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Abstract

In the research of artificial intelligence, symbol processing has been providing powerful
tools to represent and process complicated and varied information. However, it has disad-
vantages in ‘analogy’, ‘uncertainty, and ‘learning/adapting’. Neural networks have been
expected to conquer these disadvantages of symbol processing. In order to provide flexi-
ble and robust problem solving methods, many researchers have been trying to construct
hybrid or integrated systems of symbol and neural processing.

However, there remains a problem in such a hybrid way, which comes from difference of
characteristics of data that neural and symbol processings deal with. Especially, following
two essential characteristics of data representation in symbol processing are important.

o Symbols: each of which indicates discrete and independent information.
o Data structures: by which complicated information is arranged fiexibly.

Because neural networks originally have not mechanisms to deal with these characteris-
tics, it is difficult to transfer information flexibly between neural and symbol processing
modules in a hybrid system.

In this thesis, I describe learning methods of neural networks that provide a way to
deal with symbols and data structures.

First, the symbolization of patterns in neural networks is investigated. In order to
analyze patterns as symbols, it is useful that pattern representation is simple and has no
redundant part. However, networks get redundant representation through its learning, so
that such analysis becomes difficult.

In chapter 2, a new learning method, ‘overload learning, to solve the problem of how
to eliminate such redundant representation is described. In this method, a network is
trained to learn an additional task together with an original one. Since a redundant part
of pattern representation is used for the additional task, only minimum representation



becomes to be used for the original task. Various experiments show that the proposed
method makes the symbolization of patterns easy.

Second, pattern representation of data structures is investigated. The variety of the
size of data is one of the major causes of the difficulty of processing structured data by
neural networks. Although the size of structured data generally varies, neural networks
usually process fixed-sized patterns. Temporal-sequence processing is a technique to pro-
cess such a variable-sized data by using processors that can process fixed-sized data. Yet,
in such a technique the processors need to learn to process sequences that have long
distance dependencies (LDD).

In chapter 3, learning methods for simple recurrent networks to solve the problem
of how to find LDDs are described. In order to find LDDs, a simple recurrent network
needs to retain information about input histories in patterns. I formalize two measures
of how much information is retained in patterns. In the first formalization, a measure
of the information is defined by distances between patterns. Using this measure, the
*distance-keeping' method is proposed. In the second formalization, a measure of loss of
the information is defined in the manner of Shannon’s information theory. Based on this
measure, ‘information-loss minimization’ method is proposed. Experiments show that
both methods increase the ability to deal with LDDs as compared with a conventional
back-propagation learning.

Temporal sequence processing provides another point of view for representing struc-
tured data. Simple recurrent networks have a similar structure to finite state transducers.
On the other hand, in the automata theory, state-transitions of a transducer represent a
structure of sequences which the transducer processes. In the same way, simple recurrent
networks have the ability to represent a structure of the sequences. However, they can
not acquire suitable state-transitions by conventional learning methods.

In chapter 4, a model, called the ‘SGH model, and its learning method are proposed.
They construct a simple recurrent network that has suitable state-transitions for a given
task. They are derived from a procedure to construct a finite state transducer using
the imization technique. i show that the SGH model can acquire
suitable state-transitions for given tasks.

In chapter 5, I discuss about proposed models and methods from various points of
view. First, the ability of simple recurrent networks and that of finite state transducers
are compared. Because of a topology of patterns, the flexibility of state-transitions of
simple recurrent networks is limited as compared with finite state transducers. On the



other hand, the topology increases the ization ability of learning
I show this advantage through an experiment to deal with sub-grammars. Second, the
formalization of a semantic network that is suitable for processing by a simple recurrent
network is discussed. In this formalization, a semantic network is treated as a chart of
state-transitions of a simple recurrent network. Finally, biclogical plausibility of proposed
models is discussed. While artificial neural networks are originally derived from biological
nervous systems in brains, many of them are not plausible as nervous systems. Proposed
‘methods and models are simple enough and relatively plausible as biological models from
various points of view.
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Chapter 1

Introduction

1.1 Symbol Processing and Neural Processing

Researches of artificial intelligence (AI) aim to und buman i ion processing
and to realize human intelligence on ters. Human i ion processing has the

following features.

o Complexity
A human can process icated i ion. Such processing is al

o Vasiety
A buman can process various information.

o Analogy
A human can process unknown information by using analogy.

¢ Uncertainty
A human can process noisy and ambiguous information.
o Adaptability
A human can adapt his processing to various environments and acquire concepts.
In works in Al on symbol processing, the complexity has been focused first. Symbols
and data structures are powerful tools to process such complex information. Symbols pro-
vide high operationality of information because they are discrete and independent from
each other. Data structures provide a rich framework to represent complicated informa-
tion. Complicated information is arranged by using data structures. Such information is
processed with the help of the operationality of symbols.
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Data structures are also useful to represent various information. Using data structures,
various information is composed of pieces of information flexibly. Symbols and data
structures have brought many successes to Al research.

On the other hand, other features are weak points of symbol processing. In order
to process information by means of analogy, similarities of information must be defined.
Since any similarities are originally not defined between data n symbol processing, we need
additional jsms to deal with similarities of i ion. Memory based reasoning
is one of such mechanisms. In memory based reasoning, however, there also remain

problems: how to define similarity between symbols and how to deal with various data
structures.

Symbol processing also requires mechanisms to deal with
and the fuzzy theory are widely used as such mechanisms. It is easy to implement them

into symbol processing and also easy to understand them intuitively. However, represen-
tation of uncertainty is limited by symbols and data structures, because such mechanisms
are implemented as a property of symbols and data structures. In other words, we can
only represent inty of i ion that is explicitly by symbols and
data structures. Therefore we must carefully define what kind of information, symbols
and data structures represent. However, there has not been a general method that tells
us what should be represented by them. In addition, we need another mechanism to
interpret raw data from environments, such as sensor inputs, which are main sources of

uncertainty.

Machine learning has been heavily investigated in Al in order to adapt processing to
various environments. However, there remain severe problems. One problem is that most
machine learning systems are domain-dependent and are not robust to noise. Another
problem is that the ability of machine learning is strongly dependent on the representation
of information. Therefore we must carefully define such representation. However, general
methods how to define suitable representation have not been proposed.

In order to conquer these weak points of symbol processing, neural metworks have
been given attention. Neural networks process patterns, which have a topology. Using
this topology, similarities of information are defined. Thus neural networks can process
information according to such similarities naturally. Pattern representation also provides
a method to deal with uncertainty. For example, it is easy to interpret an activation of
each element of a pattern as a probability or a possibility of certain information. More-
over, Neural networks have powerful learning methods to adapt themselves to various
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environments. Most of these methods are general-purpose and robust to noise. In ad
tion to it, networks can acquire suitable internal representation for given tasks through

learning.
However, neural processng is bad at dealing with complexity and variety of human
essing, Since pattern ion is flat, it is difficult to represent
structured data explicitly like symbol processing. Moreover, a piece of information is

distributed in a pattern. Therefore it is not easy to compose various information from
pieces of information.

In order to complement weak points of symbol and neural processing, hybrid or in-
tegrated systems of these two kinds of processing are focused. In such systems, symbol
processing provides methods to deal with complexity and variety, and neural processing
provides methods to deal with analogy, uncertainty and adaptability. Such systems are
expected to provide flexible problem solving methods like human information processing.

However, there is a crucial problem of how to transfer information between symbol and
neural essing. The type of of i ion used in both ings are
quite different. Therefore it becomes a bottleneck to transfer information between symbol
and neural processing modules. The main cause of this problem is that it is difficult to

represent symbols and data structures in a symbol processing module by patterns in a
neural processing module. In order to provide a method of tight communication between
those modules, I pay attention to the following two points:

« How to analyze patterns as symbols.

« How to deal with data structures by neural networks.

1.2 Symbols

Consider a hybrid system of neural and symbol processing. When the neural module
transfers information to the symbol module, the system needs to analyze pattern repre-
sentation in the neural module as symbols. Generally patterns do not represent symbols
explicitly, so that the analysis becomes a major problem of hybrid systems.

One way to analyze patterns as symbols is clustering. Patterns in a neural module are
classified into clusters by various clustering techniques. Then, each cluster is interpreted
as a symbol in the symbol module. Many researchers have been using these techniques
in order to analyze what neural networks learn [EIm88, Pol90, SSCM89]. In such cases,
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clusters of patterns are required to be reduced and separated from each other cleasly. In
fact, however, networks acquire redundant pattern representation, so that patterns do not
form reduced clusters.

Another way to analyze patterns is to deal with each unit in a neural network as a
certain primitive symbol and the activation of the unit as a probability of the symbol.
In this technique, each unit is required to be suitable as a primitive element that is
independent from each other. In fact, however, it is not assured that all units become
independent after learning of a neural network. Therefore some units remain redundant.
In this case, it is difficult to find which units are primitive.

A fundamental issue underlying these difficulties is:

How to eliminate redundant representation which networks learn.

Thisis also  general problem of neural processing because this issue concerns the problem
of generalization ability of network learning.

1.3 Data Structures

Consider a case in which a neural module receives data from a symbol module in a
hybrid system. In this case we need to represent structured data by patterns that can
be processed by neural networks. A conventional technique o represent data structures
in neural networks is to construct neural networks that have the same structures as the
data. In this technique, however, the network can not manipulate o learn structures.

One of the major problems of representing structured data by patterns is the variety
in the size of representation. The size of patterns which neural networks process is fixed,
while the size of structured data generally varies. Temporal sequence processing is a
technique to deal with variable-sized data by a processor which processes fixed-sized data.
Therefore we can solve the problem by processing structured data as temporal sequences
by using recurrent neural networks.

Yet, the ‘temporal processing’ technique gives rise to another problem, that is the ‘long
distance dependency (LDD)® problem: In temporal sequence processing, inputs might be
given long before processors require information about the inputs. In this case processors
must keep information about inputs until it becomes needless. For example, when a
processor checks an agreement of a subject noun and its verb in a sentence such as
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“The dog which chased cats is mine”,
“Dogs which chased cats are mine”,

the processor must keep information about a subject noun during a relative clause. In
order to solve this problem, a technique to find LDDs is required. In the context of
neural networks, we must solve the problem of how to train recurrent networks to process
temporal sequences that have LDDs.

‘Temporal processing provides another view of representing and processing structured
data. In automata theory, state-tran
data represent sequentized structures. On the other hand, it has been pointed out by
many researchers that a recurrent network can be treated as a finite state transducer.

ions of a transducer that processes sequential

Therefore we can consider a method in which a recurrent network can deal with data

structures through state-t. of the netwerk. In order to complete this method, we

need a technique to learn suitable state-transitions of recurrent networks.

1.4 Biological Plausibility

In the research of neural processing, biological plausibility is an important point of con-
sideration.

The idea of neural processing comes from biological models of actual nervous systems.
However, many of artificial neural network models are not biologically plausible. For
example, the ‘back-propagation through time’ method [WZ89) requires to store all states
of the networks during processing. Such mechanisms are not plausible as actual nervous
systems [GA91).

In works described in this thesis, such plausibility is considered carefully, especially,
with respect to the following points.

o Locality of calculations

Locality of calculations is one of the important features of neural processing. It
is said that there are no global supervisors that control calculations in biological
nervous systems. Instead of them, calculations are realized as cooperations between
neurons. Such cooperations are done in physically local area. Thus, in artificial
models of neural networks, calculations should be done locally. For example, cal-
culations of the back-propagation learning are local, so that it is plausible in this
sense.
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Time-locality is also important. No mechanisms to memorize activation patterns
in neural networks over time have been found. Therefore all calculations should be
done using current activation patterns. This becomes an important issue when a
neural network processes temporal sequences. For example, the ‘back-propagation
through time’ method is not time-local, because it requires all past activations of
networks. Thus it is not plausible.

+ Penalty functions
Learning procedures such as the back-propagation method may also be implausible
as an actual learning procedure in netvous systems. In order to make models inde-
pendent fror learning procedures, I focus penalty functions that are minimized by
such learning procedures. In learning methods proposed in this thesis, only penalty
egy mak: easy to
implement these methods using other learning procedures. Note that such penalty
functions should be calculated locally.

1.5 Outline of the Thesis

In this thesis, I describe learning methods for neural networks to solve the following
problems described above:

1. How to eliminate redundant representation.
2. How to find LDDs in temporal sequences.
3. How to learn suitable state-transitions.

In chapter 2, I describe a method to solve the first problem. First I consider that
tedundant representation is caused by too many hidden units for a given task. In other
words, the issue is how to balance the number of units and the complexity of a task. In
order to balance them, I propose 2 method, called the ‘overload learning’ method. In this
method, a network is trained to learn an additional task together with an original task.
Because learning of the additional task requires to use hidden units, the number of units
that are used for the original task decreases. If we can control learning of both tasks, the
network will use the suitable number of units for the original task. I also explain results
of various experiments and show effects of this method.
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In chapter 3, I describe two methods to solve the second problem. I consider that
a recurrent network needs to keep information about input histories on hidden layers
as long as possible in order to find LDDs. Then I formalize measures of information
represented by patterns of hidden layers in two ways. Based on these measures, two
methods to decrease loss of the information about input histories are proposed. In one
way, information is measured by the distance between patterns. I analyze the relation
between the change of the distance and a distribution of weight values of links. Based on
this relation, a method, called the ‘distance-keeping’ method is derived. In another way,
loss of information is defined in the manner of Shannon’s information theory. I show the
relation between the loss of information and learning of identity functions by three-layered
networks. Based on this relation, a method, called the ‘information-loss minimization’
method is derived.

In chapter 4, I describe a method to solve the third problem. Initially a procedure to
construct a finite state transducer from examples of input-output sequences is composed
using the state-minimization technique. Then each step of the procedure is reconstructed
as learning of 2 neural network. Finally those networks and their learning methods are
combined into a model, called the ‘SGH model.’ The ability of the SGH model is demon-
strated through experiments of learning various state-transitions.

In chapter 5, I discuss about proposed models and methods from various points of
view. First the comparison of simple recurrent networks and finite state transducers is
discussed. Although a simple recurrent network can be treated as a finite state transducer
as discussed in chapter 4, abilities of them are slightly different. In this discussion, I
focus on the generalization ability and flexibility of state-transitions. Second, I propose a
prototype of the formalization of semantic networks that are suitable to process by simple
recurrent networks. Semantic networks are a framework to represent various information
used in symbol processing. This formalization will provide a way to combine neural
ty of proposed models is
discussed. While neural networks are originally derived from biological nervous systems

and symbol processing tightly. Finally, the biological plaus

in brains, many artificial neural networks are not so plausible as actual brain models. I
examine proposed methods and models from vatious points of view.
Chapter 6 outlines the conclusions of this thesis.
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Chapter 2

Symbolization by Overload Learning

2.1 Introduction

In order to integrate symbol processing and pattern processing in neural networks, we
need to analyze pattern representation in neural networks from the view point of symbols.
One way to analyze patterns is to deal with each dimension of the pattern space as an
independent micro-feature. In this case each dimension is desired to be independent
from each other. Thus it is necessary that there are no redundant dimensions in the
pattern space. In other words, it is necessary to reduce the number of dimensions of
patterns, especially active dimensions of patterns, so that the number of active dimensions
is suitable for representing information for a given task. Generally, however, it is difficult
to determine how many dimensions are required for given tasks,

Another way to analyze patterns is to classify patterns into clusters by clustering
methods. After clustering, each cluster is interpreted as an individual symbol [OGM92,
Elm91, CSSL89). In this case, clusters of patterns are required to be separated clearly.
Especially, clustering will become easy when each cluster of patterns is converged into
small compact area. However, clusters tend to spread if there is room in the pattern
space. Cluster spreading upsets suitable clustering of patterns.

Furthermore, in the general purpose of neural networks, it is important to find the
minimal number of units or dimensions for given tasks. The reason is that minimization of
the number of dimensions increases the generalization ability of learning. Unfortunately,
it usually isn’t obvious what size is best for a given task.

These problems come from one issue: how to balance the capacity of networks and
the complexity of tasks. In order to solve this issue, a network should contain a suitable

9
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number of hidden units for a given task. On the other hand, a network is trained with
too many hidden units because of the guarantee of successes of learning. A conventional
‘way to solve this issue is to adjust the capacity of a network such as the number of units
to the complexity of a task|WK90, Hagd1] by using certain criterion or pruning methods.
In this chapter, T propose another way in which the complexity of a task is adjusted to
the capacity of a network.

2.2 Overload Learning

2.2.1 Activeness and Redundancy

Suppose that we train a network to learn a given task. We say a unit is ‘active’ for the
task when the activation of the unit changes for various inputs of the task, and ‘inactive’
for the task when the activation does not change. Moreover, we say a unit is ‘redundant’
for the task when the network can achieve the task without that unit.

We use these three words, ‘active’, ‘inactive’ and ‘redundant’, not only for units but
also for dimensions of a vector space of hidden patterns. For example, we say a dimension
is active for the task when a position of a hidden pattern changes along the dimension in
the pattern vector space for various inputs.

When we train a network to learn a given task, in order to guarantee the success of the
learning process, we usually use a network that has more hidden units than the task will
require. In this case there remain some redundant units or dimensions in the hidden layer.
In those redundant units/dimensions, inactive units/dimensions are not so important,
because they do not affect the action of the network or the ability of generalization. On
the other band, redundant and active units/dimensions are important. They should be
eliminated because of the following reasons:

. and active di

decrease the ization ability of learn-
ing. Redundant and active units/dimensions increase degrees of freedom of the
representation. Generally, more degrees of freedom of the representation bring less
generalization. Therefore redundant and active units/dimensions upset the gener-
alization.

© They upset analysis of patterns of a hidden layer. Usually, active units/dimensions
are treated as primitives each of which indicates independent element of information
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Input

Figure 2.1: Three-Layered Networks

from each other. But redundant units/dimensions indicate duplicate information.
It is difficult to eliminate such duplicate information at a stage of the analysis.

2.2.2 How to Eliminate Active and Redundant Dimensions

Consider a case iu which a three-layered network shown in Fig. 2.1 is trained to
learn a given task (called an ‘original task’). As mentioned in the previous section, some
dimensions in the hidden layer become redundant and active for the task. Next, consider a
case in which new input and output layers are added to the network as shown in Fig. 2.2.
The network is trained to learn another task (called an ‘additional task) using these
additional input and output layers. This learning is doe at the same time of the learning
of the original task. In this case, redundant dimensions for the original task will become
used for achieving the additional task. When the additional task is independent from
the original task, redundant and active dimensions for the original task become inactive
for the original task. Therefore, we can eliminate active and redundant dimensions by
training the network to learn an additional task simultaneously by adding additional input
and output layers. I call such a method *overload learning (OLL)."

In order to eliminate active and redundant dimensions effectively, the additional task
should satisfy the following conditions:

1. The additional task is independent from the original task.
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Additional Original

Task Task
Additional Original
Targ:el

Original
Input

Additional
Input

Figure 2.2: Three-Layer Networks with Additional Input/Output Layers

2. The additional task requires the larger number of hidden units than the given net-

work.

3. A neutral input of the additional task is easy to prepare. After learning, the addi-
tional task is not necessary and upsets the analysis of patterns for the original task.
Therefore we need a way to avoid effects of the additional task.

Moreover, we must control the learning of these two tasks in order to give priority to the
original task over the additional task.

2.2.3 Overload Learning with Random Task

An identity mapping of random patterns (called a ‘random task’) was chosen as an addi-
tional task. In this task, randomly generated patterns are put into the additional-input
layer. The additional output layer is required to output the same pattern as inputs. This
task can satisfy the three conditions for the additional task as follows. This task is obvi-
ously independent from any other task, so it can satisfy the first condition. The random
task requires the same number of hidden units as the size of input patterns. Therefore the



2.3. Experiments and Discussion 13

second condition is satisfied when the size of the additional-input layer is larger than the
size of the hidden layer. Moreover, the third condition is satisfied by using the average of
all patterns as a neutral input.

For OLL with the random task, a network shown in Fig. 2.3 is used. This network is
called an OLL network. In this network, input and output layers are used for the original
task, and random-input and random-output layers are for the random task. The size of
the random-output layer is the same as the size of the random-input layer, and larger
than the size of the hidden layer. In experiments described in the next section, these sizes
are twice of one of the hidden layer.

In the learning phase, an input pattern of the original task is set into the input layer
and a required output pattern is given to the output layer as a target. At the same time,
a randomly generated pattern is set into the random-input layer and the same pattern
is given to the random-output layer as a target. After learning, the random-input layer
is fixed to the average pattern of random patterns. The network is trained by back-
propagation to minimize the following penalty function.

E = <|00upst = towput|? > +& < [Oruad.output = Orandiinpun|® > (21)

Where Ooutput, Orand-oupws a0d ut aTe output patterns of output, random-output,

random-input layers respectively; toupu is the target pattern of the original task. < z >
means an average value of z; | is the norm of vector &; a is a positive coefficient. In (2.1),
the first term of the right side is the penalty for the original task and the second term is
the penalty for the additional task. In order to give priority to the original task over the
random one, a is set relatively smaller than 1. In this case, the penalty for the original
task shares a major part of E, so that the network learns the original task primarily and
the random task secondarily. In the following experiments, a is set 0.3 ~ 0.5.

2.3 Experiments and Discussion

2.3.1 Finding Minimum Dimension

In order to determine the kind of effects of OLL over forming pattern representation
on the hidden layer, the following experiment was carried out: Initially, a target network,
whose input, hidden and output layers consist of n, m and | units respectively, is created.
Using this target network, 1000 input-output pairs are generated. Then an OLL network,
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Figure 2.3: Structure of OLL Networks
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Figure 2.4: Setup of Experiment of Finding Minimum Dimension
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Rigenvalse

Eigenvalue

(learning without random task)

Figure 2.5: Eigenvalues of Hidden Patterns. (target: 5 hidden units) Eigenvalues are
shown in log scale.
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Wipeavalue

Eigenvalue

(learning without random task)

Figure 2.6: Eigenvalues of Hidden Patterns. (target: 10 hidden units) Eigenvalues are
shown in log scale.
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whose input, hidden, output and random-input (also random-output) layers consist of n,
K, 1 and 2k units respectively, is trained by these examples with a randor task. Fig. 2.4
shows the set up of thi i After training, patterns on the hidden layer for various
inputs are analyzed by principle component analysis (PCA). When a certain eigenvector
of PCA has a significant eigenvalue, the dimension along the vector is active for the task.

Fig. 2.5 shows a result of the analysis where n = 20, m = 5, { = 20 and k = 30. This
graph shows changes of the 1st ~20th eigenvalues of hidden patterns through learning.
In the case of learning with the random task (the upper graph), that is OLL, only up
1o the 5th eigenvalues remain significant, and the rest become very small as the learning
proceeds. This means that only 5 dimensions are active for the task. On the other
hand, without the random task (the lower graph), that is a conventional learning, all
eigenvalues remain significant. Fig. 2.6 shows another result where m = 10. In this case,
11 eigenvalues remain significant by OLL.

From these results, we can say that OLL reduces the number of active dimensions of

hidden patterns into the suitable number of dimensions for the original task.

2.3.2 Finding Primitive Dimension

In order to show that a network can find primitives of information about a given task
by OLL, the following experiment was casried out.

Consider that each apex, edge and plane of a cube is labeled as shown in Fig, 2.7, and
make a mapping from an edge to two planes and two apexes that connect to the edge.
For example, an edge ‘10x’ is mapped to planes ‘1xx, x0x’ and apexes ‘100, 101." This
mapping is represented by patterns using localist representation as shown in Fig. 2.8. Then
a network shown in Fig. 2.9 is trained to learn this mapping by OLL. In this network, 12
units is used for the edge layer, 12 units for the hidden layer, 6 units for the plane layer,
8 units for the apex layer and 24 units for the random-input layer and random-output
layer. In order to test the generalization ability, underlined patterns in Fig. 2.8 are not
given to the network as targets during learning.

Fig. 2.10 shows outputs of the apex and plane layers after learning. Fig. 2.10-(a)
is the case of OLL and (b) is the case of the conventional learning. In the case of the
conventional learning, outputs which the network has not been taught are not cotrect,
while all outputs are correct in the case of OLL. This result shows OLL increases the
generalization ability for this task.

Why does this generalization arise? I analyzed hidden patterns for each edge label
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(Opposite sides of xx1, x0x and 1xx are xx0, X1x
and Oxx respectively.)

Figure 2.7: Labelling of Edges, Apexes and Planes of a Cube.
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Figure 2.8: Mapping from A edge to Planes and Apexes (Cube Mapping)

plane  apex

Random Input
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Figure 2.9: Network for Learning Cube Mapping
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input by PCA. Then I found only 3 dimensions remain active in hidden pattern space.
In the 3 dimensional space each pattern for each edge label is arranged like Fig. 2.11-
(a). This arrangement is the same as of midpoints of edges of a cube (Fig. 2.12). On
the other hand, the arrangement of patterns in the case of the conventional learning is
like Fig. 2.11(b). In this case, it is difficult to find correspondence of Fig. 2.11-(b) and
Fig. 2.12.

From this result, we can say that the OLL network found three primitive dimensions of
the task and represented information by patterns suitable for the task. Then the network
became able to generalize the task and responded for unknown output correctly.

2.3.3 Converging of Pattern Clusters

One purpose of OLL is to make internal representation compact. In order to analyze hid-
den patterns as symbols by clustering techniques, it is important that these patterns form
Clearly-separated clusters. For example, many researchers have been trying to analyze
pattern transitions of simple recurrent networks|OGM92, Elm91]. 1t is, however, difficult
to find a clear structure of transition because patterns do not form compact clusters in
pattern spaces.

On the other band, OLL is expected to have an effect on convergence of these clusters.
This effect is led as follows. When a cluster of patterns for the original task gets expanded,
it will behave as noise to the random task. Therefore, the network learns to accommodate
the random task by converging the cluster into compact areas.

In order to demonstrate this effect, the following experiment was carried out: A simple
recurrent network with a random task (Fig. 2.13) is trained to predict the order of char-
acters in sequences [EIm88). At each point in time, a character in a sequence generated
by the Reber grammar (Fig. 2.14 (CSSL89)) is presented to the network. The network’s
target output is simply the next character in the sequence. For example, when the Re-
ber grammar generates a sequence “TSXXVPS’, the network receives an input sequence
‘TSXXVPS' and a target sequence ‘SXXVPSo'. (o indicates the end of a sequence.) In
this learning, the network is trained to achieve the task with a random task in the same
manner as OLL. The experiment was carried out using the network whose input, hidden
and output layers consisted of 10, 30 and 10 units respectively. (Each of random-input
and random output layers consisted of 60 units.)

After learning, hidden patterns during processing sequences of the Reber grammar
were analyzed by PCA. The result of the analysis is shown in Fig. 2.15. In this figure,
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(a) With Random Task
Plane Apex

Figure 2.10: Results of Learning of Mapping
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(a) With Random Task

(b) Without Random Task

Figure 2.11: Locations of Hidden Patterns of Each Edge Input.
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Figure 2.12: Locations of Mid Points of Edges of a Cube.

each letter in the graph means the position of a pattern corresponding to the state in
Fig. 2.14 whose number is the same as the letter. In case of the conventional learning
(the lower graph), patterns form some clusters. But these cluster are spread and mixed
complexly. On the other hand, OLL converges clusters of patterns into very compact areas
in the manner described above. As a result, patterns in the same cluster are identical.
Therefore, it seems that there are very few points in the space in the upper graph (that
is the case of OLL) although the same number of points are plotted.

2.3.4 Generalization by Clustering

In the field of machine learning, finding classes of data is an important topic. In this case,
a ‘class’ means that all data in the class share some properties. These classes are used for
generali
class, the datum is assumed to belong to the class. Then the datum is expected to have

tion in the following manner: When a datum has one of shared properties of a

other shared properties of the class.

OLL is expected to have a similar generalization ability. OLL converges clusters of
hidden patterns into very compact areas. Such compact clusters can be interpreted as
classes of input patterns, because a network outputs similar patterns for inputs when
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original target

[input] | Context

Random Input

random pattern original input

Figure 2.13: Simple Recurrent Network with Random Task

3)7@\
_.@N % ‘P /®->
o

Figure 2.14: Reber Grammar
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(learning without random task)

Figure 2.15: Distribution of State Patterns of Reber Grammar. Each graph shows the
position of patterns in the 1st, 2nd and 5th principle components space.
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hidden patterns for the inputs belong to the same cluster. Therefore when a network
can acquire a suitable compact cluster of hidden patterns from incomplete information
by OLL, we can say OLL has an effect of generalization by finding classes.

In order to test this effects, the following experiment was carried out: Initially, 16 pat-
terns (pxi|X € {4,B,C, D},i € {1,2,3,4), size of pattern is 20) are generated randomly
and two property values (gxi,7x;) are defined for each pattern pxi, where gxi = gx;,
Tx; = tx; for any i,j. In other words, there are four classes of patterns (that are class
‘A", ‘B, *C’ and ‘D") each of which has the same pair of property values. Then an OLL
network, which consists of two output layers for property values gx;, rx; and 10 hidden
units, is trained to output gx;, rx; when it receives py;. But the network is not taught
about gxs, x1 and rx, for each X € {4, B,C,D}. In other words, the network gets
incomplete information about property values.

Fig. 2.16 shows property values the network outputs for each input pattern px; after
learning. In the case of conventional learning, the network can not output correct values
for unknown properties. On the other hand, in the case of OLL, the network outputs
correctly for unknown properties except for rcy. This means that the network find classes
of input patterns correctly by the converging effect of OLL, so that the network increases
the generalization ability.

2.4 Summary
In this chapter, a new learning method, overload learning, is proposed. In this method, an

addi
size and the complexity of tasks. This method has the following effects:

2l random task is merged into a given original task in order to adjust the network

o It reduces active dimensions of hidden patterns for the original task.
o It converges the cluster of patterns.
These effects provide the following merits:

o We can get the minimum number of dimensions of hidden patterns for a given task.
It will be useful to determine the suitable size of networks for tasks. Moreover, a
network acquires suitable representation by reducing dimensions of pattern repre-
sentation. As a result the generalization ability increases.
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target output || w rand. task || w/o rand. task

000~ .125
- ~ 375
= ~ 625
+ ~ 875
. ~1.000

Figure 2.16: Output Values for Each Pattern.
Patterns with underlines ate not given to the network as teacher signals during learning.
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o Converged clusters are useful to analyze patterns of a hidden layer as symbols. They
also cause generalization of tasks.
There also remain the following open problems:

® A priority of tasks in learning is controlled by parameter a in a penalty function
(2.1). The value of a is set empirically. We need to develop a technique to set this
parameter automatically.

o This learning method should be applied to other models. This learning method is
very simple, so that it may be easy to apply to various network models.



Chapter 3

Pattern Representation of Sequence

3.1 Introduction

Information which humans process is complex. In symbol processing, in the field of
artificial intelligence, such complex information is often arranged in data structures like
lists in LISP. The information is represented and processed flexibly through operations
of such structures. On the other hand, patterns processed by neural networks can not
represent such structures explicitly. As a result it is difficult for neural networks to process
such complex information directly.

The variety of the size of data that represent such information is one of the major
problems that arise from trying to process structured information by neural networks.
While the size of structured data used in symbol processing varies, neural networks gen-
erally process fixed-sized patterns. Temporal-sequence processing is a Way o process
variable-sized data by a processor that operates fixed-sized data: Variable-sized data are
divided into fixed-sized fragments. Then the processor operates on these fragments one
by one in a certain order.

Many researchers have been trying to apply layered neural networks with recurrent
links to process temporal sequences. Elman analyzed behavior of such networks when
they learned a prediction task of various sequences(Elm88]. Cleeremans et.al. tried to
train networks to learn finite state grammars(CSSL89). In these works, networks were
trained by the back-propagation method to minimize output errors within one time step.
Such a method is simple enough so that it is biologically plausible. However, it has a
disadvantage that it is difficult to learn complex temporal-sequence processing, especially
with long distance dependencies (LDD). One way to avoid the disadvantage is to use

29
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Figure 3.1: Simple Recurrent Network.

the back-propagation through time (BPTT) method [WZ89). This method. however. has
another disadvantage that it requires to record whole states during processing. Such a
mechanism is not plausible biologically.

In order to process temporal-sequences with LDD, 2 network needs a mechanism to
hold information about inputs through time. In this chapter, I focus information about
input histories that is represented by activity patterns of neural networks, and propose
two methods to solve the above disadvantage.

3.2 Simple Recurrent Networks

3.2.1 Elman’s Networks

Elman proposed a model of simple recurrent networks (SRN) shown in Fig. 3.1 for
learning sequential tasks. This model consists of input, contezt, hidden and output layers
and links between input and hidden layers, context and hidden layers, and hidden and
output layers. And also, it has a feedback connection from the hidden layer to the context
layer, which copies patterns on the hidden layer to the context layer for the next time
step.

This network works like a three-layered feed-forward network within one time step:
Initially an input pattern is set into the input layer and a hidden pattern at the previous
time step is set on the context layer by the feedback connection. Activations of units on
bidden and output layers are calculated in the following manner.

input(t) = qu.-,o,(t)wa 3.1)
i<t
olt) = d(input) (32



3.2. Simple Recurrent Networks 31

() = (33)

1
T+exp(-2/T)
where ¢ indicates a time step; 4, j are identities of units; input(t), oi(t) and 6, are input,
activation and threshold values of unit i respectively; U, is a set of units connect to unit
1; w;; is a weight of a link from unit j to unit i; and T is the temperature parameter of
the network.

In a learning phase, a desired output pattern is given to the output layer as a target
in each time step. The network changes weights of links and threshold values of units by
the back-propagation method to minimize the following penalty function:

E = T (el -a@)? (3.4)
icoutput layer
where 5;{t} is a desired output vaiue of unit i. In this iearning, error information is back-
propagated within one time step and not back-propagated through time by using feedback
connections from the hidden layer to the context layer.

Elman reported that SRNs found structures in time of sequential tasks through learn-
ing [Elm88). For example, when an SRN is trained to learn the prediction task * of XOR
sequences ?, the network found that the length of a fundamental cycle of this task was
3, and in one cycle, the first and the second data were random value and the last data
was the exclusive-OR of these two values. Cleeremans et. al. applied similar networks
10 a task of predicting sequences that generated by an regular grammar. They showed
the ability that SRNs found the same itions as of a finite state that
corresponds to the regular grammar{CSSL89).

3.2.2 Disadvantage of Simple Recurrent Networks

SRNs, however, have a disadvantage that they can not find ‘long distance dependencies
(LDD)’ in sequential tasks. An LDD is a phenomena that an input effect outputs long
time after the input occurs in a sequential task. An embedded structure of a complex
"T7A task to predict next data of given sequences in each time step. In the case when a given sequence
is @3,02,03 .., an SRN outputs ary) when it receives a, in time step t.

A sequence of binary data that is constructed by randomly concatenating examples of input/output
pairs of XOR, that is 2-bit input and 1-bit output. A sample of an XOR sequence might be:

101000011110...
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sentence in a natural language is an example of LDDs. In a complex sentence, there are
some correlations like subject-verb agreement between both sides of an embedded clause
as follows:

“The dog which chased cats is mine”,
“Dogs which chased cats are mine".

Conventional SRNs do not have the ability to learn sequential tasks with LDDs, be-
cause they are trained by back-propagation to minimize output errors within one time
step. For example, consider an experiment in which an SRN is trained to achieve a
prediction task of an ‘n-sequence’ shown in Fig. 3.2 (experiment-1). An n-sequence is
cyclic. In one cycle the first symbol is Py, followed by one of {a,b,c,d,e} (called a ‘pre-

embedded symbal’), a sequence ‘PP F,’ {calied an 'embedded sequence’), the same
symbol as the pre-embedded symbol (called a ‘post-embedded symbol’), and a sequence
“Pyy1-++ Pu'. In other words, a cycle of an n-sequence has an LDD that there is a corre-
lation between a pre-embedded symbol and a post-embedded symbol over an embedded
sequence. In this experiment, each symbol in n-sequences was represented by a pattern
shown in Fig. 3.3. The SRN consists of 15 input units, 50 context units, 50 state units
and 15 output units. Initial weights of links were set randomly in the range of [~1,1].
Learning was done independently for each 7 = 0 ~ 9 . After learning, I recorded outputs
of the network at the timing when it predicted a post-embedded symbol of each cycle, and
calculated accuracies 3 of the prediction. Fig. 3.4 shows how the accuracy changes when
n increases. As shown in this graph, the accuracy of the prediction goes down suddenly.

In order to process temporal sequences that have LDDs like n-sequences, an SRN
must retain information about histories of inputs in patterns of a context layer. In the
case of n-sequences, information about a pre-embedded symbol must be retain in patterns
of a context layer until a network predicts a post-embedded symbol. In learning of the
experiment-1, however, it is not considered how to retain such information. Therefore the
information is lost, so that the network can not predict post-embedded symbols correctly
when embedded sequences are long.

In the following sections, I discuss how to measure information about input histo-
Ties retained in patterns on the context layer and propose two methods to retain such
information effectively.

3Correlation coefficients of outputs and targets.
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c~Embedded Sequence-;

fp Py Py e 3

Figure 3.2: n-sequence

Figure 3.3: Patterns of Symbols in n-sequence
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3 0 s
Lengs of Embesdnt Sequence (5)

Figure 3.4: Performance of Learning n-sequence by SRNs
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3.3 Retaining Information in Difference between Pat-

terns

3.3.1 Information and Difference of Patterns

All information is represented by activation patterns in a neural network. However, it is
meaningless that all patterns occur in the network are the same, because it outputs only
constant patterns for any inputs. For meaningful processing, the pattern must vary. In
other words, information is retained in the difference between patterns. Hence I focus the
distance between patterns as a measure of difference of patterns, that is a measure how
much information is represented by patterns.

To start out, let’s examine a change of the distance between corresponding patterns of
a context layer while an SRN is processing two kinds of cycles of a ‘T-sequence’ problem.
Initially, I recorded a sequence of context patterns while the network was processing
an a-cycle ¢ after an a-cycle. This sequence was treated as a base sequence. Then, I
recorded another sequence of context patterns during a b-cycle after an a-cycle (a —b).
This sequence was compared with the base sequence in order to calculate distances of
corresponding context patterns of these sequences. I also recorded sequences of context
patterns in the case of an a-cycle after a b-cycle (b — a) and in the case of an a-cycle
after an a-cycle (@ — a, this is different from the base sequence), and calculated distances
between corresponding patterns of each of them and the base sequence. Fig. 3.5 shows
changes of these distances in a cycle. In this graph, time = 2 s a timing when the network
receives pre-embedded symbols, and time = 9 is a timing when the network predicts post-
embedded symbols. At a timing of time = 2, the distance between a — b and the base
sequence is large enough, while the distance between a pattern of a — a and the base
sequence is small. However, the distance between a — b and the base sequence becomes
smaller and smaller during the processing of embedded sequences. Finally, at a timing of
time = 9, the distance between @ — b and the base sequence is comparable to the distance
between a — a and the base sequence. This means that a pattern in each cycle becomes
almost the same with each other after processing embedded sequences. Therefore the
network can not predict post-embedded symbols correctly.

This phenomenon is caused by the fact that the distance of patterns on the hidden
layer is smaller than that of patterns on the context layer when patterns on the input

“an '2cycle means the cycle whose pre-cmbedded symbol is
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‘Embedded Sequence 333 o

Distance between Paitems of Stac Layer

Figure 3.5: Change of Distance between Patterns of State Layer during Embedded Se-
quences
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ot |

Figure 3.6: Pattern Transformation Network

layer are the same. In the following section, I discuss how to avoid this phenomenon.

3.3.2 Transformation of Patterns and Change of Distance be-
tween Patterns

Consider a pattern-transformation-network like Fig. 3.6 which consists of input and
output layers. Assume that the following conditions about the pattern-transformation-
network hold.

o The distribution of w, a weight of a link between input and output layers, is a
Gaussian distribution G(w;0,0.), whose mean is 0 and variance o2.

o The average activity, £, of input patterns is a constant.

|(input pattern vector)|®
= (oumber of dimensions of input pattern)

= constant (35)
o All threshold values of units in the output layer are all 0.
© The output function of units in the output layer is defined as follows: *

fa) = [ G0 @)

Moreover, ‘a normalized distance’ between patterns T and y is defined as follows:

- yf?

a7

2 x (number of dimensions of patterns)”

SThis fun
approximate (3.3).

is not exactly the same as (3.3), but is very similar and is assumed to be able to
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Figure 3.7: Relation between a, and a;

Given these assumptions, we can derive the following relation between a;, a normalized
distance of two input patterns, and a,, normalized distance of output patterns of the
network that receives the input patterns. (See appendix A for the detail.)

1 1 [(B-ai)Na? - ANa?
or = feos -(W) —cos '(m)] (38

where N is the number of dimensions of input patterns. This result is a generalized version
of the relation of normalized distances of input and output patterns by the transformations
of random netwotks ([Ama8]). © Fig. 3.7 shows the relation between a; and a, for various
2 where N = 50, $ = 0.5, 7 = 1.0.

Note that a differential coefficient 9a,/da; at a; = 0 is a finite value in the case of
7> 0. Ba,/do; decreases as No? decreases. This means that if No? is small enough,
8a,/3a; at a; = 0 s less than 1, so that the normalized distance of patterns decreases
by the pattern transformation. In this case, the normalized distance falls down to 0 by

The result of [Ama78)] is the case of 7 = 01in (3.8).
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recursive ion of patterns by a pat i k. As a result,
all patterns become the same. On the other hand, in the case when No? is large enough
and 8a,/0a; > 1 at a; = 0, the normalized distance is attracted to a positive value by
recursive transformations of patterns. This means that the difference of patterns is kept
through recursive transformations.

3.3.3 Distance Keeping Method

As shown in Fig. 3.5, differences of patterns on the context layer become similar during
the processing of embedded sequences of n-sequence in the experiment-1. This is the
case when No is small enough in (3.8). From the result of discussions in the previous
section, we can find that this ‘decreasing distance’ problem is avoided by making No2,
large enough. In this case, a difference of patterns that occurs by receiving pre-embedded
symbols is kept during processing embedded sequence. As a result, the network can
predict post-embedded symbols correctly. I call this method the *distance keeping (DK)"
method.

There are two ways to make NoZ large: to make N large o to make o, large. I
took the latter in experiments in section 3.5. In order to o this, I set initial values of
weights of links from a context layer to a state layer according to a distribution with a
large variance.

3.4 Minimization of Information-Loss

In section 3.3, information represented by patterns is measured by distances between
patterns. On the other hand, we can also define a measure of such information in the
manner of Shannon’s information theory. In this section, another method based on such
2 measure is described.

3.4.1 Measure Information-Loss

Consider a pattern-transformation-network shown in Fig. 3.6 again. Let X' = {z;} be aset
of input patterns to the network and Y = {y;} be a set of output patterns of the network.
1 also use ‘X" and )" as symbols to indicate information sources that provide input and
output patterns respectively. In Shannon's information theory, a mutual information I
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between X' and ) is defined as follows:

I(x,y) = H(X)-H(X|Y) (3.9)

where
H(X) = - [ logp(z)ip(z)dz (3.10)
H@D) = - [ llogpl=ly)pie)dz (311

and p() is a probability density, and p{<|y) is a conditional probability density of input
patterns when an output pattern is y respectively. In (3.9), I(X, ) means how much
information about input patterns is retained in output patterns. Moreover, H(X) means
a origina quantity of the information. Therefore in the case when H(X) is constant, we
can treat H(X|)) as a measure of loss of information about input patterns.

3.4.2 Minimum Square Error

In order to process sequence with LDD, we need a technique to minimize H(|Y). How-
ever, direct minimization of H(X|Y) is difficult.

Let’s consider the loss of information from another point of view. The loss of informa-
tion through a pattern transformation corresponds to the degree of ambiguity when input
Ppatterns are reconstructed from output patterns. Thus, we can measure loss of informa-
tion by a minimum square error of estimation of input patterns from output patterns as
follows:

Ea = mpn [ [ (= - FwiA)plz.v)ady (312)
where F is a vector function with parameters A.

It is easy to implement a mechanism to minimize Eg to network learning as follows.
Consider a network like Fig. 3.8. This network is trained to output the same patterns on
the reconst (= reconstruct) layer as of the input layer. In this case, the network solves

the following optimization problem by the back: ion method.
i (227
i (2 =2 (3.13)

where z is an output pattern on the reconst layer, and Wjo and Wog are weight matrices
from the input layer to the output layer and from the output layer to the reconst layer
respectively. (3.13) is reformed as follows:

B [nl}/i"n(a - ;)’] (3.14)
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Figure 3.8: Pattern Transformation Network with Reconst Layer

In this equation, the term in [} corresponds to the minimum square error Eg in {3.12).
Thus learning of the network in Fig. 3.8 minimizes Ex.

3.4.3 Relation between IL and MSE

In this section, the relation between the measute of the loss of information H(X|Y) and
the minimum squase ertor Ep is discussed. Suppose the following assumptions:

« A distribution of output patterns, p(y), remains constant even if weights of links
change by learning.

« For any output patterns y, a conditional distribution p(z|y) is a multi dimensional
Gaussian distribution whose covariance matrix is diagonal.

Given these assumptions, the following relation between H(¥|Y) and Eg holds:

w < log % +log2r (3.15)
(See appendix B for more detail.) In other words, Er is an upper limit of H. Therefore
H is minimized indirectly by minimizing Ex. When the network in Fig. 3.8 is trained to
minimize Eg, the loss of information by transforming patterns from the input layer to the
output layer becomes small. As a result, patterns of the output layer become to represent
information about patterns of the input layer effectively.
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3.4.4 X Model

From the discussion in the previous section, we can derive a new learning method, called
the *information-loss minimization (ILM)’ method for SRNs. Consider a network like
Fig. 3.9. This network is called ‘X-model’ In this network, input, contezt, state and
output layers are the same as in an SRN in Fig. 3.1. Reconst-input and reconst-contezt
layers correspond to a reconst layer in Fig. 3.8, a state layer corresponds to an output layer
in Fig. 3.8, and contezt and input layers correspond to an input layer in Fig. 3.8.

In the learning phase, an input pattern is set into the input layer and a previous
pattern of the state layer is set into the context layer. Simultaneously, as target patterns,
a desired output pattern is given to the output layer and patterns of the input and context

layers are given to the input and layers i Then the
network is trained to minimize the following penalty function:

E = <(zo-21)’+(zm— 21)* +(Trc — Tc)* > (3.16)
where To, Tri, Tac, T1, Tc are activation pattern vectors of the output, reconst-input,
Teconst-context, input and context layers respectively ; z is a required output pattern
vector given from an external teacher.

As discussed in the previous section, the network learns to represent information about
patterns of the input and context layers effectively by a pattern of the state layer. Because
the pattern of the state layer becomes a next pattern of the context layer, a next pattern of
the state layer also represents the information about the current patterns of the input and
context layers. In this way, information about the input and context layers is represented
by patterns of the state layer (also the context layer) recursively. As a result, information
about input patterns is retained in patterns of the state layer for a long time. Using such
information, the network becomes to be able to learn LDDs.

3.5 Experi ts and Di i

In order to show the proposed methods in the previous sections perform well, the following
experiments using the same task as in experiment-1 were carried out.

3.5.1 Learning Prediction Task of by DK Method

In order to make a variance of a distribution of weights o2 large, Weights of links from
the context layer to the state layer are set according to a uniform distribution in [-5,5]
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Figure 3.9: X Model

tead of {~1,1). Other conditions were the same as in experiment-1. After leas
analyzed the performance of the network in the same way as in experiment-1.

The result is shown by plus marks (+) in Fig. 3.10. In this graph, while the perfor-
mance in the case of the experiment-1 goes down quickly when n is greater than 4, the
performance of the DK method is kept high where n is less than 7. This means that the
difference of patterns of the context layer is kept during embedded sequence, so that the
network can distinguish pre-embedded symbols when the network predicts post-embedded
symbols.

However, the performance goes down slowly where n > 7. The reason is as follows:
As shown in Fig. 3.7, in the case of large variances, a distance of patterns increases
if an original distance is small, while a distance decreases if an original distance is large
enough. This means that small differences by noise and large differences by inputs become
similar and become indistinguishable from each other after recursive translations. This is
unavoidable because the setting of the weights does not reflect the nature of given tasks
in this method.

3.5.2 Learning Prediction Task of n-sequence by ILM Method

In the experiment of the ILM method, the number of units in the reconst layer (that is,
reconst-input and reconst-context layer) is 65 and other conditions are the same as in
experiment-1. The result is shown by square marks (O) in Fig. 3.10. We can find the
accuracy of ILM method remains high even if n-sequences have long embedded sequences
liken =7,8.
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As shown in Fig. 3.10, the performance of the ILM method is better than that of the
DK method. The reason is that while weights of links are set randomly regardless of a
given task in the DK method, they are tuned to a given task through learning in the
ILM method. Therefore patterns on the context layer represent information about input
histories more effectively in the ILM method than the DK method. However, the ILM
method also has a limit. Since a network has a fixed-sized state layer, the capacity to
retain information in patterns is limited. Because of the limited capacity, only a finite
length of input histories are retained in the network. Therefore the network can not learn
tasks that have longer distance dependencies than the finite length.

3.5.3 Comparison of Two Method

These two methods have advantages over each other.

As mentioned in the previous section, the ILM method is better than the DK method
from the viewpoint of the ability in learning.

On the other hand, from the viewpoint of the speed of learning, the DK method is
better than the ILM method. The reason is that while a mechanism to keep information
about input histories is constructed through learning in the ILM method, it is constructed
before learning in the DK method. As a result, the ILM method takes more time to learn.

From these advantages, we can consider preferred types of tasks for these methods.
‘The ILM method is suitable for tasks with complex LDDs in which the distribution of
inputs is constant. On the other hand, the DK method is suitable for tasks in which the
distribution changes so that a network must adapt itself to the changes quickly.

3.6 Summary

In this chapter, I proposed two methods, the distance keeping (DK) method and the infor-
mation loss minimization (ILM) method, for simple recurrent networks. These methods
Solve the disadvantage that it is difficult for simple recurrent networks to learn temporal
sequence processing with long distance dependencies (LDD).

In the DK method, initial weights of links are set according 1o a distribution whose
variance is large enough. By means of the large variance of weights, the difference of

patterns of context layers is kept through time. As a result, a network can process
sequences with LDDs.
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In the ILM method, new layers are added to a given network. The network learns to
output the same patterns on the new layers as those of context and input layers. This
learning minimizes the quantity of loss of information about input histories indirectly, so
that the network becomes to be able to process sequences with LDDs through learning.

These methods do not depend on the back-propagation method. Thus it is easy
to apply them to other learning methods and network models. For example, the ILM
method can be implemented to Boltzmann machines in the same manner described in
this chapter[Nod89).

There remain the following open problems for these methods:

o These methods make it difficult to analyze patterns of a state laver and extract
structures of information of sequential processing. These methods are derived by
focusing only efficiency of representing information of input histories by patterns of
the state layer. Thus, information of even useless inputs s also represented by the
patterns.

o There is a certain limit to the length of LDD which networks can learn to deal with.
While a longer distance dependency requires more capacity to keep input histories,
the size of a hidden layer of a network is fixed. Therefore a network trained by
these method can not deal with LDDs that requires more capacity than one of the
network.

These problems will be solved partially in the next chapter.



Chapter 4

Learning State Transition of Finite

State Transducers

4.1 Introduction

One of characteris
transducers. In processing by finite state transducers, structures of information are rep-
resented by itions of the Many have focused on this
point. They tried to analyze pattern transitions of simple recurrent networks as state-

ics of simple recurrent networks is the correspondence with finite state

transitions of finite state transducers in order to extract structures of processing that the
networks learned. In these works, there remains an open problem that networks do not
entirely acquire suitable state-transitions. This problem comes from a lack of correspon-
dence between learning of simple recurrent networks and finite state transducers.

In this chapter, a new method for simple recurrent networks to learn suitable state-
transitions is proposed. The method has correspondence with the learning of finite state
transducers. In order to derive it, a procedure to construct a finite state transducer

from input-output examples is composed using the state-mi tion technique (in sec-

tion 4.2). Then each step of the method is reconstructed as a learning of neural networks
(in section 4.3).

4.2 SRN and FST
4.2.1 Simple Recurrent Networks (SRN)

47
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Figure 4.1: Simple Recurrent Network with Sigma-Pi Link.

Consider a simple recurrent network (SRN) like Fig. 4.1. An SRN consists of input,
previous-state, state and output layers, Sigma-Pi-type links (GSC*90] ! from input and
previous-state layers to the state layer, and Sigma-type links from the state layer to the
output layer. Moreover, the network has recurrent links to copy patterns of state layer to
the previous-state layer with 1 time delay.

This network works in discrete time. In each time step, an external input pattern is set
into the input layer and a previous pattern of the state layer is set into the previous-state
layer. Then patterns of state and output layers are calculated in the manner of standard
feed-forward networks.

Note that it is not necessary to use Sigma-Pi-type links among input, previous-state
and state layers. It is only for avoiding a limitation of transitions of SRN [GSC*90]. ? We
can have the same discussion as in the rest of this chapter in the case of using Sigma-type
links instead of Sigma-Pi-type links.

There are two strategies to train an SRN to learn a given sequential task. One strategy
is o use the ‘back-propagation through time (BPTT)’ method to minimize output error.
BPTT is powerful. However, it has a demerit that it requires to record whole status of
a network during processing. Such a mechanism is not plausible biologically. Auother

"The input value to the unit k in the state layer is calculated as follows:

oy = 3 Twmse,

1ePs jel

where ‘PS', 'I" are respectively sets of units of previous-state and input layers; z, is an output of the unit
i3 Wiyh is 8 weight of the link from the unit i and the unit j 1o the unit k.
This limitation will be discussed in section 5.1.2.
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Figure 4.2: Finite State Transducer.

strategy is to use the back-propagation simply within one time step (called a simple BP,
or SBP). A merit of this strategy is that learning is simple and plausible biologically.
However, it has a demerit that it has poor ability to learn complex sequential tasks.

In these strategies, I take the later for learning an SRN.

4.2.2 Finite State Transducer (FST)

In the automata theory, a finite state transducer (FST) is defined by the following
6-tuple.

FST = <QT,A64.90>

where Q is a set of states, T is a set of input symbols, & is a state-transition function,
go is an initial state, A is  set of output symbols, and ¥ is an output function. Fig. 4.2
shows a schema of state-transitions of an FST.

4.2.3 Learning FST from given examples

When a set of examples of input-output sequences is given, we can construct an FST
that performs these input-output sequences with minimum states. This s based on the
state-minimization technique of FSTs[HU79). The procedure is as follows :

[Learning FST)
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S1 Make states each of which corresponds to a possible input history.

52 Assign an output value 1o each state according to examples. Then group states into
groups according to outputs of states.

$3 Group states in a group into sub-groups according to the group of next states after
transitions from the states. Repeat this sub-grouping until no more groups are
generated.

54 Unify states belonging to the same group together a state, and reform state-transitions
and outputs of each state.

(For more details, see appendix C.)

4.2.4 Correspondence between SRN and FST

As shown in Fig. 4.1 and Fig. 4.2, it is easy to consider a correspondence between an
SRN and an FST. Activation patterns of input, output, previous-state and state layers
respectively correspond to input symbols, output symbols, current states and next states
after transitions. Links from input and previous-state layers to a state layer correspond
0 a state-transition function, and links from a state layer to an output layer correspond
10 an output function.

On the other hand, learning of SRNs described in section 4.2.1 does not correspond to
learning of FSTs. Therefore, it is not sure that SRNs acquire suitable state-transitions as
FSTs. As a result of acquiring unsuitable state transitions, the ability of SRNs decrease
and also it becomes difficult to analyze patterns of the state layer.

In the next section, in order to solve this problem, I propose a new network model
and its learning method, which corresponds to the learning of FSTs.

4.3 SGH Model

4.3.1 Network Architecture

Fig. 4.3 shows an overview of the network architecture of the proposed model, called
the ‘SGH model’. It consists of ‘SRN', ‘grouping’ and ‘history’ modules. In learning
phase, the history module is trained first, the grouping module second, and the SRN
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Figure 4.3: Whole Network Architecture.

module third. After learning, the SRN module works alone as an SRN. In other words,
grouping and history modules are used only for learning.

The history module learns pattern representations in which information about input
histories is represented by patterns effectively. This learning corresponds to the step S1
of the FST learning procedure. After learning, this module outputs patterns representing
input histories to the grouping module as input patterns.

The grouping module classifies patterns of input histories into groups according to
required outputs and next states. This classification is performed through learning. This
learning corresponds to the step S2 and the step S3. After learning, this module outputs
patterns representing groups of states to the SRN module as teacher patterns.

The SRN module learns final state-transitions and an output function according to
patterns of state-groups from the grouping module and required output patterns from
external teachers. This learning corresponds to the step 54. After learning, a part of this
module works alone as an SRN.

In the following sections, the detail of learning of each module is described. Note that
only the SBP method is used in learning of each module.

4.3.2 History Module

The learning of the history module corresponds to the step S1 in the FST learning,
that is, making states corresponding to histories of input data. In order to realize this,
An X model network with the ILM method described in chapter 3 is used. By this model
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same as same as
History pattem  Input pattem

from
extemal input

Figure 4.4: History Module.

and method, input histories can be represented by patterns. These patterns can be seen
as states corresponding to input histories. Actually, I use a network like Fig. 4.4. In this
Detwork, an external input pattern s set into the input layer, and a pattern of the nezt-
history layet in the previous time step is copied into the history layer. Fot target sngnals
the same patterns of input and hi re given to inp y
layers respectively.

‘This network trained to minimize the following penalty:

Buinory =< [eh = 2i[" + |2k - 24" > (a1)
where @y, o}, Thy and T are respectively pattern vectors of reconst-input, input,
reconst-history and history layers at time step t. Through this learning, information
about input histories becomes to be represented by patterns of the history layer. After
learning, this module outputs these patterns of the history layer to the grouping module
as patterns of states correspond to input histories.

4.3.3 Grouping Module

The learning of the grouping module corresponds to the step S2 and the step $3, that
is grouping states according to the output and the next state after transitions. In order
10 do this, I consider a technique of grouping input patterns on a hidden layer.
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Table 4.1: Relation Between Difference of Input/Target Data and of Hidden Patterns.

target data
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Figure 4.5: Grouping Module.
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Grouping Input Patterns on A Hidden Layer

Suppose that a feed-forward three-layer network is trained by using two pairs of inputs
and target outputs. We can not know what patterns will occur on the hidden layer after
learning. However, we can know whether two hidden patterns for the two inputs are the
same or not. Tab. 4.1 shows whether hidden patterns for each of two inputs are the same
or different in each case when two inputs are the same or different and two targets are the
same or different. From this table, we can find that hidden patterns are different when
inputs and targets are different. This means that inputs are grouped into patterns of the
hidden layer according to the target output.

Coxside: a network shows in Fig. 4.5 as a grouping modale. In this network, a pattera
of the history layer in the history module is set on the history layer, a current external

input layer, and & zext external input patters is set on the

s set on the

patte:
nezt-input layer. As target signals, a required output pattern is given to the output layer,
and a pattern of the temporal-group layer at the next time step is given to the nezt-
group layer. Moreover, links from group and nezt-input layers to the nezt-group layer are
Sigma-Pi-type links. The network is trained to minimize the following penalty:

Equousing =< [z = 24" + |2k - =4[ > (42)
where x5, The and zf are respectively pattern vectors of output, next-group layers at
time step ¢ and of the temporal layer at time step ¢ + 1; § is a required output pattern
vectors at time step .

Note that weights of links to the temporal-group layer are copied from links to the
group layer at long enough intervals compared with a time scale of weight learning (in
experiments in the next section, each 5000 ~10000 epochs). Therefore patterns of the
temporary-group layer are almost the same as those of the group layer, but more stable
than them. This layer is used for providing stable teacher patterns for the next-group
layer.

As mentioned above, patterns of history and input layers are grouped into patterns of
the group layer according to =¥ and z%. This means that states that correspond to input
histories are grouped into groups represented by patterns of the group layer according to
output of the states. This corresponds to the step S2. Also, states are grouped according
o the group of next states after transitions from the states, because links to the temporal-
group layer are copies of links to the group layer, so that 4 indicates a group of a next
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Figure 4.6: Actual Grouping Module.

state. This corresponds to the step S3. *
After learning, this module outputs patterns of the group layer to the SRN module as
patterns of groups of states.

Inhibition of Redundant Groups

As shown in Tab. 4.1, it is not assured that patterns of the hidden layer become

the same in the case of different inputs and the same target outputs. Therefore some
redundant grouping of states may occur. In order to avoid this redundant grouping, the
OLL method described in chapter 2 is used. The OLL method inhibits redundant grouping
because the OLL method has an effect to eliminate redundant pattern representation of
hidden layers. This effect is enhanced by installing a new intermediate layer between input
and hidden layers. Moreover, it is empirically known that grouping of states becomes
effective if the grouping layer receives previous patterns of the group layer. For these
reasons, a network shown in Fig. 4.6 is actually used for the grouping module. (For
simplicity intermediate layers are eliminated in this figure.)
" 3Conceptually, it works in the same manner in the case of using patterns of the group layer instead
of the temporal-group layer as a target of the next-group layer. However, learning progresses gradually,
and the network can not get suitable target signals about groups of next states in the middle of learning.
Use of the temporal-group layer avoids this and provides stable target signals.
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from'
extemal input

Figure 4.7: SRN Module.
4.3.4 SRN Module

The SRN module constructs reduced state transitions by using information about
groups of states from the grouping module. In order to do this, a network like Fig. 4.7 is
considered. This network is the same as a SRN in Fig. 4.1 except for the current-group
layer. In this network, an external input pattern is set on the input layer and a pattern
of the state layer at the previous time step is set on the previous-state layer. As target
signals, a required output pattern is given to the output layer and a pattern of the group
layer in the grouping module is given to the current-group layer. The network is trained
to minimize the following penalty:

Esay =< |ab - 25" + |zt - =4[ > (43)
where (g is a pattern vector of the current-group layer at time step . Moreover, in
order to avoid generating redundant states, the OLL method is used on the state layer.
By the effect of the second term of the right side of (4.3), each pattern of the state layer
comes to have a one-to-one correspondence to a pattern of the group layer in the grouping
module. As a result, each state of the SRN part corresponds to a group of states that
have the same output and the same next states. In other words, states in a group unified
into one state. This corresponds to the step S4. The module also constructs an output
function by minimizing the first term.
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4.4 Experiments

4.4.1 Learning Process of Grouping Module

In order to demonstrate how a grouping module groups states correspond to input histo-
Ties, the following experiment (Ex.1) was carried out.

Consider a finite state automaton that has state-transitions shown in Fig. 4.8. This
automaton generates four sequences, that is ‘AEFGHI', ‘BEFGHI", ‘CEFGHJ’ and 'DE-
FGHJ'. An SGH network learns a sequence prediction task 4 using these sequences. If
the network acquires the same state-transitions as Fig. 4.8, we can say that the learning
is successful. In this experiment, each of history, next-history and reconst-history layers
consists of 30 units, each of group, previous-group, I-group, next-group, state,
previous-state and current-group layers consists of 6 umts, and each of input and out-
put layers consists of 10 units. In input and output layers, each symbol in Fig. 4.8 was
represented as localist representation 3.

I recorded patterns of the group layer during learning and analyzed them by principle
component analysis (PCA). Fig. 4.9 shows the process of learning of the grouping mod-
ule. Each graph shows changes of the first principle component of patterns of the group
layer during the processing of each of sequences in a certain stage of learning, In these
graph, each sequential position corresponds to states in Fig. 4.8 as follows: The sequential
position 0 to state go; 1 10 ¢y and ¢; 2 10 g3 and

4; 3 corresponds to gs and gg; 4 corresponds to ¢ and gs; 5 corresponds to gs and gio
Fig. 4.9-(a) is a stage when the network has grouped states according to outputs. In this
stage, state go and state o in Fig. 4.8 are represented by different patterns. But each pair
of {g1,92), {95,94), {95.96} and {gs,qs} is represented by the same pattern because two
states of each pair have the same output. It means two states of each pair are grouped
into the same group. In a stage of Fig. 4.9-(b), g; and gy come to be represented by
different patterns because th next states of these states, that is gy and gyo, are represented
by different patterns. In the same manner, states of each pair of {g),92}, {¢5,94} and
{4s,95} come to be represented by different patterns in stage (c), stage (d) and stage (e)
respectively. Finally the network acquires patterns of groups each of which corresponds

“The task to predict succesive elements of & sequence. When a sequence {2),23. 23, ) is given,
the network receives 2, as an input and learns to 0uLpuL Z;a) at time ¢.

In localist representation, each unit corresponds to a symbol one-by-one, and just one unit that
corresponds to a symbol to represent is activated.
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Figure 4.8: State-Transition of An Automata for Ex.1.

10 a state in Fig. 4.8 one-by-one. Subsequently the SRN module started to learn and
constructed an SRN that had the same state-transitions as Fig. 4.8.

4.4.2 Learning Flip-flop

The second experiment is learning the same state-transitions as of a flip-fiop like Fig. 4.10.
A task a network learns is that the network receives a random binary (‘0" or *1') sequence
followed by a terminal symbol (‘s’), and then outputs a parity of the number of ‘1's in
the sequence. In this experiment, each of history, next-history and reconst-history layers
consists of 30 units, each of group, previous-group, l-group, next-group, state,
previous-state and current-group layers consists of 10 units, ea:l: of input layers consists

of 3 units and each of output layers consists of 2 units.

After learning, [ analyzed patterns of the state layer by PCA. Fig. 4.11 shows an
example of a result of PCA. In this figure the first and second principle components of a
pattern of the state layer at each time step are plotted. As shown in this figure, the SRN
module of the network acquired the same state-transitions as Fig. 4.10.

For comparison, I also trained SRNs with 60 hidden units by SBP, SRNs with 10
hidden units by BPTT, and X models with 50 hidden units. Fig. 4.12 shows the average
output error of each model for various lengths of binary input sequences. We can see that
errors of SRNs by SBP and X models increase suddenly when input sequences become
long, while errors of SGH models and SRN by BPTT are kept small even for long input
sequences. The cause of this advantage of SGH models and SRNs by BPTT is that these
networks acquire the same state-transitions as Fig. 4.10. Note that SGH models use the
SBP method rather than back-propagating error information through time like the BPTT
method.
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Figure 4.9: Learning Process of Group Layer in Grouping Part.
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Figure 4.10: Flip Flop.
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Figure 4.11: Example of State-Transition of Flip-flop.
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Figure 4.12: Output Error of Flip-flop.
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4.4.3 Learning of Processing with Long Distance Dependency

In the field of natural language processing, one important problem is how to deal with
long distance dependencies (LDD). For example, agreement between subject and main
verb holds even if subordinate clauses are embedded between them like

The dog that chased cats is mine.
Dog that chased cats are mine.

I tested the ability of SGH models to deal with LDDs as follows. Consider sequences
generated by an automaton that has state-transitions shown in Fig. 4.13. If the first data
of the sequence is ‘a’ or ‘b, the last data of the sequence is . Comversely, the first
datais ‘<’ or ‘0", the last data is ‘j". Between these correspondences, There are embedded
sequences generated by automaton whose stat

ds, these
sequences have LDDs. An SGH model is trained to achieve a sequence prediction task
using them. In order to predict the last data of the sequences correctly, the network must
retain the information about first data in it through embedded sequences. One solution
of retaining such information is to acquire the same state-transitions as Fig. 4.13.

In this experi each of history, next-history and history layers consists of
60 units, each of group, previous-group, temporal-group, group, state, pi
and current-group layers consists of 15 units and each of input and output layers consists
of 9 units. I also trained an X model with 75 hidden units for comparison. Fig. 4.14 shows
average output errors of both models at predicting last data. We can see that errors of

X models increase for longer embedded sequences, while errors of SGH models are kept
small.

Although the X model was proposed in order to deal with LDDs, the ability to deal
with LDDs is limited by the capacity of the network. On the other hand, the SGH
model deals with LDDs better than the X model in this case. The SGH model is aimed at
acquiring suitable state-transitions. Fig. 4.15 shows an example of state-transitions which
SRN modules of an SGH model acquired. This transition map is the same as Fig. 4.13.
Because of these transitions, it became able to predict last data correctly even if embedded
sequences become long. As this case, the SGH model has an ability to deal with very long
distance dependencies that is caused by loop-type embedded stat-transitions.

In addition toit, SGH model solve another problem of the X model. Pattern transitions
of the state layer in the SGH model is simple as shown in Fig. 4.15, so that it is easy to
analyze such transitions in order to find structures of learned sequential tasks.
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Figure 4.13: State-Transition with Embedded Loop.
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Figure 4.14: Prediction Error after Embedded Sequences.
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Figure 4.15: Example of State-Transition after Learning.

4.5 Summary

In this chapter, a model, called the SGH model, and its learning method to acquire
suitable state-transitions are proposed. The method is derived from a procedure to con-
struct a finite state transducer from input-output examples using the state-minimization
technique. The algorithm consists of three steps: The first step is to generate states cor-
respond to input histories. The second step is to group the states into groups according
10 outputs and next states of each state. The third step is to unify states in the same
groups. Three network modules and learning methods for them are reconstructed from
these three steps and combined into the SGH model.

The proposed method has the following features:

o The learning procedure used in this method is the simple back-propagation method,
in which an eror signal may not be back-propagated through time. Moreover,
proposed learning methods are independent from the learning procedure, because
only penalty functions to minimize are modified. Therefore it is easy to apply
another learning procedure to this method.
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o Penalties used in learning are calculated by signals that generated in the network
itself except for required outputs. Therefore no other teachers or observers are
required for learning.

These features are fit for biological models of brains and also suit for implementing into
bardwases.
There also remain the following open problems:

o We must carefully choose learning parameters. Especially the timings to switch
learning stages are important, because the learning of each module must be done
one by one. Automatic methods to switch them should be examined.

o Pattern representation of input histories in the history module is a major factor in
dete

of the mode

ing the ability

model network generates pattern repre-
sentation that represents input histories eflectively. Such representation, however, is
Dot always suitable for learning of the grouping module. We need to try to combine
various types of methods to represent input histories in order to improve the ability
of the model.
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Chapter 5

Discussion

5.1 FST versus SRN

As mentioned in section 4.2, simple recurrent networks (SRN) have the same structure
as finite state transducers (FST). However, their abilities are slightly different. In this
section I discuss advantages and disadvantages of SRNs as compared to FSTs.

5.1.1 Advantage of SRN

It is well known that major advantages to neural networks are the robustness to noise and
the ability to deal with analog values. In addition to it, I focus on another advantage,
which is concerned with the generalization ability of learning.

Sequences used in experiments in chapter 3 and chapter 4 are able to be generated by
regular grammars (RG). On the other hand, there are more powerful classes of grammars
than RG. Context free grammars (CFG) are one of those classes. They are widely used in
symbol processing, because it is powerful enough and also easy to process by computers.
Theoretically, it is hard for SRNs to process CFGs perfectly, because processing of CFGs
requires an infinite stack memory. However, we can discuss whether SRNs can deal with
features of CFGs. Here, I focus on one feature of CFGs, called sub-grammars.

In a natural language, there are local syntactic structures that are free from context.
For example, in English, a noun phrase in a sentence has a certain syntactic structure
that is free from changes in the rest of the sentence. These local structures are called
‘sub-grammars’. In order to represent a sub-grammar in CFG, we usually define a non-
terminal symbol for the sub-grammar, and write rules that have the symbol in the left

67
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band. For example, noun phrases are represented as follows:

NP — DET-N
NP — DET-ADJ'N

We can embed such a sub-grammar in positions where sentences should have a syntactic
structure defined by the sub-grammar. For example, a subject part in a sentence has the
same structure as NP and also each object part in a verb phrase has the same structure
as NP. We can explain this by writing the following rules.

On the other hand, in the case of RG, we need to define a non-terminal symbol of NP for
each position as follows:

S — NP,-VP
VP — V.NP,-NP,
NP, — DET,-N,

NP, — DET;-ADJ,-N,
NP, — DET;-Ns

Such simpleness of representing sub-grammars is one of major reasons why CFG is used
in natural language processing.

The difference of representation of a sub-grammar in CFG and RG causes a difference
of the generalization ability by learning. For example, if a system, which processes English
sentences by CFG, learns a new syntactic structure of a subject part, such a structure
will be generalized as a new syntactic structure of NP. Thus the system will become able
to process sentences that have such a new structure in an object part of a verb phrase.
On the other hand, in the case of RG, effects of learning a new syntactic structure will
be limited in a subject part.

Using this difference of generalization abilities, I consider the following setup to de-
termine a network learns a sub-grammar successfully or not:
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First a network learns a prediction task of sequences in agAfp (where ao, 4 and B
are sets of sequences). *

2. Next the network learns a prediction task of sequences in a1 Ay, where A’ is a
subset of A.

«

Finally the network receives sequences in a,A”, where A" is a subset of A and the
intersection of A’ and A" is null set.

Consider a case when the network learned to treat A as a set of sequences generated by a
sub-grammar at step 1. In this case, the network will become able to generalize to process
sequences ir a;.45, at step 2. Therefore, the network will predict sequences iz 3, at step
3 because A” is a subset of A. Otherwise, the network will predict sequences in By or
dom pat!

In the actual experiment, a network learned the prediction task of sequences generated
by a grammar shown in Fig. 5.2, where P was a sub-grammar to learn. In the experiment,
the network learned grammar G (cotresponds to aoAf in the previous paragraph) at first,
grammar H (corresponds to a3 A'f,) at second and finally the network received sequences
generated by grammar H' (corresponds to ayAf;). A simplified SGH model shown in
Fig. 5.1 was used as a network to learn this task. In this model, a SRN module and a
temporal-group layer in a grouping module in an SGH model are removed for simplicity.
Moreover a next-group layer is trained to output next patterns of a group layer instead
of the temporal-group layer.

s.

Fig. 5.3 shows responses (predictions of a next input) of the network when it receives
sequences of H that the network has not learned. We can see that the network predicts
correct next data in most cases. In cases of the 3rd line (predicting ‘c,’) and the 4th
line (predicting ‘dy’) in Fig. 5.3, outputs for correct predictions are weak, but they are
stronger than other outputs. From this result we can say that simplified SGH models can
learn sub-grammars to a certain degree.

‘Why can the network learn sub-grammars? It is speculated that a topology of patterns
makes it possible. In the automata theory, states of FST are represented by symbols,
between which no relations are defined. Therefore it is impossible to characterize state-

ind to define similarities between itions by using relations of states.
On the other hand, states of SRN are represented by patterns, between which a topology

TagABy means & set of sequences that are generated by concatenating three sequences in o, 4 and

Bo.
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Figure 5.1: Simplified SGH model

is defined. Therefore itions can be defined as traj; ies in the pattern space.
Thus it is easy to define similarities between these trajectories by their directions or length

of. Using these similarities the network can manage state-transitions independently from
actual states. As a result, it can learn sub-grammars.

5.1.2 Disadvantage of SRN

A disadvantage of SRN is that state-transitions are constrained. For example, an SRN
shown in Fig. 3.1 can not realize state-transitions like Fig. 5.4, because these transitions
are the same as mappings of exclusive-OR. Such mapping can not be realized by two-layer
networks [MP69, GSC*90]. State-transitions of a flip-flop used in section 4.4.2 are also
this type of transitions. We can escape this problem by using Sigma-Pi-type links like
in chapter 4 or by putting in additional hidden layers. However, even if we use these
techniques, other constraints of state-transitions arise.

This disadvantage is caused by pattern representation of states. As mentioned in sec-
tion 5.1.1, pattern representation has a topology and the topology constraints transitions
of states. In other words, topology of state-representation brings both advantage in the
generalization ability and disadvantage in the realization ability.
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Figure 5.5: Example of Semantic Network.

5.2 Repr tation of S tic Networks

This work is aimed at developing methods of neural networks to process complicated infor-
mation such as information processed by symbol processing. In this section, a prototype
of a method to represent semantic networks by using results of this work is described.

5.2.1 Formalization of Semantic Networks

Semantic networks are a framework to represent structured information schematically.
Fig. 5.5 shows an example of semantic networks. As shown in Fig. 5.5, a semantic network
consists of nodes that represent things or events 2 and links that represent relations

Nodes also represent concepts in some formalization. But in the formalization described here nodes
represent only individual instances of things or events.
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between nodes. Formally a semantic network is defined as a 5-tuple as follows:
Semaatic Network = <N,7,P,r,p>

where AV is a set of nodes, T is a set of types of relations, V' is a set of property-values,
7 is a map of relations, and p is a map of properties. For example, the semantic network
in Fig. 5.5 is defined a tuple < N, T,V, 7, f > where

1

N = {m,na,n5,n4m5)
T {agent, object}
V = {Hanako.see. Taro. milk}

t i r(ny,agent) =n;

r{my, object) = ny
7(n3,agent) = ny
r(ns, object) = ny

Pt plm)=see
Pp(nz) = Hanako
p(ns) = drink
P(n4) = Taro
p(ns) = milk

In addition to this formalization, focuses are added on to the semantic networks. In
a semantic network, just one node is focused. The focus can move from a node to a node
along a relation between them. We can access only properties of a focused node from
the outside of the semantic network. The function of a semantic network with a focus is
formalized as follows:

Initially, an initial focused node is given to a semantic network. Then as it
receives types of relations one by one, it moves the focus along the type of
relation, and outputs properties of a focused node.

In other words, I treat a semantic network as a black-box that receives types and outputs
properties one by one.

Using this formalization, we can consider the following correspondence between se-
mantic networks and finite state transducers: Nodes, types and properties correspond
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to states, inputs and outputs respectively. Relation and property maps correspond to
state-transition and output functions respectively. In other words, a semantic network is
treated as a chart of itions of a finite state Under this correspon-
dence, semantic networks can be constructed in the same way as learning of finite state

transducers. Thus learning of a semantic network is formalized as follows:

To construct a semantic network from ezamples of sequences of pairs of relation-
types and properties that the semantic network is required to process.

5.2.2 Realization of S ic N ks by Neural Networks

As mentioned in section 4.2, a simple recurrent network has the same structure as a finite
state transducer. Therefore we can represent a semantic network by a simple recurrent
network as shown in Fig. 5.6 according to the formalization in the previous section. In
this representation, nodes, types of relations, properties are represented by patterns of
node, type and property layers respectively. A relation map is represented by a link from
the pre-node and type layers to the node layer. A property map is represented by a link
from the node layer to the property layer.

As mentioned above, a semantic network is regarded as state-transitions of finite state
transducers. Moreover, simple recurrent networks that have suitable state-transitions
can be constructed by learning of SGH models. Therefore we can get a simple recurrent
network that represents a semantic network by learning of an SGH model. In this learning,
sequences of pairs of relation-types and properties are given to the SGH model and the
SGH model acquires state-transitions whose structure is the same as a semantic network
10 learn.

5.2.3 Experiments
In order to show that this formalization of semantic networks performs well, a simple
experiment was carried out.

Consider a semantic network like Fig. 5.7. In this network, properties of nodes ‘X',
‘Y’, 'Z' and "W" are selected in the following sets:

X : {Human, Thing}
Y i {abed)
Z : {Large, Middle, Small}
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Figure 5.6: Simple Recurrent Network for representing Semantic Network.
W @ {Yes,No}

where there is a correlation between properties of node ‘X' and node ‘W’ as follows:
When a property of ‘X is 'Human’, a property of ‘W’ must be *Yes’. Coversely when a
property of X" is ‘Thing’, a property of ‘W* must be ‘No’. Thus there are 24 combinations
of networks. 21 combinations of them are used for generating a training set of example
sequences of type-property pairs, and other 3 combinations are used for a test set. A
simplified SGH model with 20 units in the group layer and 30 units in the history layer
was used to learn the semantic network. Fig. 5.8 shows output patterns of the property
layer after learning. Each line in Fig. 5.8 shows a property that a neural network outputs
when its state comes to each node of ‘X', 'Y", ‘Z' and ‘W". Fig. 5.8-(a) is a case of a
combination in the training set and (b) is a case of a combination in the test set. In
both cases the network outputs the property that the network memorized. This means
that the network works as a semantic network as shown in Fig. 5.7. Moreover, although

properties of node “W* were not given when the network memorized a semantic network,
the network outputs suitable properties of node ‘W’ This means that the network found
the correlation between properties of node ‘X’ and node ‘W" through learning, and inferred
a property of ‘W from a property of ‘X",

5.2.4 Discussion

The formalization of semantic networks and its realization by simple recurrent networks
have the following advantages:
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(Human,

(Yes,No)
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{Large,Middle,Small}

Figure 5.7: Semantic Network to Learn.
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(b) X = Human , Y = a, Z = Large (in the test set)

Figure 5.8: Outputs of Property Layer for Each Node
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o In the conventional implementation of semantic networks to neural networks like
[WP8S, Shas8], neural networks can not operate or learn semantic structures, that
is relations of nodes, directly. Therefore additional mechanisms to operate relations
are required outside neural networks. On the other hand, in the formalization de-
scribed here, a network can operate and learn semantic structure. This will provide
the possibility of constructing a system to process semantic information by neural
networks.

« While information in semantic networks is represented in maps of relations in symbol

processing, it is represented by patterns of node layers in this formalization. As
mentioned in section 5.1.1, patterns have a topology. Using the topology, similarities
between information are defined naturally. Such similarities and topology provide
the ability of generalization. Inference of properties of node ‘W’ in the experiment
in section 5.2.3 is an example of this generalization ability.
We can get a more powerful ability of generalization by supposing more strong
topology of pattern representation of information. For example, the network will
become able to perform multi-step inferences when pattern transitions from the
pre-node layer to the node layer are liner. Too strong topology, however, decreases
the ability of representation as semantic networks. Therefore we must balance the
tradeoff between these abilities.

A disadvantage of this formalization is:

o Concepts can not be dealt with in this ization. Nodes in this
can represent only concrete things or events. One way to deal with concepts is to

represent them as properties whose patteras represent a hierarchy of concepts.

5.3 Biological Plausibility

The most important feature of artificial neural networks is that these networks are derived
from models of the nervous system in brains. However many of them are not plausible
as brain models. For example, the real time recurrent learning method [WZ89) requires
that each unit must retain information about whole links in a network. It is difficult to
suppose that an actual nervous system has such a mechanism.

In this section, I discuss biological plausibility of models proposed in this thesis from
various points of view.
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5.3.1 Network Structure

It is said that the number of neurons in a brain does not change. In the proposed models,
additional layers are required for learning, but whole structures of these networks are
fixed. Thus we need not change the number of units during learning.

It is also said that a neuron in a brain can perform relatively simple calculations. In
the proposed models, each unit calculates weighted summations of activations of units
connected by links and decides its activation from the summations according to a sigmoid
function. These calculations are simple enough for a model of actual neurons.

5.3.2 Locality of Calculations

Each calculation of processing and learning in brains is generally supposed to be performed
in a local area like a synapse. In the proposed models, all procedures of processing
and learning are performed in links and units. Furthermore whole data used in these
procedures are propagated only through links. It is easy to realize these procedures by
calculations in local areas.

Time locality of calculations is also required. For example, it is difficult to realize the
back-propagation through time method [WZ89) by calculations local in time. It requires to
record all histories of activations of units. Such a mechanism is not plausible biologically.
On the other hand, the X model requires only data in current time step. Also the SGH
model requires only data in previous and current time step. Therefore it is possible to
construct these models by calculations local in time.

5.3.3 Target Signals

A major problem of supervised learning is who provides target signals. In the proposed
models, whole target signals are generated in the models except for required external
outputs. For example, in the X model teacher signals for the reconst-input and reconst-
context layers are patterns of the input and context layers respectively. In the SGH model,
teacher signals for the current-group and next-group layers are patterns of the group layer
at the same and the next time steps respectively. Therefore additional mechanisms to
provide such targets are not necessary.

Moreover, in the case when the networks learn the sequence prediction task like in
experiments described in section 3.5 and section 4.4, no external teachers are required.
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In this case target signals for output layers are next input patterns. It is important that
the networks can learn structures of given sequences through such simple tasks{EIm88).

5.3.4 Learning Procedure

The back-propagation method may be not plausible as biological models, because it re-
quires slightly compli to propagate error i i in
the proposed models only penalty functions are modified rather than learning procedures.

Therefore it is easy o replace the back-propagation with another learning procedure. For

example. we can use the learning method to minimize the penalty functions.

5.3.5 Toward Biological Model

As discussed above, the proposed models are plausible as brain models. For example, we
can draw out a brief structure of nervous systems of the simplified SGH model (Fig. 5.1)
which learns a prediction task of input sequences. Fig. 5.9 shows the brief structure. In
this figure, each large rectangle means alayer of neurons. Each small square means a delay-
unit that propagates activations after one time delay. Each arrow means a connection
between two layers. Furthermore, each circle means a unit that calculates differences
of patterns of two layers. Using these differences, weights of connections are modified.
For example, in the case of a reinforcement learning method, weights are reinforced by a
certain mechanism when the differences are small. These mechanisms are simple enough
to be plausible as biological models.

5.3.6 Disadvantages as Biological Models

There ate the following disadvantages Lo the proposed models as biological models.

* While actual brains work in continuous time, the X model and the SGH model work
in discrete time.

o In the SGH model, an operation to copy weights of links is required. Such a mech-
anism is not plausible as brain models.
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Figure 5.9: Simplified SGH Model as Brain Model

5.4 Related Works

5.4.1 Symbolization of Patterns

Many reseaschers try to minimize the number of hidden units by so-called a pruning
method (Hagol, SD88, 00Y93, MS89, KM91, 0G93, Reed3). A major strategy of these
works is removing redundant units that are inactive or duplicate another. The pruning
method, however, does not force units to become obviously redundant, so that we can
Dot always find the minimum number of hidden units. On the other hand, the OLL
method proposed in chapter 2 force units to become obviously redundant. Consequently,
we can find the minimum dimensions instead of the minimum hidden units. Yet, OLL
does not minimize the number of hidden units directly. We will be able to construct a
more powerful pruning method by combining the OLL method.

There is another method to find simple networks, called the ‘weight-decay method’
{1sh89, PNH86). In this method, complexity of networks is defined according to weights
of links. The complexity is minimized through learning. As a result a reduced network is
acquired. An effect of this method is different from the OLL method, because the weight-
decay method minimizes mainly the number of links rather than hidden units. Thus we
can use those methods complementarily.



5.4. Related Works 81
5.4.2 Sequential Processing and Learning FST by SRN

Simple recurrent networks (SRN) are hardly studied as machines of sequential processing.
Elman investigated behavior of SRNs after training a prediction task[Elm88, Elm89).
He showed that networks could find structures in sequences through a simple back-

learning. Similar networks are used to learn regular grammars and finite state
automata [SSCM89, Pol91], and to process natural languages [MD89, JM90]. Ghahra-
mani and Allen [GA91) proposed a model based on the same idea of an X model after
an X model was proposed. Yet, they did not treat simple recurrent networks as finite

state automata in learning. Thus networks can not achieve suitable state-transitions even
if the networks have a capacity to realize such state-transitions. Compared with them,
learning of an SGH model is based on learning of finite state transducers. Therefore an
SGH model can acquire more suitable state-transitions than their models.

Giles and his colleagues are developing methods to process sequential tasks by re-
current networks and to construct minimum state-transitions of such networks (GSC*90,
GCM*91a, GCM*91b, OGM92]. Main differences between my works and them are:

« They use the ‘back-propagation through time (BPTT)’ method to learn sequential
tasks, while I use the simple BP method. The BPTT method is powerful but less
plausible biologically.

® Their method to construct minimum state-transition is off-line, while my method is
on-line.

5.4.3 Other Symbol Processing by Neural Networks

‘There are several works to represent or deal with data structures by neural networks. Pol-

lack proposed a method to represent CONScells of LISP using sand-glass-type networks{Pol89,
Pol90]. Touretzky also proposed a method to represent CONS using Boltzmann-machines(Toug0].
Smolensky and his colleague studied the representation of data structures and variable
bindings by tensor products (Smo90, LMS91). The strategy of these works is similar to the
method to represent semantic networks by neural networks described in section 5.2. In this
strategy, data structures are represented as sequences of operations of neural networks.
Through these operations, information is convoluted into patterns. Hinton summarized

such a strategy as a ‘between-level timesharing’ [Hin90).
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Chapter 6
Conclusions

Hybrid and integrated systems of symbol and neural processing are expected to provide
fiexible and robust problem solving methods. Yet it is difficult to transfer information
between both processing systems because of the different type of data that used in them.
From the viewpoint of neural processing, this difficulty comes from two essential charac-
teristics of data representation in symbol processing:

o Symbols: each of which indicates discrete and independent information.
o Data structures: by which complicated information is arranged flexibly.

In this thesis I have discussed issues that arise when data are translated between
symbol and neural processing modules in a hybrid system. Based on these discussions,
1 have proposed learning methods for neural networks to deal with symbols and data
structures.

In chapter 2, a method to make pattern representation suitable for analyzing as sym-
bols was described.

When a symbol processing module receives information from a neural processing mod-
ule, pattern representation in the neural processing module must be analyzed from the
view point of symbols. There are several techniques, such as clustering, for the purpose
10 analyze patterns as symbols. It is, however, difficult to symbolize patterns using these
techniques when pattern representation is redundant. This redundant pattern represen-
tation is caused by too many hidden units for the complexity of a task.

In order to balance the number of hidden units and the complexity of the task, a new
learning method, ‘overload learning', was proposed. In this method, a network is trained
to learn an additional task together with the original one. Since the redundant part of

83
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the patterns of the hidden layers is used for the additional task, minimum dimensions of
hidden patterns continue to work for the original task.
Vasious experiments showed that the proposed method had the following effects:

o to reduce pattern representation of a hidden layer for the original task.
o to converge clusters of patterns of a hidden layer.

These effects make the symbolization of patterns easy. The concept of this method is very
simple, so that it is easy to apply this method to other network structures and learning
methods.

In chapter 3, learning methods for simple recurrent networks to solve the problem of
how to find LDDs in temporal sequences were described.

When the neural processing module receives data from the symbol processing module,
a problem of how to deal with structured data by neural networks arises. One of the
‘major causes of this problem is the size of data. Although the size of structured data
generally varies, neural networks usually process fixed-sized patterns. Temporal-sequence
processing is a technique to process such variable-sized data by using processors that can
process fixed-sized data. Yet, in such a technique the processors need to learn to process
sequences that have long distance dependencies (LDD). In order to find LDDs, a simple
recurrent network needs to retain information about input histories in patterns of a hidden
layer. I formalized two measures how much information represented by the patterns.

In the first formalization, a measure of the information was defined by distances be-
tween patterns of a hidden layer. Using this measure, the 'distance-keeping’ method was
proposed. In this method, the divergence of weight values of links from a context layer
to a state layer is made large in order to keep distances of patterns through pattern
traasitions.

In the second formalization, a measure of loss of the information was defined in the
manner of Shannon's information theory. Based on this measure, the ‘information-loss
minimization' method was proposed. This method was derived from the relation between
the measure of information-loss and mean-square-errors of an identity function realized
by a three-layered network.

1 carried out experiments to learn a sequential task with LDDs by using proposed
methods. Results of these experiments showed that both methods increased the ability
to learn tasks with LDDs by simple recurrent networks as compared with a conventional
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back-propagation learning. These two methods have different features: In the ‘distance-
keeping’ method, learning finishes quickly. On the other hand, in the ‘information-loss
minimization’ method, networks can learn tasks with longer distance dependencies than
the distance-keeping method.

In chapter 4, 2 method to construct suitable state-transitions of simple recurrent
networks was described.

Temporal sequence processing provides another point of view for representing struc-
tured data. Simple recurrent networks have a similar structure to finite state transducers.
On the other hand, in the automata theory, state-transitions of a transducer represent a
structure of sequences processed by it. Simple recurrent networks, however, can not ac-
quire suitable state-transitions by conventional learning methods. Therefore the network
can not learn representation of structures of sequences.

In order to solve this problem, I proposed a network model, called the ‘SGH model,
and its learning method. In order to derive the model, initially a procedure to construct
a finite state transducer from examples of input-outputs was composed using the state-
‘minimization technique. This procedure consists of three steps, the ‘keeping input history"
step, the ‘grouping states’ step, and the ‘constructing state-transitions' step. Then each
step was reconstructed as learning of a neural network. Finally, three networks were
combined into the SGH model. By using this model, we can get a simple recurrent
network that bas suitable state-transitions for a given task.

1 carried out some experiments to learn several kinds of state-transitions. In every
case, the network acquired suitable state-transitions. Experiments also showed that it
increased the ability of simple recurrent networks to process temporal sequences with
LDDs.

In chapter 5, I discussed about proposed models and methods from various points of

view.

First, the ability of a simple recurrent network and one of a finite state transducer
were compared. Because of a topology of patterns, the flexibility of state-transitions of a
simple recurrent network is limited compared with a finite state transducer. On the other
hand, the topology increases the generalization ability of learning state-transitions such as

b-g . A simple iment to learn a sub-g by a simplified SGH model
was carried out. The result showed that simplified SGH models dealt with sub-grammars
in a framework of a context free grammar.
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Second, a formalization of semantic networks that were suitable for processing by the
SGH mode} was discussed. In this formalization, a semantic network is treated as a chart
of state-transitions of a finite state transducers. These state-transitions can be learned by
a SGH model. Semantic networks are a framework of representation of various kinds of

used in symbol processing. Thus this ization provides a way bi

or integrate neural and symbol processing tightly.

Finally, biological plausibility of proposed models was discussed. While artificial neural
networks are originally derived from biological nervous systems in brains, many of them
are not plausible as nervous systems. Proposed methods and models are simple enough
and relatively plausible as biological models from various points of view. Especially, every
learning methods is presented by penalty functions, each of which has a simple conceptual
meaning. This makes it possible to apply the methods to various network models and
learning methods, which are plausible as nervous systems.



Appendix A

Derivation of (3.8)

Let ), 2, be two input patiern vectors of a pattern translator network in Fig. 3.6, and
2y, 22¢ be inputs to unit 1 in the output layer when the network receives input pattern
2y, €, respectively. Because weights of links are set randomly, z); and z;, can be viewed
as random variables that are independent from each other. The distribution of these
numbers is a Gaussian distribution whose variance 02, and covariance o, are:
0% =a% =02 = fNol
ok = (B~ a)Na?
Hence, if the number of units in the output layer is large enough, a normalized distance
@, between output patterns for «; and z,, is:
ar = 172 [(f2) = fe2)Ppustin, )i
= 1/2(A(1,2) - A(1, 1)} (A1)

where

465) = [ [0 = )+ £ = SEDpeen 2)ridey
and p,i(21,2,) is a joint probability density of z; and z,. Because the output function
£(2) = J7,, G(£:0,7)d€ can be interpreted as “a probability of the case when the sum of
2 and a Gaussian noise —§ is positive”, A(1,2) becomes :

a02)= [ jwo,,,,(,,,z,)a,a, (A2)
‘where
4= a+h
4= nth
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and £, & are random variables whose distribution are i Gaussian di
with average = 0 and variance = 72, and #,,(2}, ) is a two dimensional Gaussian dis-
tribution whose center is the origin and each variance and covariance is 02 + 7% and o2,
respectively. We can calculate the definite integral in (A.2) by means of a technique used
in [Ama78)] as follows:

AL2) = %lu\

Moreover, A(1,1) corresponds to A(1,2) in the case of a; = 0. Therefore (3.8) is derived
by substituting results of A(1,1) and A(1,2) in (A.1).
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Derivation of (3.15)

Let 0,;(y) be a variance of a distribution of the i-th element of an input pattern vector
2 when an output pattern vector is y. Under two assumptions described in section 3.4.3,
H(X|Y) in (3.11) and Eg in (3.12) is:

H(X|Y) = < fjloga,.(y) >, +log V25 (B.1)
=
~

Er = <E‘vff(v) >, (B.2)

where < - >, is the mean according to y. Hence, the arithmetic mean A, and the
geometric mean 4, of 0%(y) according to i and y is:

A = <1/N£:°§s(v) >y
a4y = an (<N S g >,)
Thus (B.1) and (B.2) become:

H(X]Y) = (log2x+ Nlog4,)/2 (B3)
Er = N4, (B.4)

On the other hand, from the Cauchy-Schwarz’s inequality the following inequality holds:
4, < A (B5)

By substituting (B.3) and (B.4) for 4, and A, in (B.5), we can derive (3.15).
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Appendix C

Procedure of Learning a FST from

Examples

The procedure of learning a finite state transducer (FST) from given input-output exam-
ples consists of two sub-procedures, which are the generation procedure and the reduction
procedure. The generation procedure generates an initial FST that has redundant states.
The reduction procedure reduces the initial FST and constructs final FST that has the

minimum number of states.

C.1 Generation Procedure

Let Z be a set of example sequences of input-output pairs, where

It =0,1,2,.. )5 =< 2,47 >n=0,1,2,...,N}

and 2} and g are respectively input and output at time ¢ of n-th example sequences.
Hence we can get an FST that realizes the same input-output responses as the given
examples.

(Generation]
G1 Create an initial state go, label it, and assign a set Z and a length 0 to it.

G2 Pick a labeled state gy and unlabel it. Let 2, be an assigned set to g, and I be an
assigned length to gs. Then, Classify examples z" in 2, into subsets Z; according
to z},,y, that is (I + 1)-th input of example z". Let z; be the (/4 + 1)-th input of
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92 Appendix C. Procedure of Learning a FST from Examples

examples in Z;, that is 2}, ,,, and y; be the (Is + 1)-th output of examples in Z;,
that is g ;. !

G3 Create a new set g; for each Z; created in step G2, label it, and assign a set Z; and
length & + 1 to ;. Moreover, add a transition from g to g; by input z into the
state-transition map, and an output y of the state g; into the output map.

G4 Repeat step G2 and G3 until no labeled states remain.

C.2 Reduction Procedure

An FST generated by the generation procedure has many redundant states. We can
reduce such an FST using the *state-minimization’ technique(HU78]. The procedure is as
follows:

[Reduction]
R1 Classify all states into groups according o the output of each of the states.

R2 Pick a group, and classify states in the group into sub-groups according to the group
to which the next state of transitions for each input from each of the states belongs.

R3 Repeat step R2 for all groups until no more new groups are created.

R4 Unify states belonging the same groups together into a state, and construct transi-
tions and output functions of unified states.

TWhen the (Iy + 1)-th outputs of examples in a set Z, are not the same, let y; be 3 representative
value of those outputs.
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