BHK interpretation and Bilateralism

大西琢朗 Takuro Onishi

14 March 2012 PhilLogMath
Bilateralism

\[\text{Meaning} = \text{Assertion and Denial}\]

- Inferentialism and proof-theoretic semantics.
- Smiley, Rumfitt, Restall, Ripley, etc.

vs. Unilateralism: Constructive PTS (BHK, Dummett, Prawitz) and its dual version

 Loving Two unilateralist semantics fit together?
 - Assertion & denial, proof & dual proof
 - How to show the fit between two meanings?
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
BHK interpretation

- A proof of $A \land B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a proof b of B.
- A proof of $A \lor B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a proof of A, or $i = 1$ and x is a proof of B.
- A proof of $A \rightarrow B$ is a construction that transforms any proof of A into a proof of B.
- \bot has no proof.
BHK interpretation and PTS
(Dummett 1991; Prawitz 2006; Schroeder-Heister 2006)

- Explanation of conditions of assertion in terms of the primitive notion of proof (or construction).
- Suitable for Intuitionist Logic.

Definition
A sequent $A_1, \ldots, A_n \vdash B$ is i-valid if there is a construction that transforms any list a_1, \ldots, a_n of proofs of A_1, \ldots, A_n into a proof of B.

Proposition (correctness)
If $A_1, \ldots, A_n \vdash B$ is derivable in NJ (LJ), then it is i-valid.
Dual BHK

- Another unilateralist semantics
- In terms of dual proofs

⇒ Dual-BHK and Dual-Intuitionist Logic
LJ for Int

- "Singleton on the right"

\[
\begin{align*}
A &\vdash A \quad \text{(Id)} \\
\Gamma, \bot &\vdash C \quad \text{(} \bot \text{L)} \\
\frac{\Gamma \vdash C}{\Gamma, A \vdash C} \quad \text{(Weakening)} \\
\frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} \quad \text{(Contraction)} \\
\frac{\Gamma, A_i \vdash C}{\Gamma, A_0 \land A_1 \vdash C} \quad \text{(}\land\text{L)} \\
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \quad \text{(}\land\text{R)} \\
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C} \quad \text{(}\lor\text{L)} \\
\frac{\Gamma \vdash A_i}{\Gamma \vdash A_0 \lor A_1} \quad \text{(}\lor\text{R)} \\
\frac{\Gamma \vdash A \quad \Gamma', B \vdash C}{\Gamma, \Gamma', A \to B \vdash C} \quad \text{(}\to\text{L)} \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \quad \text{(}\to\text{R)}
\end{align*}
\]

- \(\neg A := A \to \bot \).
LDJ for dual-Int

- "Singleton on the left", \iff: subtraction, exclusion

\[
\begin{align*}
A \vdash A \quad & (\text{Id}) & C \vdash \top, \Delta \quad & (\bot L) & \frac{C \vdash \Delta, \Delta'}{C \vdash \Delta, \Delta'} \quad (\text{Cut}) \\
\frac{C \vdash \Delta}{C \vdash A, \Delta} \quad & (\text{Weakening}) & \frac{C \vdash A, A, \Delta}{C \vdash A, \Delta} \quad & (\text{Contraction}) \\
\frac{A_i \vdash \Delta}{A_0 \land A_1 \vdash \Delta} \quad & (\land L) & \frac{C \vdash A, \Delta \quad C \vdash B, \Delta}{C \vdash A \land B, \Delta} \quad & (\land R) \\
\frac{A \vdash \Delta \quad B \vdash \Delta}{A \lor B \vdash \Delta} \quad & (\lor L) & \frac{C \vdash A_i, \Delta}{C \vdash A_0 \lor A_1, \Delta} \quad & (\lor R) \\
\frac{A \vdash B, \Delta}{A \iff B \vdash \Delta} \quad & (\iff L) & \frac{C \vdash A, \Delta \quad B \vdash \Delta'}{C \vdash A \iff B, \Delta, \Delta'} \quad & (\iff R) \\
\end{align*}
\]

- $\sim A := \top \iff A$.
Dual-BHK interpretation
(cf. Wansing 2010)

- A dual proof of $A \land B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a dual proof of A, or $i = 1$ and x is a dual proof of B.
- A dual proof of $A \lor B$ is a pair $\langle a, b \rangle$ consisting of a dual proof a of A and a dual proof b of B.
- A dual proof of $A \leftarrow B$ is a construction that transforms any dual proof of B into a dual proof of A.
- \top has no dual proof.
Dual-BHK interpretation

- Explanation of **conditions of denial** in terms of dual proof (yet another kind of construction).
- Suitable for Dual Intuitionist Logic.

Definition
A sequent $A \vdash B_1, \ldots, B_m$ is d-**valid** if there is a construction that transforms any list of dual proofs of B_1, \ldots, B_m into a dual proof of A.

Proposition (correctness)
If $A \vdash B_1, \ldots, B_m$ is derivable in LDJ, then it is d-valid.
Problems

- BHK and Dual-BHK: two unilateralist semantics.
 How do they agree or disagree on the meaning?

- Bi-Intuitionist Logic: A logic with the features of Intuitionist and Dual Intuitionist Logic.
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Model theory for Bilnt

Definition (Language)

\[\mathcal{L} := \{ \land, \lor, \to, \iff \} . \]

Let \(\bot := p \iff p \) and \(\top := p \to p \) for some fixed atom \(p \).
And define \(\neg A := A \to \bot \) and \(\sim A := \top \iff A \).

Definition (Model)

A Bilnt model is a triple \(\langle W, \leq, V \rangle \) where

- \(W \) : a non-empty set (of possible worlds)
- \(\leq \) : a reflexive and transitive relation on \(W \)
- \(V : \text{Atom} \to 2^W \), a valuation which is persistent, i.e.

\[(\forall w, w' \in W)(w \in V(p) \text{ and } w \leq w' \Rightarrow w' \in V(p)) \].
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity

Model theory for Bilnt (cont.)

Definition
Given a Bilnt model $\langle W, \leq, V \rangle$, write $w \models p$ for $w \in V(p)$. The relation \models extends as follows:

- $w \models A \land B$ if $w \models A$ and $w \models B$
- $w \models A \lor B$ if $w \models A$ or $w \models B$
- $w \models A \rightarrow B$ if $(\forall v \geq w)(v \models A \Rightarrow v \models B)$
- $w \models A \leftrightarrow B$ if $(\exists v \leq w)(v \models A$ and $v \not\models B)$
Model theory for Bilnt (cont.)

Proposition (Persistence)
\[\models \text{ satisfies the persistence condition, i.e. for any formula } \mathcal{A}, \]
\[(\forall w, w' \in W)(w \models \mathcal{A} \text{ and } w \leq w' \Rightarrow w' \models \mathcal{A}). \]

Definition (Validity)
For any formula \(\mathcal{A} \) and \(\mathcal{B} \), we define
\[\mathcal{A} \models \mathcal{B} \iff \text{def. for any Bilnt model } \langle W, \leq, V \rangle \text{ and any } \]
\[w \in W, \text{ if } w \models \mathcal{A} \text{ then } w \models \mathcal{B}. \]
Characteristic validity and invalidity

Recall \(\bot = p \leftrightarrow p, \top = p \rightarrow p \) and

\[
\neg A := A \rightarrow \bot \\
\sim A := \top \leftarrow A
\]

(intuitionist negation)

(dual intuitionist negation)

- \(\top \not\models A \lor \neg A \) but \(\top \models A \lor \sim A \).
- \(A \land \neg A \models \bot \) but \(A \land \sim A \not\models \bot \).
- \(\not\models (A \rightarrow (B \lor C)) \rightarrow ((A \rightarrow B) \lor C) \)
- \(\not\models (A \land (B \leftarrow C)) \rightarrow ((A \land B) \leftarrow C) \).
Display Calculus \(\delta \)-Bilnt
(Belnap 1982; Wansing 2010)

- A generalization of sequent calculus
- A sequent \(X \vdash Y \) consists of structures \(X \) and \(Y \) instead of sequences, multisets or sets of formulas.

Definition (structures)

The set of structures for \(\delta \)-Bilnt is defined by:

\[
X ::= A \mid I \mid X \circ X \mid X \bullet X.
\]

Intuitively, \(I \) represents an empty structure and \(\circ \) (\(\bullet \)) corresponds to a comma on LHS (RHS).
Logical rules for δ-Bilnt

\[
\frac{A \circ B \vdash Y}{A \land B \vdash Y} \quad (\land L) \quad \frac{X \vdash A \quad Y \vdash B}{X \circ Y \vdash A \land B} \quad (\land R)
\]

\[
\frac{A \vdash X \quad B \vdash Y}{A \lor B \vdash X \bullet Y} \quad (\lor L) \quad \frac{X \vdash A \bullet B}{X \vdash A \lor B} \quad (\lor R)
\]

\[
\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y} \quad (\rightarrow L) \quad \frac{X \vdash A \circ B}{X \vdash A \rightarrow B} \quad (\rightarrow R)
\]

\[
\frac{A \bullet B \vdash Y}{A \leftarrow B \vdash Y} \quad (\leftarrow L) \quad \frac{X \vdash A \quad B \vdash Y}{X \bullet Y \vdash A \leftarrow B} \quad (\leftarrow R)
\]
Definition (display rules)

The display calculus δ-BiInt has the following display rules:

\[
\begin{align*}
X \circ Y \vdash Z & \quad Z \vdash X \bullet Y \\
X \vdash Y \circ Z & \quad Z \bullet X \vdash Y \\
Y \circ X \vdash Z & \quad Z \vdash Y \bullet X
\end{align*}
\]

Intuitively,

\[
\begin{align*}
A \land B \vdash C & \quad C \vdash A \lor B \\
A \vdash B \rightarrow C & \quad C \leftarrow A \vdash B \\
B \land A \vdash C & \quad C \vdash B \lor A
\end{align*}
\]
Structural rules for δ- Bilnt

\[
p \vdash p \quad \text{(Id)}
\]

\[
\begin{array}{ll}
\frac{X \vdash Y}{X \circ I \vdash Y} & \frac{X \vdash Y}{X \vdash Y \bullet I} \\
\frac{X \vdash Y}{X \circ Z \vdash Y} & \frac{X \vdash Y}{X \vdash Y \bullet Z} \\
\frac{X \circ X \vdash Y}{X \vdash Y} & \frac{X \vdash Y \bullet Y}{X \vdash Y} \\
\frac{(X \circ Y) \circ Z \vdash W}{X \circ (Y \circ Z) \vdash W} & \frac{W \vdash (X \bullet Y) \bullet Z}{W \vdash X \bullet (Y \bullet Z)}
\end{array}
\]

(lm) (rm) (lc) (rc) (la) (ra)
Definition (antecedent and succedent part)

Given a sequent $S = X \vdash Y$, we define

- X is AP (an antecedent part) of S;
- Y is SP (a succedent part) of S;
- $(W \circ Z)$ is AP $\Rightarrow W, Z$ are AP;
- $(W \circ Z)$ is SP $\Rightarrow W$ is AP and Z is SP;
- $(W \bullet Z)$ is AP $\Rightarrow W$ is AP and Z is SP;
- $(W \bullet Z)$ is SP $\Rightarrow W, Z$ are SP.
Display property

Proposition (display property)
For any sequent $S = X \vdash Y$ and any substructure Z of it, we can display the occurrence of Z, i.e. there is a sequent S' such that:

- S and S' are interderivable by means of display rules only,
- If Z is AP of S, then S' is of the form $Z \vdash Y'$ and
- If Z is SP of S, then S' is of the form $X' \vdash Z$.

Theorem (Cut elimination)
Cut is eliminable from any derivation in δ-BiInt + Cut.
Completeness

Definition
The translations τ_1 and τ_2 from structures into formulas are defined inductively as:

\[
\begin{align*}
\tau_1(A) & := A \\
\tau_1(I) & := \top(=p \rightarrow p) \\
\tau_1(X \circ Y) & := \tau_1(X) \land \tau_1(Y) \\
\tau_1(X \bullet Y) & := \tau_1(X) \leftarrow \tau_2(Y)
\end{align*}
\]

\[
\begin{align*}
\tau_2(A) & := A \\
\tau_2(I) & := \bot(=p \leftarrow p) \\
\tau_2(X \circ Y) & := \tau_1(X) \rightarrow \tau_2(Y) \\
\tau_2(X \bullet Y) & := \tau_2(X) \lor \tau_2(Y)
\end{align*}
\]

Theorem (Completeness)
$X \vdash Y$ is derivable in δ-Bilnt if and only if $\tau_1(X) \models \tau_2(Y)$.
Logical rules for δ-Bilnt (revised)

\[
\begin{align*}
\frac{A_i \vdash Y}{A_0 \land A_1 \vdash Y} & \quad (\land L) & \frac{X \vdash A \quad X \vdash B}{X \vdash A \land B} & \quad (\land R) \\
\frac{A \vdash Y \quad B \vdash Y}{A \lor B \vdash Y} & \quad (\lor L) & \frac{X \vdash A_i}{X \vdash A_0 \lor A_1} & \quad (\lor R) \\
\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y} & \quad (\rightarrow L) & \frac{X \vdash A \circ B}{X \vdash A \rightarrow B} & \quad (\rightarrow R) \\
\frac{A \circ B \vdash Y}{A \leftarrow B \vdash Y} & \quad (\leftarrow L) & \frac{X \vdash A \quad B \vdash Y}{X \circ Y \vdash A \leftarrow B} & \quad (\leftarrow R)
\end{align*}
\]
Introduction

Two unilateralist semantics

Bi-Intuitionist Logic

Bilateralist validity
Fit?

- Proofs and dual proofs coexist in δ-BiInt.
- Two kind of meanings fit together in δ-BiInt?
- BHK and Dual-BHK must be extended to interpret \leftarrow and \rightarrow.
BHK interpretation extended
(cf. Wansing 2010)

- A proof of \(A \land B \) is a pair \(\langle a, b \rangle \) consisting of a proof \(a \) of \(A \) and a proof \(b \) of \(B \).
- A proof of \(A \lor B \) is a pair \(\langle i, x \rangle \) such that \(i = 0 \) and \(x \) is a proof of \(A \), or \(i = 1 \) and \(x \) is a proof of \(B \).
- A proof of \(A \rightarrow B \) is a construction that transforms any proof of \(A \) into a proof of \(B \).
- A proof of \(A \leftarrow B \) is a pair \(\langle a, b \rangle \) consisting of a proof \(a \) of \(A \) and a dual proof \(b \) of \(B \).
Dual-BHK interpretation extended
(cf. Wansing 2010)

- A dual proof of $A \land B$ is a pair $\langle i, x \rangle$ such that $i = 0$ and x is a dual proof of A, or $i = 1$ and x is a dual proof of B.
- A dual proof of $A \lor B$ is a pair $\langle a, b \rangle$ consisting of a dual proof a of A and a dual proof b of B.
- A dual proof of $A \leftarrow B$ is a construction that transforms any dual proof of B into a dual proof of A.
- A dual proof of $A \rightarrow B$ is a pair $\langle a, b \rangle$ consisting of a proof a of A and a dual proof b of B.
i-validity fails

A rule in δ-BiInt that is not i-valid.

$$\frac{Z \cdot X \vdash Y}{Z \vdash X \cdot Y} \quad \Rightarrow \quad \frac{\text{A } \leftarrow \text{B } \vdash \text{C}}{\text{A } \vdash \text{B } \lor \text{C}}$$

- ● on RHS: sequents become multiple-conclusion.
- Impossible to interpret it as intuitionist’s disjunction with disjunction property.
- Proof is not preserved from LHS to RHS.
- At most impossibility of dual proof of RHS

The same applies to d-validity.
Bilateralist reading of sequents
(cf. Restall 2005)

Definition

$A \vdash B$ is **b-valid** if it is not the case that A has a proof and B has a dual proof.

- to assert A and to deny B is to make a mistake;
- if A has a proof then B can’t have a dual proof;
- if B has a dual proof then A can’t have a proof.

\Rightarrow Two criteria of fit between proof & dual proof
Criterion 1: Identity

1. A can’t have both a proof and a dual proof.
2. No clash between proofs and dual proofs.
3. No overlap between assertion and denial.
4. Established directly by BHK and Dual-BHK on the assumptions $p \vdash p$.
5. Derivable in δ-BiInt.
Criterion 2: Cut

\[
\frac{X \vdash A \quad A \vdash Y}{X \vdash Y} \quad \text{(Cut)}
\]

- \(X \vdash A \): a proof of \(X \) excludes dual-provability of \(A \)
- \(A \vdash Y \): a dual proof of \(Y \) excludes provability of \(A \), then
- \(X \vdash Y \): the proof of \(X \) clashes with the dual proof of \(Y \).

I.e. it is impossible to exclude both provability and dual-provability of \(A \) without any clash.

- No gap between assertion and denial.
Fit

- Cut & Identity: criteria of fit between proofs & dual proofs.
 - Agreement on meanings between BHK and dual-BHK

- No problem with Identity. How about Cut?
- Seems difficult to establish directly by BHK and dual-BHK.
- Cut elimination for δ-BiInt tells us something?
Almost all rules in δ-BiInt are b-valid except for:

\[
\begin{align*}
\frac{X \vdash A \quad B \vdash Y}{A \rightarrow B \vdash X \circ Y} (\rightarrow L) \\
\frac{X \vdash A \quad B \vdash Y}{X \bullet Y \vdash A \leftarrow B} (\leftarrow R)
\end{align*}
\]

A proof of $A \rightarrow B$ requires a proof of A. But $X \vdash A$ gives at most impossibility of dual proof of A.

To make them b-valid:

\[
\begin{align*}
\frac{B \vdash Y}{A \rightarrow B \vdash A \circ Y} (\rightarrow L') \\
\frac{X \vdash A}{X \bullet B \vdash A \leftarrow B} (\leftarrow R')
\end{align*}
\]
Revision of rules and **Cut**

New rules are equivalent to the original through **Cut**:

\[
\frac{B \vdash Y}{A \to B \vdash A \circ Y} \quad (\to L')
\]

\[
\frac{X \vdash A}{A \vdash A \to B \circ Y} \quad \frac{A \vdash A \to B \circ Y}{X \vdash A \to B \circ Y} \quad (\text{Cut})
\]

\[
\frac{A \vdash A \to B \circ Y}{A \to B \vdash A \circ Y} \quad (\to L)
\]

Let **Cut'** denote **Cut** of this form (and the dual form for $\leftarrow R'$).
Weak Cut-elimination

- $\delta\text{-BiInt}' = \text{the system with } \rightarrow L' \text{ and } \leftarrow R'$
 - Every rule is b-valid.
 - $\delta\text{-BiInt}' + \text{Cut}' \cong \delta\text{-BiInt}$

Fact (cf. Schroeder-Heister \textit{forthcoming})

$\delta\text{-BiInt}' + \text{Cut} \cong \delta\text{-BiInt}' + \text{Cut}' \not\cong \delta\text{-BiInt}'$.

- $\delta\text{-BiInt}'$: b-valid but Cut' is not admissible.
- $\delta\text{-BiInt}$: Cut is admissible but not b-valid.
Example of failure of Cut'

\[
\begin{align*}
&\quad (\rightarrow L') \\
&\begin{array}{c}
p \vdash p \quad (p \lor q) \rightarrow r \vdash p \lor q \circ r \\
p \lor q \vdash (p \lor q) \rightarrow r \circ r \\
p \vdash (p \lor q) \rightarrow r \circ r
\end{array}
\end{align*}
\]
Failure of Cut indicates:

- there may be a combination of a proof of X and a dual proof of Y such that:
 - the former excludes dual-provability of A,
 - the latter excludes provability of A,
 - but they don’t cause any clash in δ-BiInt'.

A gap between proof and dual proof.
Conclusion

Under Bilateralist reading of sequents,

- Cut & Identity: Criteria of fit between two aspects
- Failure of Cut’: a gap between proof and dual proof.
- Cut admissibility in δ-BiInt:
 - Proof and dual proof are adjusted implicitly.
 - \(\rightarrow L \) and \(\leftarrow R \) are where the adjustment occurs.
Relativized b-validity

To make this observation more precise, b-validity (and extensions of (dual-)BHK) should be defined more carefully:

Definition (Atomic base)

An atomic base is a pair $\langle s, t \rangle$ of two sets of atomic formulas with $s \cap t = \emptyset$. Define the relation \vdash between atomic bases and signed atomic formulas as:

\[
\langle s, t \rangle \vdash +p \iff p \in s;
\]

\[
\langle s, t \rangle \vdash -p \iff p \in t.
\]
Relativized b-validity

Definition

\models extends as follows:

$\langle s, t \rangle \models +T \quad \quad \langle s, t \rangle \not\models +\bot$

$\langle s, t \rangle \models +(A \land B) \iff \langle s, t \rangle \models +A \land \langle s, t \rangle \models +B$

$\langle s, t \rangle \models +(A \lor B) \iff \langle s, t \rangle \models +A \lor \langle s, t \rangle \models +B$

$\langle s, t \rangle \models +(A \rightarrow B) \iff \forall s' \supseteq s. \langle s', t \rangle \models +A \text{ implies } \langle s', t \rangle \models +B$

$\langle s, t \rangle \models +(A \leftarrow B) \iff \exists s' \subseteq s \exists t' \supseteq t.
\langle s', t' \rangle \models +A \land \langle s', t' \rangle \models -B$

Dually for $\langle s, t \rangle \models -A$. Especially,

$\langle s, t \rangle \models -(A \rightarrow B) \iff \exists t' \subseteq t \exists s' \supseteq s.
\langle s', t' \rangle \models +A \land \langle s', t' \rangle \models -B$
Proposition

(1) Persistence:
- \(\langle s, t \rangle \vdash +A \) and \(s' \supseteq s \) implies \(\langle s', t \rangle \vdash +A \).
- \(\langle s, t \rangle \vdash -A \) and \(t' \supseteq t \) implies \(\langle s, t' \rangle \vdash -A \).

(2) Irrelevance:
- If \(\langle s, t \rangle \vdash +A \), then for any \(t' \), \(\langle s, t' \rangle \vdash +A \).
- If \(\langle s, t \rangle \vdash -A \), then for any \(s' \), \(\langle s', t \rangle \vdash +A \).

(3) Consistency: It is not the case that \(\langle s, t \rangle \vdash +A \) and \(\langle s, t \rangle \vdash -A \).
Relativized b-validity

Definition (b-validity)
A sequent $A \vdash B$ is $\langle s, t \rangle$-valid if it is not the case that

$$\langle s, t \rangle \not\vdash +A \text{ and } \langle s, t \rangle \not\vdash -B.$$

$A \vdash B$ is b-valid if it is $\langle s, t \rangle$-valid for any $\langle s, t \rangle$.

Proposition (Soundness)
If $X \vdash Y$ is derivable in δ-BiInt', then it is b-valid.

Proposition
Cut’, Intuitionist LEM, $(A \rightarrow (B \lor C)) \rightarrow ((A \rightarrow B) \lor C)$ etc. are not b-valid.
References (1)

References (2)

