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Abstract A circular disk without thickness is placed in a gas, and an external
force, obeying Hooke’s law, is acting perpendicularly on the disk. If the disk is
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an oscillatory or non-oscillatory unsteady motion, which decays as time goes on
because of the drag exerted by the gas molecules. This unsteady motion, i.e., the
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its decay, for two kinds of gases: one is a collisionless gas (or Knudsen gas) and
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power of time for the collisionless gas. The result complements the existing math-
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that the manner of the decay changes significantly for the special Lorentz gas.
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1 Introduction

Let us consider a body in an infinite expanse of a gas. The body is supposed
to be subject to an external force that obeys Hooke’s law (i.e., a restoring force in
proportion to the displacement from the equilibrium position) and be movable only
in the direction parallel to the force (linear pendulum). If the body is displaced
and released with an initial velocity, then it starts an unsteady motion, e.g., an
oscillation around the equilibrium position, but the motion attenuates as time goes
on because of the drag force exerted on the body by the surrounding gas. We are
concerned with the rate of decay of the motion of the body.

If the drag force is proportional to the speed of the body, the motion of the body
(e.g., the amplitude of the oscillation) decays exponentially in time. However, the
drag exerted by the gas is not so simple, and we may expect a different decay rate.
This problem, together with the case in which the body is subject to a constant
external force and approaches a final steady motion, has been studied extensively
[1–6] when the surrounding gas is a collisionless gas (a free-molecular gas or the
Knudsen gas), i.e., a gas that is so rarefied that collisions between gas molecules
can be neglected.

For instance, the case where the body is a circular disk and the external force,
obeying Hooke’s law, acts perpendicularly on the disk was studied mathematically
in [2]. To be more specific, let us denote by t∗ the time variable and by Xw(t∗)
the displacement (with sign) of the disk from the equilibrium position. Then, the
force is expressed as −κXw(t∗) with a positive constant κ. The gas molecules
are assumed to undergo specular reflection on the disk. Initially, the disk is fixed
with displacement Xw0, and the gas is in a uniform equilibrium state at rest. At
time t∗ = 0, it is released with an initial velocity (parallel to the external force).
Then, the disk starts an unsteady motion, and as time goes on, the motion decays,
i.e., Xw(t∗) → 0. In [2], it is proved that there exist cases where Xw(t∗) decays
monotonically (without oscillation) and that the decay is slow and algebraic in
such cases, i.e., it is described as

|Xw(t∗)| ≈ Cs/td+2
∗ , (1)

for sufficiently large t∗, where d is the dimension of the problem and Cs is a pos-
itive constant. A subsequent numerical study [6] confirmed an algebraic decay
even in the case with many oscillations for the one-dimensional problem (d = 1).
Here, it should be mentioned that, since the diffuse-reflection condition, rather
than the specular-reflection condition, was employed in [6], the decay rate was
different and was proportional to 1/t2∗, which is slower than Eq. (1) with d = 1.
These algebraically slow decays are attributed to a long-memory effect peculiar
to a collisionless gas. In such a gas, the molecules that are reflected by the disk
at early times may hit the disk again at later times. In contrast to a gas with in-
termolecular collisions, such molecules transfer information about the disk at an
early stage directly to the disk at a later stage and may affect the motion of the
disk long time later. In other words, they give rise to a long-memory effect.

The aim of the present study is twofold. One is to extend the numerical study
in [6] to two- and three-dimensional problems and provide numerical evidence of
the decay rate described by

|Xw(t∗)| ≈ Cf/td+1
∗ , (2)
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with a positive constant Cf , under the diffuse-reflection boundary condition. The
other is to see the change of the decay rate when the long-memory effect is de-
stroyed by introducing a sort of interaction of gas molecules with a background.
For this purpose, we consider a special Lorentz gas explained in the main text and
consider the resulting kinetic equation (a toy model). We study the decay of the
unsteady motion of the disk numerically and show that the decay rate changes
significantly.

2 Formulation of the Problem

2.1 Problem

Let us consider an infinite expanse of a rarefied gas in an equilibrium state at rest
at temperature T∗0 and density ρ∗0. What kind of gas (i.e., what kind of kinetic
equation) we are considering will be specified in Sec. 2.2. A circular disk with
diameter L∗ and without thickness, kept at temperature T∗0, is placed in the gas,
and an external force, obeying Hooke’s law (elastic force), is acting on the disk
perpendicularly to its surface. In the present study, we consider d-dimensional
problems with d = 1, 2, and 3: The disk is a circular disk with diameter L∗ when
d = 3 [Fig. 1(a)], an infinite plate with finite width L∗ when d = 2 [Fig. 1(b)],
and an infinitely wide plate when d = 1 [Fig. 1(c)]. Let t∗ be the time variable
and Xi be the Cartesian coordinates in space with the Xi axes taken as in Fig. 1.
That is, X1 axis is taken parallel to the elastic force, and X1 = 0 indicates the
equilibrium position of the disk. Therefore, the elastic force F1 per unit area of
the disk is expressed as

F1 = −M∗ω
2
∗Xw(t∗), (3)

where Xw(t∗) is the position (X1 coordinate) of the disk at time t∗, M∗ is the
mass density of the disk (the mass of the disk per unit surface), and ω∗ is the
proper frequency of the elastic force.

At time t∗ = 0, the disk is released from a position X1 = Xw0 with an
initial velocity Vw0 in the X1 direction. Then, it starts an unsteady motion (e.g.,
an oscillatory motion), but the motion decays as time goes on because of the drag
exerted on the disk by the surrounding gas. We investigate this unsteady motion
of the disk numerically, with special interest in the long-time behavior and the
manner of the decay, assuming that the disk moves only along the X1 axis and
does not change its attitude.

2.2 Choice of the gas

In the present study, we consider the following two types of gas as the gas sur-
rounding the disk. We denote by ξi the molecular velocity and by f∗(Xi, ξi, t∗)
the velocity distribution function of the gas molecules.

2.2.1 Collisionless gas

The collisionless gas is a gas that is so rarefied that collisions between gas molecules
can be neglected. It is also called the free-molecular gas or the Knudsen gas. In
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Fig. 1 A circular disk of d dimension (d = 1, 2, 3) without thickness in a gas. (a) Circular disk
with diameter L∗ (d = 3), (b) infinite plate with finite width L∗ (d = 2), and (c) infinite plate
(d = 1).

this case, the basic equation is the Boltzmann equation without the collision term,
i.e., the free-transport equation:

∂f∗
∂t∗

+ ξj
∂f∗
∂Xj

= 0. (4)

That is, f∗ is constant along the molecular trajectory.

2.2.2 A kind of the Lorentz gas

In addition to the collisionless gas, we consider a gas that is described by the
following equation.

∂f∗
∂t∗

+ ξi
∂f∗
∂Xi

= ν(ξi)(f∗∞ − f∗), (5)

where

ν(ξi) =
π(r + rs)2

ms

∫
R3

|ξ − ξs|f∗s(ξsi)dξs, (6a)

f∗∞(ξi) =
π(r + rs)2

msν(ξi)

∫
R3

|ξ − ξs|f∗s(ξsi)f∗v(ξi − ξsi)dξs, (6b)

with dξs = dξs1dξs2dξs3. Here, f∗v(ξi) and f∗s(ξi) are given functions of ξi, and
r, rs, and ms are given constants. A physical model that leads to this equation is
the following.

Let us suppose that the gas is a vapor of a substance and its molecule is a
hard sphere with mass m and radius r. In the gas, there are randomly distributed
spherical obstacles (droplets) of mass ms and radius rs, which are made of the
condensed phase of the same substance as the vapor. The obstacles are moving
with velocity ξsi, and their velocity is distributed according to a given distribu-
tion f∗s(ξsi) that is uniform in Xi and constant in t∗. We assume that the vapor
molecules hitting an obstacle are absorbed and reemitted with a velocity distri-
bution f∗v(ξi − ξsi), which is a given function of ξi − ξsi, uniform in Xi, and
constant in t∗. We neglect the collisions between vapor molecules and consider
their interaction with the obstacles only. Then, we arrive at Eq. (5). See Appendix
for more details.
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In the actual analysis, we use an equation that is a further simplification of
Eq. (5), derived under the assumption that f∗v and f∗s are Maxwellians and the
average speed of motion of the obstacles are much smaller than that of the gas
molecules (see Appendix).

2.3 Assumptions

We investigate the problem stated in Sec. 2.1 under the following assumptions:

(i) The behavior of the gas is described by Eq. (4) or the model equation Eq. (12)
shown later, which is a simplified version of Eq. (5).

(ii) The gas molecules undergo diffuse reflection on the surface of the disk. That is.
the molecules reflected by the disk are distributed according to the Maxwellian
distribution characterized by the temperature and velocity of the disk, and there
is no net mass flux across the disk surface.

In the two-dimensional (2D) problem (d = 2), f∗ is independent of X3; in the
one-dimensional (1D) problem (d = 1), f∗ is independent of X2 and X3.

3 Basic Equations

In this section, we summarize the basic equations in dimensionless form. We re-
strict ourselves to the three-dimensional problem, since the two- and one-dimensional
cases are essentially the same.

3.1 Dimensionless variables and notations

In the preceding sections, we have introduced dimensional variables t∗, Xi, ξi, f∗,
Xw, and Vw and dimensional quantities T∗0, ρ∗0, L∗, M∗, ω∗, Xw0, and Vw0. In
addition, let us denote by G∗[f∗] the drag acting on the disk divided by its area
and by f∗0 the Maxwellian distribution at rest at density ρ∗0 and temperature T∗0.

Then we introduce the dimensionless quantities t, xi, ζi, f , xw, vw, L, M ,
xw0, vw0, G[f ], and f0 by the following relations:

t∗ = (1/ω∗) t, Xi = (
√

2R∗T∗0/ω∗)xi, ξi =
√

2R∗T∗0 ζi,

f∗(Xi, ξi, t∗) = [ρ∗0/(2R∗T∗0)3/2] f(xi, ζi, t),

Xw(t∗) = (
√

2R∗T∗0/ω∗) xw(t), Vw(t∗) =
√

2R∗T∗0 vw(t),

L∗ = (
√

2R∗T∗0/ω∗)L, M∗ = (ρ∗0
√

2R∗T∗0/ω∗)M,

Xw0 = (
√

2R∗T∗0/ω∗)xw0, Vw0 =
√

2R∗T∗0 vw0,

G∗[f∗] = ρ0∗(2R∗T∗0)G[f ],

f∗0(|ξ|) = [ρ∗0/(2R∗T∗0)3/2] f0(|ζ|),

(7)
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where R∗ is the gas constant per unit mass (R∗ = kB/m with kB the Boltzmann
constant and m the mass of a gas molecule), and thus f0 is given by

f0(|ζ|) = π−3/2 exp(−|ζ|2). (8)

We further introduce some additional notations for later convenience: c1 is the
molecular velocity relative to the velocity of the disk in the x1 direction, i.e.,

c1 = ζ1 − vw(t), (9)

∂S±(t) is the surface of the disk, i.e.,

∂S±(t) = {xi ∈ R3 |x1 = xw(t) ± 0, x2
2 + x2

3 < L2/4 }, (10)

and Ω±(t) is the range of molecular velocity defined by

Ω±(t) = { ζi ∈ R3 | c1 ≷ 0 }. (11)

In Eqs. (10) and (11) and in what follows, the upper (or lower) signs go together.

3.2 Basic equations in dimensionless form

Our basic equation is Eq. (82) in Appendix, which is a toy model and is a simpli-
fied version of Eq. (5), i.e.,

∂f

∂t
+ ζi

∂f

∂xi
=

νϵ(|ζ|)
Kn

(f0 − f). (12)

The case of a collisionless gas [Eq. (4)] is included in this equation as a special
case (Kn → ∞). In Eq. (12), the dimensionless collision frequency νϵ(|ζ|) is
defined by the following function νϵ(x):

νϵ(x) =
ϵ√
π

[
exp

(
−x2

ϵ2

)
+
√

π
(x

ϵ
+

ϵ

2x

)
erf

(x

ϵ

) ]
, for x > 0, (13)

with erf(x) the error function given by

erf(x) =
2√
π

∫ x

0

exp(−y2)dy, (14)

and the Knudsen number Kn is defined as

Kn = [πn∗s(r + rs)2]−1(
√

2R∗T∗0/ω∗)−1, (15)

with n∗s a positive constant [the number density of the obstacles; cf. Eq. (62)].
Here, ϵ is a small parameter, and the Kn is the ratio between the mean free path
of a gas molecule for the collisions against obstacles [see Eqs. (81) and (82c)]
and the characteristic length (

√
2R∗T∗0/ω∗). See Appendix for the details of the

derivation of Eq. (12) and the physical meaning of the parameters and conditions.
The corresponding initial condition is given by

f(xi, ζi, 0) = f0(ζi), (16)
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and the boundary condition (diffuse reflection) on the surface of the disk ∂S±(t)
is given by

f(xi, ζi, t) = fw±(x2, x3, ζi, t), for xi ∈ ∂S±(t), ζi ∈ Ω±(t). (17)

where

fw±(x2, x3, ζi, t) = π−3/2ρw±(x2, x3, t) exp(−c2
1 − ζ2

2 − ζ2
3 ), (18a)

ρw±(x2, x3, t) = ∓2
√

π

∫
Ω∓(t)

c1f(xi, ζi, t)dζ, for xi ∈ ∂S±(t), (18b)

with the notation dζ = dζ1dζ2dζ3.
The equation of motion of the disk is given as

dxw(t)
dt

= vw(t),
dvw

dt
= −xw − 1

M
G[f ], (19)

with the initial condition

xw(0) = xw0, vw(0) = vw0. (20)

The dimensionless average drag G[f ] per unit area is expressed in terms of the
velocity distribution function on the disk:

G[f ] = G+[f ] + G−[f ], (21)

where

G±[f ] = ± 1
π(L/2)2

∫
x2
2+x2

3<L2/4

(∫
Ω∓(t)

c2
1f(xw(t) ± 0, x2, x3, ζi, t)dζ

+
∫

Ω±(t)

c2
1fw±(x2, x3, ζi, t)dζ

)
dx2dx3. (22)

We solve the coupled system Eqs. (12)–(18) and Eqs. (19)–(22) numerically
with special interest in the manner of decay of the motion of the disk, i.e., the
decay of |xw|. The parameters contained in the present problem are

L, M, xw0, vw0, Kn, ϵ. (23)

Recall that Kn = ∞ recovers the collisionless gas Eq. (4).
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4 Preliminaries

4.1 Integral form

In the numerical analysis, we solve Eqs. (12)–(18) and Eqs. (19)–(22) in a time-
marching manner. For this purpose, it is more convenient to use the expression of
ρw±(x2, x2, t) in terms of the integrals containing information about ρw±, xw,
and vw in the past. In order to derive the integral form of ρw±, let us fix the time t
and assume that ρw±, xw, and vw are known for the time s in the past (0 ≤ s < t).
In addition, we consider xi on the disk [xi ∈ ∂S±(t)].

For each velocity ζi for the molecules incident on the disk [ζi ∈ Ω∓(t) for
xi ∈ ∂S±(t)], we trace back the corresponding molecular trajectory. Then, we
either (i) reach the initial time without hitting the disk, or (ii) encounter the disk
at a time tb in the past (0 < tb < t) at a point (xw(tb)± 0, xb

2, xb
3) on the disk. To

be more specific, tb(ζ1, t) is given by

tb = max{s ∈ (0, t) |x1 − ζ1(t − s) = xw(s)}, (24)

and xb
2(x2, ζ2, t, tb) and xb

3(x3, ζ3, t, tb) by

xb
2 = x2 − ζ2(t − tb), xb

3 = x3 − ζ3(t − tb), (25)

under the condition that (xb
2)

2 +(xb
3)

2 < (L/2)2. The latter condition restricts the
range of ζi and is stated more precisely that

ζi ∈ Γ±(x2, x3, t), (26a)

Γ± =
{
ζi ∈ R3

∣∣ ∃tb > 0, (xb
2)

2 + (xb
3)

2 < (L/2)2, xi ∈ ∂S±(t)
}

. (26b)

Now let us define τ b
±(xi, ζi, t) by

τ b
± =

{
tb, for ζi ∈ Γ±,

0, for ζi /∈ Γ±.
(27)

This quantity is similar to the backward exit time for free-transport particles in a
closed domain. Then, integrating Eq. (12) along the characteristic line, one can
write

f(xi, ζi, t) = f0 +
[
f(xi − ζi(t − τ b

±), ζi, τ b
±) − f0

]
× exp

(
−νϵ(|ζ|)

Kn
(t − τ b

±)
)

. (28)

Here, the term f(xi − ζi(t − τ b
±), ζi, τ b

±) is expressed more explicitly as

f(xi − ζi(t − τ b
±), ζi, τ b

±) =

{
fw±(xb

2, xb
3, ζi, tb), for ζi ∈ Γ±,

f0, for ζi /∈ Γ±.
(29)
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If we substitute Eq. (28) into Eq. (18b), then we have

∓ρw±(x2, x3, t)
2
√

π
=

∫
Ω∓

c1f0dζ +
∫

Γ±∩Ω∓

c1f0 exp
(
−νϵ(|ζ|)

Kn
(t − tb)

)
×

[
ρb

w± exp
(
ζ2
1 − [ζ1 − vb

w]2
)
− 1

]
dζ,

for xi ∈ ∂S±(t), (30)

where

ρb
w± = ρw±(xb

2, xb
3, tb), vb

w = vw(tb). (31)

Equation (30) yields the expression of ρw±(x2, x3, t) in terms of ρw±, xw, and vw

in the past. It could be interpreted as the integral equation for ρw± if we suppose
that xw and vw are known. Equation (30) is the key equation for our time-marching
solution of the original system.

4.2 Axisymmetry

In the three-dimensional case (d = 3), we assume that the problem is axisymmet-
ric with respect to the x1 axis and reduce the number of the independent variables.
Let us introduce the cylindrical coordinate system (x1, r, θ) for xi as

x1 = x1, x2 = r cos θ, x3 = r sin θ, (32)

with r ∈ [0, ∞) and θ ∈ [0, 2π), and assume that ρw± is independent of θ in the
cylindrical coordinate system, i.e.,

ρ̃w±(r, t) = ρw±(x2, x3, t). (33)

We further introduce some additional notations:

∂S̃±(t) = { (x1, r, θ) ∈ R × R+ × [0, 2π) |x1 = xw(t) ± 0, r < L/2 } , (34a)

Γ⊥
± =

{
ζ1 ∈ R

∣∣ ∃tb > 0, (x1, r, θ) ∈ ∂S̃±(t)
}

, (34b)

Ω⊥
± =

{
ζ1 ∈ R

∣∣ ζ1 ≷ vw(t)
}

. (34c)

If we express xb
2 and xb

3 as

xb
2 = rb cos(θ + θb), xb

3 = rb sin(θ + θb), (35)

using the polar coordinates in the x2x3 plane, then Eq. (25) is recast as

rb cos(θ + θb) = r cos θ − ζ2(t − tb), (36a)

rb sin(θ + θb) = r sin θ − ζ3(t − tb). (36b)

Let us transform the integration variables from (ζ1, ζ2, ζ3) to (ζ1, rb, θb) in Eq.
(30) by the use of Eq. (36), noting that tb = tb(ζ1, t). Then, we have

∓ ρ̃w±(r, t)
2
√

π
= H1±(t) + P1±[ρ̃w±](r, t), for (x1, r, θ) ∈ ∂S̃±, (37)
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where H1±(t) and P1±[ρ̃w±](r, t) are the function and the operator, which are
defined in a more general form in the following.

The function Hn±(t) is defined by

Hn±(t) =
∫

Ω∓

cn
1f0dζ, (38a)

or, more explicitly,

H1±(t) = ∓ 1
2
√

π
exp(−v2

w(t)) − 1
2
vw(t)erfc(∓vw(t)), (38b)

H2±(t) = ± vw(t)
2
√

π
exp(−v2

w(t)) +
1
2

[
vw(t) +

1
2

]
erfc(∓vw(t)), (38c)

where erfc(x) is the complementary error function:

erfc(x) =
2√
π

∫ ∞

x

exp(−y2)dy = 1 − erf(x). (39)

The operator Pn±[ρ̃w±](r, t) is defined as

Pn±[ρ̃w±](r, t) =
∫

Ω⊥
∓∩Γ⊥

±

cn
1F [ρ̃w±](r, ζ1, t; tb) dζ1, (40)

where

F [ρ̃w±](r, ζ1, t; tb) =
∫ L/2

0

K(|ζ1|, rb, r, t − tb; Kn, ϵ)

×
[
ρ̃w±(rb, tb) exp(ζ2

1 − [ζ1 − vb
w]2) − 1

]
drb, (41a)

K(|ζ1|, rb, r, t − tb; Kn, ϵ)

=
2rb

π3/2(t − tb)2

∫ π

0

exp
(
−ζ2(θb) − νϵ(ζ(θb))

Kn
(t − tb)

)
dθb, (41b)

ζ(θb) =

√
ζ2
1 +

(r − rb)2 + 2rbr(1 − cos θb)
(t − tb)2

. (41c)

With these notations, the average drag acting on the disk per unit area (22) is
recast as

±G±(t) =
8
L2

∫ L/2

0

[
H2±(t) + P2±[ρ̃w±](r, t) +

1
4
ρ̃w±(r, t)

]
rdr,

for (x1, r, θ) ∈ ∂S̃±. (42)
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For a collisionless gas [Eq. (4)], which is given by the limit as Kn→ ∞ in the
special Lorentz gas [Eq. (12)], we have the analytic expression of K [Eq. (41b)],
i.e.,

K∞ ≡ K(|ζ1|, rb, r, t − tb; ∞, ϵ)

=
2rb

(t − tb)2
√

π
exp

(
−ζ2

1 −
(

r − rb

t − tb

)2
)

Ī0

(
2rbr

(t − tb)2

)
, (43)

where Ī0(x) is defined by

Ī0(x) = exp(−|x|)I0(x), (44a)

I0(x) =
1
π

∫ π

0

exp(x cos θ)dθ. (44b)

Here, I0(x) is the modified Bessel function of the first kind of order zero.

5 Numerical Analysis

In this section, we explain the numerical solution method for the three-dimensional
(axisymmetric) case.

5.1 Numerical scheme for equation of motion

We first consider the equation of motion of the disk (19). Let us introduce the
following discrete variables:

t(n) = n∆t, x(n)
w = xw(t(n)), v(n)

w = vw(t(n)), G(n) = G[f(· , t(n))],
(45)

where ∆t is a constant (time interval). Suppose that all the quantities have been
obtained up to t = t(n). Then, we compute the position x

(n+1)
w and velocity v

(n+1)
w

of the disk as well as the drag G(n+1) at t = t(n+1) by the predictor-corrector
method explained below.

For brevity, we introduce the notation

X =
[
xw

vw

]
, F =

[
vw

−xw − M−1G[f ]

]
, (46a)

X(n) =

[
x

(n)
w

v
(n)
w

]
, F(n) =

[
v
(n)
w

−x
(n)
w − M−1G(n)

]
, (46b)

and write the equation of motion (19) as

dX

dt
= F, (47)
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which leads to

X(n+1) = X(n) +
∫ t(n+1)

t(n)
F dt. (48)

We first obtain the predicted value X̂(n+1) of X(n+1) by approximating F in Eq. (48)
by the lP -degree polynomial of t based on the values F(n), F(n−1), ..., F(n−lP ), i.e.,

X̂(n+1) = X(n) + ∆t

lP∑
l=0

w
(n−l)
P F(n−l), (49)

where the weights w
(n)
P , ..., w

(n−lP )
P are determined according to the polynomial

approximation mentioned above. We set lP = 3 in this paper (lp = n for n ≤ 2).
With this X̂(n+1), we compute the predicted value F̂(n+1) (or Ĝ(n+1)) by the pro-
cedure that will be described in Sec. 5.2. Then, we compute X(n+1) by approxi-
mating F in Eq. (48) by the lC-degree polynomial of t based on the values F̂(n+1),
F(n), ..., F(n+1−lC), i.e.,

X(n+1) = X(n) + ∆t

(
w

(n+1)
C F̂(n+1) +

lC−1∑
l=0

w
(n−l)
C F(n−l)

)
, (50)

where the weights w
(n+1)
C , ..., w

(n+1−lC)
C are determined similarly. We set lC = 4

in the present paper (lC = n for n ≤ 3). Finally, with the new value X(n+1), we
compute G(n+1) (see Sec. 5.2) to prepare for the next step.

Once x
(n+1)
w and v

(n+1)
w are obtained, we approximate the trajectory xw(t) in

the time interval t ∈ [t(n), t(n+1)] by the cubic polynomial ψn(t) determined by
the following conditions:

ψn(t(n)) = x
(n)
w , ψn(t(n+1)) = x

(n+1)
w ,

dψn

dt

∣∣∣∣
t=t(n)

= v
(n)
w ,

dψn

dt

∣∣∣∣
t=t(n+1)

= v
(n+1)
w .

(51)

The approximated trajectory xw(t) = ψn(t) in the interval t ∈ [t(n), t(n+1)] (n =
0, 1, 2, ...) will be used in Sec. 5.3.

5.2 Numerical scheme for computation of the drag force

In this subsection, we describe the method of computation of the drag force G(n+1)

at t = t(n+1), supposing that the quantities at previous time steps (t = t(k), k =
0, 1, ..., n) are all known and that x

(n+1)
w and v

(n+1)
w are also known [cf. Sec. 5.1].

We first introduce grid points in the r and θ coordinates in the cylindrical coordi-
nate system (32), i.e.,

r(i) = (L/2) (i/Nr), (i = 0, ..., Nr), (52)

θ(j) = π (j/Nθ), (j = 0, ..., Nθ), (53)
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and denote

ρ̃
(i,k)
w± = ρ̃w±(r(i), t(k)). (54)

In addition, we choose the grid points ζ
(k)
1 for ζ1 in such a way that tb(ζ(k)

1 , t(n+1))
[Eq. (24)] falls on the discrete time t(k).

The first step is to obtain ρ̃
(i,n+1)
w± by the use of Eq. (37) at r = r(i) and

t = t(n+1). Since H1±(t(n+1)) can be obtained from the explicit expression (38b),
our major concern is to compute P1±[ρ̃w±](r(i), t(n+1)) [Eq. (40)], for which we
need to compute F [ρ̃w±](r(i), ζ

(k)
1 , t(n+1); tb(ζ(k)

1 , t(n+1))). This can be com-
puted for k = 0, 1, ..., n from Eq. (41) because ρ

(i,k)
w± and vw(t(k)) are known

for i = 0, ..., Nr and k = 0, ..., n [Note that vb
w = vw(tb(ζ(k)

1 , t(n+1))) in
Eq. (41)]. The integration with respect to θb in Eq. (41b) and that with respect to rb

in Eq. (41a) are carried out by the Simpson rule. Then P1±[ρ̃w±](r(i), t(n+1)) is
computed from Eq. (40), where the integration with respect to ζ1 is performed by
the trapezoidal rule. In this integration, F [ρ̃w±](r(i), ζ

(k)
1 , t(n+1); tb(ζ(k)

1 , t(n+1)))
at k = n+1, which corresponds to the end point of the range of integration with re-
spect to ζ1, is not required, since the integrand vanishes there because of the factor
c1. It should be noted that tb(ζ1, t(n+1)), as a function of ζ1, exhibits discontinu-
ities depending on the shape of the trajectory in the past, xw(s) for s ∈ [0, t).
Therefore, for accurate numerical integration, we need the precise locations of the
discontinuities as well as the values of the integrand at both sides of the disconti-
nuities. The detailed description how to handle the discontinuities will be given in
the next subsection.

Once we obtain ρ̃
(i,n+1)
w± by the procedure mentioned above, we can compute

G±(t(n+1)) from Eq. (42). Here, H2±(tn+1)) is obtained from Eq. (38c), and
P2±[ρ̃w±](r(i), t(n+1)) is computed from Eq. (40), in the same way as P1±[ρ̃w±]
(r(i), t(n+1)) in the preceding paragraph. Then, the integration with respect to r
in Eq. (42) is carried out by the Simpson rule. Then, the average drag G(n+1) at
t = t(n+1) is obtained as the sum of G+(t(n+1)) and G−(t(n+1)) [Eq. (21)].

The predicted value Ĝ(n+1) of G(n+1), which appeared in Sec. 5.1, can be
obtained in the same way as G(n+1), using the predicted values X̂(n+1) (i.e., the
predicted values of x

(n+1)
w and v

(n+1)
w ) instead of x

(n+1)
w and v

(n+1)
w .

5.3 Numerical scheme for computation of discontinuity

As we mentioned in Sec. 5.2, tb(ζ1, t(n+1)) may be a piecewise continuous func-
tion of ζ1 with (a finite number of) discontinuities. In this subsection, we will give
a brief sketch how to obtain the positions of discontinuities and the values of tb at
both sides of the discontinuities. For simplicity, we discuss only the “+” side, i.e.,
for xi ∈ ∂S̃+(t(n+1)). The situation is shown in Fig. 2, i.e., the actual trajectory
xw(t) [0 ≤ t ≤ t(n+1) = 25] is shown for d = 1, M = 4, L = 1, xw0 = 1,
vw0 = 0, and Kn = ∞ (collisionless gas) in Fig. 2(b), and the corresponding tb

at t = 25 is shown as the function of ζ1 in Fig. 2(a). Then, it is obvious that the
positions of the discontinuities and the values of tb there are obtained by inspect-
ing the tangential lines of the trajectory. To be more specific, we first solve the
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Fig. 2 The discontinuities of the function tb(ζ1, t) at a given t. (a) The tb(ζ1, t) at t = 25 as
the function of ζ1. (b) The trajectory xw(t) of the disk for 0 ≤ t ≤ 25. The parameters are set
as d = 3, M = 4, L = 1, xw0 = 1, vw0 = 0, and Kn = ∞ (collisionless gas).

following equation to obtain τ :

x(n+1)
w − t(n+1) dψk

dt

∣∣∣∣
t=τ

= ψk(τ) − τ
dψk

dt

∣∣∣∣
t=τ

, for k = 0, ..., n, (55)

recalling that the trajectory xw(t) for t ∈ [0, t(n+1)] has been approximated piece-
wisely by cubic polynomials ψk (k = 0, ..., n) [cf. the last paragraph of Sec. 5.1].
If τ satisfies the condition for tb [Eq. (24) with t = t(n+1)] and τ ∈ [t(k), t(k+1)],
then tb is discontinuous at ζ1 = η such that tb(η, t(n+1)) = τ . By definition,
τ is the value of tb(ζ1, t(n+1)) at ζ1 = η + 0. If we denote by τ ′ the value of
tb(ζ1, t(n+1)) at ζ1 = η − 0, then it is obtained as

τ ′ =max
{

ψk(τ) − τ
dψk

dt

∣∣∣∣
t=τ

= ψk′(τ ′) − τ ′ dψk

dt

∣∣∣∣
t=τ

}
,(

τ ∈ [t(k), t(k+1)], τ ′ ∈ [t(k
′), t(k

′+1)], k ≥ k′
)

. (56)

If there is no k′ satisfying Eq. (56), then τ ′ = 0. In Fig. 2(a), τ ’s and τ ′’s are
numbered as t(n+1) = τ0 > τ ′

0 > τ1 > τ ′
1 > τ2 > τ ′

2 > · · · . Equations (55) and
(56) are solved by the Newton method.

5.4 Data for computation

The numerical results that will be shown in Sec. 6 are based on ∆t = 0.02 and
Nr = 16 and Nθ = 32 for d = 3. We have confirmed, with computations us-
ing different grid systems, that this sytem is enough for necessary accuracy. The
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Fig. 3 The decay of the displacement xw(t) for d = 1, 2, and 3 in the case of M = 4, L = 1
(d = 2 and 3), xw0 = 1, and vw0 = 0 (collisionless gas: Kn = ∞). (a) log10 |xw| vs log10 t.
(b) The gradient α(xw) of the curve in panel (a) vs log10 t.

Fig. 4 The decay of the displacement xw(t) for d = 1, 2, and 3 in the case of M = 4, L = 1
(d = 2 and 3), xw0 = 0, and vw0 = 1 (collisionless gas: Kn = ∞). (a) log10 |xw| vs log10 t.
(b) The gradient α(xw) of the curve in panel (a) vs log10 t.

computation was carried out with quadruple precision. We have used fast algo-
rithms for the error and Bessel functions provided by T. Ooura, available from his
home page (http://www.kurims.kyoto-u.ac.jp/˜ooura/index.html). The algorithms
are for double precision, but we have confirmed that they give an accuracy of 19
significant figures if they are used in a quadruple-precision computation.

The computation has been carried out on a PC cluster with CPU: Intel(R) Core
2 Extreme QX9650 3.0GHz(4CPU)×8.

6 Results

In this section, we present some numerical results, focusing our attention on the
manner of decay of the displacement xw(t) of the disk at long times.
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Table 1 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, 2, and
3 and for M = 1, 4, and 10 in the case of L = 1 (d = 2 and 3), xw0 = 1, and vw0 = 0
(collisionless gas: Kn = ∞). See Fig. 3 for M = 4.

−α(xw)
d = 1 d = 2 d = 3

t log t M = 10 M = 4 M = 1 M = 10 M = 4 M = 1 M = 10 M = 4 M = 1
10.00 1.0 —∗ —∗ 3.6368 —∗ —∗ 7.5391 —∗ —∗ 8.5635
31.62 1.5 —∗ —∗ 2.1620 —∗ —∗ 3.3034 —∗ —∗ 4.4575

100.00 2.0 —∗ 2.0074 2.0463 —∗ 3.0476 3.0813 —∗ —∗ 4.1167
316.23 2.5 1.9821 2.0029 2.0143 2.9941 3.0066 3.0246 —∗ 4.0100 4.0351
398.11 2.6 1.9860 2.0024 2.0113 2.9863 3.0053 3.0195 3.9896 4.0081 4.0277
630.96 2.8 1.9914 2.0015 2.0071 2.9916 3.0034 3.0122 3.9916 4.0052 4.0174

1000.00 3.0 1.9946 2.0010 2.0045 2.9948 3.0022 3.0077 3.9952 4.0036 4.0113
1995.26 3.3 1.9974 · · · 2.0022 2.9974 · · · 3.0038 · · · · · · · · ·
3162.28 3.5 1.9983 · · · 2.0014 · · · · · · · · · · · · · · · · · ·

10000.00 4.0 1.9995 · · · 2.0004 · · · · · · · · · · · · · · · · · ·
∗Values are omitted because of the strong oscillation of α(xw) [see e.g. Fig. 3(b)].

Table 2 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, 2, and
3 in the case of M = 4, L = 1 (d = 2 and 3), xw0 = 0, and vw0 = 1 (collisionless gas:
Kn = ∞). See Fig. 4.

−α(xw)
t log t d = 1 d = 2 d = 3

100.00 2.0 2.0309 3.1730 —∗

158.49 2.2 2.0197 3.0364 4.0521
251.19 2.4 2.0127 3.0233 4.0333
398.11 2.6 2.0081 3.0148 4.0212
630.96 2.8 2.0052 3.0094 4.0135

1000.00 3.0 2.0033 3.0059 4.0092
∗Values are omitted because of the strong oscillation of α(xw) [see e.g. Fig. 4(b)].

6.1 Collisionless gas

First, we show the results for the collisionless gas (cf. Sec. 2.2.1), which can
also be regarded as the special case Kn = ∞ of Eq. (12). Figure 3 contains
the decay properties of the displacement xw(t) of the disk at long times for the
d-dimensional problems (d = 1, 2, and 3; see Fig. 1) in the case of M = 4, L = 1
(d = 2 and 3), xw0 = 1, and vw0 = 0: Fig. 3(a) shows the plot log10 |xw(t)| versus
log10 t, and Fig. 3(b) shows the gradient α(xw) of the curve in Fig. 3(a), i.e.,

α(xw) = d log10 |xw(t)|/d log10 t. (57)

Table 1 shows the values of α(xw) corresponding to Fig. 3(b) as well as its values
for M = 1 and 10. Figure 4 is the counterpart of Fig. 3 with different initial
conditions of the disk, xw0 = 0 and vw0 = 1, and Table 2 shows the numerical
values of α(xw) corresponding to Fig. 4(b). These figures and tables supplement
our earlier work [6], in which only the case of d = 1 is investigated.

The results contained in Figs. 3 and 4 and Tables 1 and 2, together with those
of other cases that are not shown in this paper, provide some pieces of numerical
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Fig. 5 The decay of the displacement xw(t) for d = 1, xw0 = 1, and vw0 = 0 [special
Lorentz gas with resting obstacle: Eq. (12) with ϵ = 0]. (a) log10 |xw| vs log10 t. (b) The
gradient α(xw) of the curve in panel (a) vs log10 t. The solid line is for M = 10 (oscillatory
decay), and the dashed line is for M = 1 (monotonic decay). The results for Kn = 10, 102,
and ∞ (collisionless gas) are shown in the figures.

evidence for the decay rate (2), i.e.,

|xw(t)| ≈ C/td+1, (58)

for large t, where and hereafter C symbolically denotes a constant with respect to
t that may depend on other parameters.

As was proven mathematically in [1–4] and then confirmed numerically in [5,
6], the slow algebraic decay is attributed to the long-memory effect caused by
multiple collisions of a gas molecule with the disk. In general, when a body is
moving freely in a collisionless gas under the action of an external force, the body
is accelerated or decelerated by the force. In this situation, the molecules that are
reflected by the body at early times may hit the body again and again at later
times. Such molecules transfer information about the body at early stages directly
to the body at later times and may affect the motion of the body long time later.
That is, they give rise to a long-memory effect. In fact, if the effect of the multiple
collisions is neglected, the decay is exponential in time [1,2]. Our next interest is
how the decay rate is modified if the long-memory effect is destroyed by some
means. This is the reason why we consider the toy model Eq. (12) based on the
special Lorentz gas.

6.2 Special Lorentz gas: Case of resting obstacles

We first consider Eq. (12) with ϵ = 0, which corresponds to the case where the
obstacles are at rest in the special Lorentz gas. We show some results in this case in
Figs. 5 and 6 as well as Tables 3 and 4. Figure 5(a) shows the curves log10 |xw(t)|
versus log10 t in the one-dimensional problem (d = 1) with initial condition xw0 =
1 and vw0 = 0 for M = 1 (monotonic decay) and 10 (oscillatory decay) and for
Kn = 10 and 102 together with the collisionless case (Kn = ∞), and the gradient
α(xw) of each curve is plotted versus log10 t in Fig. 5(b). Some values of α(xw)
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Fig. 6 The decay of the displacement xw(t) for d = 3, M = 1, L = 1, xw0 = 1, and vw0 = 0
[special Lorentz gas with resting obstacle: Eq. (12) with ϵ = 0]. (a) log10 |xw| vs log10 t. (b)
The gradient α(xw) of the curve in panel (a) vs log10 t. The results for Kn = 1, 10, 102, and
∞ (collisionless gas) are shown in the figures.

Table 3 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, xw0 =
1, and vw0 = 0 [special Lorentz gas with resting obstacle: Eq. (12) with ϵ = 0]. See Fig. 5.

−α(xw)
Kn → ∞ Kn = 102 Kn = 10

t log t M = 10 M = 1 M = 10 M = 1 M = 10 M = 1
316.23 2.5 1.9821 2.0143 3.4116 3.4517 3.9827 4.0229

1000.00 3.0 1.9946 2.0045 3.8891 3.9041 3.9938 4.0097
1995.26 3.3 1.9974 2.0022 3.9684 3.9762 3.9972 4.0052

10000.00 4.0 1.9995 2.0004 · · · · · · · · · · · ·

Table 4 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 3, M = 1,
L = 1, xw0 = 1, and vw0 = 0 [special Lorentz gas with resting obstacle: Eq. (12) with ϵ = 0].
See Fig. 6.

−α(xw)
t log t Kn→ ∞ Kn= 102 Kn= 10 Kn= 1

10.00 1.0 8.5635 8.5641 8.5698 8.6089
25.12 1.4 4.8025 4.8041 4.8192 5.0253
63.10 1.8 4.1942 4.1943 4.1952 4.2043

158.49 2.2 4.0716 4.0716 4.0719 4.0752
398.11 2.6 4.0277 4.0277 4.0279 4.0291

at large times are shown in Table 3. Figure 6 is the corresponding figure in the
three-dimensional problem (d = 3) with initial condition xw0 = 1 and vw0 = 0
for M = 1 and L = 1 and for Kn = 1, 10, 102 and ∞ (collisionless gas). Table 4
shows some values of the gradient α(xw) in Fig. 6 at large times.

From these results, it is likely that the displacement xw(t) of the disk decays
as

|xw(t)| ≈ C/t4, (59)
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Fig. 7 The decay of the displacement xw(t) for d = 1, M = 1, xw0 = 1, and vw0 = 0
[special Lorentz gas with moving obstacle: Eq. (12)]. (a) log10 |xw| vs log10 t. (b) The gradient
α(xw) of the curve in panel (a) vs log10 t.

for large t, independent of the dimension d of the problem. This is different from
Eq. (58) for a collisionless gas, but the rate is still algebraic. Unlike the colli-
sionless case, the gas molecules reflected by the disk generally hit the obstacles
before hitting the disk again. Therefore, the long-memory effect in the collision-
less gas is destroyed in the present case. However, since the obstacles are at rest,
slow molecules among the reflected molecules may not interact with the obstacles
before they are hit again by the disk. In this sense, the long-memory effect is not
completely destroyed. This may be the reason why we still have an algebraic de-
cay. In the present setting, the obstacles are three dimensional (spheres of uniform
size) and randomly distributed in the three-dimensional space, irrespective of the
dimension d of the problem shown in Fig. 1. Therefore, it is natural that the decay
rate (59) is independent of d. For instance, the rate may change if the obstacles
are two-dimensional cylinders distributed randomly in the x1x2 space in the two
dimensional problem (d = 2).

6.3 Special Lorentz gas: Case of moving obstacles

Finally we consider Eq. (12) with non-zero ϵ, which corresponds to the case where
the obstacles are moving with low speed (cf. Appendix). Some results for the de-
cay property of the displacement are shown in Figs. 7–9 as well as Tables 5–7.
Figure 7(a) shows the curves log10 |xw(t)| versus log10 t in the one-dimensional
problem (d = 1) with initial condition xw0 = 1 and vw0 = 0 for M = 1 (mono-
tonic decay), Kn = 10 and ∞ (collisionless case), and various values of ϵ includ-
ing ϵ = 0 (case of resting obstacles). The gradient α(xw) of each curve in Fig. 7(a)
is plotted versus log10 t in Fig. 7(b), and some values of α(xw) at large times are
shown in Table 5. Figure 8 and Table 6 are the corresponding figure and table for
oscillatory decay, that is, for d = 1, M = 10, Kn = 10 and ∞, and various ϵ with
initial condition xw0 = 1 and vw0 = 0. Then, Fig. 9 and Table 7 show the corre-
sponding results in the three-dimensional problem (d = 3) for M = 1 (monotonic
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Fig. 8 The decay of the displacement xw(t) for d = 1, M = 10, xw0 = 1, and vw0 = 0
[special Lorentz gas with moving obstacle: Eq. (12)]. (a) log10 |xw| vs log10 t. (b) The gradient
α(xw) of the curve in panel (a) vs log10 t.

Fig. 9 The decay of the displacement xw(t) for d = 3, M = 1, L = 1, xw0 = 1, and vw0 = 0
[special Lorentz gas with moving obstacle: Eq. (12)]. (a) log10 |xw| vs log10 t. (b) The gradient
α(xw) of the curve in panel (a) vs log10 t.

decay), L = 1, Kn = 10 and ∞, and various ϵ with initial condition xw0 = 1 and
vw0 = 0.

It is seen from these results that, when ϵ ̸= 0, the gradient α(xw) decreases
faster and faster as time t increases for large t. This suggests that the decay rate
is exponential in t. To see it more clearly, we plot, in Fig. 10(a), log10 |t4xw(t)|
versus t in the same case as in Fig. 9 and, in Fig. 10(b), the gradient of the curve
in Fig. 10(a), i.e.,

β(xw) = d log10 |t4xw(t)|/dt. (60)

Figure 10(b) indicates that the gradient β(xw) tends to approach a non-zero con-
stant value, depending on ϵ, when ϵ ̸= 0. For ϵ = 0.16, the curve deviates from the
constant value for t larger than about 400. This may be due to the numerical error,
since |xw(t)| is too small for accurate computation in this case [see Fig. 9(a)].
Some values of β(xw) are shown for large t in Table 8. From these results, the
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Fig. 10 The decay of t4xw(t) in the case of Fig. 9 and Table 7. (a) log10 |t4xw| vs t. (b) The
gradient β(xw) of the curve in panel (a) vs t.

decay of xw(t) for large t is likely to be

|xw(t)| ≈ Ct−4 exp(−β t), (61)

with constant β (depending on the parameters) for d = 3. However, for d = 1 and
2, the numerical result does not show clear decay property as in the case of d = 3.

Contrary to the case of resting obstacles, even slow molecules among the re-
flected molecules are hit by the moving obstacles in the present case of ϵ ̸= 0.
Therefore, almost no information about the motion of the disk is transmitted di-
rectly to the later time. In other words, the long-memory effect caused by multiple
collisions of a gas molecule with the disk is eliminated. As the consequence, we

Table 5 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, M = 1,
xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (12)]. See Fig. 7.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.01 ϵ = 0.02 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16
316.23 2.5 2.0143 4.0229 4.1044 4.2963 4.8191 6.0808 8.8256
630.96 2.8 2.0071 4.0143 4.2839 4.8181 6.0871 8.8150 14.4522

1000.00 3.0 2.0045 4.0097 4.5708 5.5291 7.6797 12.1092 · · ·
1995.26 3.3 2.0022 4.0052 5.5526 7.6319 12.0896 · · · · · ·

Table 6 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, M =
10, xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (12)]. See Fig. 8.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.02 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16
316.23 2.5 1.9821 3.9827 4.2596 4.7898 6.0830 9.2442
630.96 2.8 1.9914 3.9888 4.7939 6.0642 8.7931 14.4310

1000.00 3.0 1.9946 3.9938 5.5144 7.6655 12.0959 · · ·
1995.26 3.3 1.9974 3.9972 7.6254 12.0866 · · · · · ·
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Table 7 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 3, M = 1,
L = 1, xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (12)]. See Fig. 9.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16
100.00 2.0 4.1167 4.1173 4.5613 5.0168 5.9224
158.49 2.2 4.0716 4.0719 4.7827 5.5006 6.9332
251.19 2.4 4.0444 4.0446 5.1755 6.3109 8.5797
398.11 2.6 4.0277 4.0279 5.8230 7.6214 11.2453

Table 8 The values of the gradient β(xw) of the curve log10 |t4xw| vs t in the case of Fig. 9
and Table 7.

−β(xw)
t log t ϵ = 0 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16

100.00 2.000 5.0957×10−4 2.4379×10−3 4.4162×10−3 8.3495×10−3

149.97 2.176 2.2075×10−4 2.1668×10−3 4.1350×10−3 8.0610×10−3

199.99 2.301 1.2260×10−4 2.0749×10−3 4.0396×10−3 7.9631×10−3

250.03 2.398 7.7865×10−5 2.0330×10−3 3.9961×10−3 7.9188×10−3

299.92 2.477 5.3861×10−5 2.0106×10−3 3.9728×10−3 7.8965×10−3

349.95 2.544 3.9427×10−5 1.9971×10−3 3.9590×10−3 —∗

399.94 2.602 3.0113×10−5 1.9884×10−3 3.9503×10−3 —∗

449.78 2.653 2.3771×10−5 1.9825×10−3 3.9450×10−3 —∗

498.88 2.698 1.9299×10−5 1.9785×10−3 3.9426×10−3 —∗

∗Values are omitted because of the loss of accuracy [see Fig. 10(b)].

have a faster decay, such as given by Eq. (61). The decay is faster for larger ϵ be-
cause the obstacles moving with higher speed have more chances to collide with
the gas molecules.

7 Concluding remarks

In the present study, we have investigated unsteady motion of a disk in a gas under
the action of an external force obeying Hooke’s law, with special interest in the
manner of decay of the motion caused by the drag force exerted by the gas. We
first considered the case where the gas is a highly rarefied collisionless gas (free-
molecular gas or the Knudsen gas) and provided some pieces of numerical evi-
dence for the decay of the displacement described by Eq. (2) or (58). These results
complement our previous numerical results for the one-dimensional case (d = 1)
[6] as well as the rigorous mathematical results for the case of non-oscillatory de-
cay [2] [specular reflection rather than diffuse reflection is employed in [2], so that
the decay rate is given by Eq. (1)]. The slow algebraic decay is attributed to the
long-memory effect caused by multiple collisions of a gas molecules with the disk,
as proven mathematically in [1–4] and confirmed numerically in [5,6]. In fact, the
decay becomes exponentially fast if the multiple collisions are neglected by as-
suming that all the molecules incident on the disk come from the initial velocity
distribution.
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Our next interest was to see how the decay rate is modified when the long-
memory effect is destroyed by some means. For this purpose, we have introduced a
toy model, Eq. (12), whose physical basis is a type of the Lorentz gas consisting of
free-streaming gas (vapor) molecules and randomly distributed spherical obstacles
(droplets of the liquid or solid phase of the vapor) with which the gas molecules
interact. Our numerical results show the following: The decay rate is still algebraic
when ϵ = 0 in Eq. (12), which corresponds to the case of resting obstacles, but we
have a faster decay rate that is likely to be exponential in time when ϵ ̸= 0, which
corresponds to the case of moving obstacles. This result seems to be natural, since
the moving obstacles destroy the memory of the gas molecules almost completely.
However, if we consider a real gas with collisions between gas molecules, the
manner of decay of the motion of the disk may be different from the case of
the present toy model. In this connection, it should be mentioned that the decay
rate of translational and rotational motion (monotonic and oscillatory decay) of a
spherical body was investigated mathematically when the surrounding fluid is the
viscous Stokes fluid [8,9]. In this case, the decay rate was proven to be algebraic
in time. This fact also provides a motivation to study the present problem for the
gas with intermolecular collisions. This will be a subject of the next stage of our
study.

Finally, it should be remarked that the present problem has some similarity to
the so-called piston problem, which is a fundamental problem in statistical physics
(see [14–16] and the references therein). In [17,18], for instance, an unsteady mo-
tion of a piston has been investigated numerically, using particle methods, when
the movable piston is placed in a closed container, the gas is collisionless, and the
boundary condition is specular reflection. In this case, the oscillating motion of
the piston is caused by instability of a mechanical equilibrium [19], rather than an
external force as considered in the present paper.

A Special Lorentz gas: Derivation of Eqs. (5) and (12)

In this section, we consider a physical model that can be said to be a special version of the
Lorentz gas [10,11] and give a physical derivation of the corresponding equations, Eqs. (5) and
(12), along the same line as the original derivation of the Boltzmann equation [12]. In particular,
we follow the argument in [13].

A.1 Physical model

We consider, as in the main text, a gas composed of hard-sphere molecules of mass m and
radius r, whose velocity distribution function is denoted by f∗(Xi, ξi, t∗). In the gas, spherical
obstacles of uniform size (mass ms and radius rs) are distributed randomly. We suppose that the
gas is the vapor of a substance and the obstacles are made of the condensed phase of the same
substance, so that evaporation and condensation of the gas may take place on the surface of the
obstacles. A physical image may be given by a system composed of a dilute water vapor and
tiny water droplets suspended in it, though only a monatomic gas is considered in the present
paper. As described in Sec. 2.2.2, the obstacles are moving with velocity ξsi. Our assumptions
on the model are as follows:

1. Gas molecules hitting an obstacle are absorbed in it.
2. The obstacles emit the gas molecules according to a given velocity distributionf∗v(ξi−ξsi),

which is uniform in space and constant in time.
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3. The motion of the obstacles are not affected by the interaction with the gas molecules or
other obstacles, and their velocities ξsi are distributed according to a given velocity distri-
bution f∗s(ξsi), which is uniform in space and constant in time.

4. Collisions between gas molecules can be neglected.
5. No external force acts on the gas molecules.

The first and second assumptions correspond to the usual boundary condition for the Boltzmann
equation on the interface on which evaporation or condensation is taking place (for instance,
the complete condensation condition [7]). The fourth assumption is realized when the number
density of the gas molecules n∗ and that of the obstacles n∗s, defined by

n∗ =
1

m

Z

R3
f∗d‰, n∗s =

1

ms

Z

R3
f∗sd‰s, (62)

satisfy the condition

max
Xi∈R3, t∈R+

n∗r
2 ≪ n∗sr

2
s , (63)

as will be discussed in Sec. A.2.2.

A.2 Kinetic equations for the model

We first derive the general form of the kinetic equation for the physical model introduced in
Sec. A.1 (Sec. A.2.1). Then we simplify the kinetic equation with the help of special choices
of f∗s and f∗v (Sec. A.2.3). In the mean time, the discussion about the mean free path will be
given in Sec. A.2.2.

A.2.1 General Form

Proposition 1 For the physical model described in Sec. A.1 (the special Lorentz gas), the ve-
locity distribution function of the gas molecules f∗(Xi, ξi, t∗) satisfies Eqs. (5) and (6).

Proof Let dXd‰ denote a small neighborhood of (Xi, ξi) in the six-dimensional phase space.
Then, (f∗/m)dXd‰ represents the number of gas molecules in dXd‰. Suppose that the vol-
ume dXd‰ is moving according to the equation of motion:

dXi

dt∗
= ξi,

dξi

dt∗
= 0. (64)

Therefore, the volume dXd‰ at time t∗ moves to the volume dXd‰ at time t∗ = t∗ + dt∗,
which is a small neighborhood of the point

Xi = Xi + ξidt∗, ξi = ξi, (65)

where dt∗ is a small increment of time. Since dXd‰ = dXd‰ holds, the difference between
the number of molecules in dXd‰ and that in dXd‰ is given by

1

m
f∗(Xi, ξi, t∗)dXd‰ − 1

m
f∗(Xi, ξi, t∗)dXd‰

=
1

m

»

∂f∗
∂t∗

+ ξi
∂f∗
∂Xi

+ O(dt∗)

–

dXd‰dt∗. (66)

This is equal to the increase of the number of molecules in the volume dXd‰ minus its decrease
during the time interval dt∗ because of collisions with the obstacles, which can be expressed as

1

m
Jgain(Xi, ξi, t∗)dXd‰dt∗ − 1

m
Jloss(Xi, ξi, t∗)dXd‰dt∗. (67)
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Fig. 11 Configuration of the collision between gas molecules and an obstacle with velocity ξsi.
(a) The loss term. (b) The gain term.

More precisely, the first term in Eq. (67) (the gain term) indicates the number of molecules
that are contained in the volume dXd‰ at time t∗ and have emitted from the obstacles during
dt∗. The second term in Eq. (67) (the loss term) indicates the number of molecules that were
contained in the volume dXd‰ at time t∗ and have hit the obstacles during dt∗. We recall here
that we have neglected the collision between gas molecules (see Sec. A.2.2).

Now we try to derive the explicit form of Jloss and Jgain.

Loss Term : Jloss Consider an obstacle moving with a velocity ‰s contained in the volume dX .
We denote a unit vector at the center of the obstacle by ¸ and the solid-angle element around
¸ by dΩ(¸). The number of the molecules with velocity in the small neighborhood d‰ around
‰ and hitting the obstacle during dt∗ is given by the number of the molecules contained in the
cylinder with height |(‰ − ‰s) ´ ¸|dt∗ and the base area d2

sΩ(¸) (ds = r + rs) in Fig. 11(a),
i.e.,

1

m
f∗(Xi, ξi, t∗)d‰ × |(‰ − ‰s) · ¸|dt∗ × d2

sdΩ(¸) × 1{(‰−‰s)·¸<0}, (68)

where 1A is the characteristic function of a set A. By integrating Eq. (68) for all ¸, we obtain
the total number of the gas molecules with velocity in d‰ hitting the obstacle during dt∗, i.e.,

„

Z

all ¸

1

m
f∗|(‰ − ‰s) · ¸|1{(‰−‰s)·¸<0}d

2
sdΩ(¸)

«

d‰dt∗ =
1

m
πd2

s|‰ − ‰s|f∗d‰dt∗.

(69)

Since the number of the obstacles contained in the small neighborhood dXd‰s around (Xi, ξsi)
is given by (1/ms)f∗s(‰s)dXd‰s, the total number of the gas molecules contained in dXd‰
and hitting the obstacles during dt∗, i.e., (1/m)JlossdXd‰dt∗, is obtained as

1

m
JlossdXd‰dt∗ =

Z

ξsi∈R3

„

1

m
πd2

s|‰ − ‰s|f∗d‰dt∗

«

1

ms
f∗s(ξsi)dXd‰s

=
1

m

πd2
s

ms

„

Z

ξsi∈R3
|‰ − ‰s|f∗s(ξsi)d‰s

«

f∗dXd‰dt∗. (70)

Gain Term : Jgain We count the number of gas molecules with velocity in a small neighbor-

hood d‰ around ‰, emitted from an obstacle during dt∗. Since the distribution function for the
emitted vapor molecules is a given function, the same discussion as the loss term holds. The
only difference is that f∗ is replaced by f∗v(ξi − ξsi) and 1{(‰−‰s)·¸<0} by 1{(‰−‰s)·¸>0}
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in Eq. (68) [see Fig. 11(b)]. Noting that ξi = ξi [Eq. (65)] and dXd‰ = dXd‰, we obtain

1

m
JgaindXd‰dt∗ =

Z

ξsi∈R3

„

1

m
πd2

s|‰ − ‰s|f∗v(ξi − ξsi)d‰dt∗

«

1

ms
f∗s(ξs)dXd‰s

=
1

m

πd2
s

ms

„

Z

ξsi∈R3
|‰ − ‰s|f∗s(ξsi)f∗v(ξi − ξsi)d‰s

«

dXd‰dt∗.

(71)

Equating Eq. (66) and Eq. (67) with Eqs. (70) and (71) and neglecting higher-order terms
of dt∗, we obtain Eqs. (5) and (6). 2

A.2.2 Mean free path

In order to discuss the mean free paths of the gas molecules, we consider the case where the
gas is in the equilibrium state at rest at temperature T∗0 and density ρ∗0 (or molecular number
density n∗0), i.e.,

f∗ =
mn∗0

(2πR∗T∗0)3/2
exp

„

− |‰|2

2R∗T∗0

«

. (72)

Then, the mean free path l∗ of a gas molecule for the collisions against gas molecules is given
by [7]

l∗ = 1/
√

2π(2r)2n∗0. (73)

On the other hand, from the consideration in Sec. A.2.1, the mean free path l∗s of a gas molecules
for the collisions against the obstacles is obtained as follows:

l∗s =

»

πd2
s

ms

Z

R3
f∗s(ξsi)Φ

„

|‰s|√
2R∗T∗0

«

d‰s

–−1

, (74a)

Φ(x) =
1

2

»

exp(−x2) +
√

π

„

x +
1

2x

«

erf(x)

–

. (74b)

Let us consider the ratio l∗s/l∗ under the condition (63). Then it can be estimated as

l∗s

l∗
=

√
2π(2r)2n∗0

»

πd2
s

ms

Z

R3
f∗s(ξsi)Φ

„

|‰s|√
2R∗T∗0

«

d‰s

–−1

≤ 4
√

2
n∗0r

2

n∗s(r + rs)2
≪ 1, (75)

where the first inequality is due to the property Φ(x) ≥ 1, and the second one due to Eq. (63).
If we choose the characteristic length (

√
2R∗T∗0/ω∗) (cf. Sec 3.1) much shorter than l∗ but

comparable to or longer than l∗s, we can neglect the effect of collisions between gas molecules.
This legitimates the assumption 4 in Sec. A.1.

A.2.3 Special choice of f∗s and f∗v

Finally, we derive the simplified version (12) of the kinetic equation (5) with the help of special
choices of f∗v and f∗s and a further assumption.

Let us choose the following Maxwellians as f∗v and f∗s:

f∗v(ξi − ξsi) =
mn∗0

(2πR∗T∗0)3/2
exp

„

−|‰ − ‰s|2

2R∗T∗0

«

, (76a)

f∗s(ξsi) =
msn∗s

(2πΘs)3/2
exp

„

−|‰s|2

2Θs

«

, (76b)
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where Θs is a positive constant, and introduce the following ϵ:

ϵ =

r

Θs

R∗T∗0
. (77)

Then, Eqs. (6a) and (6b) are reduced to

ν(ξi) = 2
√

π n∗s(r + rs)
2
√

2Θs ϕ(0, |‰|/
√

2Θs), (78a)

f∗∞(ξi) =
ϕ(ϵ, |‰|/

√
2Θs)

ϕ(0, |‰|/
√

2Θs)

mn∗0

(2πR∗T∗0)3/2
exp

„

− ϵ2

1 + ϵ2
|‰|2

2Θs

«

, (78b)

where ϕ(a, x) is a dimensionless function defined by

ϕ(a, x) =
1

2
(1 + a2)−2

»

exp
`

−x̄2´

+
√

π

„

x̄ +
1

2x̄

«

erf (x̄)

–

˛

˛

˛

˛

˛

x̄=x/
√

1+a2

. (79)

By the use of the dimensionless variables in Eq. (7), Eq. (5) is recast as

∂f

∂t
+ ζi

∂f

∂Xi
=

1

Knϵ

„

2√
π

ϵ√
1 + ϵ2

«

ϕ(0, ϵ−1|“|)

×
»

ϕ(ϵ, ϵ−1|“|)
ϕ(0, ϵ−1|“|)

1

π3/2
exp

„

− |“|2

1 + ϵ2

«

− f

–

, (80)

where Knϵ is defined as [see Eq. (74a)]

Knϵ = l∗s/(
√

2R∗T∗0/ω∗) = [πn∗s(r + rs)
2
p

1 + ϵ2]−1(
√

2R∗T∗0/ω∗)
−1. (81)

We now assume ϵ ≪ 1, which means that the speed of motion of the obstacles is much lower
than that of the thermal motion of the gas molecules, and neglect the terms of O(ϵ2). Then, we
finally obtain the equation that is studied in the main text, i.e.,

∂f

∂t
+ ζi

∂f

∂xi
=

νϵ(|“|)
Kn

»

1

π3/2
exp

`

−|“|2
´

− f

–

, (82a)

where

νϵ(x) =
2√
π

ϵϕ(0, ϵ−1x) =
ϵ√
π

»

exp

„

−x2

ϵ2

«

+
√

π
“x

ϵ
+

ϵ

2x

”

erf
“x

ϵ

”

–

, (82b)

Kn = l∗s(ϵ = 0)/(
√

2R∗T∗0/ω∗) = [πn∗s(r + rs)
2]−1(

√
2R∗T∗0/ω∗)

−1. (82c)
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