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The characteristics of flow past a heated/cooled sphere are investigated for 50 � Rep �
400 in conditions with and without buoyancy by means of three-dimensional direct nu-
merical simulation (DNS) in which temperature dependencies of fluid properties such as
density and viscosity are exactly taken into account. The results show that in the absence
of buoyancy, drag coefficients of the heated and cooled spheres are larger and smaller
than those of the adiabatic case, respectively, and Nusselt numbers of them are smaller
and larger than the values estimated by a widely used empirical expression for predicting
Nusselt numbers, respectively. In addition, the temperature difference between the sphere
and ambient fluid strongly affects the flow separation points, size of vortex ring behind
the sphere and Strouhal number for vortex shedding. These changes are attributed to the
temperature dependencies of fluid properties in the vicinity of the sphere. Even in the
presence of buoyancy, temperature dependencies of fluid properties strongly affect drag
coefficient and Nusselt number and therefore Boussinesq approximation becomes inappli-
cable as the temperature difference increases, regardless of the magnitude of Richardson
number.
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1. Introduction
Heat transfer between dispersed particles/droplets and fluid is often seen in industrial

flows such as spray and pulverized coal combustion (e.g. Nakamura et al 2005; Baba &
Kurose 2008; Kurose et al. 2009). It is therefore of great importance to understand the
characteristics of flow past a heated/cooled sphere in effectively designing and operating
such industrial equipments.

Kurose & Komori (1999) and Kurose et al. (2003) applied direct numerical simulation
(DNS) to flow past a stationary sphere and investigated drag, lift and scalar transfer
from the sphere surface from the viewpoint of droplet evaporation. Bagchi & Kottam
(2008) performed similar DNS and studied the effect of freestream turbulence on the
heat transfer from the sphere surface to ambient fluid. Also, Kurose et al. (2009) applied
the DNS to flows both inside and outside a sphere and investigated the relation between
the heat transfer and droplet evaporation in detail. However, it should be noted that in
these studies heat was treated as a passive scalar which does not affect the flow structure.
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On the other hand, Mansoorzadeh et al. (1998) and Kotouč et al. (2009) examined the
characteristics of flow past a heated/cooled sphere in the presence of buoyancy due to
the gravity and showed that buoyancy causes the changes in drag and separation points.
However, these studies are insufficient to exactly evaluate the effect of temperature differ-
ence between the sphere and ambient fluid because the temperature dependencies of fluid
properties such as density and viscosity were neglected and the Boussinesq approximation
which assumes small temperature difference was employed.

The purpose of this study is therefore to investigate the characteristics of flow past a
heated/cooled sphere in both conditions with and without buoyancy due to the gravity
by performing DNS in which the temperature dependencies of fluid properties are exactly
taken into account.

2. Direct numerical simulation (DNS)
2.1. Flow configuration and governing equations

The flow geometry and coordinate system for the computations are shown in figure 1. A
stationary rigid sphere with diameter d is placed at the origin (0, 0, 0) of the center of a
spherical domain with diameter of 45d. The imposed flow is a uniform air flow past the
sphere. The governing equations are three-dimensional continuity, Navier-Stokes (NS),
energy conservation equations and equation of state written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂

∂t
ρu + [∇ · ρuu] = −∇p − [∇ · τ ] + ρg, (2.2)

∂

∂t
ρh + (∇ · ρhu) = −(∇ · λ∇T ), (2.3)

p = ρRT, (2.4)
where enthalpy h and stress tensor τ are given by

h =
∫

CpdT, (2.5)

τ = −(p +
2
3
μ∇ · u)I + μ[∇u + (∇u)T]. (2.6)

Here, u (= (u, v, w)) is the fluid velocity vector, p the pressure, g the gravity, T the
temperature, R the universal gas constant, ρ the density, μ the viscosity, λ the thermal
conductivity, Cp the specific heat, I the unit tensor, and the superscription T the trans-
posed matrix. In this study, the values of ρ, μ, λ and Cp were varied with temperature.
The temperature dependencies of ρ, μ and Cp were computed by equation (2.4), Suther-
land’s formula and NASA polynomials, respectively, whereas that of λ was given under
the assumption that Prandtl number Pr (= Cpμ/λ ) keeps a constant value (= 0.72).

These equations were solved directly using the FrontFlow/Red (FFR) code which is
based on a finite volume method for unstructured grids. The convective terms of the
NS equation and the energy conservation equation were approximated by the second-
order accurate central difference method and the third-order accurate upwind difference
method, respectively. The third-order accurate Adams-Moulton method and the Euler
method were implicitly used to advance the NS equation and the energy conservation
equation in time, respectively.
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Figure 1. Computational domain and grids.

2.2. Boundary conditions
The inlet boundary conditions for x < 0 are given by the Dirichlet condition as

u = U0, v = w = 0, (2.7)

T = T0, (2.8)
and the outlet boundary conditions for x > 0 are given by the Neumann condition as

∂u

∂x
= 0, (2.9)

∂T

∂x
= 0. (2.10)

The boundary conditions on the surface of the sphere are given by the non-slip and
constant-temperature conditions as

u = v = w = 0, (2.11)

T = Tsphere. (2.12)

2.3. Numerical conditions
The DNS was applied to flow past a heated/cooled sphere in both conditions with and
without buoyancy due to the graviy. In addition, only in the condition with buoyancy, the
validity of the Boussinesq approximation which is often used to simplify the governing
equations under the assumption of constant fluid properties was examined.

In the absence of buoyancy, the calculations with the variable fluid properties were
performed for Rep = 50, 100, 200, 400 and the temperature conditions of the heated
sphere of Tsphere= 1000 K and T0 =293 K, the cooled sphere of Tsphere= 293 K and T0

=1000 K and the adiabatic case of Tsphere = T0= 293 K, provided that d = 1 mm.
In the presence of buoyancy, on the other hand, the gravity g (= (−9.8m/s2, 0,0))

was exerted in the opposite direction of the main stream. By introducing the relation of
−∇p = −∇p0 − ρ0g, equation (2.2) becomes

ρ
Du

Dt
= −∇p0 − [∇ · τ ] + (ρ − ρ0)g. (2.13)

Here, the application of the Boussinesq approximation to equation (2.13) leads to

ρ0
Du

Dt
= −∇p0 − [∇ · τ ] − ρ0gβ(T − T0), (2.14)

where ρ0 is the characteristic density, namely the density of the inlet flow and β (=1/T0)
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is the coefficient of thermal expansion. For the calculations with the Boussinesq approx-
imation, equation (2.14) was solved instead of equation (2.2). For both cases with the
variable fluid properties and the Boussinesq approximation, particle Reynolds number
Rep (= ρ0U0d/μ0 ) was 100, and Richardson number Ri (= β|g|(Tsphere − T0)d/U0

2 )
ranged from −0.1 to 0.5. Here, the positive and negative Ri represent the heated and
cooled sphere, respectively. It should be noted here that only for the calculations with
the variable fluid properties, d and ΔT (= Tsphere − T0 ) need to be determined because
these parameters change the fluid properties even for the same Ri. Hence, T0 and Tsphere

of the heated sphere were set to be 293 K and 293-985 K, respectively, and those of the
cooled sphere were set to be 990 K and 285-990 K, respectively, provided that d =1, 5,10,
50 mm.

3. Results and discussion
3.1. Absence of buoyancy

3.1.1. Vortex behavior

Figures 2 and 3 show the distributions of instantaneous streamlines and temperature on
the (x, y)-plane for Rep = 50 and 200, respectively. The behavior of the vortex ring behind
the sphere is observed to be strongly affected by the temperature difference between the
sphere and ambient fluid. In order to quantitatively evaluate the vortex ring, the position
of the vortex centers l∗, distance between the vortex centers c∗ and size of the vortex
ring s∗ against particle Reynolds number Rep are shown in figure 4, together with the
experimental results by Taneda (1956). All lengths are non-dimensionalized by d. It is
found that for the adiabatic case the predicted characteristics of the vortex ring are in
good agreement with those by the experiments (1956). At Rep = 200, l∗, c∗ and s∗ of the
heated sphere are all larger than those of the adiabatic case, whereas those of the cooled
sphere are all smaller. At Rep = 50, on the other hand, l∗, c∗ and s∗ of both the heated
and cooled spheres are smaller than those of the adiabatic case. These changes in the
size of the vortex ring are considered to be caused by the changes in velocity boundary
layer thickness and separation point, as described below.

Figure 5 shows the velocity boundary layer thickness δ∗ against particle Reynolds
number Rep. Here, δ∗ is given by non-dimensionalizing the average of the distance from
the sphere surface to the location indicating u = 0.99U0 in the range of −0.05d <
x < 0.05d. Compared to the adiabatic case, δ∗ of the heated and cooled spheres are
thicker and thinner, respectively, because the viscosity around the heated and cooled
spheres are higher and lower than that of the adiabatic case, respectively. The change
in δ∗ substantially acts to change the effective diameter of the sphere, consequently the
effective particle Reynolds number. Therefore the thicker velocity boundary layer (i.e.
the increase in the effective particle Reynolds number) of the heated sphere increases
the size of vortex ring, whereas the thinner velocity boundary layer (i.e. the decrease
in the effective particle Reynolds number) of the cooled sphere decreases it. In terms
of the boundary layer flow in the vicinity of the sphere surface, however, the change in
the separation point affects the size of vortex in the completely opposite way. Figure 6
shows the separation point α against particle Reynolds number Rep. Compared to the
adiabatic case, α of the heated and cooled spheres are found to shift to the downstream
and upstream, respectively, mainly because of the change in viscosity. This shift of α
to the downstream for the heated sphere acts to make the size of vortex ring smaller,
whereas the shift of α to the upstream for the cooled sphere acts to make it bigger. Thus,
the changes in δ∗ and α due to the heat transfer complicate the formation of the vortex
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(a) Adiabatic case (a) Adiabatic case

(b) Heated sphere (b) Heated sphere

(c) Cooled sphere (c) Cooled sphere

Figure 2. Distributions of instantaneous
streamlines and temperature for Rep=50.

Figure 3. Distributions of instantaneous
streamlines and temperature for Rep=200.

ring. It is considered that the reason of the discrepancy in the effects of the temperature
difference on the characteristics of the vortex ring between at Rep = 200 and 50, as
described above, is due to the fact that although the characteristics of the vortex ring
are affected by the change in δ∗ in general, the effect of the change in α becomes large
in creeping flows as seen at the extremely low Rep.

For Rep =400, the Strouhal number St of vortex shedding was examined. Here St is
given by

St =
fd

U0
, (3.1)

where f is the vortex-shedding frequency. St of the adiabatic case, heated sphere and
cooled sphere were 0.13, 0.11 and 0.14, respectively. This meant that the higher viscosity
in the vicinity of the heated sphere prevents vortices from separating from the sphere,
whereas the lower viscosity in the vicinity of the cooled sphere has the opposite effect.
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(a) Difinitions of properties (b) Position of vortex centers l∗

(c) Distance between vortex centers c∗ (d) Size of vortex ring s∗

Figure 4. Characteristics of vortex ring agaist particle Reynplds number Rep.

Figure 5. Velocity boundary layer thickness δ∗ against particle Reynolds number Rep.
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Figure 6. Separation point α against particle Reynolds number Rep.

3.1.2. Drag coefficient
Figure 7 shows the drag coefficients CD of the heated and cooled spheres against

particle Reynolds number Rep together with those of the adiabatic case obtaind by the
present calculation and those obtained by the empirical correlation of Schiller & Nauman
(1933). Here CD is given by non-dimensionalizing the integrated pressure and viscous
stress over the surface of the sphere:

CD =
1

1
2ρ0U0

2A
(−

∫
S

pex · ndS +
∫

S

n · τ · exdS), (3.2)

where A is the profile area of the sphere, ex the unit vector in the x direction, and n the
unit normal vector to the surface of the sphere. Good agreement is found in CD of the
adiabatic case between by the present calculation and by the empirical correlation (1933).
It is also found that CD of the heated and cooled spheres are larger and smaller than
those of the adiabatic case, respectively. In order to examine the reason of the change in
CD, the contributions of the friction and pressure, CD,f and CD,p, to the drag coefficient
CD are shown against particle Reynolds number Rep in figure 8. In addition, the local
friction stress Cf and pressure P ∗ on the sphere surface for Rep = 200 are shown in
figure 9. Here CD,f , CD,p, Cf and P ∗ are given by

CD,f =
1

1
2ρ0U0

2A

∫
S

n · τ · exdS, (3.3)

CD,p =
1

1
2ρ0U0

2A
(−

∫
S

pex · n)dS, (3.4)

Cf =
n · τ · ex

1
2ρ0U0

2 , (3.5)

P ∗ =
p − p∞
1
2ρ0U0

2 , (3.6)

where p∞ is the pressure in the freestream and θ in figure 9 is the angle from the fore
edge point of the sphere surface on the (x, y)-plane. It is found that both the friction
and pressure contribute to the change in CD. In particular, Cf of the heated and cooled
spheres are remarkably higher and lower than those of the adiabatic case, respectively,
in the region of θ < 0.7π of the sphere surface because the heated fluid has the higher
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Figure 7. Drag coefficients CD against particle Reynolds number Rep.

(a) Contribution of friction CD,f (b) Contribution of pressure CD,p

Figure 8. Contributions of the friction and pressure, CD,f and CD,p, to the drag coefficient
CD against particle Reynolds number Rep.

viscosity, whereas the cooled fluid has the lower viscosity, compared to the adiabatic case.
On the other hand, the effect of P ∗ on CD,p is eminent in the region of θ > 0.6π on the
sphere surface (it should be noted that the reverse effect in the region of θ = 0.3 − 0.6π
is small enough when x-component of P ∗ is considered). This change in P ∗ can be
explained by the changes in Cf and separation point α (see figure 6). Compared to
the adiabatic case, α of the heated and cooled spheres shift to the downstream and
upstream, respectively. Therefore not only the increase in Cf but also the longer distance
to the separation point for the heated sphere results in the consumption of more energy
and hence the decrease in the pressure behind the sphere, and the exactly opposite
phenomenon occurs for the cooled sphere.

3.1.3. Nusselt number

Figure 10 shows the Nusselt numbers Nu against particle Reynolds number Rep to-
gether with those obtained by the widely used empirical correlation of Beard & Prup-
pacher (1971) where small temperature difference of several tens of Kelvin is given. Here
Nu is given by non-dimensionalizing the integrated temperature gradient over the surface
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(a) Friction stress Cf (b) Pressure P ∗

Figure 9. Local friction stress Cf and pressure P ∗ on sphere surface for Rep=200.

Figure 10. Nusselt numbers Nu against particle Reynolds number Rep.

of the sphere:

Nu =
d

(Tsphere − T0)S0

∫
S

(−∂T

∂r
|r=d)dS, (3.7)

where r is the normal component in spherical coordinates and S0 is the surface area of
the sphere. It is found that Nu of the heated and cooled spheres are smaller and larger
than the empirical correlation (1971), respectively. This is because that the heated fluid
in the vicinity of the sphere has the higher thermal conductivity λ, which enhances the
thermal diffusion in fluid and therfore decreases the temperature gradient in the vicinity
of the sphere surface. The exactly opposite phenomenon occurs for the cooled sphere.

3.2. Presence of buoyancy
3.2.1. Vortex behavior

Figure 11 shows the distributions of instantaneous streamlines and temperature on the
(x, y)-plane for Rep = 100 and d = 50 mm in the presence of buoyancy. It is observed
that for the heated sphere of Ri = 0.5 the vortex ring totally vanishes and tempera-
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(a) Adiabatic case (Ri = 0)

(b) Heated sphere (Ri = 0.5) (c) Cooled sphere (Ri = −0.1)

Figure 11. Distributions of instantaneous streamlines and temperaure for Rep =100 and d =
50 mm in the presence of buoyancy.

ture boundary layer around the sphere is extended to the downstream. This is because
buoyancy acts to drive the heated fluid in the vicinity of the sphere surface to the down-
stream and hence the separation point of the heated sphere moves to the downstream.
For the cooled sphere of Ri = −0.1, on the other hand, the vortex ring is larger than
that of the adiabatic case and the temperature boundary layer is contracted. This is
because buoyancy acts to drive the cooled fluid in the vicinity of the sphere surface to
the upstream and hence the separation point of the cooled sphere moves to the upstream.
These tendencies of the heated and cooled spheres agree with the previous computations
by Mansoorzadeh et al. (1998).

3.2.2. Drag coefficient

Figure 12 shows the drag coefficients CD of the heated and cooled spheres against
Richardson number Ri for Rep = 100 for various sphere diameters of 1, 5, 10 and 50
mm together with those of the adiabatic case and those obtained by the calculation with
the Boussinesq approximation. For the calculation with the variable fluid properties, as
absolute Ri increases, CD of the heated and cooled spheres increase and decrease from
the value of the adiabatic case, respectively. Moreover, at a fixed Ri, the deviations
become notable as d decreases with increasing ΔT . These tendencies are mainly caused
by buoyancy (i.e. the driving force on the fluid in the vicinity of the sphere surface)
and the temperature dependencies of fluid properties (i.e. the change in viscosity which
increases with increasing temperature), respectively. It is also found that only when the
temperature difference is small enough in the case of large d, CD of both the heated and
cooled spheres are well captured by the calculation with the Boussinesq approximation,
since the Boussinesq approximation can consider only the effect of buoyancy without the
temperature dependencies of fluid properties.
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(a) Heated sphere (b) Cooled sphere

Figure 12. Drag coefficients CD against Richardson number Ri for Rep=100 in the presence
of buoyancy.

3.2.3. Nusselt number
Figure 13 shows the Nusselt numbers Nu of the heated and cooled spheres against

Richardson number Ri for Rep = 100 for various sphere diameters of 1, 5, 10 and 50
mm together with those obtained by the calculation with the Boussinesq approximation
and those obtained by the empirical correlation of Beard & Pruppacher (1971). For the
calculation with the variable fluid properties, as absolute Ri increases, Nu of the heated
and cooled spheres increase and decrease, respectively, from the value of the empirical
expression (1971) for the case of extremely small ΔT of d = 50 mm, whereas they
contrarily decrease and increase for the other cases. Moreover, at a fixed Ri, the deviations
become notable as d decreases with increasing ΔT . These tendencies are mainly caused
by buoyancy (i.e. the expansion and contraction of the temperature boundary layer) and
the temperature dependencies of fluid properties (i.e. the change in thermal conductivity
λ which increases with temperature), respectively. It is also found that as absolute Ri
increases, Nu of the heated and cooled spheres obtained by the calculation with the
Boussinesq approximation increase and decrease, respectively. These tendencies agree
with those by the calculation with the variable fluid properties for the case of extremely
small ΔT of d = 50 mm, but not for the other cases. This is due to the fact that unlike
the effects on CD, the effects of buoyancy and the temperature dependencies of fluid
properties on Nu act to change the values in the opposite way and the latter effect,
which cannot be considered in the Boussinesq approximation, is dominant except for the
conditions for the extremely small temperature differences.

4. Conclusions
The characteristics of flow past a heated/cooled sphere are investigated for 50 � Rep �

400 in both conditions with and without buoyancy by measn of three-dimensional direct
numerical simulation (DNS) in which temperature dependencies of fluid properties such
as density and viscosity are exactly taken into account. The main results obtained in this
study can be summarized as follows.
（1）In the absence of buoyancy, drag coefficients of the heated and cooled spheres are

larger and smaller than those of the adiabatic case, respectively, and Nusselt numbers
of them are smaller and larger than the values estimated by a widely used empirical
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(a) Heated sphere (b) Cooled sphere

Figure 13. Nusselt numbers Nu against Richardson number Ri for Rep=100.

expression, respectively. In addition, the temperature difference between the sphere and
ambient fluid strongly affects the flow separation points, size of vortex ring behind the
sphere and Strouhal number for vortex shedding. These effects are attributed to the
temperature dependencies of fluid properties in the vicinity of the sphere.
（2）In the presence of buoyancy induced by the gravity in the opposite direction of the

flow, drag coefficients of the heated and cooled spheres increase and decrease from the
values of the adiabatic case with increasing the absolute Richardson number, respectively.
On the other hand, as the absolute Richardson number increases, Nusselt numbers of
the heated and cooled spheres increase and decrease, respectively, from the values by
the empirical expression for extremely small temperature differences between the sphere
and ambient fluid, whereas they contrarily decrease and increase, respectively, for large
temperature differences. Moreover, at a fixed Richardson number, the deviations in the
drag coefficient and Nusselt number become notable with increasing the temperature
difference. These tendencies are caused by the interaction between buoyancy and the
temperature dependencies of fluid properties.
（3) The drag coefficients and Nusselt numbers of the heated and cooled spheres are

predictable by the Boussinesq approximation only for small temperature differences, re-
gardless of the magnitude of Richardson number.
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