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Abstract: The integer least squares (ILS) problem, also known as the weighted closest point

problem, is highly interdisciplinary but no algorithm can find its global optimal integer solution in

polynomial time. We first outline two suboptimal integer solutions, which can be important either in

real-time communication systems or to solve high dimensional GPS integer ambiguity unknowns. We

clarify that the popular sorted QR suboptimal estimator, usually known to be invented by Wübben et

al. [42], was first discussed by Xu et al. [51]. We then focus on the most efficient algorithms to search

for the exact integer solution. We show that the combined algorithm proposed by Fincke and Pohst

[8] and Schnorr and Euchner [29], which is well known to be the most powerful algorithm for solving

the ILS problem, is much faster than LAMBDA in the sense that the ratio of integer candidates to

be checked by the combined algorithm to those by LAMBDA can be theoretically expressed by rm,

where r ≤ 1 and m is the number of integer unknowns. Finally, we further improve the searching

efficiency of the most powerful combined algorithm by implementing two sorting strategies, which can

either be used for finding the exact integer solution or for constructing a suboptimal integer solution.

Test examples clearly demonstrate that the improved methods can perform significantly better than

the most powerful combined algorithm to simultaneously find the optimal and second optimal integer

solutions, if the ILS problem cannot be well reduced.

Keywords: global positioning system (GPS), integer linear model, integer least squares, closest point

problem, lattice reduction, LLL algorithm.

1 Introduction

Given a number of data y1, y2, ..., yn, each of which being respectively a linear or nonlinear function of

real-valued and integer unknown parameters β and z, the theory of integer estimation is to optimally

estimate both β and z from the data. More specifically, let us start with the following mixed integer

linear model:

y = Aβ +Bz+ ϵ, (1)

where y is an n-dimensional vector of observations y1, y2, ..., yn, (A,B) is an n× (t+m) real-valued

matrix of full column rank, β is a real-valued vector, i.e., β ∈ Rt and z is an integer vector, i.e., z ∈ Zm.

Here Rt is defined as the t-dimensional real-valued space and Zm as the m-dimensional integer space.

ϵ is the error vector of the observations y. The mean and variance-covariance matrix of ϵ are assumed

to be zero and W−1σ2, where W is a given positive definite matrix and σ2 is an unknown positive

scalar. If A = 0, then the mixed integer linear model (1) is simplified as the following integer linear

model:

y = Bz+ ϵ. (2)



The problem of estimating the integer unknown vector z in (1) or (2) arises from multidisciplinary

subjects of science and engineering, for example, integer programming, geometry of numbers, multiple-

input-multiple-output (MIMO) communication systems and cryptography. If the data y are free of

noise or random errors, the integer linear model (2) defines a lattice with a generator matrix B, namely,

L =

{
m∑
i=1

bizi | zi ∈ Z

}
, (3)

where bi are the column vectors of the matrix B. Obviously, a lattice L is a discrete point set regularly

distributed in the real-valued space Rn, which has been in the center of the theory of geometry of

numbers as a branch of pure mathematics and associated with the names of many great mathematicians

such as Lagrange, Gauss, Hermite, Minkowski and Voronoi (see, e.g., [13],[28]).

Estimating integer unknowns z in the integer linear model (2) with random noise has been ex-

tensively investigated recently. However, it has been interpreted in different languages in different

subjects of study. For example, in communication, one uses the language of coding and decoding in

connection with (2). In this case, an MIMO communication system may consist of two components:

one to transmit codewords (of integer nature) and the other to decode or recover the transmitted

integers from the noise-contaminated received signals (see, e.g., [7],[30]). An optimal decoding system

is to minimize the probability of error for the estimated integers. If the random errors ϵ are assumed to

be normally distributed with zero mean, Shannon [30] derived an elegant lower probabilistic bound of

error for the maximum likelihood (ML) integer estimator. In cryptography, the language would be on

hiding secret information and disclosing/attacking/breaking a cryptosystem (see, e.g., [17],[27]). More

examples can be found in the literature of crystallography (see, e.g., [2],[9]) and learning with errors

(see, e.g., [27]).

In precise GPS/InSAR positioning applications, y of (1) has often stood for carrier phase observ-

ables, and z for the integer ambiguity unknown vector. GPS ambiguity resolution is well known to

be the key technique to GPS precise positioning. In the geodetic community, Teunissen [34] first

addressed the integer estimation problem by developing the decorrelation integer least squares (ILS)

method for GPS ambiguity resolution from the point of view of projection theory. Xu et al. [51]

alternatively solved the mixed ILS problem by using a two-step approach. Although (1) has been

well known in geodetic literature as the standard mathematical model for GPS precise positioning

and InSAR unwrapping, the terminology of GPS observation model or InSAR unwrapping will hardly

be understood by the people who do not work on GPS/InSAR. In particular, since the integer linear

model (2) is highly interdisciplinary, Xu et al. [51-52] and Xu [44,47-49] have instead called (1) the

mixed integer linear model and accordingly (2) the integer linear model, in order for researchers from

different disciplines to communicate with a common terminology.

The estimation of real-valued and integer unknown parameters β and z in (1) is essentially a

statistical inference problem. However, almost nothing can be found in any statistical literature and/or

statistical journals, except for the maximum likelihood estimation of a single integer parameter that is

associated with the binomial and/or Poisson distribution (see, e.g., [6],[21],[32]), as can be readily seen

after a quick web search or a quick look at scientific journals on statistics. Although the integer linear

model (2) is important in many different areas of science and engineering, likely due to the barrier

of different languages used in different subject areas, researchers from different disciplines seem to be

hardly aware of theory and methods developed and used beyond his or her own field of study. At

least, this is particularly true for researchers in geodesy and navigation, as is very clear from the cited

literature in the publications of global navigation satellite systems (GNSS). Thus an interdisciplinary

presentation of the theory and methods of integer estimation should be urgently useful and helpful to
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build bridges for researchers with backgrounds of different disciplines.

This paper will focus on the estimation theory, methods and algorithms for the integer unknowns

in (2), since the LS/ML estimation of the real-valued unknown parameters essentially depends on the

integer estimate of z (see, e.g., [34-35],[51-52]). Emphasis will be on theory, methods and algorithms

that can be directly implemented for practical applications in different disciplines. The paper is

organized as follows. In Section 2, we will briefly discuss the principle of integer estimation theory and

formulate the ILS and/or integer ML estimation problem. Since the ILS problem cannot be solved

in polynomial time, we will discuss methods to construct suboptimal integer solutions in Section 3.

Reduction and decorrelation techniques will be discussed in Section 4, which have been shown to be very

powerful in speeding up the search for the globally optimal ILS/ML solution. For practical applications,

Section 5 will first analyze the key components of the most powerful algorithms proposed by Fincke and

Pohst [8] and Schnorr and Euchner [29], which essentially include reduction/decorrelation, dynamically

shrinking the size of searching window and scanning the integer candidates in the zigzagged manner for

each integer unknown. In addition to these key components, we propose implementing the sorted QR

and V-BLAST strategies to re-order the integer unknowns z either on the basis of optimality criteria

of maximum conditional weighting or minimum conditional variance. The new components of sorting

will be shown to significantly improve the most powerful combined algorithm by Fincke and Pohst

[8] and Schnorr and Euchner [29], in particular, when searching for the optimal and second optimal

integer solutions.

2 The integer LS/ML problem

As a statistical inference problem, one may apply a certain principle of optimality to estimate the

integer unknowns z in (2) from the noisy measurements y. In general, one would use one of the two

popular criteria, namely, (weighted) least squares and maximum likelihood, to estimate z, depending

on whether the joint probability density function of y is available. If the weighted LS method is applied

to the integer linear model (2), we have the following ILS problem:

min:
z ∈ Zm

F(z) = (y −Bz)TW(y −Bz), (4)

which can be equivalently rewritten as

min:
z ∈ Zm

F(z) = (z− zf )
TWf (z− zf ), (5)

where

Wf = BTWB,

zf = (BTWB)−1BTWy = W−1
f BTWy,

(see, e.g., [49]). In the GNSS literature, one has more often called zf the (real-valued) floating solution

(of z) and Wf its corresponding weight matrix, respectively. In communication, one often assumes

that the random errors ϵ in (2) are normally distributed. Accordingly, (4) can also be derived from

the (integer) maximum likelihood principle (see, e.g., [30]).

Although the estimation of integer unknowns is relatively new in geodesy and navigation and was

only strictly treated mathematically in the past two decades, the optimization problem (4) or (5) has

actually been well known as a convex quadratic integer programming problem beyond the literature

of geodesy and navigation. In particular, two special cases of (4) have been extensively investigated in

integer programming. As a first special case, if W = I, then (4) becomes

min:
z ∈ Zm

F(z) = (y −Bz)T (y −Bz), (6)
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which has been well known as the closest vector problem (see, e.g., [22]). As is clear from (3), Bz

defines a lattice. As a result, (6) is also called the closest point problem in integer programming (see,

e.g., [22]). If we further set y in (6) to 0, the corresponding problem is alternatively called the shortest

vector problem (see, e.g., [22]). We should note, however, that integer programming is concerned with

finding the optimal numerical solution(s) to an objective function with integer variables. It is only an

important tool in integer statistical inference associated with (1) and/or (2).

The ILS estimate of z, or equivalently, the solution to (4) or (5) can be represented by the sup-

port/indicator function as follows:

ẑ =
∑
z∈Zm

z I(V (z), zf ), (7)

(see, e.g., [14],[37],[48-49]), where ẑ is the ILS estimator of the integer vector z, I(V (z), zf ) is the

indicator function:

I(V (z), zf ) =

{
1, if zf ∈ V (z)
0, otherwise

Here V (z) is the Voronoi cell centered at the point z, whose definition can be found in, e.g., Cassels

[3] and Gruber and Lekkerkerker [13]. If z = 0, the corresponding Voronoi cell is denoted by V0. The

construction of V0 can be found in Sikiric et al. [41] and Xu [49]. For more details on upper and

lower probabilistic bounds of correctly estimating the integer unknown vector z and integer hypothesis

testing, the reader is referred to Xu [48].

3 Suboptimal integer solutions

Solving the ILS problem (4) is well known to be NP-hard. In other words, there exists no algorithm to

find the global optimal integer solution to (4) in the polynomial time of dimension m (see, e.g., [22]).

Thus for real-time applications such as wireless communication and GPS kinematic positioning with

many integer ambiguities due to the use of different wavelengths and/or different navigation satellite

systems, it may be more realistic to expect some good suboptimal integer solutions than to find the

global optimal integer solution to (4). For example, in GPS ambiguity resolution, one can use the noise

of code range to determine the size of searching window for each integer ambiguity. The corresponding

size of searching window for each zi may be reasonably assumed to be between 5 and 11 (see, e.g.,

[16],[18]). In this case, if m = 60, then the total number of integer combinations is approximately

between 8.67×1041(= 560) and 3.04×1062(= 1160). If the number of z is increased to 100, the number

of combinations can be as large as 1.38× 10104(= 11100). Obviously, in such cases, it is practically not

possible to find the exact integer solution.

Suboptimal integer solutions could also be interpreted differently in wireless communication and

GNSS. In wireless communication, one would have to decode the received signals which are always

changing with time. However, in the case of GNSS kinematic positioning, the integer ambiguities

remain unchanged with time, and as a result, one can collect and accumulate more data in order to

obtain the global optimal integer solution. In other words, suboptimal integer solutions can be tempo-

rary in GNSS and meaningful at a particular point of time, unless the number of integer ambiguities

is too big to solve due to the NP-hardness of (4).

Basically, all the methods to construct suboptimal integer solutions may be classified into two types:

(i) simple rounding and (ii) sequential rounding. Since the real-valued vector zf of (5) is given, the

simplest and oldest approach to finding a suboptimal integer solution to (5) is to round each element

of zf to its nearest integer, namely,

ẑs1 = ⌈zf⌋, (8)
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where ⌈x⌋ stands for rounding x to its nearest integer (see, e.g., [33]). Grafarend [12] suggested applying

the integer orthogonalization algorithm to (5) in order to improve the solution quality of the direct

rounding suboptimal solution (8). The integer solution (8) is globally optimal, if the positive definite

matrix Wf of (5) is diagonal.

Most of suboptimal integer solutions are sequential. The word “sequential” should also be un-

derstood differently under different contexts. For example, given all the measurements y, one may

sequentially estimate one integer sub-optimally, conditional on that the others have been estimated.

This is true in the literature of communication, and likely some of the GNSS literature. In kinematic

GPS/GNSS positioning or processing GPS networks at a global scale, one may either sequentially fix

one integer ambiguity if it is judged to be correct with a very high probability or decide not to fix

it. In this latter case, one chooses to accumulate more data and then continue to fix the remaining

integer ambiguity unknowns sequentially if such a (conditional) probability is sufficiently high (see,

e.g., [1],[5],[10],[20]). More precisely, common practice to derive the suboptimal integer solution is to

start with the most accurate component of zf and decide whether the integer unknown can be fixed

with a sufficiently high probability which is computed as if the integer were a real-valued random

variable. For example, assuming that (i−1) integers have been fixed with the conditional probabilities

pj (j = 1, 2, ..., i − 1), and further assuming that given the new data and zj (j = 1, 2, ..., i − 1), the

sequential real-valued estimate zkf of zk (k ∈ [i, i+ 1, ...,m]) is most accurate with a variance σ2
k, then

Blewitt [1] suggested computing the following quantity pk, which was called the conditional probability

and given as follows:

pk = pi−1 exp{−(zkf − ⌈zkf ⌋)2/(2σ2
k)}/

∑
j∈Z

exp{−(zkf − j)2/(2σ2
k)}, (9)

where p1 is set to p0. If the prior probability p0 is equal to unity, we presume that the first integer is

correctly fixed. If pk is sufficiently large, one can then fix zkf , permutate zk with zi and continue to fix

the next integer; otherwise, more data are collected and the above procedure is repeated until all the

components of z have been sequentially obtained. Note, however, that in GPS/GNSS applications,

the accuracy of the real-valued estimates are often found to be too optimistic. As a result, Blewitt

[1] actually replaced σk in (9) with |zkf − ⌈zkf ⌋|/2 approximately. Since this strategy of sequentially

estimating suboptimal integer solutions is clear by itself, we shall focus on the approach to constructing

suboptimal integer solutions without any new measurements in the remainder of this Section.

All the sequential, suboptimal integer solutions without new data start with the Cholesky decom-

position of Wf , namely,

Wf = LDLT , (10)

where L is a lower triangular matrix with the unit diagonal elements and D is diagonal with all the

diagonal elements being positive. Substituting (10) into (5) yields

min:
z ∈ Zm

F(z) =
m∑
i=1

dii

{
zi +

m∑
j=i+1

lji(zj − zfj )− zfi

}2

, (11)

where lij (j < i) are the non-zero, off-diagonal elements of L and dii the positive diagonal elements of

D. zfi is the ith element of the real-valued vector zf . In order to avoid solving the NP-hard integer

optimization problem (11), one may seek only a suboptimal solution with least possible work. One

obvious solution is to simply minimize all the terms |zi +
m∑

j=i+1

lji(zj − zfj ) − zfi | with respect to zi,

given the integers zj (j > i). As a result, the suboptimal integer solution can be readily represented

by

ẑis2 = ⌈zfi −
m∑

j=i+1

lji(ẑ
j
s2 − zfj )⌋ (12)
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with i running from m to 1, where ẑis2 is the ith component of the suboptimal sequential integer

estimator of z.

The representation of the suboptimal integer solution (12) was derived by Xu et al. [51], which

can serve as a starting point to construct any sequential suboptimal integer solution. However, the

quality of a suboptimal solution of type (12) can be quite different, depending on the ordering of the

estimation of each component of z. In other words, constructing a good suboptimal integer solution is

now equivalent to designing an optimal ordering to Cholesky-decompose Wf in (10) and accordingly

obtain readily the solution of type (12). In the original contribution by Xu et al. [51], they proposed

incorporating the reduction process into the decomposition of Wf , which is carried out by always

choosing and pivoting the smallest diagonal element among the remaining diagonal elements to be

decomposed.

In the literature of communication, there exist two most popular ordering techniques to construct

suboptimal integer solutions, which are the QR sorting (see, e.g., [38],[42-43],[51-52]) and the Vertical

Bell Labs Layered Space-Time (V-BLAST) ordering (see, e.g., [11],[39]). These two ordering techniques

are based on the QR decomposition of the design matrix B and the variance-covariance matrix of the

real-valued solution zf , respectively. Other improvement can be found, for example, in Waters and

Barry [38].

For the integer linear model (2) without any new data, and by assuming that the weight matrix W

of y is an identity matrix, namely, W = I, Wübben et al. [42] proposed applying the Gram-Schmidt

orthogonalization procedure to B in such a way that the vectors to be orthogonalized are all projected

onto the orthogonal complement of the completed orthogonalized vectors and then the shortest vector

is picked up to resume the next orthogonalization process. The procedure described is called the sorted

QR decomposition. Accordingly, the ordering obtained is called the QR-sorting. As a result, (2) can

be rewritten as follows:

y = QRPz+ ϵ.

Or equivalently,

yq = Rzq + ϵq, (13)

where

zq = Pz,

yq = QTy,

ϵq = QT ϵ,

and P is a permutation matrix.

Because W = I, the corresponding ILS problem of (13) becomes

min:
zq ∈ Zm

F(zq) = (zq − zqf )
TRTR(zq − zqf ), (14)

where zqf = (RTR)−1RTyq. Since R is upper-triangular, (14) is essentially the same as (11) and one

can immediately obtains the same suboptimal integer estimator as represented by (12).

However, if W is not an identity matrix, then one cannot directly apply the sorted QR decomposi-

tion to B. The reason is simple: if W ̸= I, (RTR) in (14) has to be replaced by (RTQTWQR). The

sorted QR decomposition of B does not make sense because of a non-identity matrix W. In this case,

one has to directly work on the normal matrix Wf instead of B, as done by Xu et al. [51]. Although

the sorted QR suboptimal integer estimator is now very popular in the literature of communications,

as evidenced by a long list of its citing publications, it is trivial to prove that the sorted QR technique
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proposed by Wübben et al. [42-43] is essentially equivalent to the sorting strategy used by Xu et al.

[51] for the positive definite matrix Wf . Thus the suboptimal solution by Wübben et al. [42-43] is a

special case of Xu et al. [51-52]. Actually, Xu et al. [51-52] went further than Wübben et al. [42] on

two accounts: (i) Xu et al. [51] worked on (BTWB). Thus unlike Wübben et al. [42], the weight ma-

trix W is not an issue of concern here; and (ii) Xu et al. [51] implemented the reduction/decorrelation

directly into the procedure of constructing the suboptimal sorted QR integer solution, which should

make the sorted QR suboptimal integer solution proposed by Xu et al. [51] more efficient or powerful

than the one by Wübben et al. [42]. An algorithm for this most general case is given in Algorithm 1

for convenience of implementation (see, e.g., [50]).

Algorithm 1: Cholesky decomposition with the sorted QR ordering

Set L to an identity matrix;
for i = 1 to m - 1
get the smallest wf

kk among wf
jj (i ≤ j ≤ m);

if i ̸= k
Swap L(i, 1 : i− 1) with L(k, 1 : i− 1);
Swap the elements of submatrix Wf (i : m, i : m),
both at the ith and kth row and column;

end
Compute L(i+ 1 : m, i) = Wf (i+ 1 : m, i)/wf

kk;

D(i, i) = wf
kk;

Update Wf (i+ 1 : m, i+ 1 : m) with L(i+ 1 : m, i) and wf
kk;

end
D(m,m) = Wf (m,m).

The other popular ordering technique, namely, the V-BLAST sorting, is to focus on the inverse of

Wf instead of Wf itself. It was first proposed by a group of researchers with Bell Laboratories (see,

e.g., [11]) and has since been widely used to construct a suboptimal integer solution of z (see, e.g.,

[39],[43]). Following Golden et al. [11], if W = I, then the V-BLAST ordering is obtained by finding

an index ki such that

min:
j /∈ {k1, k2, ..., ki−1}

F(j) = ∥hj∥, (15)

where hj is the jth row vector of (BT
ki
Bki)

+BT
ki
, Bki is the matrix of B by setting all the columns with

the indices {k1, k2, ..., ki−1} to zero, the superscript + stands for the Moore-Penrose pseudoinverse of

a matrix.

Actually, if W = I, the minimization (15) is statistically equivalent to picking up the index such

that the real-valued solution of the corresponding integer parameter zki is the most precise on the

condition that the parameters {zk1 , zk2 , ..., zki−1} have been correctly determined. For conciseness of

notations, we denote the submatrix of B without {zk1 , zk2 , ..., zki−1} by Bp and accordingly the sub-

vectors of the integer parameters by zp. Thus, the real-valued solution of zp, denoted by zpf , is written

as follows:

zpf = (BT
p Bp)

−1BT
p y. (16)

The variance-covariance matrix of zpf is

D(zpf ) = (BT
p Bp)

−1BT
p Bp(B

T
p Bp)

−1 = (hjh
T
l ) = (BT

p Bp)
−1. (17)

In other words, the solution to the minimization problem (15), as represented by one of the diagonal

elements of (hT
j hl), corresponds exactly to the index of zpf such that its diagonal element of (BT

p Bp)
−1

is minimum. From this point of view, although the V-BLAST ordering proposed by Golden et al. [11]
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assumed an identity matrix, we can naturally extend it to a most general weight matrix W. As a

result, the ordering algorithm given by Golden et al. [11] can be substantially simplified and coded in

Algorithm 2 to construct the suboptimal integer solution.

Algorithm 2: Finding the V-BLAST ordering

Given B and W and initialize S = {0};
for i = 1 to m - 1
Find the index ki of zki with the smallest diagonal element of D(zpf );
Assign ki to the set S = {k1, k2, ..., ki−1, ki}
Form Bp by deleting the columns of B in S;
Compute D(zpf );

end
Assign the remaining index to the set S = {k1, k2, ..., km}

If we compare Algorithm 2 with that by Golden et al. [11], we can readily find that Algorithm 2

is advantageous: (i) it is computationally less complex, since the D(zpf )-equivalent Moore-Penrose

pseudoinverse in (15) is all what we need; (ii) the dimension of the inverse D(zpf ) is smaller than the

Moore-Penrose pseudoinverse in (15); and (iii) the weight matrix W is not necessarily an identity

matrix. We should note that this strategy is equivalent to the sequential adjustment/fixing technique,

as well mentioned and implemented in the GNSS literature (see, e.g., [1],[5],[20]), if all the integer

unknowns can be fixed with a high probability. However, if a GPS integer ambiguity unknown cannot

be fixed and more data are to be collected before a sequential adjustment can be continued, then the

suboptimal solution proposed by Golden et al. [11] is different from the sequential adjustment/fixing

technique used in GNSS positioning and navigation. The results reported by Wübben et al. [42] have

shown that the V-BLAST ordering performs better than the sorted QR ordering in terms of error

performance. The sorted QR ordering requires much less computation, nevertheless.

4 Reduction and decorrelation

Reduction has been an important tool in number theory. The goal of reduction can now be described

to transform the basis of the lattice L in (3) defined by the column vectors of B such that the reduced

basis is as short as possible and as orthogonal as possible. According to Scharlau and Opolka [28],

Lagrange was the first mathematician to investigate the problem of integer binary quadratic forms

in 1773, which was also solved in an algorithmically operational way by Gauss in his 1801 book

“Disquisitiones Arithmeticae” (see, e.g., [28],[40]). An algorithm of reduction of quadratic forms in

an arbitrary dimension was first constructed by Hermite (see, e.g., [25],[28]). Further development of

reduction of quadratic forms and number theory finally led Minkowski to create the subject of geometry

of numbers (see, e.g., [28]).

Although reduction of quadratic forms and lattice basis vectors was substantially investigated

in the eighteenth and nineteenth centuries by several talent mathematicians such as Gauss, Her-

mite, Minkowski and Voronoi (see, e.g., [13],[28]), a landmark reduction algorithm was invented by

A. Lenstra, H. Lenstra and L. Lovász (1982). It has since been popularized as the LLL algorithm

coined after the three Ls in the authors’ family names and widely applied in many areas of science

and engineering (see, e.g., [26]). Further development has been along the line of either improving the

efficiency and stability of computation (see, e.g., [24-25]) or aiming at refining the output quality of the

reduced basis through the implementation of deep insertions (see, e.g., [29]). Because the LLL variant

with deep insertions is of super-exponential complexity, it will not be included in this paper. The

interested reader should refer to Schnorr and Euchner [29]. In this section, we will focus on reduction
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C

Figure 1: Illustration of a very thin triangle ABC. In terms of lattice, its basis can be formulated by
the two directed lines AB and AC, which are far from orthogonal. After applying the LLL algorithm
to AB and AC, we obtain the new basis, whose vectors are almost orthogonal and very short, as shown
in red lines.

algorithms of practical significance with a polynomial time of complexity.

4.1 The LLL algorithm

The LLL algorithm of lattice basis reduction was constructed by Lenstra et al. [19]. According to

the historical account of the LLL algorithm by Smeets [31], its invention started with the question

posed to H. Lenstra for handling skewed lattices, which is essential to check whether there exist points

with integer coordinates inside a triangle defined by three arbitrary points A, B and C on the plane

in polynomial time. Although the answer to this question seems to be trivial, it can actually be very

difficult to answer, if the triangle ABC looks almost like a very thin line, as illustrated in Fig.1 of this

paper or Fig.1.2 of Smeets [31]. The answer to this question was roughly equivalent to turning the

two neighboring directed lines (vectors) of the triangle as orthogonal as possible through a unimodular

transformation.

To start with, we assume that the basis vectors b1,b2, ...,bm, namely, the column vectors of B, are

linearly independent for the lattice L defined by (3). It is obvious from the definition of the lattice (3)

that the bases of L are not unique. In fact, any basis of the type BG is also a basis of L, where G is

a unimodular matrix. However, some bases are better than others for solving problems of theoretical

and practical importance. For example, the basis shown in the red lines in Fig.1, which is obtained

after applying the LLL algorithm, would be superior to the original basis with the vectors AB and AC

in answering the question posed to H. Lenstra in the above.

Reduction of the lattice basis B is to find an optimal unimodular transformation matrix G such

that the new basis Br = BG is optimal in a certain sense of optimality. As a result, G can be

solved as the optimal solution to the optimization model formulated under the defined optimality,
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and the sense of reduction should be understood accordingly. For example, reduction in the sense

of Hermite, Korkine-Zorotareff and Minkowski requires that the first reduced vector be the shortest,

subject to some extra inequality constraints (see, e.g., [3],[13],[15]). The formulated objective function is

essentially equivalent to the shortest lattice vector problem, subject to the same inequality constraints.

If the optimality is defined in the sense that all the (column) vectors of the new basis Br = BG are

the mutually most orthogonal and the shortest, reduction is mathematically equivalent to finding an

optimal unimodular matrix G such that the vectors of the reduced basis Br are ideally orthogonal and

their lengths are all minimized. Obviously, this is an integer multi-objective optimization model and,

in principle, can be solved by using techniques of integer multi-objective optimization (see, e.g., [46]).

Unfortunately, for a general reduction problem, all the objectives formulated this way can be in conflict

and one should not expect the existence of the global optimal integer solution of G to simultaneously

minimize all the objectives formulated. On the other hand, very often, reduction is only a means to

help solve problems of theoretical and/or practical importance, e.g., to find the global optimal ILS

solution to (4). From this point of view, it may not make much sense to spend a lot of time in order to

solve an optimal unimodular matrix G to the integer multi-objective optimization model. Instead, it

is highly desirable to develop fast reduction algorithms to construct an effective unimodular matrix G

without formulating and solving integer optimization problems, with the LLL algorithm as the most

outstanding and successful example.

Actually, all reduction methods for lattice basis vectors are based on the Gram-Schmidt orthog-

onalization process, but they can be different in the way to achieve further reduction of the lengths

of the reduced vectors. In the case of the LLL algorithm, it naturally attempts to realize the first

reduction goal of mutual orthogonality of the reduced vectors through the following Gram-Schmidt

orthogonalization process,

b∗
i = bi −

i−1∑
j=1

µijb
∗
j , (18a)

µij =
bT
i b

∗
j

∥b∗
j∥2

, (18b)

where ∥ · ∥ stands for the Euclidean L2-norm of a vector. In general, µij can take on a real value of

any size. In order to materialize the second reduction goal of making the reduced vectors as short as

possible, the LLL algorithm demands the following condition of size reduction

|µij | ≤ 1/2, (18c)

for all 1 ≤ j < i ≤ m. In case that the size reduction (18c) is not satisfied for any j(< i), i.e.,

|µij | > 1/2, then bi is replaced with (bi − ⌈µij⌋bj), where ⌈µij⌋ stands for the integer nearest to µij .

In order to further reduce the sizes/lengths of the reduced basis vectors, the LLL algorithm imposes

the Lovász condition:

δ∥b∗
i−1∥2 ≤ ∥b∗

i + µi(i−1)b
∗
i−1∥2 (19)

for all 1 < i ≤ m, where δ ∈ (1/4, 1). While the process (18) of orthogonalitization and size re-

duction proceeds, the Lovász condition (19) will decide whether it should be temporarily suspended

for interference. More precisely speaking, if the Lovász condition (19) is violated, Lenstra et al. [19]

suggested swapping bi with bi−1 before the orthogonalization-reduction process (18) is re-activated.

Note, however, that the process index i should be set back to (i− 1). In the original LLL algorithm,

δ was set to 3/4. For convenience of reference and/or implementation, we list the pseudo-codes of the

LLL algorithm in Algorithm 3.
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Algorithm 3: Pseudo-codes of the LLL algorithm

S1 Input: the basis of lattice b1,b2, ...,bm

S2 Initialize: k = 2 and b∗
1 = b1

S3 while k ≤ m
S4 for j = (k − 1) to 1 step −1
S5 compute µkj

S6 if |µkj | > 0.5
S7 set µkj to its nearest integer ⌈µkj⌋
S8 replace bk = bk − ⌈µkj⌋bj and µkj = µkj − ⌈µkj⌋
S9 end
S10 end
S11 compute b∗

k

S12 if Lovasz’s test (19) is true, continue to next k
S13 else swap bk with bk−1 and set k = min(k − 1, 2)
S14 end
S15 end

4.2 Reduction of positive definite quadratic forms

A positive definite quadratic form is equivalent to a lattice basis up to a rotation and can be interpreted

geometrically in terms of lattice bases (see, e.g., [13]). Actually, the reduction of binary positive definite

quadratic form was first addressed by Lagrange in 1773 and solved by Gauss in 1801 (see, e.g., [28]).

A (2× 2) positive definite matrix (
a11 a12
a21 a22

)
is said to be reduced in the sense of Lagrange and Gauss, if the following inequalities hold true,

a11 ≤ a22, (20a)

|a12| ≤ a11/2, (20b)

(see, e.g., [23],[40]). Usefulness/importance of the two-dimensional Lagrange-Gauss’ algorithm of re-

duction for GPS ambiguity resolution was demonstrated by Teunissen [35] through the Gaussian elim-

ination. Xu et al. [51] proved that the reduction by repeating the integer Gaussian elimination process

converges for any (m×m) positive definite matrix as a direct consequence of Hadamard’s inequality.

Since reduction of positive definite quadratic forms only plays an accessory role in helping solve

the ILS problem (5), it is certainly not the final goal to be achieved. As in the case of lattice basis

reduction, we should avoid formulating reduction of positive definite quadratic forms as an integer

(multi-)objective optimization model. Though we use the word “accessory” to describe reduction, we

do not mean that it is not important. Actually, a good reduction can speed up finding the global

optimal integer solution to (5), as can be clearly seen from the experiments by Fincke and Pohst [8].

Thus, we will focus on efficient heuristic approaches of reduction of positive definite quadratic forms, as

in the case of the LLL algorithm. If the reader is interested in Minkowski’s and/or Korkine-Zorotareff’s

reductions, he or she may refer to Gruber and Lekkerkerker [13] and Helfrich [15].

In principle, all heuristic algorithms of lattice basis reduction can be directly applied to reduce a

positive definite quadratic form. For example, in the case of the LLL algorithm, we can first decompose

the positive definite matrix Wf of (5) into VTV, apply the LLL algorithm to V and obtain the reduced

basis V = VrG, where Vr is the reduced basis of V and G the corresponding unimodular matrix. As

a result, the ILS problem (5) can be rewritten as

min:
zg ∈ Zm

F(zg) = (zg − zgf )
TWr(zg − zgf ), (21)
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where zg = Gz, zgf = Gzf and Wr = VT
r Vr. In the remainder of this section, we will discuss

two reduction algorithms, which can be applied to directly reduce the positive definite matrix Wf .

Algorithms of this type are also known in geodesy as decorrelation.

4.2.1 Reduction of positive definite matrices by Gaussian elimination

Although the original works by Lagrange and Gauss are now well known in many areas of science

and engineering, they seem to remain unknown or unheard to many of geodesists. Xu et al. [51-52]

extended the idea of Lagrange-Gauss’s reduction algorithm to an arbitrary dimension m, which can

be summarized by the following lemma and theorem.

Lemma 1 (Hadamard’s inequality): For any positive definite matrix P, the following inequality

det(P) ≤
∏

pii (22)

holds true. Here pii are the diagonal elements of P.

Theorem 1: For any positive definite matrix P, there exists a unimodular matrix G such that

P = GHGT , (23)

where H is positive definite, too, and satisfies

|hij | ≤
1

2
min(hii, hjj) ∀ i, j & i ̸= j. (24)

Lemma 1 is well known, since it is actually the famous Hadamard’s inequality. Based on the

Hadamard’s inequality, it is rather easy to prove Theorem 1. If the reader is interested in the proof,

he or she should refer to Xu et al. [51-52] or Xu [44].

In fact, if we follow the Lagrange-Gauss’s approach to reducing the positive definite matrix Wf

in association with the ILS problem (5), we can then construct a heuristic algorithm to find the

unimodular matrix G by multiplying a series of unimodular matrix of the following type:

Gij =



1
. . .

1
...

. . .

−⌈wf
ij/w

f
ii⌋ · · · 1

. . .

1


,

if wf
ii ≤ wf

jj , or

Gij =



1
. . .

1 · · · −⌈wf
ij/w

f
jj⌋

. . .
...
1

. . .

1


,

if wf
jj < wf

ii, where wf
ij are the elements of Wf . When the above procedure converges, we can readily

obtain the transformed ILS problem (21) after reduction or decorrelation. Recently, Chang et al. [4]

proposed a modified decorrelation/reduction algorithm in order to speed up the least squares ambiguity

decorrelation adjustment method proposed by Teunissen [36].
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4.2.2 Decorrelation of positive definite matrices by integer Cholesky decomposition

As is well known, the integer solution of (5) can be trivially obtained, if the matrix L of (10) is

unimodular. Unfortunately, given a general ILS problem (5), the off-diagonal elements lij (j < i) of

L are not integers and L is not unimodular. The question now is how to construct a unimodular

matrix G such that GWfG
T becomes as diagonal as possible. The first approach to constructing

a unimodular matrix G from L was implicitly implemented to size-reduce the real-valued matrix of

Gram-Schmidt coefficients in the LLL algorithm by Lenstra et al. [19], which can be stated in the

following proposition. For more details on Proposition 1 and its algorithmic realization, the reader can

refer to Xu [50].

Proposition 1: For any real-valued lower-triangular matrix L of type (10), there exists a unimod-

ular matrix G such that

L = GLµ, (25a)

where

Lµ =


1
µ21 1
µ31 µ32 1
...

...
...

. . .

µm1 µm2 µm3 . . . 1

 , (25b)

and all the elements µij satisfy

|µij | ≤ 0.5, (i > j).

Intuitively, one may also round all the off-diagonal elements of L to their nearest integers and

accordingly, construct the unimodular matrix Lin. As a result, we can transform Wf into

H1 = L−1
in LDLT (L−1

in )T . (26)

It is obvious from (26) that L−1
in L should be ideally an identity matrix or at least, as close to an

identity matrix as possible, if we want to have an almost diagonal H1. Xu [45] argued that directly

rounding the elements of L and then inverting the unimodular matrix Lin was not a good practice to

make L−1
in L become close to an identity matrix. Alternatively, he proposed inverting L first and then

rounding the elements of L−1 to their nearest integers, which is denoted by Liin. Thus Wf can be

transformed into

H = LiinLDLT [Liin]
T . (27)

By replacing Wf with H and repeating the above procedure, one can then construct the unimodular

matrix G, which was called inverse integer Cholesky decorrelation by Xu [45]. When Liin is an identity

matrix, the iteration process is terminated and the unimodular matrix that minimizes the condition

number is chosen. Recently, a parallel reduction algorithm for positive definite quadratic forms was

proposed by Xu [50], which was demonstrated to perform significantly better than the LLL algorithm.

5 A practical reduction-aided integer LS/ML method

Although the ILS problem (5) is NP-hard, one can still expect to find the exact integer solution, if the

number of integer unknowns is not too large, depending on the sizes of searching windows of z and

the computational capacity of a computer. There exist two popular methods to search for the exact

global optimal integer solution to (5). One method is to set a fixed size of searching window for each

zi and then search for the exact integer solution within the pre-determined rectangle of z. The sizes of

searching windows can either be determined by the noise level of zf , as often used in the early literature
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on GPS ambiguity resolution (see, e.g., [16],[18]), or alternatively by the length of the shortest reduced

vector and those of the shortest vectors of the sub-lattices Li (i = 1, 2, ...m) from L. The other method

was originally formulated in Fincke and Pohst [8] and partially used by Teunissen [35-36]. The basic

idea of Fincke and Pohst [8] is to first reduce/decorrelate the ILS problem (5) and then use a shrinking

strategy to dynamically reduce the size of searching window for each integer unknown. This algorithm

was further improved by Schnorr and Euchner [29], who suggested scanning the candidates of each

integer in a zigzagged manner from the center, instead of scanning from one end to the other end

implemented by Fincke and Pohst [8] (see also [36]). The combined effort by Fincke and Pohst [8]

and Schnorr and Euchner [29] has since been turned out to be the most successful/powerful hybrid

algorithm to find the exact global integer solution to the ILS problem (5).

In this section, we will first focus on the combined approach of Fincke and Pohst [8] and Schnorr

and Euchner [29] to solve (5). This combined searching strategy was used to solve GPS ambiguity

resolution by Chang et al. [4]. However, the methods proposed by Fincke and Pohst [8] and Schnorr

and Euchner [29] are based on different methods of reduction or decorrelation. In order to further

improve the most powerful combined algorithm by Fincke and Pohst [8] and Schnorr and Euchner [29],

we will propose the inclusion of two sorting strategies, namely, the sorted QR and V-BLAST ordering

scheme, into the combined algorithm, either to construct a suboptimal integer solution or to find the

exact integer solution.

The method to solve the ILS problem (5) by Fincke and Pohst [8] is to reformulate (5) with the

ellipsoidal constraint as follows:

min:
z ∈ Zm

F(z) = (z− zf )
TWf (z− zf ), (28a)

subject to

(z− zf )
TWf (z− zf ) ≤ C, (28b)

where C is a properly given positive constant such that the inequality constraint (28b) is feasible

with respect to the integers z. One such value of C can simply be obtained by using the suboptimal

solution techniques of Section 3. In order to speed up the searching for the global integer solution

to (5), Fincke and Pohst [8] suggested applying reduction methods to reduce Wf or equivalently a

lattice basis corresponding to Wf before solving (28). They found that the LLL algorithm is the most

efficient when compared with a few other reduction algorithms. The same idea of decorrelation was

utilized by Teunissen [35-36] in GPS ambiguity resolution. Other decorrelation/reduction techniques

can be found in Xu [45],[50]. Thus in the remainder of this section, without loss of generality, we can

assume that Wf of (28) has been reduced and we will search for the global optimal integer solution to

this reduced version of (28).

The basic idea of the searching method by Fincke and Pohst [8] is essentially equivalent to dynam-

ically shrinking the lower and upper bounds of searching window for each zi, based on the Cholesky

decomposition of the reduced Wf and given a progressively improved constraint constant Cim. With-

out loss of generality, we can assume that the reduced Wf has been decomposed into (10). Thus, given

an improved constant Cim with an intermediate integer solution zim, the ellipsoidal constraint (28b)

can be rewritten as follows:

m∑
i=1

dii

zi +
m∑

j=i+1

lji(zj − zfj )− zfi


2

≤ Cim, (29)

where Cim is equal to C at the beginning of searching. Accordingly, let us denote the searching window
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with the value of C by [z0i , z
0
i ] for each component of z. Obviously, from (29), we must have

dmm(zm − zfm)2 ≤ Cim, (30)

from which we can readily determine the lower and upper bounds of searching window for zm as follows:

zm = ⌊−
√

Cim/dmm + zfm⌋, (31a)

zm = ⌈
√
Cim/dmm + zfm⌉, (31b)

where zm and zm are the lower and upper integer bounds of zm, respectively. ⌊x⌋ stands for the integer
not larger than x and ⌈x⌉ for the integer not smaller than x, respectively.

If the searching of zm at the previous iteration has gone beyond [zm, zm], then zim is the final

global optimal integer solution. Otherwise, use [zm, zm] as the updated lower and upper bounds for

zm. In a similar manner, let us assume that we are now searching at the layer of zi from zm. In other

words, we have specific integer values for all the layers from zm to zi+1. Again, by following the same

procedure as in (30), we must have

dii(zi + si − zfi )
2 + Tc ≤ Cim, (32)

where

si =
m∑

j=i+1

lji(zj − zfj ),

Tc =

m∑
k=i+1

T k
c ,

T k
c = dkk

zk +

m∑
j=k+1

ljk(zj − zfj )− zfk


2

,

with k = i + 1, i + 2, ..., m. If Tc > Cim, one should return to the previous layer of zi+1 for a new

integer value. Otherwise, we can then determine the new lower and upper bounds of zi as follows:

zi = ⌊−
√
(Cim − Tc)/dii − si + zfi ⌋, (33a)

zi = ⌈
√
(Cim − Tc)/dii − si + zfi ⌉, (33b)

which are used to update the previous lower and upper bounds of zi and to continue the search for

the global optimal integer solution to (5). Actually, the condition of Tc > Cim is widely used in GPS

ambiguity resolution to avoid extra computation so far as a combination of GPS ambiguity unknowns

is found not to be a solution [18].

When i = 1, we start checking the candidates of z1, given the values of zi (i = 2, 3, ...,m). If a new

improved suboptimal integer solution is found, we update Cim and zim and, accordingly, further update

all the searching windows of zi (i = 1, 2, ...,m) with the newly improved value Cim; otherwise, after

finishing searching the first layer of z1, go to the next value of z2. In case that all the candidates of z2

have been tested, go to the next value of z3. This searching procedure is repeated until the final global

optimal integer solution is found. We should note that the searching windows for zi (i = 1, 2, ...,m)

have been dynamically shrunken. In other words, if we denote the shrunken window by [zsi , z
s
i ] for the

ith component of z, then we must have ri = (zsi − zsi )/(z
0
i − z0i ) ≤ 1. Since LAMBDA depends on the

initial searching window [z0i , z
0
i ], the searching strategy by Fincke and Pohst [8] is much faster than

LAMBDA in the sense that the ratio of integer candidates to be checked by both methods is roughly

equal to
∏m

i=1 ri ≤ rmmax, where rmax is the maximum value of all ri.
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The searching strategy of Fincke and Pohst [8] is to scan each layer of zi from left to right, namely,

starting from zi and incrementally moving to the end of zi. Alternatively, Schnorr and Euchner [29]

suggested that the searching at each layer starts from the middle of the interval [zi, zi] and progressively

moves oscillatorily to the two ends of zi and zi. For example, if [zi, zi] = [−4, 4], then the searching

ordering should be arranged in the order of 0, (1, −1), (2, −2), (3, −3) and finally (4, −4). This

oscillatory searching order at each layer by Schnorr and Euchner [29] has been shown to significantly

improve the searching efficiency of the algorithm by Fincke and Pohst [8] and has since been widely

implemented and used to find the global optimal integer solution to the ILS problem (5). For more

details, one can refer to Fincke and Pohst [8] and Schnorr and Euchner [29].

Now the question is whether the efficiency of the wonderful combined algorithm by Fincke and

Pohst [8] and Schnorr and Euchner [29], as discussed above, can be further improved. As is well

known, sorting can significantly and/or even fundamentally affect the efficiency of an algorithm in

scientific computation. Indeed, the contributions of Schnorr and Euchner [29] to the algorithm by

Fincke and Pohst [8] are twofold: (i) to abandon the strategy of scanning integer candidates from

one end to the other end but to re-order them in a zigzagged way from the center of the searching

window; and (ii) to re-arrange the integer unknowns according to the reduced weight matrix. These

two modifications have resulted in a profound improvement of speed to find the exact integer solution.

Obviously, the techniques by Schnorr and Euchner [29] can be interpreted in terms of sorting applied

both to z itself and the searching window for each zi.

The great success of Schnorr and Euchner [29] motivates us to explore different sorting or re-

ordering strategies for the integer unknowns themselves and to further develop the combined algorithm.

Actually, almost all widely used solution algorithms implement some kind of strategy to re-order the

integer unknowns. For example, the combined algorithm sorts the integer unknowns in the increasing

order of the diagonal elements of Wf , which will be referred to as the ascending sorting strategy. The

LAMBDA algorithm arranges the unknowns according to the accuracy of the reduced floating-point

solution. By assuming a unit weight matrix W = I of y, Damen et al. [7] applied reduction to the

coefficient matrix B and then used the V-BLAST ordering to re-arrange the integer unknowns. In

this section, we will extend the V-BLAST sorting strategy to a general weight matrix W of y. Since

the sorted QR ordering [42],[51-52] can significantly affect the performance of a suboptimal integer

solution, we will also implement it and see how it can affect the performance of finding the exact

integer solution.

To summarize, we assemble all the advantages of strategies either used for constructing a suboptimal

integer solution or for searching the exact global optimal integer solution together to improve the

combined algorithm by Fincke and Pohst [8] and Schnorr and Euchner [29] and the pseudo-codes are

listed in Algorithm 4. More precisely, Algorithm 4 attempts to solve the ILS problem (5) by fully

implementing all the advantages of lattice reduction/decorrelation, the early termination strategy and

the dynamical shrinking of a searching window size by Fincke and Pohst [8] and the oscillatory ordering

of searching window for each integer from the middle to the ends by Schnorr and Euchner [29], together

with the sorted QR and/or V-BLAST orderings by Xu et al. [51-52], Wübben et al. [42] and Golden

et al. [11]. We should note, however, that in the case of a high dimensional z, if one would only be

interested in the suboptimal integer solution of the sorted QR or V-BLAST type, one can immediately

stop at Step S4 and continue to construct the suboptimal integer solution, as formulated in (12).

16



Algorithm 4: Algorithm to solve the ILS problem (5)

S1 Input: Wf , zf and C
S2 Reduce and represent Wf as GWrG

T . zg = GT z and zr = GT zf
S3 Apply sorted QR or V-BLAST ordering to Wr, re-arrange zg and zr
S4 Cholesky-decompose Wr into LDLT

S5 Initialize: i← m, Cim ← C;
and without confusion, z← zg and zf ← zr
compute [zm, zm] by (31), arrange the integers of zm
from middle to ends into a vector z∗m, and zi ← z∗m(1)

S6 Compute Tc

S7 if Tc > Cim, increase i for the next integer of zi.
S8 if zi ∈ [zi, zi], go to Step S6;
S9 else

if i = m, output the solution zim and go to Step S17, end;
increase i for the next integer of zi
go to Step S8.

S10 end
S11 else i← (i− 1). Compute [zi, zi] and zi ← z∗i (1) ;
S12 if i = 1
S13 for each z1 ∈ [z1, z1], compute T 1

c + Tc and
update Cim via Cim ← T 1

c + Tc if T 1
c + Tc ≤ Cim

store/update the intermediate integer solution zim
after searching this layer, take the next value of z2 and i← 2.

S14 end
S15 go to Step S8;
S16 end
S17 Output: Use the solution zim, the ordering information of Step S3

and G to recover the final ILS solution.

To demonstrate efficiency improvement by sorted QR and V-BLAST and to give the reader a

comparative idea on the performances of the LAMBDA method by Teunissen [36] and the combined

algorithm by Fincke and Pohst [8] and Schnorr and Euchner [29], we show the following real-life GPS

example of a baseline of about 70 meters, whose Wf matrix and the associated floating solution zf

are respectively listed as follows:

Wf =



35.7965 18.9907 −4.5070 −33.0745 −2.9469 −6.1174 0.0072 −15.8043
18.9907 28.5008 −5.8801 −8.0326 8.3884 −24.1421 −20.0832 −0.5780
−4.5070 −5.8801 62.5920 1.5891 −8.8773 8.9281 −22.7657 −27.6485
−33.0745 −8.0326 1.5891 50.1116 4.8221 −24.9918 7.1409 2.3000
−2.9469 8.3884 −8.8773 4.8221 75.9902 9.4921 −8.6107 −10.1608
−6.1174 −24.1421 8.9281 −24.9918 9.4921 58.9446 0.9111 7.0683
0.0072 −20.0832 −22.7657 7.1409 −8.6107 0.9111 60.6125 −23.2253

−15.8043 −0.5780 −27.6485 2.3000 −10.1608 7.0683 −23.2253 56.1006


,

zf = (−1299632.965 1351127.969 847614.001 − 1544660.986

−290017.996 − 2417696.014 2252905.995 − 4816275.991)T .

Based on this example, we set two different values for C to show its effect on the speed to find

the exact solution. Keeping in mind that not all problems can be successfully decorrelated by any

existing reduction/decorrelation methods ([45],[50]), we also design two scenarios with and without

reduction/decorrection. To be scientifically fair for all the methods under comparison, we implement

a variant of LLL algorithm to decorrelate Wf . We then conduct the experiments with LAMBDA

(version 2.0b of 1999), the combined algorithms with and without the ascending ordering strategy, and

the improved methods with the incorporation of the sorted QR and V-BLAST orderings. Listed in

Table 1 are the total numbers of integer candidates that must be checked by each of the algorithms
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under comparison to find the global optimal integer solution (compare column “Opt” of Table 1). Since

geodesists are concerned with the second optimal integer solution, we also show the total numbers of

integer candidates that have to be tested by each algorithm to find the second optimal solution (compare

column “2Opt” of Table 1).

Table 1: Total numbers of integer candidates that have been checked with two different
values of C by each of the following algorithms: the combined algorithms [8],[29] with and
without the ascending ordering, the LAMBDA method [36], the improved algorithms with
the implementation of either the sorted QR or V-BLAST ordering, which are denoted by
SUPER1, SUPER2, LAMBDA, Improved1 and Improved2, respectively.

SUPER1 SUPER2 LAMBDA Improved1 Improved2
Methods Reduction

Opt 2Opt Opt 2Opt Opt 2Opt Opt 2Opt Opt 2Opt
C1 : Yes 8 17 8 17 14 24 8 17 8 17

10.2451 No 8 118 8 223 161 320 8 106 8 88
C2 : Yes 8 17 8 17 24711 49301 8 17 8 17

100.2451 No 8 147 8 277 49224 98525 8 136 8 108

It is clear from Table 1 that given the two values of C, the combined algorithm by Fincke and

Pohst [8] and Schnorr and Euchner [29] and the improved methods with either of the sorting strategies

(sorted QR and V-BLAST) have an excellent performance in finding the global optimal integer solution.

They are significantly faster than LAMBDA by a factor from 75 per cent to 3088 in the case of a

decorrelated Wf and by a factor from 20 to 6152 in the case of a non-decorrelated Wf . This latter

case is not superficial, since simulations have clearly indicated that not all Wf with a reasonably large

condition number can be successfully decorrelated by any reduction/decorrelation methods available

in the literature up to the present ([45],[50]). If the second optimal integer solution is to be sought,

the improved methods perform clearly better than the combined algorithms by Fincke and Pohst [8]

and Schnorr and Euchner [29] in the case of the original Wf . It is also obvious from Table 1 that

the combined algorithm with the ascending sorting strategy performs significantly better than that

without the same sorting strategy. We also test the combined algorithm by sorting z in the decreasing

order of the weights of the floating solution. The searching speeds are a few times slower than those

reported in Table 1, when the second optimal solution is sought. Thus the results are not reported here.

The sorting strategy V-BLAST in column Improved2 performs better than the sorted QR ordering in

column Improved1; nevertheless, V-BLAST requires much more time than the sorted QR to obtain

the ordering of z.

Finally, to summarize the similarity and/or difference among the exact searching methods, we show

the features of each algorithm/method in Table 2. The abbreviations used in Table 2 are explained as

follows. SUPER1, SUPER2, LAMBDA, Improved1 and Improved2 have been defined as in Table 1.

FPohst stands for the method proposed by Fincke and Pohst (1985); ScanE2E for scanning the can-

didates of each integer from end to end; DynShrink for dynamical shrinking; ScanZZ for scanning the

candidates of each integer in a zigzagged manner; SortingZ for sorting all the integer unknowns in

the sense of minimum conditional variance and/or maximum conditional weight. In addition, DESC

stands for sorting z in the decreasing order of the diagonal elements of Wf ; ASCEW for the ascending

sorting strategy; DESCV for sorting z according to the variances of the floating solution; SortedQR

for the sorted QR strategy and VBLAST for the V-BLAST ordering.
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Table 2: Features and/or components used by each of the exact ILS methods.

Methods FPohst SUPER1 SUPER2 LAMBDA Improved1 Improved2
ScanE2E X X
DynShrink X X X X X
Reduction X X X X X X
ScanZZ X X X X
SortingZ DESC ASCEW DESCV SortedQR VBLAST

6 Concluding remarks

The mixed integer linear model (1) or the integer linear model (2) is a starting basis of integer statistical

inference. Although the real-valued linear model has been well documented both in standard books on

statistics and in publications in professional journals of statistics, statisticians have contributed very

little to the study of (1) or (2). Estimating integer unknowns from noisy data has been becoming

increasingly important for highly interdisciplinary applications. Very often, scientists and engineers

from different discipline publish their research results in journals within their own community and in

different languages or terminologies. As a result, researchers from one area of science/engineering may

not realize any progress achieved by other researchers from other areas of science/engineering, even

though they are all dealing with (1) and/or (2).

We have discussed the methods for estimating integer unknowns from noisy data from an applications-

oriented point of view. When the least squares method or the maximum likelihood is applied to (1)

or (2), we can derive the ILS problem or equivalently, the weighted closest point problem. Since the

ILS problem is NP-hard, there exist no algorithms to find the exact solution in polynomial time. Thus

for high dimensional problems, one may only expect a suboptimal integer solution. We have shown a

unified scheme to derive such a suboptimal integer solution, whose quality depends on how the positive

definite matrix Wf is re-organized and decomposed. Two most successful ordering schemes are the

sorted QR ordering proposed by Xu et al. [51] and independently by Wübben et al. [42] and the

V-BLAST ordering proposed by Bell Laboratories (see, e.g., [11]). For low dimensional problems, the

most popular and powerful searching method originated from Fincke and Pohst [8] and was further

developed by Schnorr and Euchner [29], which essentially consists of four basic elements, namely, (i)

reduction/decorrelation, (ii) dynamically improving the size of searching window, (iii) scanning (or

equivalently, sorting the ordering of) the integer candidates of each integer unknown in the zigzagged

manner; and (iv) sorting the integer unknowns in the ascending order of the diagonal elements of the

weight matrix.

The sorted QR [42],[51-52] and V-BLAST [11] ordering strategies have been successfully used to

construct suboptimal integer solutions. From the statistical point of view, these two ordering strategies

are to re-order or sort the integer unknowns on the basis of maximum conditional weighting and

minimum conditional variance, respectively. In this paper, we have assumed a general weight matrix

W of y, incorporated these two sorting strategies into the combined algorithm and further improved

it to find the global optimal integer solution. All the basic ideas in this paper can naturally be used

either to construct reduction-aided suboptimal integer solutions for high dimensional problems or to

find the exact solution for low dimensional problems. In this latter case, the test examples have clearly

shown that: (i) the popular combined algorithm performs significantly better than LAMBDA by a

factor from 75 per cent to 6152, depending on the chosen C value and the condition of Wf ; and (ii)

the improved methods are clearly better than the popular combined algorithm when searching for

the optimal and second optimal integer solutions, if Wf cannot be well reduced. We should note,
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however, that although the V-BLAST ordering is shown to perform better than the sorted QR, such

an advantage should not be over-emphasized, since this ordering requires much more time to compute.
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