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Abstract

The multiple inverse method is widely used to invert multiple stress tensors

from fault-slip data caused by polyphase tectonics. A practical problem

of the method is the time-consuming computation related to its iterative

procedure. This paper describes a way of accelerating the computation by

replacing an exhaustive grid search for the optimal stress tensor by direct

calculation using an analytical solution. Furthermore, a technique to reduce

noise in the result was developed based on the estimation of instabilities of

solutions.
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1. Introduction1

Stress tensor inversion methods are widely used to infer tectonic stress2

state from fault-slip data. Input fault data are collected from geological out-3

crops, seismic focal mechanisms, rock core samples and underground images4

obtained by three-dimensional seismic surveys. Among the variety of meth-5
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ods the multiple inverse method (Yamaji, 2000), hereafter abbreviated as6

MIM, has an advantage in separating multiple stress tensors from a mix-7

ture of geological faults yielded from spatial or temporal change of tectonic8

stress state. This method has been used by many researchers in various9

regions (e.g., Yamada and Yamaji, 2002; Yamaji, 2003; Sippel et al., 2009;10

Chan et al., 2010) and further methodological improvement is now ongoing.11

MIM has been extended to analyse seismic focal mechanisms without a pri-12

ori specification of fault planes from paired orthogonal nodal planes (Otsubo13

et al., 2008), improved to objectively recognise multiple solutions by means of14

clustering techniques (Otsubo and Yamaji, 2006) and enhanced in its resolu-15

tion through development of uniform computational grid (Sato and Yamaji,16

2006b; Yamaji and Sato, 2011).17

A fault-slip data set is described as heterogeneous when it includes faults18

caused by different stresses. A conventional method of stress inversion (e.g.,19

Angelier, 1979) determines an optimal stress tensor for a whole data set,20

though the solution is meaningless if the data set is heterogeneous. MIM21

can detect multiple stress tensors through an iterative sampling procedure.22

When a data set has N faults, MIM extracts a subset including k faults from23

it and determines an optimal stress tensor for the subset by exhaustive grid24

search. This process is repeated NCk times for all possible combinations of25

k-element subsets. A great number of stress tensors are obtained and their26

concentrations are interpreted as desired tectonic stresses (Fig. 1). This27

iterative calculation also has an effect of enhancing solutions from natural28

noisy fault-slip data.29

A problem of MIM lies in its computational cost. It takes between a few30
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hours and several days to analyse several hundred to a thousand faults by a31

personal computer. The cost is proportional to the number of fault subsets32

NCk, which is order of O
(
Nk

)
by Landau’s symbol. The number of faults in33

a subset k is empirically set to four or five (Yamaji, 2000). Therefore the cost34

is O (N4) or O (N5). This fact generally limits the total number of faults N35

up to a thousand.36

Each determination of optimal stress for fault subsets is done by exhaus-37

tive grid search on 60,000 uniformly spaced stress tensors (Sato and Yamaji,38

2006b) by default. This study proposes a direct algorithm for determination39

of optimal stress tensor. Although the new technique is applicable only to40

four-element subsets, it calculates the numerous stress solutions several times41

faster than conventional MIM. A method of noise reduction by estimating42

instabilities of solutions is also provided.43

2. Method44

2.1. Wallace-Bott hypothesis45

MIM as well as recent stress tensor inversion techniques is based on an46

assumption that a fault slips in the direction of shear stress, which is called47

Wallace-Bott hypothesis (Wallace, 1951; Bott, 1959, illustrated in Fig. 2a).48

Input data of stress inversion analysis are called fault-slip data which contain49

fault plane orientations, slip orientations and shear senses, while the unknown50

parameters are described by stress tensors. The direction of shear stress on51

a fault plane depends on four of the six independent components of stress52

tensor. Let σ, whose components are denoted by σij (i = 1 to 3, j = 1 to 3),53

be a reduced stress tensor with four degrees of freedom. Two normalisation54
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conditions imposed on σ can be freely chosen. The first and second invariants55

are normalised in this study, i.e.,56

J1 = σ1 + σ2 + σ3 = 0 (1)

and57

J2 = −σ1σ2 − σ2σ3 − σ3σ1 = 1, (2)

where σ1, σ2 and σ3 are the principal stress magnitudes (σ1 ≥ σ2 ≥ σ3,58

compression is positive). Let n = (n1, n2, n3)
T and v = (v1, v2, v3)

T be the59

unit vectors in the directions of fault normal and slip direction, respectively.60

The superscript T denotes the transpose of a vector or a matrix. Hereafter61

all vectors are column vectors. Cauchy’s formula gives the traction vector62

exerted on a fault plane by a stress as t = σn. The shear stress is derived by63

projecting t onto fault plane as τ = t−nnTt. The Wallace-Bott hypothesis64

requires τ to be in the same direction as v.65

Fry (1999) decomposed the Wallace-Bott condition into66

b · t = 0 (3)

and67

v · t > 0, (4)

where the unit vector b = n × v is perpendicular to both n and v. Eq. (3)68

requires the shear stress vector τ to be parallel to observed slip direction v,69

while Eq. (4) represents the correspondence of shear sense (Fig. 2a). Sato70

and Yamaji (2006a) introduced the deviatoric stress space to stress inversion71

analysis, in which reduced stress tensors and fault-slip data are represented72
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by five-dimensional unit vectors (Fig. 2b). They reformulated Eqs. (3) and73

(4) as74

−→ε ′ · −→σ = 0 (5)

and75

−→ε · −→σ > 0, (6)

respectively. The vectors in Eqs. (5) and (6) are defined as76

−→σ =



σ11/
√

2

σ22/
√

2

σ33/
√

2

σ23

σ31

σ12


,−→ε ′ =



√
2b1n1

√
2b2n2

√
2b2n2

b2n3 + b3n2

b3n1 + b1n3

b1n2 + b2n1


,−→ε =



√
2v1n1

√
2v2n2

√
2v2n2

v2n3 + v3n2

v3n1 + v1n3

v1n2 + v2n1


. (7)

The normalisation conditions of the stress tensor (Eqs. 1 and 2) and the77

orthogonality of unit vectors representing fault parameters (Fig. 2a) imply78

σ11 + σ22 + σ33 = ε′1 + ε′2 + ε′3 = ε1 + ε2 + ε3 = 0, (8)
79

|−→σ | = |−→ε ′| = |−→ε | = 1, (9)

and80

−→ε ′ · −→ε = 0. (10)

Eq. (8) means the components of vectors in the direction of (1, 1, 1, 0, 0, 0)T
81

are equal to 0, which allows us to reduce the dimension on six-dimensional82

vectors to five. According to Eq. (9) the end points of vectors are on the83

five-dimensional unit sphere (Fig. 2b).84
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The Wallace-Bott condition is geometrically expressed in the deviatoric85

stress space (Sato and Yamaji, 2006a). A fault-slip datum specifies paired86

orthogonal vectors −→ε ′ and −→ε (Eq. 10). The unknown stress tensor is con-87

strained so that −→σ is perpendicular to −→ε ′ and is in the same hemisphere as88

−→ε (Eqs. 5 and 6). In other words, stress tensors which satisfy the Wallace-89

Bott condition correspond to −→σ on a half great circle specified by −→ε ′ and −→ε90

(Fig. 2b), which is called the Fry arc in what follows.91

2.2. Analytical solution92

When we have a number of faults activated by a single stress, their Fry93

arcs should intersect at a point on the five-dimensional unit sphere. The point94

corresponds to the optimal stress tensor satisfying Wallace-Bott conditions95

for all faults. Since natural data contain errors to some extent, intersections96

of Fry arcs do not generally coincide. MIM searches for optimal points for97

fault subsets which have small distances to Fry arcs. The candidates of98

solutions are the uniformly spaced 60,000 grid points (Sato and Yamaji,99

2006b). The exhaustive search on the grid causes the computational cost.100

The necessary and sufficient number of fault data to determine a stress101

solution is four, which is equal to the number of unknown stress parame-102

ters. This fact corresponds to the geometry in the deviatoric stress space.103

In order to satisfy the parallel conditions between shear stress vectors and104

slip directions (Eq. 5) for four faults, a direction perpendicular to four −→ε ′
105

vectors in the five-dimensional space is uniquely specified by calculating a106

cross product of them (Fig. 3). Fortunately, the number of faults in a subset107

of MIM analysis can be set to four. Then the time-consuming grid search108

can be replaced by a direct calculation of cross product. The replacement109
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is expected to save computational time, although the shear sense conditions110

(Eq. 6) must be checked separately.111

2.3. Procedure112

The present method of fast multiple inversion, hereafter FMI, takes the113

following steps.114

1. Convert N fault-slip data into −→ε and −→ε ′ vectors.115

2. Extract a four-element subset from the whole data.116

3. Calculate the five-dimensional cross product of four −→ε ′ vectors to ob-117

tain a candidate −→σ for the optimal solution.118

4. Check the shear sense conditions (Eq. 6) by calculating dot products119

of −→σ and −→ε vectors. If all signs of four dot products are positive or120

negative, −→σ or −−→σ is the optimal solution for the subset, respectively.121

Otherwise, reject the candidate −→σ and proceed to 6.122

5. Find the nearest grid point to the optimal solution from 60,000 uniform123

grid points and cast a vote for the corresponding stress tensor.124

6. Repeat procedures 2 to 5 NC4 times for all possible combinations of125

fault subsets.126

The software of FMI is available at the author’s web site (http://www.kueps.kyoto-127

u.ac.jp/˜web-bs/k sato/software.html).128

Step 5 above is necessary to deal with numerous stress tensors. When129

N = 100, for example, we need to find concentrations of 100C4 = 3, 921, 225130

solutions, though step 4 probably reduces the number to some extent. The131

population of solutions are converted into votes for grid points. The peaks132
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of distribution of votes on the five-dimensional unit sphere can be visualised133

and recognised by viewer software.134

Noisy votes in the result of MIM analysis partly comes from heterogeneous135

fault subsets, for which the optimal solutions are meaningless and expected136

to be random stress tensors (Yamaji, 2000). Otsubo and Yamaji (2006)137

proposed a method to reduce such noise by excluding a candidate solution138

if the distance between corresponding −→σ vector and at least one Fry arc is139

larger than a threshold value. In the present method of FMI step 4 performs140

the exclusion during the check of shear sense conditions.141

Another type of noise can arise from the instability of cross product cal-142

culated in step 3. If four −→ε ′ vectors are not sufficiently linearly independent,143

i.e., at least two of them are nearly parallel, the direction of their cross prod-144

uct becomes instable. The degree of linear independence is measured by the145

length of the cross product, which is the volume of four-dimensional paral-146

lelepiped spanned by −→ε ′ vectors. The length ranges from 0 to 1. For the147

purpose of reducing noisy votes, FMI has an option to weight votes propor-148

tionally to the lengths of cross products in the procedure 5.149

3. Improvement150

3.1. Test 1: Reduction of calculation time151

Artificial fault-slip data sets were analysed to compare the calculation152

times of MIM and FMI. The number of faults in a subset k in MIM was153

set to four. An example of a data set is shown in Fig. 4a. Fault planes154

are randomly oriented. A half of the faults in a data set is assumed to be155

activated by stress A with σ1-axis at 000/00, σ3-axis at 090/00 and Φ = 0.3.156
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The other half corresponds to stress B with σ1-axis at 040/00, σ3-axis at157

130/00 and Φ = 0.3. The parameter Φ = (σ2 − σ3) / (σ1 − σ3) is called stress158

ratio, which ranges from 0 to 1. Φ = 0 for axial compression (σ1 > σ2 = σ3)159

and Φ = 1 for axial tension (σ1 = σ2 > σ3).160

As the result of MIM and FMI analyses, the artificial stresses A and B161

were successfully detected (Fig. 4b and c). No large difference was found162

between results of MIM with grid search and FMI with direct calculation163

as is expected. The time spent for calculation is shown in Fig. 5a for the164

cases of N = 50 to 500. Although the calculation time rapidly increases with165

the number of data for both methods, FMI was found to be about ten times166

faster than MIM.167

The calculation time for analysis of seismic focal mechanisms was also168

examined (Fig. 5b). For a four-element subset, the number of possible169

choices between orthogonal nodal planes is 24 = 16. All choices are regarded170

as different subsets of faults in both MIM and FMI, of which calculation171

inevitably requires much longer time than analysis of geological fault data.172

Fig. 5b clearly shows that FMI is several times faster than MIM.173

3.2. Test 2: Noise reduction174

As is mentioned in Section 2.3, FMI has an option to reduce noisy so-175

lutions by weighting them according to the lengths of five-dimensional cross176

products. This option can reduce noises caused by nearly parallel −→ε ′ vectors177

which correspond to nearly parallel fault planes and slip directions. In order178

to test the effect of noise reduction, an artificial fault data set with 100 faults179

were analysed (Fig. 6). The faults were assumed to be activated by a single180

stress tensor with stress ratio Φ of 0.3 and with σ1- and σ3-axes oriented181
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340/10 and 160/80, respectively. The normals of fault planes were concen-182

trated at 000/45 and 180/45 with some perturbation, simulating a conjugate183

fault system.184

As the results of MIM (Fig. 6b), FMI (Fig. 6c) and FMI with noise185

reduction (Fig. 6d), the assumed stress tensor was successfully detected.186

The difference between methods appeared in the accuracy and precision of187

solution. The accuracy can be measured by angular stress distance Θ (Yamaji188

and Sato, 2006), which is the reformulation of stress difference proposed by189

Orife and Lisle (2003), between optimal solutions and the assumed stress190

tensor. MIM resulted in Θ = 5.38◦, while FMI with noise reduction had a191

higher accuracy of Θ = 1.61◦. The precision was measured by the dispersion192

of numerous solutions derived from all fault subsets, which can be estimated193

by the mean distance Θ to the optimal (averaged) solution. FMI with noise194

reduction was found to have higher precision of Θ = 15.6◦ than that of MIM,195

Θ = 22.7◦. The weighting of solutions by the lengths of cross products was196

confirmed to be effective in reducing noise.197

4. Discussion198

The new method of multiple stress inversion (FMI) was found to accel-199

erate the calculation by a factor of up to 10 without loss of detectability of200

stress tensors. Moreover, the noise reduction technique is available in FMI201

analysis. However, the dependence of calculation amount of FMI on the202

number of fault data is still O (N4), the same as MIM, as is demonstrated by203

the rapidly increasing trends of calculation time in Fig. 5. It will take several204

days to analyse more than a thousand faults by using personal computers.205

10



The problem is severe especially for seismic focal mechanisms because of the206

availability of databases accumulating numerous seismic events and the un-207

known choice between nodal planes. Further reduction of calculation time208

could be achieved by relaxing the requirement of analysing all possible com-209

binations of fault subsets. We could undertake random sampling of fault210

subsets to limit the computation effort, which of course requires a careful211

assessment of degeneration of results.212
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Figure captions264

Figure 1265

Schematic figure illustrating the procedure of multiple inverse method266

(MIM) to detect multiple stress tensors from a heterogeneous fault-slip data267

set. The data set is a mixture of black and white f symbols representing faults268

activated by different stresses A and B, respectively. MIM extracts subsets269

of four or five faults from whole data and determines optimal solutions for270

them by means of exhaustive grid search on the deviatoric stress space (Sato271

and Yamaji, 2006b) which is geometrically the surface of five-dimensional272

unit sphere. Homogeneous subsets are expected to concentrate their votes273

to the grid points corresponding to stresses A or B, while the meaningless274

solutions from heterogeneous subsets should be placed randomly.275

Figure 2276

Wallace-Bott hypothesis as the principle of stress tensor inversion. The277

slip direction of a fault is assumed to coincide with the shear stress direction278

exerted by the tectonic stress in question. (a) In the physical space, observ-279

able fault parameters are represented by unit vectors v, b and n. A correct280

stress tensor gives shear stress vector τ , which is the projection of traction281

vector t onto fault plane, in the direction of slip v. (b) Schematic figure of282

deviatoric stress space. Wallace-Bott hypothesis is geometrically expressed283

as the constraint on stress tensor represented by −→σ from a fault-slip datum.284

The fault parameters −→ε and −→ε ′ specify a half great circle called the Fry arc285

(bold line) on which −→σ vector is required to lie.286
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Figure 3287

Schematic figure illustrating how to calculate the direct solution of stress288

tensor inversion. When we have four fault-slip data, four −→ε ′ vectors are289

specified in the five-dimensional deviatoric stress space. The parallel condi-290

tions between fault-slip directions and shear stress vectors require −→σ vector291

representing stress tensor to be perpendicular to all four −→ε ′ vectors. The an-292

alytical solution to this even-determined problem can be uniquely obtained293

as the direction of five-dimensional cross product of −→ε ′ vectors. Note that294

four −→ε ′ vectors must be linearly independent in the five-dimensional space,295

although this schematic figure looks as if they were two-dimensionally copla-296

nar owing to lack of dimension. The white circle spanned by them represents297

not a two-dimensional circle but a four-dimensional space.298

Figure 4299

An example of results of the test to examine the computational cost of300

FMI. (a) Artificial fault-slip data containing 50 faults of which half is acti-301

vated by stress A and the other half is activated by stress B. Tangent-lineation302

diagram (Twiss and Gefell, 1990) in lower-hemisphere and equal-area pro-303

jection. Arrows plotted at poles of fault planes indicate slip directions of304

footwall blocks. (b) Result of MIM. Paired stereograms show orientations of305

σ1- and σ3-axes. Colours of symbols indicate stress ratio Φ. In this figure306

300 stress tensors out of 60,000 grid points are plotted, which got more votes307

from fault subsets than the others. The assumed stresses A and B were cor-308

rectly detected. (c) Result of FMI in similar plot as (b). Note that there is309

no significant difference between results of MIM and FMI.310
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Figure 5311

Comparison of calculation times of MIM and FMI. Horizontal axis is the312

number of faults analysed. (a) Analysis of geological faults. FMI works about313

ten times faster than MIM, although the calculation times of both methods314

increase rapidly with the number of data. (b) FMI is also faster in analysis315

of seismic focal mechanisms, although they require much longer time than316

geological faults because of unknown choice of nodal planes.317

Figure 6318

The result of analysis to test the effect of noise reduction. (a) Artificial319

100 fault-slip data assumed to be activated by a single stress with Φ = 0.3.320

Open squares are principal stress axes plotted on lower-hemisphere and equal-321

area stereogram. Arrows show the slip directions of footwall blocks plotted322

at poles of fault planes (tangent-lineation diagram). (b) Result of MIM.323

(c) Result of FMI. (d) Result of FMI with noise reduction. See Fig. 4324

for explanation of plots. Φ values show stress ratios of optimal solutions of325

which principal orientations are plotted as open squares. The accuracies of326

the optimal solutions were measured by Θ values which are distances from the327

assumed stress. Θ is the dispersion of solutions obtained from fault subsets328

as a measure of precision. Stress tensors of which votes are more than 1.5%329

of their maximum are plotted. Note that higher accuracy and precision was330

achieved by noise reduction in FMI.331
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