158 h+ nda3-km311 mad2-GFP:LEU2 leu1-32 This study
RBC 159 h- cdc25-22 sid4-GFP:kanR leu1-32 This study
RBC 160 h+ sad1-mCherry:kanR GFP-cnp1:hph leu1-32 This study
RBC 161 h- mal3-89R leu1-32  This study
RBC 162 h+ lys1:Pnda3-GFP-atb2 leu1-32  This study
RBC 163 h- mal3::ura4+ lys1:Pnda3-GFP-atb2 leu1-32 ura4-D18 This study
RBC 164 h- leu1-32 mal3-89R-pREP81:LEU2 This study
RBC 165 h- bub1::ura4+ pREP81:LEU2 ade6-210 leu1-32 ura4-D18 This study
RBC 166 h- bub1::ura4+ mal3-89R-pREP81:LEU2 ade6-210 leu1-32 ura4-D18 This study
RBC 167 h- mad2::ura4+ pREP81:LEU2 leu1-32 ura4-D18 This study
RBC 168 h- mad2::ura4+ mal3-89R-pREP81:LEU2 leu1-32 ura4-D18 This study
RBC 169 h- mal3-89R ade6-M210 leu1-32 ch16[ade6-M216] This study
RBC 170 h- mal3-89R-GFP:LEU2 leu1-32 This study
RBC 171 h- mal3-89R This study
RBC 172 h+ mal3-89R nda3-km311 mad2-GFP:LEU2 leu1-32 This study
RBC 173 h- mal3-89R cdc25-22 sid4-GFP:kanR leu1-32 This study
RBC 174 h+ mal3-89R sad1-mCherry:kanR GFP-cnp1:hph leu1-32 This study
RBC 175 h+ mal3-89R cdc10-M17 leu1-32  This study
RBC 176 h+  mal3-147E sad1-mCherry:kanR GFP-cnp1:hph leu1-32 This study
RBC 177 h+  mal3-147/151E sad1-mCherry:kanR GFP-cnp1:hph leu1-32 This study
RBC 178 h+ mal3-89R lys1:Pnda3-GFP-atb2 leu1-32  This study
RBC 179 h mal3-89R3A lys1:Pnda3-GFP-atb2 leu1-32  This study


