BHK interpretation and Bilateralism

大西琢朗 Takuro Onishi

14 March 2012 PhilLogMath
Bilateralism

\[
\text{Meaning} = \text{Assertion and Denial}
\]

- Inferentialism and proof-theoretic semantics.
- Smiley, Rumfitt, Restall, Ripley, etc.

vs. Unilateralism: Constructive PTS (BHK, Dummett, Prawitz) and its dual version

♡ Two unilateralist semantics fit together?
 - Assertion & denial, proof & dual proof
 - How to show the fit between two meanings?
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Two unilateralist semantics</th>
<th>Bi-Intuitionist Logic</th>
<th>Bilateralist validity</th>
</tr>
</thead>
</table>

Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
BHK interpretation

- A proof of $A \land B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a proof b of B.
- A proof of $A \lor B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a proof of A, or $i = 1$ and x is a proof of B.
- A proof of $A \rightarrow B$ is a construction that transforms any proof of A into a proof of B.
- \bot has no proof.
BHK interpretation and PTS
(Dummett 1991; Prawitz 2006; Schroeder-Heister 2006)

- Explanation of conditions of assertion in terms of the primitive notion of proof (or construction).
- Suitable for Intuitionist Logic.

Definition
A sequent $A_1, \ldots, A_n \vdash B$ is i-valid if there is a construction that transforms any list a_1, \ldots, a_n of proofs of A_1, \ldots, A_n into a proof of B.

Proposition (correctness)
If $A_1, \ldots, A_n \vdash B$ is derivable in NJ (LJ), then it is i-valid.
Dual BHK

- Another unilateralist semantics
- In terms of dual proofs

⇒ Dual-BHK and Dual-Intuitionist Logic
LJ for Int

- "Singleton on the right"

\[\Gamma, \bot \vdash C \quad (\bot L) \quad \frac{\Gamma \vdash A}{\Gamma, \Gamma' \vdash C} \quad (Cut) \]

\[\frac{\Gamma \vdash C}{\Gamma, A \vdash C} \quad (Weakening) \quad \frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} \quad (Contraction) \]

\[\frac{\Gamma, A_i \vdash C}{\Gamma, A_0 \land A_1 \vdash C} \quad (\land L) \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land R) \]

\[\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C} \quad (\lor L) \quad \frac{\Gamma \vdash A_i}{\Gamma \vdash A_0 \lor A_1} \quad (\lor R) \]

\[\frac{\Gamma \vdash A \quad \Gamma', B \vdash C}{\Gamma, \Gamma', A \rightarrow B \vdash C} \quad (\rightarrow L) \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \quad (\rightarrow R) \]

- \(\neg A := A \rightarrow \bot \).
LDJ for dual-Int

• ”Singleton on the left”, \(\leftarrow\): subtraction, exclusion

\[
A \vdash A \quad \text{(Id)} \\
C \vdash \top, \Delta \quad \text{(\(\bot\)L)} \\
\frac{C \vdash \Delta}{C \vdash A, \Delta} \quad \text{(Weakening)} \\
\frac{C \vdash A, A, \Delta}{C \vdash A, \Delta} \quad \text{(Contraction)} \\
\frac{C \vdash A, \Delta}{C \vdash A_i, \Delta} \quad \text{(\(\land\)L)} \\
\frac{A \vdash \Delta \quad B \vdash \Delta}{A \lor B \vdash \Delta} \quad \text{(\(\lor\)L)} \\
\frac{C \vdash B, \Delta}{C \vdash A \leftarrow B, \Delta} \quad \text{(\(\leftarrow\)L)} \\
\frac{C \vdash A, \Delta \quad B \vdash \Delta'}{C \vdash A \leftarrow B, \Delta, \Delta'} \quad \text{(\(\leftarrow\)R)}
\]

• \(\sim A := \top \leftarrow A\).
Dual-BHK interpretation
(cf. Wansing 2010)

- A dual proof of $A \land B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a dual proof of A, or $i = 1$ and x is a dual proof of B.
- A dual proof of $A \lor B$ is a pair $\langle a, b \rangle$ consisting of a dual proof a of A and a dual proof b of B.
- A dual proof of $A \rightarrow B$ is a construction that transforms any dual proof of B into a dual proof of A.
- \top has no dual proof.
Dual-BHK interpretation

- Explanation of conditions of denial in terms of dual proof (yet another kind of construction).
- Suitable for Dual Intuitionist Logic.

Definition
A sequent $A \vdash B_1, \ldots, B_m$ is d-valid if there is a construction that transforms any list of dual proofs of B_1, \ldots, B_m into a dual proof of A.

Proposition (correctness)
If $A \vdash B_1, \ldots, B_m$ is derivable in LDJ, then it is d-valid.
Problems

• BHK and Dual-BHK: two unilateralist semantics.
 How do they agree or disagree on the meaning?

• Bi-Intuitionist Logic: A logic with the features of Intuitionist and Dual Intuitionist Logic.
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Model theory for Bilnt

Definition (Language)

\[\mathcal{L} := \{ \land, \lor, \to, \leftrightarrow \}. \]

Let \(\bot := p \leftrightarrow p \) and \(\top := p \to p \) for some fixed atom \(p \).
And define \(\neg A := A \to \bot \) and \(\sim A := \top \leftarrow A \).

Definition (Model)

A Bilnt model is a triple \(\langle W, \leq, V \rangle \) where

- \(W \) : a non-empty set (of possible worlds)
- \(\leq \) : a reflexive and transitive relation on \(W \)
- \(V : \text{Atom} \rightarrow 2^W \), a valuation which is persistent, i.e.

\[(\forall w, w' \in W)(w \in V(p) \text{ and } w \leq w' \Rightarrow w' \in V(p)). \]
Model theory for Bilnt (cont.)

Definition
Given a Bilnt model $\langle W, \leq, V \rangle$, write $w \models p$ for $w \in V(p)$. The relation \models extends as follows:

- $w \models A \land B$ if $w \models A$ and $w \models B$
- $w \models A \lor B$ if $w \models A$ or $w \models B$
- $w \models A \rightarrow B$ if $\forall v \geq w(v \models A \Rightarrow v \models B)$
- $w \models A \leftrightarrow B$ if $\exists v \leq w(v \models A \text{ and } v \not\models B)$
Proposition (Persistence)
\[\models \text{satisfies the persistence condition, i.e. for any formula } A, \]
\[(\forall w, w' \in W)(w \models A \text{ and } w \leq w' \implies w' \models A). \]

Definition (Validity)
For any formula \(A \) and \(B \), we define
\[A \models B \iff_{\text{def.}} \text{for any Bilnt model } \langle W, \leq, V \rangle \text{ and any } \]
\[w \in W, \text{ if } w \models A \text{ then } w \models B. \]
Characteristic validity and invalidity

Recall $\perp = p \Leftarrow p$, $\top = p \rightarrow p$ and

$$\neg A := A \rightarrow \perp$$

(intuitionist negation)

$$\sim A := \top \Leftarrow A$$

(dual intuitionist negation)

- $\top \not\models A \vee \neg A$ but $\top \models A \vee \sim A$.
- $A \land \neg A \models \perp$ but $A \land \sim A \not\models \perp$.
- $\not\models (A \rightarrow (B \lor C)) \rightarrow ((A \rightarrow B) \lor C)$
- $\not\models (A \land (B \Leftarrow C)) \rightarrow ((A \land B) \Leftarrow C)$.

Display Calculus δ-Bilnt
(Belnap 1982; Wansing 2010)

- A generalization of sequent calculus
- A sequent $X \vdash Y$ consists of *structures* X and Y instead of sequences, multisets or sets of formulas.

Definition (structures)

The set of structures for δ-Bilnt is defined by:

$$X ::= A \mid I \mid X \circ X \mid X \bullet X.$$

Intuitively, I represents an empty structure and \circ (\bullet) corresponds to a comma on LHS (RHS).
Logical rules for \(\delta\)-BilInt

\[
\frac{A \circ B \vdash Y}{A \land B \vdash Y} \quad (\land L) \quad \frac{X \vdash A \quad Y \vdash B}{X \circ Y \vdash A \land B} \quad (\land R)
\]

\[
\frac{A \vdash X \quad B \vdash Y}{A \lor B \vdash X \bullet Y} \quad (\lor L) \quad \frac{X \vdash A \bullet B}{X \vdash A \lor B} \quad (\lor R)
\]

\[
\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y} \quad (\rightarrow L) \quad \frac{X \vdash A \circ B}{X \vdash A \rightarrow B} \quad (\rightarrow R)
\]

\[
\frac{A \bullet B \vdash Y}{A \leftarrow B \vdash Y} \quad (\leftarrow L) \quad \frac{X \vdash A \quad B \vdash Y}{X \bullet Y \vdash A \leftarrow B} \quad (\leftarrow R)
\]
Definition (display rules)

The display calculus δ-BiInt has the following display rules:

\[
\begin{align*}
&X \circ Y \vdash Z \\
&\frac{X \vdash Y \circ Z}{Y \circ X \vdash Z} \quad \\
&Z \vdash X \cdot Y \\
&\frac{Z \cdot X \vdash Y}{Z \vdash Y \cdot X}
\end{align*}
\]

Intuitively,

\[
\begin{align*}
&A \land B \vdash C \\
&\frac{A \vdash B \rightarrow C}{B \land A \vdash C} \quad \\
&C \vdash A \lor B \\
&\frac{C \leftarrow A \vdash B}{C \vdash B \lor A}
\end{align*}
\]
Structural rules for δ-Bilnt

\[p \vdash p \quad \text{(Id)} \]

\[\frac{X \vdash Y}{X \circ I \vdash Y} \quad \frac{X \vdash Y}{X \vdash Y \bullet I} \]

\[X \vdash Y \quad \text{(lm)} \quad X \vdash Y \quad \text{(rm)} \]

\[\frac{X \circ X \vdash Y}{X \vdash Y} \quad \frac{X \vdash Y \bullet Y}{X \vdash Y} \quad \frac{X \vdash Y \bullet Y}{X \vdash Y} \quad \text{(rc)} \]

\[\frac{(X \circ Y) \circ Z \vdash W}{X \circ (Y \circ Z) \vdash W} \quad \frac{W \vdash (X \bullet Y) \bullet Z}{W \vdash X \bullet (Y \bullet Z)} \quad \text{(ra)} \]
Display property

Definition (antecedent and succedent part)

Given a sequent $S = X \vdash Y$, we define

- X is AP (an antecedent part) of S;
- Y is SP (a succedent part) of S;
- $(W \circ Z)$ is AP $\Rightarrow W, Z$ are AP;
- $(W \circ Z)$ is SP $\Rightarrow W$ is AP and Z is SP;
- $(W \bullet Z)$ is AP $\Rightarrow W$ is AP and Z is SP;
- $(W \bullet Z)$ is SP $\Rightarrow W, Z$ are SP.
Display property

Proposition (display property)
For any sequent \(S = X \vdash Y \) and any substructure \(Z \) of it, we can display the occurrence of \(Z \), i.e. there is a sequent \(S' \) such that:
- \(S \) and \(S' \) are interderivable by means of display rules only,
- If \(Z \) is AP of \(S \), then \(S' \) is of the form \(Z \vdash Y' \) and
- If \(Z \) is SP of \(S \), then \(S' \) is of the form \(X' \vdash Z \).

Theorem (Cut elimination)
Cut is eliminable from any derivation in \(\delta\text{-BiInt} + \text{Cut} \).
Completeness

Definition
The translations τ_1 and τ_2 from structures into formulas are defined inductively as:

$$
\begin{align*}
\tau_1(A) &:= A \\
\tau_1(I) &:= \top(= p \rightarrow p) \\
\tau_1(X \circ Y) &:= \tau_1(X) \land \tau_1(Y) \\
\tau_1(X \bullet Y) &:= \tau_1(X) \leftarrow \tau_2(Y)
\end{align*}
$$

$$
\begin{align*}
\tau_2(A) &:= A \\
\tau_2(I) &:= \perp(= p \leftarrow p) \\
\tau_2(X \circ Y) &:= \tau_1(X) \rightarrow \tau_2(Y) \\
\tau_2(X \bullet Y) &:= \tau_2(X) \lor \tau_2(Y)
\end{align*}
$$

Theorem (Completeness)
$X \vdash Y$ is derivable in δ-Bilnt if and only if $\tau_1(X) \models \tau_2(Y)$.

Logical rules for δ-Bilnt (revised)

$\frac{A_i \vdash Y}{A_0 \land A_1 \vdash Y}$ \hspace{1em} ($\land L$) \hspace{1em} $\frac{X \vdash A \quad X \vdash B}{X \vdash A \land B}$ \hspace{1em} ($\land R$)

$\frac{A \vdash Y \quad B \vdash Y}{A \lor B \vdash Y}$ \hspace{1em} ($\lor L$) \hspace{1em} $\frac{X \vdash A_i}{X \vdash A_0 \lor A_1}$ \hspace{1em} ($\lor R$)

$\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y}$ \hspace{1em} ($\rightarrow L$) \hspace{1em} $\frac{X \vdash A \circ B}{X \vdash A \rightarrow B}$ \hspace{1em} ($\rightarrow R$)

$\frac{A \bullet B \vdash Y}{A \leftarrow B \vdash Y}$ \hspace{1em} ($\leftarrow L$) \hspace{1em} $\frac{X \vdash A \quad B \vdash Y}{X \bullet Y \vdash A \leftarrow B}$ \hspace{1em} ($\leftarrow R$)
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Fit?

- Proofs and dual proofs coexist in δ-BiInt.
- Two kind of meanings fit together in δ-BiInt?
- BHK and Dual-BHK must be extended to interpret ← and →.
BHK interpretation extended
(cf. Wansing 2010)

- A proof of $A \land B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a proof b of B.
- A proof of $A \lor B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a proof of A, or $i = 1$ and x is a proof of B.
- A proof of $A \rightarrow B$ is a construction that transforms any proof of A into a proof of B.
- A proof of $A \leftarrow B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a dual proof b of B.
Dual-BHK interpretation extended
(cf. Wansing 2010)

- A dual proof of $A \land B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a dual proof of A, or $i = 1$ and x is a dual proof of B.
- A dual proof of $A \lor B$ is a pair $\langle a, b \rangle$ consisting of a dual proof a of A and a dual proof b of B.
- A dual proof of $A \leftarrow B$ is a construction that transforms any dual proof of B into a dual proof of A.
- A dual proof of $A \rightarrow B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a dual proof b of B.
\textbf{i-validity fails}

A rule in \(\delta\)-BiInt that is not i-valid.

\[
\frac{Z \bullet X \vdash Y}{Z \vdash X \bullet Y} \quad \approx \quad \frac{A \leftarrow B \vdash C}{A \vdash B \lor C}
\]

- \(\bullet\) on RHS: sequents become multiple-conclusion.
- Impossible to interpret it as intuitionist’s disjunction with disjunction property.
- Proof is not preserved from LHS to RHS.
- At most \textit{impossibility of dual proof} of RHS

The same applies to d-validity.
Bilateralist reading of sequents
(cf. Restall 2005)

Definition

\(A \vdash B \) is b-valid if it is not the case that \(A \) has a proof and \(B \) has a dual proof.

- to assert \(A \) and to deny \(B \) is to make a mistake;
- if \(A \) has a proof then \(B \) can’t have a dual proof;
- if \(B \) has a dual proof then \(A \) can’t have a proof.

\(\Rightarrow \) Two criteria of fit between proof & dual proof
Criterion 1: Identity

\[A \vdash A \]

- A can’t have both a proof and a dual proof.
- No clash between proofs and dual proofs.
- No overlap between assertion and denial.
- Established directly by BHK and Dual-BHK on the assumptions \(p \vdash p \).
- Derivable in \(\delta\text{-BiInt} \).
Criterion 2: Cut

\[
\frac{X \vdash A \quad A \vdash Y}{X \vdash Y} \quad \text{(Cut)}
\]

- \(X \vdash A\): a proof of \(X\) excludes dual-provability of \(A\)
- \(A \vdash Y\): a dual proof of \(Y\) excludes provability of \(A\), then
- \(X \vdash Y\): the proof of \(X\) clashes with the dual proof of \(Y\).

I.e. it is impossible to exclude both provability and dual-provability of \(A\) without any clash.

- No gap between assertion and denial.
Fit

- Cut & Identity: criteria of fit between proofs & dual proofs.
 - Agreement on meanings between BHK and dual-BHK
- No problem with Identity. How about Cut?
- Seems difficult to establish directly by BHK and dual-BHK.
- Cut elimination for δ-BiInt tells us something?
Failure of b-validity

Almost all rules in δ-BiInt are b-valid except for:

$$
\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y} \quad (\rightarrow L) \quad \frac{X \vdash A \quad B \vdash Y}{X \bullet Y \vdash A \leftarrow B} \quad (\leftarrow R)
$$

A proof of $A \rightarrow B$ requires a proof of A. But $X \vdash A$ gives at most impossibility of dual proof of A.

To make them b-valid:

$$
\frac{B \vdash Y}{A \rightarrow B \vdash A \circ Y} \quad (\rightarrow L') \quad \frac{X \vdash A}{X \bullet B \vdash A \leftarrow B} \quad (\leftarrow R')
$$
New rules are equivalent to the original through Cut:

\[
\begin{align*}
B & \vdash Y \\
A \rightarrow B & \vdash A \circ Y \\
X & \vdash A \\
A & \vdash A \rightarrow B \circ Y \\
& \quad (\text{Cut}) \\
& \quad (\rightarrow L') \\
& \quad (\rightarrow L)
\end{align*}
\]

Let Cut' denote Cut of this form (and the dual form for $\leftarrow R'$).
Weak Cut-elimination

- δ-BiInt' = the system with $\rightarrow L'$ and $\leftarrow R'$
 - Every rule is b-valid.
 - δ-BiInt' + Cut' \cong δ-BiInt

Fact (cf. Schroeder-Heister forthcoming)

δ-BiInt' + Cut \cong δ-BiInt' + Cut' $\not\cong$ δ-BiInt'.

- δ-BiInt': b-valid but Cut' is not admissible.
- δ-BiInt: Cut is admissible but not b-valid.
Example of failure of *Cut’*

\[\begin{align*}
\text{Premise: } & p \\
\text{Premise: } & p \lor q \\
\text{Conclusion: } & (p \lor q) \rightarrow r
\end{align*} \]

\[\frac{r \vdash r}{(\rightarrow L')} \]

\[\frac{(p \lor q) \rightarrow r \vdash p \lor q \circ r}{(Cut')} \]

\[\frac{p \vdash p \lor q}{(Cut')} \]

\[\frac{p \vdash (p \lor q) \rightarrow r \circ r}{(Cut')} \]
\[
\frac{X \vdash A \quad A \vdash Y}{X \nvdash Y} \quad \text{(Cut)}
\]

Failure of Cut indicates:

- there may be a combination of a proof of \(X \) and a dual proof of \(Y \) such that:
 - the former excludes dual-provability of \(A \),
 - the latter excludes provability of \(A \),
 - but they don’t cause any clash in \(\delta\text{-BiInt} \).

A gap between proof and dual proof.
Conclusion

Under Bilateralist reading of sequents,

- Cut & Identity: Criteria of fit between two aspects
- Failure of Cut': a gap between proof and dual proof.
- Cut admissibility in δ-BiInt:
 - Proof and dual proof are adjusted implicitly.
 - → L and ← R are where the adjustment occurs.
Relativized b-validity

To make this observation more precise, b-validity (and extensions of (dual-)BHK) should be defined more carefully:

Definition (Atomic base)

An atomic base is a pair $\langle s, t \rangle$ of two sets of atomic formulas with $s \cap t = \emptyset$. Define the relation \vdash between atomic bases and signed atomic formulas as:

$$\langle s, t \rangle \vdash +p \iff p \in s;$$

$$\langle s, t \rangle \vdash -p \iff p \in t.$$
Relativized \(\mathfrak{b} \)-validity

Definition

\(\models \) extends as follows:

\[
\begin{align*}
\langle s, t \rangle \models +T & \quad \iff \quad \langle s, t \rangle \not\models +\bot \\
\langle s, t \rangle \models +(A \land B) & \quad \iff \quad \langle s, t \rangle \models +A \text{ and } \langle s, t \rangle \models +B \\
\langle s, t \rangle \models +(A \lor B) & \quad \iff \quad \langle s, t \rangle \models +A \text{ or } \langle s, t \rangle \models +B \\
\langle s, t \rangle \models +(A \rightarrow B) & \quad \iff \quad \forall s' \supseteq s. \langle s', t \rangle \models +A \text{ implies } \langle s', t \rangle \models +B \\
\langle s, t \rangle \models +(A \leftarrow B) & \quad \iff \quad \exists s' \subseteq s \exists t' \supseteq t. \\
& \qquad \langle s', t' \rangle \models +A \text{ and } \langle s', t' \rangle \models +B
\end{align*}
\]

Dually for \(\langle s, t \rangle \models -A \). Especially,

\[
\begin{align*}
\langle s, t \rangle \models -(A \rightarrow B) & \quad \iff \quad \exists t' \subseteq t \exists s' \supseteq s. \\
& \quad \langle s', t' \rangle \models +A \text{ and } \langle s', t' \rangle \models +B
\end{align*}
\]
Relativized b-validity

Proposition

(1) Persistence:
- $\langle s, t \rangle \vdash +A$ and $s' \supseteq s$ implies $\langle s', t \rangle \vdash +A$.
- $\langle s, t \rangle \vdash -A$ and $t' \supseteq t$ implies $\langle s, t' \rangle \vdash -A$.

(2) Irrelevance:
- If $\langle s, t \rangle \vdash +A$, then for any t', $\langle s, t' \rangle \vdash +A$.
- If $\langle s, t \rangle \vdash -A$, then for any s', $\langle s', t \rangle \vdash +A$.

(3) Consistency: It is not the case that $\langle s, t \rangle \vdash +A$ and $\langle s, t \rangle \vdash -A$.
Relativized b-validity

Definition (b-validity)

A sequent $A \vdash B$ is $\langle s, t \rangle$-valid if it is not the case that $\langle s, t \rangle \not\models +A$ and $\langle s, t \rangle \not\models -B$.

$A \vdash B$ is b-valid if it is $\langle s, t \rangle$-valid for any $\langle s, t \rangle$.

Proposition (Soundness)

If $X \vdash Y$ is derivable in δ-BiInt', then it is b-valid.

Proposition

Cut', Intuitionist LEM, $(A \rightarrow (B \lor C)) \rightarrow ((A \rightarrow B) \lor C)$ etc. are not b-valid.
References (1)

References (2)

