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A REMARK ON THE C2-COFINITENESS CONDITION ON

VERTEX ALGEBRAS

TOMOYUKI ARAKAWA

Abstract. We show that a finitely strongly generated, non-negatively graded
vertex algebra V is C2-cofinite if and only if it is lisse in the sense of Beilinson,
Feigin and Mazur [BFM]. This shows that the C2-cofiniteness is indeed a
natural finiteness condition.

1. Introduction

The purpose of this note is to clarify the equivalence of the two finiteness condi-
tions on vertex algebras.

One of them is the finiteness condition introduced by Zhu [Zhu96], which is now
called the C2-cofiniteness condition. This condition has been assumed in many
significant theories of vertex operator algebras, such as [Zhu96, DLM00, Miy04,
NT05, Hua08b, Hua08a]. However the original definition looks rather technical,
and hence it has been often considered as a mere technical condition.

The other is the finiteness condition defined by Beilinson, Feigin and Mazur
[BFM] in the case of the Virasoro (vertex) algebra, which is called lisse. The
definition is as follows. Let L be the Virasoro (Lie) algebra, U(L) its universal
enveloping algebra. There is a natural increasing filtration of U(L) in the Lie
theory, called the standard filtration, and the associated graded algebra grU(L)
of U(L) is isomorphic to the symmetric algebra S(L) of L. Let M be a finitely
generated L-module, {ΓpM} a good filtration (i.e., a filtration compatible with
the standard filtration of L such that the associated graded space grΓ M is finitely
generated over S(L)). The singular support SS(M) of M is the support of the
S(L)-module grΓ M , which is known to be independent of the choice of a good
filtration. A L-module M is called lisse if dimSS(M) = 0. In the case that M
is a highest weight representation of L then M is lisse if and only if any element
of L acts locally nilpotently on grΓ M . This implies that lisse representations are
natural analogues of finite-dimensional representations.

Let V be a finitely strongly generated, non-negatively graded vertex algebra. The
notion of singular supports can be naturally extended to V by using the canonical
filtration introduced by Li [Li05]. More precisely, define the associated variety XM

of a V -module M as the support of the V/C2(V )-module M/C2(M). Then the
singular support of M can be naturally defined as a subscheme of the infinite jet
scheme of XM . Having defined the associated variety and the singular support, the
equivalence of the C2-cofiniteness condition and the lisse condition easily follows
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2 TOMOYUKI ARAKAWA

from the fact that the jet scheme of a zero-dimensional variety is zero-dimensional
(see Theorems 3.3.3, 3.3.4).

We note that in the case that V is a Virasoro vertex algebra andM is a V -module,
the Li filtration of M is slightly different from the Lie theoretic filtration defined
by considering it as a module over the Virasoro (Lie) algebra L. Nevertheless M is
lisse if and only if it is so in the sense of [BFM] provided that M is a highest weight
representation of L (see Proposition 3.4.2). In the case that V is an affine vertex
algebra associated with a Lie algebra the Li filtration is essentially the same as the
Lie theoretic filtration, although it is a decreasing filtration (see Propositions 2.6.1,
2.7.1).

In a separate paper [Ara] we prove the C2-cofiniteness for a large family of W -
algebras using the methods in this note, including all the (non-principal) exceptional
W -algebras recently discovered by Kac and Wakimoto [KW08].

Notation. The ground field will be C throughout the note .

2. Graded Poisson vertex algebras associated with vertex algebras

2.1. Vertex algebras and their modules. A (quantum) field on a vector space
V is a formal series

a(z) =
∑

n∈Z

a(n)z
−n−1 ∈ (EndV )[[z, z−1]]

such that a(n)v = 0 with n ≫ 0 for any v ∈ V . Let Fields(V ) denote the space of
all fields on V .

A vertex algebra is a vector space V equipped with the following data:

• a linear map Y (?, z) : V → Fields(V ), a 7→ a(z) =
∑

n∈Z a(n)z
−n−1,

• a vector 1 ∈ V , called the vacuum vector,
• a linear operator T : V → V , called the translation operator.

These data are subjected to satisfy the following axioms:

(i) (Ta)(z) = ∂za(z),
(ii) 1(z) = idV ,
(iii) a(z)1 ∈ V [[z]] and a(−1)1 = a,
(iv)

∑

j≥0

(
m
j

)
(a(n+j)b)(m+k−j)

=
∑

j≥0

(−1)j
(
n
j

)(
a(m+n−j)b(k+j) − (−1)nb(n+k−j)a(m+j)

)
.

A Hamiltonian of V is a semisimple operator H on V satisfying

[H, a(n)] = −(n+ 1)a(n) + (Ha)(n)(1)

for all a ∈ V , n ∈ Z. A vertex algebra equipped with a Hamiltonian H is called
graded. Let V∆ = {a ∈ V ;Ha = ∆a} for ∆ ∈ C, so that V =

⊕
∆∈C V∆. For

a ∈ V∆, ∆ is called the conformal weight of a and denoted by ∆a. We have

a(n)b ∈ V∆a+∆b−n−1

for homogeneous elements a, b ∈ V .
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Throughout the note V is assumed to be 1
r0
Z≥0-graded for some r0 ∈ N, that is,

V is graded and V∆ = 0 for ∆ 6∈ 1
r0
Z≥0.

A graded vertex algebra V is called conformal if there exists a vector ω (called
the conformal vector) and cV ∈ C (called the central charge) satisfying

ω(0) = T, ω(1) = H,

[ω(m+1), ω(n+1)] = (m− n)ω(m−n+1) +
(m3 −m)

12
δm+n,0cV .

A Z-graded conformal vertex algebra is also called a vertex operator algebra.
A vertex algebra V is called finitely strongly generated if there exists a finitely

many elements a1, . . . , ar such that V is spanned by the elements of the form

ai1(−n1)
. . . air(−nr)

1(2)

with r ≥ 0, ni ≥ 1.
A module over a vertex algebra V is a vector space M together with a linear

map

Y M (?, z) : V → Fields(M), a 7→ aM (z) =
∑

n∈Z

aM(n)z
−n−1,

which satisfies the following axioms:

(i) 1M (z) = idM ,
(ii)

∑

j≥0

(
m
j

)
(a(n+j)b)

M
(m+k−j)

=
∑

j≥0

(−1)j
(
n
j

)(
aM(m+n−j)b

M
(k+j) − (−1)nbM(n+k−j)a

M
(m+j)

)
.

A V -module M is called graded if there is a compatible semisimple action of H
on M , that is, M =

⊕
d∈CMd, where Md = {m ∈ M ;Hm = dm}, and [H, aM(n)] =

−(n + 1)aM(n) + (Ha)M(n) for all a ∈ V . We have aM(n)Md ⊂ Md+∆a−n−1 for a

homogeneous element a ∈ V . If V is conformal and M is a V -module on which
ωM
(1) acts locally finite, then M is graded by the semisimplification of ωM

(1).

If no confusion can arise we write simply a(n) for a
M
(n).

Throughout the note a V -module M is assumed to be lower truncated, that is,
M is graded and there exists a finites subset {d1, . . . , dr} ⊂ C such that Md 6= 0
unless d ∈ di +

1
r0
Z≥0 for some i.

For a V -module M , set

C2(M) = spanC{a(−2)m; a ∈ V,m ∈ M}.

Then

C2(M) = spanC{a(−n)m; a ∈ V,m ∈ M, n ≥ 2}

by the axiom (i) of vertex algebras. A V -moduleM is called C2-cofinite if dimM/C2(M) <
∞, and V is called C2-cofinite if it is C2-cofinite as a module over itself.
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Suppose that V is conformal. Then a V -module M is called C1-cofinite [Li99] if
M/C1(M) is finite-dimensional, where

C1(M) = spanC{ω(0)m, a(−1)m; a ∈
⊕

∆>0

V∆,m ∈ M}.

If V0 = C1, then C2(V ) is a subspace of C1(V ) ([Li99, Remark 3.2]).

2.2. Vertex Poisson algebras and their modules. A vertex algebra V is said
to be commutative if a(n) = 0 in EndV for all n ≥ 0, a ∈ V . This is equivalent to
that

[a(m), b(n)] = 0 for a, b ∈ V, m, n ∈ Z.

A commutative vertex algebra is the same as a differential algebra (=a unital
commutative algebra with a derivation) [Bor86]: the multiplication is given by
a · b = a(−1)b for a, b ∈ V ; The derivation is given by the translation operator T .

A commutative vertex algebra V is called a vertex Poisson algebra [FBZ04] if it
is also equipped with a linear operation

Y−(?, z) : V → Hom(V, z−1V [z−1]), a 7→ a−(z),

such that

(Ta)(n) = −na(n−1),(3)

a(n)b =
∑

j≥0

(−1)n+j+1 1

j!
T j(b(n+j)a),(4)

[a(m), b(n)] =
∑

j≥0

(
m
j

)
(a(j)b)(m+n−j),(5)

a(n)(b · c) = (a(n)b) · c+ b · (a(n)c)(6)

for a, b, c ∈ V and n,m ≥ 0. Here, by abuse of notation, we have set

a−(z) =
∑

n≥0

a(n)z
−n−1.

Below, for an element a of a vertex Poisson algebra, we will denote by a(n) with

n ≤ −1 the Fourier coefficient of z−n−1 in the field Y (a, z) = a(z), and by a(n)
with n ≥ 0 the Fourier coefficient of z−n−1 in Y−(a, z) = a−(z).

A vertex Poisson algebra V is called graded if there exists a semisimple operator
H on V satisfying (1) for all n ∈ Z.

A module over a vertex Poisson algebra V is a module M over V as an associative
algebra together with a linear map

Y M
− (?, z) : V → Hom(M, z−1M [z−1]), a 7→ aM− (z) =

∑

n≥0

aM(n)z
−n−1,

such that

1M (z) = idM ,

(Ta)M(n) = −naM(n−1),

[aM(m), b
M
(n)] =

∑

i≥0

(
m
i

)
(a(i)b)

M
(m+n−i),

aM(n)(b ·m) = (a(n)b) ·m+ b · (aM(n)m).(7)
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for a, b ∈ V , m ∈ M and n ≥ 0.
A module M over a graded vertex Poisson algebra V is called graded if there

exists a semisimple operator HM on M satisfying

[HM , aM(n)] = −(n+ 1)aM(n) + (Ha)M(n)(8)

for all a ∈ V , n ∈ Z.
If no confusion can arise below we write a(n) for a

M
(n) and H for HM .

We call M a differential V -module if it is equipped with the linear action of T
satisfying

[T, a(n)] = −na(n−1) for all n ∈ Z.

2.3. Functions on jet schemes of affine Poisson varieties are vertex Pois-

son algebras. For a scheme X of finite type we denote by Xm be the jet scheme
of order m of X and by X∞ the infinite jet scheme of X .

Let us recall the definition of jet schemes. For general theory of jet schemes see
e.g., [EM09]. The connection between jet schemes and chiral algebras goes back
to Beilinson and Drinfeld [BD04]. The scheme Xm is determined by its functor of
points: for every commutative C-algebra A, there is a bijection

Hom(SpecA,Xm) ∼= Hom(SpecA[t]/(tm+1), X).

If m > n, we have projections Xm → Xn. This yields a projective system {Xm}
of schemes, and the infinite jet scheme X∞ is the projective limit lim

←
m

Xm in the

category of schemes.
For an affine scheme X = SpecR, the jet scheme Xm is explicitly described.

Choose a presentation R = C[x1, . . . , xr]/〈f1, . . . , fs〉. Define new variables xj

(−i)

for i = 1, . . . ,m+ 1 and a derivation T of the ring C[xj

(−i); i = 1, 2, . . . ,m+ 1, j =

1, . . . , r] by setting

Txj

(−i) =

{
ixj

(−i−1) for i ≤ m,

0 for i = m+ 1.

Identify xj with xj

(−1) and set

Rm = C[xj

(−i); i = 1, . . . ,m+ 1, j = 1, . . . , r]/〈T jfi; i = 1, . . . , s, j = 0, . . . ,m+ 1〉,

and we have Xm
∼= SpecRm.

Let R∞ denotes the differential algebra obtained from Rm by taking the limit
m → ∞:

R∞ = C[xj

(−i); i = 1, 2, . . . , j = 1, . . . , ]/〈T jfi; i = 1, . . . , s, j = 0, . . . , 〉.(9)

Then X∞ ∼= Spec(R∞).

Proposition 2.3.1. Let R be a Poisson algebra. Then there is a unique vertex
Poisson algebra structure on R∞ such that

u(n)v =

{
{u, v} if n = 0,

0 if n > 0,

for u, v ∈ R ⊂ R∞.
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Proof. Set

u(n)(T
lv) =

{
l!

(l−n)!T
l−n{u, v} if l ≥ n,

0 else
(10)

for a, b ∈ R. This extends to a well-defined linear map

R → Der(R∞)[[z−1]]z−1, u 7→ u−(z) =
∑

n∈≥0

u(n)z
−n−1,(11)

where Der(R∞) is the space of derivations on R∞. It is straightforward to check
that

[T, u−(z)] = ∂zu−(z) for u ∈ R,

u(n)v =
∑

j≥0

(−1)n+j+1 1

j!
T j(v(n+j)u) for u, v ∈ R,

[u(m), v(n)] =
∑

j≥0

(
m
j

)
(u(j)v)(m+n−j) for u, v ∈ R.(12)

The map (11) can be extended to the linear map

R∞ → Der(R∞)[[z−1]]z−1, a 7→ a−(z) =
∑

n≥0

a(n)z
−n−1(13)

by setting

a−(z)T
ku = Sing(ezT (−∂z)

ku−(−z)a)

for a ∈ R∞, u ∈ R, k ≥ 0. Here Sing(f) is the singular part of the formal
series f ([Pri99, Li04]). (Note that the axiom (4) is equivalent to that a−(z)b =
Sing(ezT b−(−z)a).) We find from the argument of [Li04, Proof of Proposition 3.10]
that

(Ta)−(z) = ∂za−(z) for a ∈ R∞,

a−(z)b = Sing(ezT b−(−z)a) for a, b ∈ R∞.

This together (12) proves that (13) defines a vertex Poisson structure on R∞ by
[Li04, Theorem 3.6]. The uniqueness statement is easily seen, cf. [Li04, Proof of
Proposition 3.10]. �

The vertex Poisson algebra structure on R∞ = C[X∞] given in Proposition 2.3.1
for an affine scheme X = SpecR will be called the level 0 vertex Poisson algebra
structure.

Remark 2.3.2. The differential algebra R∞ makes sense even when R is not finitely
generated and Proposition 2.3.1 still holds in this case. Also, the assertion of
Proposition 2.3.1 extends straightforwardly to the Poisson superalgebra cases.

2.4. Ideals of vertex Poisson algebras. Let V be a vertex Poisson algebra, M
a V -module. A submodule of M is a submodule N of M as an associative algebra
such that a(n)N ⊂ N for all a ∈ V , n ≥ 0. An ideal of V is a submodule I of V
stable under the action of T . By (4) it follows that u(n)V ⊂ I for all u ∈ I and
n ≥ 0. Hence V/I inherits the vertex Poisson algebra from V .

Lemma 2.4.1. Let R be a commutative Q-algebra, ∂ a derivation on R, I a ∂-
stable ideal of R. Then the radical

√
I of I is stable under the action of ∂.
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Proof. ([CO78]) Let a ∈
√
I, so that there exists m ∈ N such that am ∈ I. Because

∂I ⊂ I, (∂)mam ∈ I. But

(∂)mam ≡ m!(∂a)m (mod
√
I),

and therefore we get that (∂a)m ∈
√
I. This gives ∂a ∈

√
I. �

Corollary 2.4.2. (i) Let R be a Poisson algebra, I a Poisson ideal of R.

Then
√
I is also a Poisson ideal.

(ii) Let V be a vertex Poisson algebra, I a V -submodule of V . Then
√
I is also

a V -submodule of V .
(iii) Let V be a vertex Poisson algebra, I a vertex Poisson algebra ideal of V .

Then
√
I is also a vertex Poisson algebra ideal of V .

2.5. Li filtration. Let V be a vertex algebra. Following [Li05]1, define F pV to be
the subspace of V spanned by the vectors

a1(−n1−1)
. . . ar(−nr−1)

b

with ai ∈ V , b ∈ V ni ∈ Z≥0, n1 + · · ·+ nr ≥ p. Then

V = F 0V ⊃ F 1V ⊃ · · · ,
⋂

p

F pV = 0,

TF pV ⊂ F p+1V,

a(n)F
qV ⊂ F p+q−n−1V for a ∈ F pV, n ∈ Z,

a(n)F
qV ⊂ F p+q−nV for a ∈ F pV, n ≥ 0.(14)

Here we have set F pV = V for p < 0. Note that the filtration {F pV } is independent
of the grading of V .

Let grF V =
⊕

p F
pV/F p+1V be the associated graded vector space. The space

grF V is a vertex Poisson algebra by

σp(a)σq(b) = σp+q(a(−1)b)

Tσp(a) = σp+1(Ta),

Y−(σp(a), z)σq(b) =
∑

n≥0

σp+q−n(a(n)b)z
−n−1,

where σp : F pV → F pV/F p+1V is the principal symbol map.
The filtration {F pV } is called the Li filtration of V .
We have [Li05, Lemma 2.9]

F pV = spanC{a(−i−1)b; a ∈ V, i ≥ 1, b ∈ F p−iV } for all p ≥ 1.(15)

In particular

F 1M = C2(M).

Set

RV = V/C2(V ) = F 0V/F 1V ⊂ grF V.

1In [Li05] F pV was denoted by Ep.
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It is known by Zhu [Zhu96] that RV is a Poisson algebra. In fact the Poisson algebra
structure of RV can be understood as the restriction of the vertex Poisson structure
of grF V [Li05, Proposition 3.5]; it is given by

ā · b̄ = a(−1)b,

{ā, b̄} = a(0)b

for a, b ∈ V , where ā = a+ C2(V ).
By [Li05, Lemma 4.2], the embedding RV →֒ grF V extends to the surjective

homomorphism

(RV )∞ ։ grF V(16)

of differential algebras.

Proposition 2.5.1. The surjection (16) is a homomorphism of vertex Poisson
algebras, where (RV )∞ is equipped with the level 0 vertex Poisson algebra structure.

Proof. From the definition we see that the vertex Poisson algebra structure coin-
cides on the generating subspace RV , that is, for a, b ∈ RV , a(0)b = {a, b} and
a(n)b = 0 for all n > 0 in both grV and (RV )∞. But then [Li04, Lemma 3.3] says
that the map (RV )∞ → grV must be a vertex Poisson algebra homomorphism. �

2.6. Standard filtration vs Li filtration. There is an another filtration {GpV ; p ∈
1
r0
Z≥0} of V called the standard filtration, which is an increasing filtration defined

also by Li [Li04]2: choose a set {ai; i ∈ I} of homogeneous strong generators of V .
Let GpV be the linear subspace of V spanned by the vectors

ai1(−n1)
. . . air(−nr)

1 satisfying ∆ai1 + · · ·+∆air ≤ p,(17)

with r ≥ 0, ni ≥ 1. Then

GpV ⊂ GqV for p < q,(18)

V =
⋃

p

GpV,(19)

TGpV ⊂ GpV,(20)

a(n)GqV ⊂ Gp+qV, for a ∈ GpV, n ∈ Z,(21)

a(n)GqV ⊂ Gp+q−1V, for a ∈ GpV, n ∈ Z≥0.(22)

It follows that grG V =
⊕

p∈ 1
r0

Z≥0

GpV/Gp−1V is naturally a vertex Poisson algebra,

where we have set GpV = 0 for p < 0.
By [Li04, Thoerem 4.14] the standard filtration {GpV } is characterized as the

finest increasing filtration of V satisfying (18)-(22) such that

V∆ ⊂ G∆V.(23)

In particular, it is independent of the choice of a set of strong generators of V .
Both filtrations {F pV } and {GpV } are stable under the action of the Hamil-

tonian. Let F pV∆ = V∆ ∩ F pV , GpV∆ = V∆ ∩ GpV , so that F pV =
⊕

∆ F pV∆,
GpV =

⊕
∆ GpV∆.

2In [Li04] it is assumed that V is Z≥0-graded and V0 = C, but this condition can be easily

relaxed, as we can see from Proposition 2.6.1.
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Proposition 2.6.1. We have

F pV∆ = G∆−pV∆

for all p and ∆. Moreover, the linear isomorphism

grF V ∼→ grG V

is an isomorphism of vertex Poisson algebras.

Proof. The second assertion is easily seen from the first. So let us prove the first
assertion. First, we have by (23) V∆ = G∆V∆, namely,

F 0V∆ = G∆V∆.

Next we show the inclusion F pV∆ ⊂ G∆−pV∆ by induction on p ≥ 0. Let p > 0.
By (15), F pV∆ is spanned by the elements

a(−i−1)b, with a ∈ V∆a
, b ∈ F p−iV∆b

, i ≥ 1, ∆a +∆b + i = ∆.(24)

By the induction hypothesis F p−iV∆b
⊂ G∆b−p+iV∆b

for i ≥ 1. Because a ∈ V∆a
⊂

G∆a
V , for the vector a(−i−1)b of the form (24) we have

a(−i−1)b ∈ a(−i−1)G∆b−p+iV∆b
⊂ G∆a+∆b−p+iV∆ = G∆−pV∆.

Hence F pV∆ ⊂ G∆−pV∆.
It remains to show the opposite inclusion GpV∆ ⊂ F∆−pV∆. We prove that any

element v of GpV∆ of the form (17) belongs to F∆−pV∆ by induction on r ≥ 0. For

r = 0 this is obvious. So let r > 0. Then v = ai1(−n1)
w with w = ai2(−n2)

. . . air(−nr)
1,

ni ≥ 1,
∑

∆ai ≤ p, ∆ai1 + ∆w + n − 1 = ∆, where each ai is homogeneous.
Because w ∈ Gp−∆

a
i1
V , the induction hypothesis gives that w ∈ F∆

a
i1 +∆w−pV .

Hence ai1(−n)w ∈ F∆
a1+∆w−p+n−1V∆ = F∆−pV∆. This completes the proof. �

From Proposition 2.6.1 we get the following well-known fact [GN03].

Corollary 2.6.2. Let {ai; i ∈ I} be a set of homogeneous vectors of V . Then the
following are equivalent:

(i) {ai; i ∈ I} strongly generates V .
(ii) {āi; i ∈ I} generates RV .

In particular V is finitely strongly generated if and only if RV is finitely generated.

Proof. Suppose that {ai; i ∈ I} strongly generates V . By Proposition 2.6.1 C2(V ) =
F 1V is spanned by the vectors of the form (17) with n1 + · · ·+nr − r ≥ 1, proving
that {āi; i ∈ I} generates RV .

Conversely, suppose that {āi; i ∈ I} generates RV . Then by (16) {āi} generates
grF V as a differential algebra. As the principal symbol map gives the isomorphism
V ∼→ grF V of vector spaces, it follows that {ai} strongly generates V . �

2.7. Example: universal affine vertex algebras. Let g be a simple Lie algebra
over C, ĝ = g[t, t−1]⊕CK the Kac-Moody affinization of g with the central element
K. For k ∈ C, define

V k(g) = U(ĝ)⊗U(g[t]⊕CK)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK on which g[t] acts
trivially and K acts as the multiplication by k.
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There is a unique vertex algebra structure in V k(g) such that 1 = 1⊗1 is the
vacuum vector and

Y (x(−1)1, z) = x(z) :=
∑

n∈Z

x(n)z
−n−1 for x ∈ g,

where x(n) = x⊗tn. The vertex algebra V k(g) is called the universal affine vertex
algebra associated with g at level k (see [Kac98, 4.7], [FBZ04, 2.4.2]).

The vertex algebra V k(g) is conformal by the Sugawara construction, provided
that k 6= −h∨, where h∨ is the dual Coxeter number of g.

Proposition 2.7.1. For any k ∈ C we have the following.

(i) RV k(g)
∼= C[g∗] as Poisson algebras, where g∗ is equipped with the Kirillov-

Kostant Poisson structure.
(ii) grF V k(g) ∼= C[g∗∞] as vertex Poisson algebras, where C[g∗∞] is equipped

with the level 0 vertex Poisson structure.

In particular RV k(g) and grF V k(g) are independent of k ∈ C.

Proof. Although Proposition is well-known (see e.g., [DLM02, DSK05, DSK06]),
we include the proof for completeness.

The vertex algebra V k(g) is naturally Z≥0-graded (see e.g., [Kac98, Example
4.9b]). We consider the corresponding standard filtration {GpV

k(g)}.
We have V k(g) ∼= U(g[t−1]t−1) as vectors spaces. Under this isomorphism

GpV
k(g) gets identified with Up(g[t

−1]t−1), where {Up(g[t
−1]t−1)} is the stan-

dard filtration of the enveloping algebra U(g[t−1]t−1) in the Lie theory, that is,
Up(g[t

−1]t−1) is the linear span of products of at most p elements in g[t−1]t−1. It
follows that grG V k(g) ∼= S(g[t−1]t−1) as commutative rings, and thus grF V k(g) ∼=
S(g[t−1]t−1) as commutative rings by Proposition 2.6.1.

Now S(g[t−1]t−1) is naturally isomorphic to S(g)∞ = C[g∗∞] as commutative
rings, and we get the isomorphism

Φ : C[g∗∞] ∼→ grF V k(g),

which is easily seen to be an isomorphism of differential algebras. It remains to prove
that Φ is a homomorphism of vertex Poisson algebras. For this, it is sufficient to
check that Φ(x(n)) = Φ(x)(n) only for x ∈ g by [Li04, Lemma 3.3]. For n > 0 this
follows immediately from the definition, and for n = 0 this is equivalent to (i) of
Proposition, which is easy to see. �

3. Associated varieties of vertex algebras and their modules

For the rest of the paper we will assume that V to be finitely strongly generated.
Thus, in particular, RV is finitely generated (Corollary 2.6.2).

3.1. Filtration of V -modules. Let M be a V -module. A compatible filtration
{ΓpM} of M is a decreasing filtration M = Γ0M ⊃ Γ1M ⊃ · · · satisfying

a(n)Γ
qM ⊂ Γp+q−n−1M, for a ∈ F pV, n ∈ Z,

a(n)Γ
qM ⊂ Γp+q−nM for a ∈ F pV, n ≥ 0,(25)

HΓqM ⊂ ΓqM,

where {F pV } is the Li filtration of V . The associated graded space grΓ M =⊕
ΓpM/Γp+1M is naturally a module over the vertex Poisson algebra grF V . Here
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we have set ΓpM = M for p < 0. Note that each subspace ΓpM/Γp+1M of grΓ M
is a submodule over RV = V/C2(V ).

A compatible filtration {ΓpM} is good3 if it is separated (i.e.
⋂
ΓpM = 0) and

grΓ M is finitely generated over the ring grV .

Remark 3.1.1. Let {ΓpM} be a compatible filtration of a V -module M . Then⋂
p Γ

pM is a submodule of M . Hence, if M is simple, we have either
⋂

ΓpM = 0

or
⋂
ΓpM = M .

Lemma 3.1.2. Let V be a conformal vertex algebra, M a V -module, {ΓpM} a
compatible filtration. Then grΓ M is a differential grF V -module.

Proof. Let ω be the Virasoro element of V . Then the derivation ΓpM/Γp+1 →
Γp−1/ΓpM , σp(m) → σp−1(ω(0)m), defines an action of T with the desired property.

�

Let F pM be a subspace of M spanned by the vectors

a1(−n1−1)
. . . ar(−nr−1)

m

with ai ∈ V , m ∈ M , ni ∈ Z≥0, n1 + · · · + nr ≥ p. Then {F pM} is a compatible
filtration [Li05]. It is separated because M is lower truncated by our assumption,
see (the proof of) [Li05, Lemma 2.1.4]. The filtration {F pM} is called the Li
filtration of a V -module M . Note that

F 1M = C2(M).(26)

The grV -module structure of grF M gives a RV -module structure on M/C2(M):

ā.m̄ = a(−1)m, for a ∈ V, m ∈ M,

where ā = a+C2(V ), m̄ = m+C2(M). Note that M/C2(M) is also a module over
RV viewed as a Lie algebra by the assignment ā 7→ Lā, where

Lām̄ = a(0)m, for a ∈ V, m ∈ M.

These two actions are compatible in the sense that

Lāb̄.m̄ = {ā, b̄}.m̄+ b̄.Lām̄.(27)

Lemma 3.1.3 ([Li05, Lemma 4.2]). For a V -module M , the grF V -module grF M
is generated by the subspace M/C2(M) = F 0M/F 1M .

Lemma 3.1.4. Let {ai; i ∈ I} be a set of strong generators of V . Then

C2(M) = spanC{ai(−n)m; i ∈ I, n ≥ 2, m ∈ M}.

Proof. Let {F pC2(V )} be the induced filtration. Then we have grF C2(V ) =⊕
p≥1 F

pM/F p+1M and

grF C2(M) = spanC{āi(−n)m̄; i ∈ I, n ≥ 2,m ∈ M}
by (16), Corollary 2.6.2, and Lemma 3.1.3, where m̄ is the image of m ∈ M in
grF M . This proves the assertion. �

We call M finitely strongly generated over V if M/C2(M) is finitely generated
over RV .

3The definition of a “good” filtration in this note is different form the one given in [Li04].
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Lemma 3.1.5. A V -module M is finitely strongly generated if and only if there
exists a good filtration of M .

Proof. Suppose that M/C2(M) is finitely generated over RV . Then the Li filtration
of M is good by Lemma 3.1.3.

Let us show the opposite direction. Suppose that there exists a good filtration
{ΓpM} ofM , so that grΓ M is finitely generated over grF V . Let v1, . . . , vr elements
of M such that there images v̄1, . . . , v̄r generate grΓ M as a grF V -module. Then
it follows that M is spanned by the vectors of the form (T j1a1) . . . (T

jrar)vi with
as ∈ V , js ∈ Z≥0, s = 1, . . . , r. This means that the images of vi’s generate grF M
as well, and the assertion follows. �

Lemma 3.1.6. Suppose that V is conformal and V0 = C1. Then for a V -module
M , M is finitely strongly generated over V if and only if M is C1-cofinite.

Proof. Observe that the grading on V induces a grading on RV such that

RV =
⊕

∆∈ 1
r0

Z≥0

(RV )∆, (RV )0 = C.(28)

The inclusion C2(M) →֒ C1(M) gives the surjection

η : M/C2(M) ։ M/C1(M).

As easily seen η is a homomorphism of RV -modules, where M/C1(M) is considered
as a trivial RV -module, and we have ker η = R∗V (M/C2(M)), where R∗V is the
argumentation ideal of RV :

R∗V =
⊕

∆>0

(RV )∆.(29)

�

3.2. Associated varieties of vertex algebras and their modules.

Lemma 3.2.1. Let M be a V -module.

(i) The annihilator AnnRV
(M/C2(M)) of M/C2(M) in RV is a Poisson ideal

of RV .
(ii) Let {ΓpM} be a compatible filtration. Then Ann(RV )∞(grΓ M) is a (RV )∞-

submodule of (RV )∞. If V is conformal, then Ann(RV )∞(grΓ M) is a vertex
Poisson algebra ideal of (RV )∞.

Proof. (i) follows from (27). (ii) By (6), AnngrF V (gr
Γ M) is a submodule of grF V .

Because (RV )∞ acts on grΓ M via the surjective homomorphism Φ : (RV )∞ →
grF V of vertex Poisson algebras, Ann(RV )∞(grΓ M) = Φ−1(AnngrF V (gr

Γ M)) is

a submodule of (RV )∞. If V is conformal then grΓ M is a differential grF V -
module by Lemma 3.1.2. It follows that AnngrF V (gr

Γ M) is an ideal and hence so

is Ann(RV )∞(grΓ M). �

Define the associated variety XV of V by

XV = SpecRV .
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More generally, for a finitely strongly generated V -module M , define the associated
variety XM of M by

XM = suppRV
(M/C2(M))

= {p ∈ SpecRV ; p ⊃ AnnRV
(M/C2(M))}.

By Lemma 3.2.1, XM is a Poisson subvariety of XV .
The following assertion is clear.

Lemma 3.2.2. Let M be a finitely strongly generated V -module. Then the following
are equivalent:

(i) M is C2-cofinite.
(ii) dimXM = 0.

Remark 3.2.3. Let V be as in Lemma 3.1.6. Then by (28) the variety XV is conical.
If M is a graded V -module then XM is also conical. Hence

M is C2-cofinite ⇐⇒ XM = {0} (as topological spaces).

This is equivalent to that, for any homogeneous element a ∈ V with ∆a > 0,
a+ C2(V ) acts nilpotently on M/C2(M).

3.3. Singular support of V -modules. Let M be a finitely strongly generated
V -module, {ΓpM} a good filtration of M . Define the singular support SS(M) of
M by

SS(M) = supp(RV )∞(grΓ M)

= {p ∈ Spec(RV )∞; p ⊃ Ann(RV )∞(grΓ M)}.
Then SS(M) is a closed subscheme of the infinite jet scheme (XV )∞ = Spec(RV )∞.
It is well-known that SS(M) is independent of the choice of a good filtration of M .

Let

πm : (XV )∞ → (XV )m

be the natural projection.

Lemma 3.3.1. Let M be a finitely strongly generated V -module.

(i) We have XM = π0(SS(M)).
(ii) If V is conformal then SS(M) ⊂ (XM )∞.

Proof. We may take the Li filtration {F pM} as a good filtration. By Lemma 3.1.3,

AnngrF V (gr
F M) ∩RV = AnnRV

(M/C2(M))(30)

Hence XM = π0(SS(M)). Next assume that V is conformal. By Lemma 3.2.1
Ann(RV )∞(grF M) is T -stable. Thus from (30) it follows that AnngrF V (gr

F M) con-
tains the defining ideal of (XM )∞, that is, the minimal T -stable ideal of C[(XV )∞]
containing AnnRV

(M/C2(M)). This shows that SS(M) ⊂ (XM )∞. �

A V -module M is called lisse if M is finitely strongly generated and SS(M) is
zero-dimensional, or equivalently, πm(SS(M)) is zero-dimensional for all m ≥ 0. A
vertex algebra V is called lisse if it is lisse as a module over itself.

Remark 3.3.2. Suppose that V is Q≥0-graded and V0 = C. Then as in Remark
3.2.3 we see that a C1-cofinite V -module M is lisse if and only if SS(M) = {0}.
or equivalently, for any homogeneous element a with ∆a > 0, its principal symbol
σp(a) acts nilpotently on in grF M .
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Theorem 3.3.3. The following are equivalent.

(i) V is C2-cofinite.
(ii) V is lisse.

Proof. The direction (ii) ⇒ (i) immediately follows from Lemma 3.3.1. The direc-
tion (i) ⇒ (ii) follows from the fact that SS(V ) ⊂ (XV )∞ and the jet scheme of
0-dimensional variety is 0-dimensional. �

The same assertion holds for the modules provided that grΓ M is a differential
grV -module for a good grading {ΓpM}. This is the case when V is conformal:

Theorem 3.3.4. Suppose that V is conformal and M is a finitely strongly generated
V -module. Then the following are equivalent.

(i) M is C2-cofinite, or equivalently, dimXM = 0.
(ii) M is lisse.

Proof. By Lemma 3.1.2 the assertion follows from in the same manner as Theorem
3.3.3. �

3.4. Example: Virasoro vertex algebras. Let L =
⊕

n∈ZCLn ⊕Cc be the
Virasoro algebra, with the commutation relation

[Lm, Ln] = (m− n)Lm+n +
(m3 −m)

12
δm+n,0c,

[c,L] = 0.

Define the subalgebras L≥0 =
⊕

n∈Z CLn⊕Cc, L<0 =
⊕

n<0 CLn, so that L =
L<0 ⊕L≥0. For c ∈ C, denote by Cc the one-dimensional representation of L≥0
on which Ln acts trivially and c acts as the multiplication by c. Define Mc =
U(L)⊗U(L≥0)Cc. Then L−1(1⊗1) ∈ Mc is annihilated by all Ln with n > 0. Set

V irc = Mc/U(L)L−1(1⊗1).

As is well-known there is a unique vertex algebra structure on V irc such that the
image of 1⊗1 is the vacuum vector 1 and

Y (L−21, z) = L(z) :=
∑

n∈Z

Lnz
−n−2.

The vertex algebra V irc is called the universal Virasoro vertex algebra with central
charge c. Any L-module with central charge c (i.e., c acts as the multiplication by
c) on which L(z) is a field can be considered as a V irc-module.

We have

RV irc
∼= C[x](31)

(with the trivial Poisson structure), where x is the image of L−21. Let Nc its unique
maximal submodule of V irc, and V irc = V irc/Nc its unique simple quotient.

Proposition 3.4.1. The following are equivalent.

(i) V irc is C2-cofinite.
(ii) V irc is reducible.
(iii) c = 1− 6(p− q)2/pq for some p, q ∈ Z≥2 such that (p, q) = 1. (These are

precisely the central charges of the minimal series representations of L.)
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Proof. It is known that the image of Nc in RV irc is nonzero if Nc 6= 0 (see e.g.
[Wan93, Lemma 4.2 and Lemma 4.3] or [GK07, Proposition 4.3.2]). Therefore
XV irc = {0} if and only if V irc is not irreducible. This happens if and only if the
central charge is of the form in (iii) ([Kac74, FF84, GK07]). �

We now compare the C2-cofiniteness condition with the zero singular support
condition of Beilinson, Feigin and Mazur [BFM]. Let {Up(L)} be the standard fil-
tration of U(L) as in Introduction. Then the associated graded algebra grU(L) is
isomorphic to the symmetric algebra S(L). Let M be a highest weight representa-
tion of L with central charge c, v the highest weight vector of M . Then {Up(L)v}
defines an increasing filtration ofM compatible with the standard filtration of U(L).
(Note that Up(L)v = Up(L<0)v.) Let grLieM denote the associated graded space⊕

p Up(L)v/Up+1(L)v. Then grLieM is an S(L)-module generated by the image of

v. The singular support SSBFM (M) defined in [BFM] is by definition the support
suppS(L) gr

Lie(M). Clearly, we have SSBFM (M) ⊂ L∗<0.

Proposition 3.4.2. Let M be a highest weight representation of L with central
charge c. Then the following are equivalent.

(i) M is C2-cofinite.
(ii) SSBFM (M) = {0}.

Proof. First, by Lemma 3.1.4 we have

C2(M) = spanC{L−nm;m ∈ M,n ≥ 3}
because V irc is strongly generated by L−21. It follows that M/C2(M) is spanned
by the images of the vectors of the form Lm

−2L
n
−1v with m,n ≥ 0, where v is the

highest weight vector of M . In particular M/C2(M) is generated by the image of
the vectors Ln

−1v with n ≥ 0 over RV irc by (31).

Suppose that SSBFM (M) = {0}. We then have Lp
−1v ∈ Up−1(L<0)v for a

sufficiently large p. By considering the L0-eigenvalue we find that this is equivalent
to Lp

−1v ∈
∑

n≥2 L−nU(L<0)v. This happens if and only if M/C2(M) is finitely

generated over RV irc . We also have Lp
−2v ∈ Up−1(L<0)v for a sufficiently large

p. By taking account of the L0-eigenvalue it follows that this is equivalent to
Lp
−2v ∈ ∑

n≥3 L−nU(L<0)v = C2(M). Therefore M is C2-cofinite.
Conversely, suppose that M is C2-cofinite. From the above argument it fol-

lows that L−1 and L−2 act nilpotently on grLie M . Then SSBFM (M) must be

{0}, because L−1 and L−2 generates L<0 and
√
AnnS(L<0) gr

Lie M is involtive by

Gabber’s theorem. �

By Proposition 3.4.2 a result of [BFM] can be read as follows.

Theorem 3.4.3 ([BFM]). Let M be an irreducible highest weight representation of
L with central charge c. Then the following are equivalent.

(i) M is C2-cofinite.
(ii) M is isomorphic to one of the minimal series representations of L.

3.5. Example: affine vertex algebras. Let g, ĝ, V k(g) be as in Example 2.7.
For a weight λ of ĝ, let L(λ) be the irreducible (graded) representation of ĝ of

highest weight λ. If λ is of level k, that is, if λ(K) = k, then L(λ) can be naturally
considered as a (simple) module over V k(g). In particular L(kΛ0) (in the notation
of [Kac90]) is isomorphic to the unique simple graded quotient of V k(g).
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Let λ(K) = k. Because

C2(L(λ)) = spanC{x(−n)m;x ∈ g, m ∈ L(λ), n ≥ 2}

by Lemma 3.1.4, it follows that L(λ) is finitely strongly generated over V k(g) if and
only if the highest weight vector of L(λ) generates a finite-dimensional g-module, or
equivalently, the restriction of λ to the Cartan subalgebra of g is integral dominant.
This happens if and only if L(λ) is a direct sum of finite-dimensional g-modules.
In this case XL(λ) is a AdG-invariant, conic, Poisson subvariety of g∗.

We give a simple proof of the following well-known assertion (cf. [Zhu96]).

Proposition 3.5.1. Let λ be a weight of ĝ, and set k = λ(K). Then L(λ) is a
C2-cofinite V k(g)-module if it is an integrable representation of ĝ. In particular the
simple affine vertex algebra L(kΛ0) is C2-cofinite if k ∈ Z≥0.

Proof. Suppose that L(λ) is integrable and set J = AnnR
V k(g)

L(λ)/C2(L(λ)). Let

xα is any root vector of g. Because (xα)(−1) acts locally nilpotently on L(λ),

its image xα ∈ C[g∗] = RV k(g) belongs to
√
J . As

√
J is an Poisson ideal of

C[g∗] by Corollary 2.4.2 and Lemma 3.2.1,
√
J contains {g, xα} = g, proving that

XL(λ) = {0}. �

One can show that the converse of Proposition 3.5.1 is also true, that is, L(λ) is
C2-cofinite if and only if it is integrable, see [DM06, Ara].
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