1	Hydrothermal fluid flow system around the Iheya North Knoll in the
2	mid-Okinawa Trough based on seismic reflection data
3	
4	Takeshi Tsuji ^{1, 2} , Ken Takai ² , Hisashi Oiwane ³ , Yasuyuki Nakamura ³ , Yuka Masaki ^{2, 4} ,
5	Hidenori Kumagai ² , Masataka Kinoshita ² , Fujio Yamamoto ² , Tadashi Okano ² , and
6	Shin'ichi Kuramoto ²
7	
8	¹ Graduate school of Engineering, Kyoto University
9	² Japan Agency for Marine Earth Science and Technology (JAMSTEC)
10	³ Ocean Research Institute, University of Tokyo
11	⁴ Department of Applied Science, Kochi University
12	
13	
14	Research Highlights (4 bullet points)
$15\\16$	(1) Possible fluid flow paths in the Iheya North Knoll hydrothermal field
17	
18	(2) Widespread permeable volcanic deposits produced by silicic arc volcanism
19 20	(3) Layered sequence focuses migration of fluids derived from trough-fill sediments
$\frac{21}{22}$	(4) Fluid alteration accelerated by interactions with sediments
23	

24 Abstract

25	Seismic reflection data around the Iheya North Knoll hydrothermal field provide
26	insights into geological structures that control subseafloor hydrothermal fluid flow
27	in the sediment-covered continental backarc basin of the mid-Okinawa Trough.
28	We identified the seismic expression of widespread porous volcaniclastic
29	pumiceous deposits and intrusions as a result of silicic arc volcanism. The porous
30	and permeable volcanic deposits distribute in an area extending updip from the
31	thick succession of the deep trough to the seafloor at the hydrothermal field. Their
32	regional structure focuses the flow of hydrothermal fluids derived from the
33	surrounding trough-fill sediments and directs them to the vents of the
34	hydrothermal field. The high concentrations of CH_4 and NH_4 in the fluids of the
35	hydrothermal field are likely derived from the interaction of migrating fluids with
36	trough-fill sediments.
37	
38	Keywords: Hydrothermal fluid paths, Okinawa Trough, seismic reflection data,
39	continental backarc basin, silicic volcanism
40	

1. Introduction

43	The circulation of hydrothermal fluids enhances chemical and thermal exchange and
44	the interaction between the crust and ocean (e.g., Stein and Stein, 1992). Because of the
45	considerable influence of hydrothermal fluid circulation within oceanic lithosphere on
46	the physical, chemical, and biological evolution of the crust and ocean, it has been well
47	studied at spreading axes and on their flanks (e.g., Fisher et al., 1997; Fisher, 1998;
48	Johnson et al., 2000; Fisher et al., 2003; Hutnak et al., 2008; Fisher et al., 2008;
49	Waldhauser and Tolstoy, 2011; Fisher et al., 2011). In contrast, there have been few
50	studies of hydrothermal fluid circulation in subduction zones, such as at island arc
51	submarine volcanoes and in continental backarc basins. Because backarc basins at
52	continental margins are usually covered by thick sequences of terrigenous sediments, an
53	understanding of fluid recharge and migration paths cannot be obtained only from
54	near-seafloor observations.
55	The hydrothermal field on Iheya North Knoll, about 150 km NNW of Okinawa
56	Island, was discovered in 1995 (Fig. 1; Momma et al., 1996) and has since been
57	investigated during more than 40 dives of manned deep submergence vehicles (DSVs)
58	and remotely operated vehicles (ROVs). These investigations have demonstrated that
59	prosperous subseafloor microbial communities associated with the hydrothermal fluid

60	chemistry are hosted along the entire hydrothermal fluid flow path, from sedimentary
61	pore water to hydrothermal discharge zones (Nakagawa et al., 2005; Takai et al., 2006).
62	The chemistry of the hydrothermal fluids in the Okinawa Trough (a backarc basin) is
63	unusual among deep-sea hydrothermal fluids studied to date (Ishibashi and Urabe,
64	1995; Gamo et al., 2006; Takai et al., 2006; Takai and Nakamura, 2010; Kawagucci et
65	al., 2011). High concentrations of CO_2 and CH_4 are common in fluids in hydrothermal
66	systems underlying sedimentary sequences, such as at the Juan de Fuca Ridge (Lilley et
67	al., 1993; Shanks et al., 1995) and in the Guaymas Basin (Welhan and Lupton, 1987;
68	Pearson et al., 2005). However, the concentrations of CO_2 and other gaseous carbon
69	compounds in hydrothermal fluids from the Okinawa Trough are among the highest in
70	the world (Gamo, 1995; Konno et al., 2006; Takai and Nakamura, 2010; Kawagucci et
71	al., 2011). Most of these volatiles are likely derived from subseafloor interactions
72	between sediments and infiltrated seawater (Kawagucci et al., 2011). In addition, vent
73	fluids from Okinawa Trough hydrothermal systems have high concentrations of Ba,
74	provided by hydrothermal reactions between felsic volcanic rocks and hydrothermal
75	fluids (Gamo et al., 2006). Despite the unusual fluid chemistry of the Okinawa Trough
76	hydrothermal systems, there has been little investigation of their geological and
77	hydrogeological setting. Understanding the hydrogeology of hydrothermal systems is of

78	fundamental importance in studying the interactions among geological, geochemical,
79	and microbial processes in the deep-sea hydrothermal environment of a continental
80	backarc basin. In this study, we investigated the structure of the hydrothermal fluid flow
81	system of the Iheya North Knoll hydrothermal field on the basis of our interpretation of
82	a dense grid of seismic reflection data covering the Iheya North Knoll.
83	
84	2. Geologic setting
85	The Okinawa Trough lies in the eastern East China Sea, between the Ryukyu Arc –
86	Trench system and the Eurasian continent (Fig. 1a). In this area, the Okinawa Trough is
87	considered to be in the initial stage of continental rifting, although there is some
88	argument on the commencement and order of the Okinawa Trough rifting (e.g.,
89	Letouzey and Kimura, 1985). Most previous studies suggest that rifting commenced in
90	the southern part of the trough (e.g., Sibuet et al., 1995; Hsu et al., 2001) and that it
91	started at ~2 Ma. The Yangtze River is the main source of the thick terrigenous
92	sediments that cover the crust of the mid-Okinawa Trough (Narita et al., 1990; Huh and
93	Su, 1999), where the sedimentation rate has been estimated to be $1-2 \text{ m ka}^{-1}$ (Tsugaru et
94	al., 1991).

95 The Iheya North Knoll is on the northern termination of the depression of the

 $\mathbf{5}$

96	Okinawa Trough (27.8°N, 126.9°E; Fig. 1) where water depths are greater than 1000 m.
97	The volcanic body of the Iheya North Knoll penetrates through a thick sedimentary
98	sequence and rises about 500 m above the seafloor. The hydrothermal field lies on the
99	eastern flank of the western peak of the knoll, facing the central valley (Fig. 1c). Several
100	hydrothermal mounds have been recognized during previous surveys (e.g., Takai et al.,
101	2006; Takai and Nakamura, 2010). They are clearly shown in high-resolution
102	bathymetric data (Fig. 2) obtained by autonomous underwater vehicle (AUV) Urashima
103	equipped with acoustic sounding equipment (SeaBat7125, 400 Hz source) during cruise
104	YK07-07. The hydrothermal mounds are aligned roughly N–S (Fig. 2).
105	The highest temperatures (maximum 311 °C) and highest hydrothermal flow rates
106	have been recorded at the vent known as North Big Chimney (NBC; Fig. 2) over a
107	period of more than ten years (e.g., Kawagucci et al., 2011), indicating that the
108	hydrothermal fluid vented from NBC comes from the main hydrothermal flow path in
109	this region. The high temperature of discharged fluid (~300 $^{\circ}$ C) at NBC suggests a
110	magma-driven system. Both temperatures and flow rates of other vents in the area
111	decrease with increasing distance from NBC (Masaki et al., 2011). Furthermore,
112	intensive hydrothermal plumes have been imaged by side-scan sonar in seawater only
113	around the hydrothermal field (Kumagai et al., 2010).

114	Recent Integrated Ocean Drilling Program (IODP), conducting a series of drill holes
115	in the central valley of the Iheya North Knoll, showed that the sediments there are
116	mainly pelagic and hemipelagic mud and volcaniclastic deposits (pumiceous gravels),
117	and that they have been variably altered by hydrothermal processes (Expedition 331
118	Scientists, 2010). Drilling data revealed an alternating sequence of hard low-porosity
119	layers and porous layers that were hydrothermally altered at high temperatures. The
120	hard layers, presumably of low permeability, may provide the cap rock above
121	hydrothermal fluid flow paths. The alignment of the active hydrothermal vents along the
122	strike of the sedimentary layers (N-S; Fig. 2) suggests that the hydrothermal fluid flow
123	paths are controlled by the layered sedimentary structures.
124	
125	3. Seismic data acquisition and processing
126	We used 2D seismic reflection data acquired along 54 survey lines recorded in a
127	dense orthogonal grid during four cruises (Table 1, Figs. 1b and 1c). Multi-channel
128	seismic reflection data were recorded during cruises KY02-11, KY07-03, and KR10-02,
129	and single-channel data during cruise YK06-09. During cruise KR10-02, long-offset
130	(~4.5 km) multi-channel data were acquired in order to determine the velocity structure
131	required to calculate depths of reflection events. A larger volume airgun was also used

 $\overline{7}$

132 during cruise KR10-02 (Table 1).

133	The seismic data from cruises KY02-11 and KY07-03 were processed with a
134	conventional processing sequence that included spherical divergence correction,
135	deconvolution, common midpoint (CMP) sorting, normal moveout (NMO) correction,
136	multiple suppression with a Radon filter, CMP stacking, migration, and bandpass
137	filtering (Yilmaz, 2001). The short streamer deployed during cruises KY02-11 and
138	KY07-03 (Table 1) did not allow estimation of accurate seismic interval velocities for
139	deep reflectors. However, shallow geological structures were clearly imaged on these
140	profiles (KY02-11 and KY07-03) and the single-channel data (KR06-09), because of
141	the high resolution (high frequency) of the source signals used (Fig. 5).
142	To obtain accurate depths of subsurface geological structures for data from cruise
143	KR10-02, we applied prestack depth migration incorporating an iterative horizon-based
144	tomographic analysis of seismic velocity (see Figs. 3 and 4). We determined seismic
145	velocities at six horizons, including the sediment-crust interface. Because the dominant
146	frequency of the cruise KR10-02 data was lower than that of the other cruises, we used
147	these data mainly for interpretation of the deep geological structure (Figs. 3 and 4).
148	Although 2D seismic reflection data do not unequivocally resolve structures in 3D
149	(French, 1974), the dense grid of orthogonal profiles we used allowed us to identify the

150	3D subseafloor structures with reasonable confidence. Furthermore, by comparing
151	orthogonal profiles we were able to identify sideswipe reflections from nearby areas of
152	elevated seafloor. Because the seismic interval velocities necessary for depth conversion
153	could not be accurately determined within the knoll, we used 3D fence diagrams
154	constructed from several time-domain reflection profiles (Fig. 6) to develop a
155	representation of both subseafloor geological structures and possible hydrothermal fluid
156	paths.
157	To interpret and characterize the subseafloor structures (e.g., volcanic deposits), we
158	calculated seismic attributes (e.g., amplitude envelope; Fig. 7) (Taner et al., 1979; Tsuji
159	et al., 2005). Magmatic intrusions can be imaged as blocks on the envelope profile (Fig.
160	7) mainly because the envelope ignores phase information; the intrusions disturb the
161	original structure of sedimentary sequence (Tsuji et al., 2007).
162	
163	4. Volcanic activity and pumiceous deposits
164	The seismic profiles across the Iheya North Knoll reveal the subseafloor volcanic
165	and sedimentary structures in the area under and surrounding the knoll. The subseafloor
166	rocks of the Iheya North Knoll volcano are characterized by chaotic reflections that
167	extrude through trough sediments of >1500 m thickness (Figs. 3 and 4). The depth of

168	the seafloor around the knoll is greater on the southwestern side of the knoll (Figs. 3 and
169	4) because of ongoing tectonic rifting in the Okinawa Trough. The seismic reflection
170	profiles did not allow us to identify a heat source beneath the knoll because the
171	complicated subsurface structure and steep seafloor terrain of the knoll made it difficult
172	to resolve deep structures. The magma reservoir probably lies below the knoll at a depth
173	beyond the resolution of our seismic data. However, southwest of the knoll we
174	identified strong low-frequency reflectors beneath the trough sediments (~4 km below
175	seafloor; red arrows in Fig. 4) that possibly represent a magmatic body. Numerous
176	normal faults are developed in the sediments overlying the possible magmatic body and
177	dip toward it (Fig. 4).
178	Some of the peaks of the Iheya North Knoll show intervals of low-amplitude
179	reflections at and beneath the seafloor (Fig. 7a), including the peak east of the central
180	valley (Fig. 5a). This seismic transparency indicates a lack of acoustic impedance
181	contrast over these intervals, indicating that they represent intervals of homogeneous
182	and porous rock. Piston cores obtained at the peak above the transparent interval during
183	cruise KY08-01 (labeled A in Figs. 1c and 7a) are composed of volcaniclastic
184	pumiceous deposits interbedded with silt (Oiwane et al., 2008), which would be
185	expected to be seismically transparent. Thus, the transparent intervals likely represent

186 volcaniclastic pumiceous deposits.

187	Pumiceous breccias are commonly observed within sediment cores obtained in and
188	around the Iheya North Knoll (Expedition 331 Scientists, 2010). In the central valley of
189	the Iheya North Knoll (the depression east of the hydrothermal field; Fig. 2), piston
190	cores revealed several pumice layers of ~ 10 cm thickness within 3 m below the seafloor
191	(labeled B in Figs. 1c and 5b) (Oiwane et al., 2008). On the eastern side of the knoll, a
192	volcaniclastic layer of about 40 cm thickness is interbedded within an approximately
193	5-m-thick sequence of mud-dominated trough sediments (labeled C in Fig. 1c). Our
194	seismic data cannot resolve such thin pumiceous layers (e.g., Rayleigh's criterion;
195	Sheriff, 2002). However, we noted high-amplitude reflectors extending horizontally
196	away from the Iheya North Knoll (white dashed lines in Fig. 7b), some of which are
197	discordant with the layered sedimentary sequence in the trough. These may represent
198	thick submarine volcaniclastic deposits, lava flows, or sills. Furthermore, a
199	low-frequency, high-amplitude reflection at the seafloor trace of a normal fault (gray
200	dashed line in Fig. 7c) may represent a magmatic body extruded on the seafloor after
201	upwelling via the normal fault. This observation also explains frequent intrusions
202	(complex network of volcanic deposits) within trough sediment.
203	

204 **5. Reservoir formation and hydrothermal fluid pathways**

- 205 **5.1 Small-scale fluid circulation**
- 206 In the central valley of the Iheya North Knoll, there are repetitive east-dipping
- seismic reflectors within the sediments immediately below the seafloor (Fig. 5b),
- suggesting the existence of a layered sedimentary structure. Core samples demonstrate
- that the layered structure within this sedimentary sequence includes high-permeability
- 210 pumiceous flow deposits (Oiwane et al., 2008; Expedition 331 Scientists, 2010). The
- 211 permeability of the pumiceous gravels (Nakamura et al., 2008) obtained during drilling
- 212 (Expedition 331 Scientists, 2010) was considerably higher than that of the
- 213 mud-dominated pelagic sediments. Therefore, these highly permeable volcanic
- sequences might provide lateral migration pathways for pore fluids. Furthermore, the
- 215 lateral distribution of high-permeability (pumiceous) layers overlain by
- 216 low-permeability (pelagic and hemipelagic mud) layers may trap the fluid and provide
- 217 reservoirs for subseafloor hydrothermal fluids. Whereas, this sedimentary sequence is
- also intersected by numerous steep normal faults, which might provide pathways for
- 219 vertical (rather than lateral) flow of hydrothermal fluids.
- 220 Pyroclastic flow deposits may exist below the 200-m-thick layered sedimentary
- sequence that includes low-permeability mud, in the sequence between the black and

222	gray diamonds in Fig. 5b. This porous, high-permeability sequence dips basinward from
223	the volcanic body near the hydrothermal field, and may provide a path for hydrothermal
224	fluids to migrate laterally up the slope. Furthermore, the N–S trend of the vents of the
225	hydrothermal field at the western edge of the low-permeability central valley sediments
226	(Fig. 2) corresponds to the trend of the seafloor outcrop of the pyroclastic deposits (Fig.
227	5b), which supports the view that they may provide a conduit for hydrothermal fluid
228	flow.
229	As one of the possible recharge entries around the central valley, a linear volcanic
230	ridge located at \sim 2 km east of the hydrothermal vent sites (\sim 30 m high and 500 m wide;
231	Figs. 2, 5b and 8) is suggested on the basis of the heat flow measurements (Masaki et al.,
232	2011). Numerous heat flow data in the region of the knoll have shown temperature
233	increasing with depth, but heat flow data from the sediments on the volcanic ridge
234	reveal an inverse gradient (Masaki et al., 2011). Furthermore, the heat flow values
235	increase gradually with distance from the ridge, reaching a maximum at the
236	hydrothermal vents. The weak seafloor reflection of the volcanic ridge (Fig. 5b)
237	suggests a porous volcaniclastic pumiceous seafloor there. Therefore, the ridge may
238	provide an entry for recharge of hydrothermal fluids in the pyroclastic flow deposits
239	beneath the central valley.

240	If the volcanic ridge provides the primary hydrothermal fluid source at Iheya North
241	Knoll, the hydrothermal fluid circulation cell is small, with only a few kilometers
242	separating the main recharge and discharge areas (Fig. 5b). A circulation cell of this
243	scale is comparable to those characteristic of fast-spreading mid-ocean ridges, where
244	fluid residence times on the order of several to ten years have been estimated. A
245	circulation cell of this scale would not sustain the steady hydrothermal fluid discharge,
246	its chemistry, and the associating enormous chemosynthetic microbial and faunal
247	communities of the Iheya North Knoll hydrothermal field (Nakagawa et al., 2005; Takai
248	et al., 2006; Takai and Nakamura, 2010; Kawagucci et al., 2011). In particular, the
249	carbon mass balance between hydrothermal fluid discharges and inorganic and organic
250	carbon sources in the volcanic deposits and sediments within the Iheya Knoll structure
251	clearly indicate that the hypothesized hydrothermal fluid paths could not support the
252	CH ₄ mass balance and stable isotope composition of the discharging hydrothermal
253	fluids (Kawagucci et al., 2011). Thus, there must be other sources and pathways of
254	hydrothermal fluids discharging at the Iheya North Knoll hydrothermal field.
255	

256 **5.2 Large-scale fluid circulation**

257 On E–W seismic profile KY0703-18, we identified a strong west-dipping reflector

258	beneath Iheya North Knoll, the eastern end of which approaches the seafloor near the
259	hydrothermal vent sites (black circles in Fig. 5b). On the intersecting N-S seismic
260	profile (KY0703-E), this strong reflector dips to the north away from the hydrothermal
261	field (black circles in Fig. 5e). The high reflection amplitude (Fig. 5b) of this continuous
262	reflector may represent an important boundary that controls hydrothermal fluid flow
263	paths. The 3D structure of this reflector determined from our fence diagram of
264	orthogonal seismic profiles (Fig. 6) indicates that it extends away from the knoll to the
265	north and west, and that the shallowest part of the horizon converges on the
266	hydrothermal field. Furthermore, we noted several reflectors below and parallel to the
267	strong reflection, indicating a layered structures (gray circles in Figs. 5b and 5e). The
268	polarity of the strong west-dipping reflector is opposite to that of the seafloor reflector
269	(Fig. 5c), which indicates that the seismic velocity below the negative-polarity reflector
270	is lower than that of the overlying sequence. DSV and ROV observations of the small
271	peak immediately west of the hydrothermal field (e.g., NT07-11 cruise; Fig. 2) indicate
272	that most of the seafloor there is paved with potential sheet carbonate crust containing
273	numerous mussel shells and pieces of pumiceous breccia (Figs. 5b and 8). Based on the
274	pumiceous volcanic structures exposed at the seafloor and the layered structures below
275	and parallel to the negative-polarity reflector (gray circles in Fig. 5b), we interpret the

276 negative-polarity reflector and underlying low-velocity sequence to represent porous277 volcanic breccia.

278	Because the permeability of the layered sequence underlying the negative-polarity
279	horizon is likely higher than those above and below it, large-scale permeability
280	anisotropy would be expected within the layered sequence; low-permeability sediments
281	above the layered sequence would provide a cap structure to prevent vertical upward
282	migration of fluids. Furthermore, as already pointed out, the shallow eastern extent of
283	the negative-polarity reflector approaches the hydrothermal field (Fig. 6). Thus, we
284	suggest that the layered sequence immediately below the negative-polarity reflector
285	provides a major conduit that gathers hydrothermal fluids and channels them to their
286	point of discharge at the Iheya North Knoll hydrothermal field.
287	The large number of dead mussel shells on the seafloor above the shallowest point
288	of the negative-polarity reflector (Figs. 2, 5b, and 8) suggest that past methanotrophic
289	mussel populations was sustained by considerable amounts of hydrothermally derived
290	methane seepage. The seafloor reflector above the negative-polarity reflector is stronger
291	than that of the surrounding seafloor (Fig. 5e), suggesting that a consolidated carbonate
292	crust is exposed at the seafloor there. Although it is still unclear how old the mussel
293	shells and carbonate crust are formed, the volatile components of the hydrothermal

294	fluids such as CO_2 and CH_4 would escape from the hydrothermal reservoir by diffusion
295	through the cap structure above the negative-polarity reflector, which may have been a
296	less-effective seal in the past.
297	As shown by both the E-W and N-S seismic profiles, the negative-polarity event
298	and underlying layered sequence extend into the thick trough-fill sediments that are
299	widespread on the western and northern sides of the Iheya North Knoll (Figs. 5b and 5e).
300	Considering the 3D structure of the negative-polarity horizon (Fig. 6), the large
301	reservoir of pore water in the thick trough-fill sediments may provide the source of
302	hydrothermal fluids, which then flow updip within the continuous permeable layered
303	sequence before discharging at Iheya North Knoll hydrothermal field. Both the
304	sedimentary sequence and the interbedded volcanic units were uplifted by the volcanic
305	intrusion that formed the knoll. The resultant structure and the presence of a heat source
306	beneath the knoll facilitate lateral migration of recharged fluids along the pumiceous
307	layers toward the hydrothermal field. This conceptual hydrothermal system is consistent
308	with the extraordinarily high concentrations of CH_4 and NH_4 in the hydrothermal fluids
309	of the Iheya North Knoll hydrothermal field (Kawagucci et al., 2011). Rather, it is
310	consistent with the prediction that the abundant CH_4 and NH_4 in the hydrothermal fluid
311	should be derived from their reservoir in the more organics-rich, trough-filling

312	sediments accumulated by subseafloor microbial methanogenesis and ammonification
313	in certain geological time scales (Kawagucci et al., 2011).
314	We identified many normal faults within the trough-fill sediments around the Iheya
315	North Knoll (Fig. 4). The major faults strike parallel to the trough axis (ENE-WSW).
316	Although the lithology is the same on both sides of a major normal fault on line
317	YK-0703-18, the reflection amplitude east of the fault is weaker than that west of the
318	fault (Fig. 7b). If the normal fault creates a hydrogeological boundary to lateral flow,
319	the higher amplitudes west of the fault might represent active hydrothermal fluid flow
320	and/or gas trapped within sedimentary sequence near the knoll. On the other hand, these
321	major normal faults extend from the seafloor to deep crustal basement (Figs. 3 and 4;
322	Lee et al., 1980) and, if fluid flow is driven by thermal advection from the deep heat
323	source beneath the Iheya North Knoll, it is also possible that these deep crustal faults
324	provide vertical hydrothermal fluid migration paths (Fig. 8).
325	

326 **6. Discussion and conclusions**

In the region of mid-ocean ridges, the primary conduits for hydrothermal fluids
are highly permeable zones of upper oceanic crust and abyssal-hill faults (Fisher, 1998;
Fisher and Becker, 2000; Fisher et al., 2008; Hutnak et al., 2008; Fisher et al., 2011).

330	The thick sedimentary sequences that overlie basaltic crust on the flanks of mid-ocean
331	ridges are generally considered to be impermeable to hydrothermal fluid flow. However,
332	unlike the high-temperature fluids in sediment-hosted hydrothermal vent fields, the
333	hydrothermal fluids there are not highly enriched with CH ₄ and NH ₄ (Wheat et al., 2003,
334	2004). A plausible explanation for this difference is that the primary fluid source on the
335	ridge flank is nutrient-poor oxygenated seawater recharged directly through volcanic
336	outcrops on the seafloor (Fisher et al., 2003) such that the chemistry of the
337	hydrothermal fluids is little affected by geochemical and microbiological alteration
338	during migration.
339	The Iheya North Knoll hydrothermal system is part of a continental backarc basin
340	where subseafloor silicic arc volcanic deposits provide complex migration networks for
341	recharge and discharge of sediment pore fluids. Taking into consideration the
342	extraordinary CH_4 and NH_4 enrichment of the fluids of the Iheya North Knoll
343	hydrothermal field, there are four important components in the model we propose here
344	for the hydrothermal fluid flow system.
345	1. The primary source of hydrothermal fluids is the nutrient-rich, reductive pore fluids
346	of the trough-fill sediments around the Iheya North Knoll.
347	2. The primary fluid recharge and migration paths are through permeable trough-fill

348	volcaniclastic sediments and normal faults that extend from the seafloor to crustal
349	basement.
350	3. Geochemical and microbiological alteration of hydrothermal fluids passing through
351	the complex network of flow paths enriches them in CH ₄ and NH ₄ .
352	4. The structural culmination around the knoll of the highly permeable volcaniclastic
353	sequences that integrate multiple flow paths focuses fluid flow in the region of the
354	hydrothermal vents.
355	
356	Acknowledgements
357	We thank CDEX/JAMSTEC and Nippon Marine Enterprises (NME) for the acquisition
358	of seismic reflection data and detailed bathymetric data. We thank S. Shimizu (NME)
359	and Y. Kido and S. Uraki (CDEX/JAMSTEC) for their cooperation and assistance in
360	seismic processing, and two reviewers for helpful comments. This research was
361	supported by Grant-in-Aid for Scientific Research on Innovative Areas TAIGA
362	"Structure of oceanic crust and its properties revealed by seismic reflection method:
363	Insight into subseafloor hydrothermal fluid circulation" (21109502) and the Excellent
364	Young Researcher Overseas Visit Program of the Japan Society for the Promotion of
365	Science (21-5338).

0	n	n
ð	b	b
-	-	-

368	References
369	Expedition 331 Scientists, 2010. Deep hot biosphere. IODP Prel. Rept. 331.
370	doi:10.2204/iodp.pr.331.2010.
371	Fisher, A. T., 1998. Permeability within basaltic oceanic crust, Rev. Geophys. 36,
372	143–182.
373	Fisher, A.T., Becker, K., 2000. Reconciling heat flow and permeability data with a
374	model of channelized flow in oceanic crust, Nature 403, 71–74.
375	Fisher, A.T., Becker, K., Davis, E.E., 1997. The permeability of young oceanic crust
376	east of Juan de Fuca Ridge determined using borehole thermal measurements.
377	Geophys. Res. Lett. 24, 1311–1314.
378	Fisher, A.T., Davis, E.E., Hutnak, M., Spiess, V., Zuhlsdorff, L., Cherkaoui, A.,
379	Christiansen, L., Edwards, K., Macdonald, R., Villinger, H., Mottl, M.J., Wheat,
380	C.G., Becker, K., 2003. Hydrothermal recharge and discharge across50 km guided
381	by seamounts on a young ridge flank, Nature, 421, 618–621,
382	doi:10.1038/nature01352.
383	Fisher, A.T., Davis, E.E., Becker, K., 2008. Borehole-to-borehole hydrologic response

384	across 2.4 km in the upper oceanic crust: Implications for crustal-scale properties,
385	J. Geophys. Res., 113, B07106, doi:10.1029/2007JB005447.
386	Fisher, A.T., Tsuji, T., Petronotis, K., and the Expedition 327 Scientists, 2011. Proc.
387	IODP, 327: Tokyo (Integrated Ocean Drilling Program Management International,
388	Inc.). doi:10.2204/iodp.proc.327.2011.
389	French, W.S., 1974. Two-dimensional and three-dimensional migration of
390	model-experiment reflection profiles, Geophysics, 39, 265-277.
391	Gamo, T., 1995. Wide variation of chemical characteristics of submarine hydrothermal
392	fluids due to secondary modification processes after high temperature water-rock
393	interaction: a review. p. 425-451. In H. Sakai, and Y. Nozaki (eds.),
394	Biogeochemical processes and ocean flux in the western Pacific, Terra Scientific
395	Publisher, Tokyo.
396	Gamo, T., Ishibashi, J., Tsunogai, U., Okamura, K., Chiba, H., 2006. Unique
397	geochemistry of submarine hydrothermal fluids from arc-backarc settings of the
398	western Pacific. In "Back-Arc Spreading Systems: Geological, Biological, Chemical,
399	and Physical Interactions" (D. M. Christie, C. R. Fisher, SM. Lee and S. Givens
400	ed.) AGU Monograph series, 166, 147-161.
401	Hsu, SK., Sibuet, JC. Shyu CT., 2001. Magnetic inversion in the East China Sea

402	and Okinawa	Trough: to	ectonic imp	plications,	Tectonophy	vsics, 333	, 111-122.
		<u> </u>		,		,	

- 403 Huh, C.A., Su, C.C., 1999. Sedimentation dynamics in the East China Sea elucidated
- 404 from ²¹⁰Pb, ¹³⁷Cs and ^{239,240}Pu, Mar. Geol., *160*, 183-196.
- 405 Hutnak, M., Fisher, A.T., Harris, R., Stein, C., Wang, K., Spinelli, G., Schindler, M.,
- Villnger, H., Silver, E., 2008. Large heat and fluid fluxes driven through mid-plate
- 407 outcrops on ocean crust, Nature Geoscience, *1*, 611-614.
- 408 Ishibashi, J., Urabe, T., 1995. Hydrothermal activity related to arc-backarc magmatism
- 409 in the western Pacific, *In* Backarc Basins: Tectonics and Magmatism, Ed. B Taylor,
- 410 Plenum Press, New York, 451-495.
- Johnson, H.P., Hutnak, M., Dziak, R.P., Fox, C.G., Urcuyo, I., Cowen, J.P., Nabelek, J.,
- 412 Fisher, C., 2000. Earthquake-induced changes in a hydrothermal system on the Juan
- de Fuca mid-ocean ridge, Nature, 407, 174-177.
- 414 Kawagucci, S., Chiba, H., Ishibashi, J., Yamanaka, T., Toki, T., Muramatsu, Y., Ueno,
- 415 Y., Makebe, A., Inoue, K., Yoshida, N., Nakagawa, S., Nunoura, T., Takai, K.,
- 416 Takahata, N., Sano, Y., Narita, T., Teranishi, G., Obata, H., and Gamo, T., 2011.
- 417 Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa
- 418 Trough: Implication for origin of methane in subseafloor fluid circulation systems,
- 419 Geochem. J., 45, 109-124.

420	Konno, U., Tsunogai, U., Nakagawa, F., Nakaseama, M., Ishibashi, J., Nunoura, T.,
421	Nakamura, K., 2006. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV
422	hydrothermal system, Okinawa Trough, Geophys. Res. Lett., 33, L16607,
423	doi:10.1029/2006GL026115.
424	Kumagai, H., Tsukioka, S., Yamamoto, H., Tsuji, T., Shitashima, K., Asada, M.,
425	Yamamoto, F., and Kinoshita, M., 2010. Hydrothermal plumes imaged by high -
426	resolution side - scan sonar on a cruising AUV, Urashima, Geochem. Geophys.
427	Geosyst., 11, Q12013, doi:10.1029/2010GC003337.
428	Lee, C., Shor, G.G., Bibee, L.D., Lu, R.S., Hilde, T.W.C., 1980. Okinawa Trough,
429	origin of a back-arc basin, Mar. Geol., 35, 219–241.
430	Letouzey, J., Kimura, M., 1986. Okinawa Trough: genesis of a back-arc basin
431	developing along a continental margin, Tectonophysics, 125, 209-230.
432	Lilley, M.D., Butterfield, D.A., Olson, E.J., Lupton, J.E., Macko, S.A., Mcduff, R.E.,
433	1993. Anomalous CH4 and NH4+ concentrations at an unsedimented
434	mid-ocean-ridge hydrothermal system, Nature, 364, 45-47.
435	Masaki, Y., Kinoshita., M, Inagaki, F., Nakagawa, S., Takai, K., 2011. Possible
436	kilometer-scale hydrothermal circulation within the Iheya-North field, mid-Okinawa
437	Trough, as inferred from heat flow data, JAMSTEC Rep. Res. Dev., 12, 1-12

438	Momma, H., Iwase, R., Mitsuzawa, K., Kaiho, Y., Fujiwara, Y., Amitani, Y., Aoki, M.,
439	1996. Deep tow survey in Nanseisyoto region (K95-07-NSS), JAMSTEC J
440	Deep-sea Res., 12, 195-210 (in Japanese with English abstract).
441	Nakagawa, S., Takai, K., Inagaki, F., Chiba, H., Ishibashi, J., Kataoka, S., Hirayama, H.,
442	Nunoura, T., Horikoshi, K., Sako, Y., 2005. Variability in microbial community and
443	venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of
444	subseafloor phase-separation, FEMS Microbiol. Ecol., 54, 141-155.
445	Nakamura, M., Otakia, K. and Takeuchi, S., 2008. Permeability and pore-connectivity
446	variation of pumices from a single pyroclastic flow eruption: Implications for partial
447	fragmentation, Journal of Volcanology and Geothermal Research, 176, 302-314.
448	Narita, H., Harada, K., Tsunogai, S., 1990. Lateral transport of sediment in particles in
449	the Okinawa Trough determined by natural radionuclides, Geochem J., 24, 207-216.
450	Oiwane, H., Kumagai, H., Masaki, Y., Nakamura, Y., Tokuyama, H., 2008.
451	Characteristics of Sediment in Iheya North Knoll and 'the acoustic blanking layer,
452	JPGU meeting, J164-P013 (English abstract).
453	Pearson, A., Seewald, J.S., Eglinton, T.I., 2005. Bacterial incorporation of relict carbon
454	in the hydrothermal environment of Guaymas Basin, Geochim. Cosmochim. Acta,
455	69, 5477-5486.

456	Shanks W.C.	, Bohlke, J.K.	Seal, R.R.,	1995. Stable	isotopes in	Mid-Ocean Ridge	2

- 457 hydrothermal systems: interactions between fluids, minerals and organisms, p.
- 458 194-221. In S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Tompson
- 459 (eds.), Geophysical Monograph 91 Seafloor Hydrothermal System, American
- 460 Geographical Union, Washington DC.
- 461 Sheriff, R.E., 2002. Encyclopedic Dictionary of Exploration Geophysics, Geophys. Ref.
- 462 Ser., vol. 13, 4th ed., Soc. of Explor. Geophys., Tulsa, Okla.
- 463 Sibuet, J.-C., Hsu, S.-K., Shyu, C.-T., Liu, C.-S., 1995. Structural and kinematic
- 464 evolution of the Okinawa trough backarc basin. In: Taylor, B. (Ed.), Backarc

465 Basins: Tectonics and Magmatism. Plenum, New York, pp. 343–378.

- 466 Stein, C., Stein, S., 1992. A model for the global variation in oceanic depth and heat
- flow with lithospheric age, Nature, 359, 123–129.
- 468 Takai, K., and Nakamura, K., 2010. Compositional, Physiological and Metabolic
- 469 Variability in Microbial Communities Associated with Geochemically Diverse,
- 470 Deep-Sea Hydrothermal Vent Fluids, L.L. Barton et al. (eds.), *Geomicrobiology:*
- 471 *Molecular and Environmental Perspective*, Springer Netherlands.
- 472 Takai, K., Nakagawa, S., Reysenbach, A.-L., Hoek, J., 2006. Microbial ecology of
- 473 Mid-Ocean Ridges and Back-Arc Basins. *In* "Back-Arc Spreading Systems:

474	Geological, Biological.	Chemical, and Phy	vsical Interactions" (D. M. Christie, C. R.

- 475 Fisher, S.-M. Lee and S. Givens ed.) AGU Monograph series, 166, 185-213.
- 476 Taner, M. T., Koehler, F., Sheriff, R.E., 1979. Complex seismic traces analysis,
- 477 Geophysics, *44*, 1041–1063.
- 478 Tsugaru, R., Tamaki, Y., Sato, M., Kimura, M., Shimamura, K., 1991. Report on DELP
- 479 1988 cruises in the Okinawa Trough: part4, Preliminary report on the sediment
- 480 samples, Bull Earthq. Res. Inst., *66*, 71-89.
- 481 Tsuji, T., Matsuoka, T., Yamada, Y., Nakamura, Y., Ashi, J., Tokuyama, H., Kuramoto,
- 482 S., Bangs, N., 2005. Initiation of plate boundary slip in the Nankai Trough off the
- 483 Muroto peninsula, southwest Japan, Geophys. Res. Lett., 32, L12306,
- 484 doi:10.1029/2004GL021861.
- 485 Tsuji, T., Nakamura, Y., Tokuyama, H., Coffin, M.F., Koda, K., 2007. Oceanic crust and
- 486 Moho of the Pacific Plate in the eastern Ogasawara Plateau region, Island Arc, 16,
- 487 361-373.
- 488 Waldhauser, F., and Tolstoy, M., 2011. Seismogenic structure and processes associated
- 489 with magma inflation and hydrothermal circulation beneath the East Pacific Rise at
- 490 9°50′ N, Geochem. Geophys. Geosyst., 12, Q08T10, doi:10.1029/2011GC003568.
- 491 Welhan, J. A., Lupton, J.E., 1987. Light hydrocarbon gases in Guaymas Basin

492 hydrothermal fluids: Thermogenic versus abiogenic origin, Amer. Asso	. Petrol.
--	-----------

- 493 Geol. Bull., 71, 215-223.
- 494 Wheat, C.G., Jannasch, H.W., Kastner, M., Plant, J.N., DeCarlo, E.H., 2003. Seawater
- transport and reaction in upper oceanic basaltic basement: chemical data from
- 496 continuous monitoring of sealed boreholes in a mid-ocean ridge flank environment,
- 497 Earth Planet. Sci. Lett., 216, 549–564.
- 498 Wheat, C.G., Jannasch, H.W., Kastner, M., Plant, J.N., DeCarlo, E.H., Lebon, G., 2004.
- 499 Venting formation fluids from deep sea boreholes in a ridge flank setting: ODP Sites
- 500 1025 and 1026, Geochem. Geophys. Geosyst., 5, Q08007,
- 501 doi:10.1029/2004GC000710.
- 502 Yilmaz, O., 2001. Seismic Data Processing: Processing, Inversion, and Interpretation of
- 503 Seismic Data, Invest. Geophys. Ser., vol. 10, 2nd ed., edited by S. M. Doherty, Soc.
- 504 of Explor. Geophys., Tulsa, Okla.
- 505
- 506
- 507
- 508

Table 1. Acquisition parameters for seismic surveys

Cruise	Vessel	Survey lines	Streamer	Source
KY02-11	R/V Kaiyo	2 lines	24-channel,	$\sim 2.5 \text{ L} (150 \text{ inch}^3)$
			600 m streamer	GI airgun
YK06-09	R/V Yokosuka	26 lines	1-channel	$\sim 2.5 \text{ L} (150 \text{ inch}^3)$
			Streamer	GI airgun
KY07-03	R/V Kaiyo	19 lines	48-channel,	~5.8 L (355 inch ³)
			1200 m streamer	GI airgun
KR10-02	R/V Kairei	7 lines	360-channel	\sim 54 L (3300 inch ³)
			4500 m streamer	Tuned airgun

524 Figure Captions

526 **Figure 1.** (a) Location map and bathymetry of the Okinawa Trough. (b)

527 Bathymetric map of the Iheya North Knoll area showing seismic survey lines

⁵²⁸ used in this study. The yellow star shows the location of the hydrothermal field.

- 529 The seismic profiles displayed in Figures 3, 4, and 7 are shown as thick red lines.
- 530 (c) Enlarged bathymetric map of the Iheya North Knoll area with seismic survey
- 531 lines shown. The seismic profiles displayed in Figures 5 and 7 are shown as
- thick red lines.

- acquired by AUV Urashima during cruise YK07-07. White arrows indicate
- 536 hydrothermal mounds. The volcanic ridge in the central valley and the peak on
- 537 the western side of the hydrothermal field are also shown.

Figure 3. Prestack depth migrated seismic profiles across the Iheya North Knoll hydrothermal field with and without geological interpretation. (a) E–W line KR1002-18 and (b) N–S line KR1002-E2. Locations of the profiles are shown in Figure 1b. The two profiles intersect at the Iheya North Knoll hydrothermal field (red arrow). Gray shaded areas indicate volcanic bodies or deposits with high permeability. Gray lines indicate geological boundaries, some of which are pumiceous deposits. The normal faults indicated by blue lines.

548	Figure 4. N–S prestack depth migrated seismic profiles (with and without
549	geological interpretation) west of the Iheya North Knoll, showing intense normal
550	faulting. (a) Line KR1002-A02 and (b) line KR1002-A01. Locations of the profiles
551	are shown in Figure 1b. Normal faults (blue lines) may provide fluid recharge
552	paths to the deep crust. Red arrows indicate the location of a possible magma
553	chamber.

564	parallel to the negative-polarity reflections. Black diamonds indicate the upper
565	surface of pyroclastic flow deposits. Gray diamonds indicate the base of
566	pyroclastic flow deposits. (c) Enlargement of panel (b) showing a seafloor
567	reflection wavelet and a negative-polarity reflection. In panels (a) and (b), blue
568	lines represent faults.
569	
570	
571	

573

579 orthogonal 2D profiles.

582	east of the hydrothermal field showing volcanic pumice deposits (upper), and
583	amplitude envelope profile (lower) used to identify volcanic deposits within the
584	sedimentary sequence. Locations of the seismic profiles are shown in Figure 1c.
585	(b) Amplitude envelope profile of line KY0703-18. This profile is an enlargement
586	from Figure 5a showing interpreted volcanic deposits (white dashed lines).
587	Volcanic rocks within the sedimentary sequence are represented by
588	high-amplitude, low-frequency reflections. (c) N–S seismic profile west of the
589	Iheya North Knoll and amplitude envelope profile with interpreted volcanic
590	deposits (white dashed lines).
591	
592	
593	
594	

