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Abstract 

In theresearehofartificialintelligenee, symbol processing has been providing powerful 

toolstorepresenta.ndprocesscomplicateda.ndvariedinformation. However,ithasdisad

va.ntagesin 'analogy', 'uncerlainty', and 'leaming/Gdapting', Neural networks have been 

expectedtocooquertbesedisadvantagesofsymbolprocessing. Inordertoprovide8.exi

ble and robust problem solving methods, many researchers have been trying to construct 

hybridorintegra.tedsystemsofsymboland neural processing. 

However, there remains a problem in such a hybrid way, which comes from difference of 

characteristicsofdatathatneuralandsymbolprocessingsdealwith. Especially, following 

twoessentialcharac!.eristicsofdatarepresentationinsymbolproces.singareimportant. 

• Symbols: each of which indicates discrete and independent information. 

• Da!a struch<re$: by whieb complicated infonnation is arranged flexibly. 

Because neural networks originally have not mechanisms to deal with these cha.ra.cteris

tics, itisdifficulttotransfer informationll.exi.bly betweenneuralandsymbolprocessing 

modulesinahybridsystem. 

In this thesis, I describe learning methods of neural networks that provide a way to 

deal with symbol:; and da.t4 stroch<res. 

First, the symbolization of patterns in neural networks is investigated. In order to 

analyzepa.tternsassymbols,itisusefultha.tpa.tternrepresenta.tionissimpleandhasno 

redundant part. However,networksgetredundantrepresentationthroughitslearning,so 

that such analysis becomes difficult. 

Inebapter2,anewlea.rningmethod,'overloa.dlearning',tosolvetheproblemofhow 

toeliminatesuchredundantrepresentationisdescribed. In this method, a network is 

trainedtolea.rnanadditionaltasktogetherwithanoriginalone. Since a redundant part 

ofpatternrepresenta.tionisusedforthea.dditionalta.sk,onlyminimumrepresenta.tion 



becomes to be used for the original task. Various experiments show that the proposed 

methodmakesthesymbolizationofpatternseasy. 

Se<:ond, pattern representation of data structures is investigated. The variety of the 

sizeofdataisoneofthemajorcausesoftbedifficultyofprocessingstructureddataby 

neural networks. Althoughthesizeofstructured datageneral.lyvaries,neuralnetworks 

usuallyprocessfixed-sizedpatterns. Temporal-sequenceprocessingisate<:hniquetopro

o;esssuchavariable-sizeddatabyusingprocessorsthatcanproo;essfixed-sizeddata. Yet, 

in such a technique the processors need to learn to process sequences that have long 

distance dependencies(LDD). 

In chapter 3, learning methods for simple recurrent networks to solve the problem 

of how to find LDDs are described. In order to find LDDs, a simple recurrent network 

11eeds to retain inforroatioo about input histodes in patterns. I formalize two measures 

of how much information is retai11ed i11 patterns. In the first formalization, a measure 

of the information is defined by distances between patterns. Using this measure, the 

'distance-keeping' method is proposed. In the second formalization, ameasureoflossof 

theiuformationisdefinedinthemannerofShannon'sinformationtheory. Based on this 

measure, 'information-loss minimi~ation' method is proposed. Experiments show that 

both methods increase the ability to deal with LDDs as compared with a conveutional 

back-propagation learning. 

Temporal sequence processing providesanotherpointofviewforrepreseittingstruc

tureddata. Simplerecurrentnetworkshaveasimilarstructuretofinitestatetransducers. 

On the other hand, in the automatatheory,state-transitionsofatransducer represent a 

structure of sequences which the tra~~sducer processes. In the same way, simple recurrent 

networks have the ability to represent a structure of the sequences. However, they can 

notacquiresuitablestate-transitionsbyconventionallearningmethods. 

In chapter 4, a model, called the 'SGH moder, and its learning method are proposed. 

They construct a simple re<:urrent network that has suitable state-transitions for a given 

task. They are derived from a procedure to construct a finite state transducer using 

the state-minimization technique. Experiments show that the SGH model ca.n acquire 

suitablestate-transitionsforgiventasks. 

In chapter .S, I discuss about proposed models and methods from various points of 

view. First, the ability of simple recurrent networks and that of finite state transducers 

are compared. Because of a topology of patterns, the flexibility of state-transitions of 

simple recurrent networks is limited as eompared with finite state tra.nsdueers. On the 



otherhand,thetopologyinerea.sesthegeoeralizationabilityoflea.rningstate-transitions 

I show this advantage through an experiment to deal with $Ub-grommars, Se<:ond, the 

formali7.ationofasemanticnetworkthatissuitableforprocessingbyasimplerecurrent 

network is discu!!Sed. In this formalization, a semantic network is treated as a chart of 

state-transitionsofasimplerecurrentnetwork. Finally, biologicalplausibilityofproposed 

modtlsisdiscussed. Wbilea.rtilicialneuralnetworksa.reoriginallyderivedfrombiological 

nervoussystemsinbrains,manyofthemarenotplausibleasnervoussystems. Proposed 

methods and models are simple enough and relatively plausible as biological models from 

va.riouspointsofview. 
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Chapter 1 

Introduction 

1.1 Symbol Processing and Neural Processing 

Resea:rchesofartilicialintelligence(AI)aimtounderstandhumaninformationprocessing 

and to realize human intelligence on computers. Human information processing bas the 

following features. 

• Complexity 

A human can process complicated information. Such processing is abo complicated. 

• Vuiety 

Ahumancanprocessvaciousinformation 

• Analogy 

Ahumancanprocessunknowninformationbyusinganalogy. 

• Uncertainty 

A human can process noisy and ambiguous information. 

• Adaptability 

Ahumancanadapthisprocessingtovariousenvironmentsandacquireconcepts. 

In works in AI on symbol processing, the complexity has been focused first. Symbols 

and data structures are powerful tools to process s"'cb complex information. Symbol& pro

'·ide high operationality of information because they are discrete and independent from 

each other. Data stroe!ure$ provide a rich framework to represent compliea.ted informa· 

tion. Complicatedinformationisazrangedbyusingdatastructures. Such information is 

processedwiththehelpoftheoperationalityofsymbols. 
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Data.structuresa.realsousefultorepresentvariousinformation. Using data structures, 

various information is composed of pieces of information flexibly. Symbols and data. 

structureshavebroughtma.nysucce-ssestoAI research. 

On the other hand, other features are weak points of symbol processing. In order 

to process information by means of analogy, similarities of information must be deDned. 

Sinceanysimilaritiesareoriginallynotdefinedbetweendatainsymbolprocessing,weneed 

additional mechanisms to deal with similarities of information. Memory based reasoning 

is one of such mechanisms. In memory based reasoning, however, there also remain 

problems: how to define similarity between symbols and how to deal with various data 

Symbol processing also requires mechanisms to deal with uncertainty. Probabilities 

and the fuzzy theory are widely used as such mechanisms. It is easy to implement them 

iBtosymbolprocessingandalsoeasytounderstandthemintuitively. However,represen

tatioBofuncertaintyislimitedbysymbolsanddatastructures,becausesuchmechanisms 

are implemented as a. property of symbols and data structures. In other words, we can 

only represent uncertainty of information that is represented explicitly by symbols and 

data structures. Therefore we must earefuUy define what kind of information, symbols 

and data structures represent. However, there has not been a general method that tells 

us what should be represented by them. In addition, we need another mechanism to 

interpret raw data from environments, such as sensor inputs, which are main sources of 

uncertainty. 

Machinelearninghasbeenhea.,·ilyinvestiga.tedin Aiinordertoadaptprocessingto 

various environments. However, there remain severe problems. One problem is that most 

machine learningsystemsaredomain-dependent and are not robust to noise. Another 

problemistha.tthea.bilityofma.chinelearningisstronglydependentontherepresenta.tion 

of information. Therefore we must carefully define such representation. However, general 

methodshowtodefinesuitablerepresentation have not been proposed. 

In order to conquer these weak points of symbol processing, neural networks have 

been given atlention. Neural networks process patterns, which have a topology. Using 

thistopology,similaritiesofinformationaredefined. Thusneuralnetworkscan process 

informa.tiona.ccordingtosuchsimilaritiesnaturally. Pattern representation also provides 

a method to deal with uncertainty. For example, it is easy to interpret an a.etivation of 

each element of a pattern as a probability or a possibility of certain information. More

over, Neural networks have powerful learning methods to adapt themselves to various 
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environments. Mostofthesemethodsaregeneral-purposeandrobusttonoise. In addi

tion toit,networkscanac:quiresuitableinternalrepresentationforgiven tasks through 

learning. 

However, neural processing is ba.d at dealing with complexity and variety of human 

information processing. Since pattern representation is .flat, it is difficult to represent 

structured data explicitly like symbol processing. Moreover,apieceofinformation is 

distributed in a pattern. Thereforeitisnoteasytocomposeva.riousinformationfrom 

pieces of information. 

In order to complement weak points of symbol and neural processing, hybrid or in

tegrated systems of these twokindsofprocessingarefocused. In such systems, symbol 

processingprovidesmethodstodea.lwithcomplex.itya..ndva.riety,a..ndneuralpl"(lCessing 

provides methods to deal with analogy, 11ncertainty and adaptability. Such systems are 

expected to provide Hex.ible problem solving methods like human information processing. 

However, there is a crucial problem of how to transfer information between symbol and 

neuralprocessing.Thetypeofrepresentationofinfor:mationusedinhothprocessingsare 

quite different. Therefore it becomes a bottleneck to transfer information between symbol 

a..ndneuralprocessingmodules. Themainca.useofthisproblemisthatitisdifficultto 

represent symbols and data structures in a symbol processing module by patterns in a 

neura.l processing module. In order to provide a method of tight communication between 

thosemodules,Ipayattentiontothefollowingtwopoints: 

• Howtoa.nalyzepatternsas symbols. 

• How to deal with data strocturesby neural networks. 

1.2 Symbols 

Consider a hybrid system of neural and symbol processing. When the neural module 

tra.nsfersinforma.tiontothesymbolmodule,tbesystemneedstoanalyzepatternrepre

sentation in the neural module a.s symbols. Generally patterns do not represent symbols 

explicitly, so that the analysis becomes a major problem of hybrid systems. 

One way to analyze patterns a.s symbols is clustering. Patterns in a neural module are 

cla.ssiliedintoclustersbyvariousclusteringtechniques. Then,eachclusterisinterpreted 

asasymbolinthesymbolmodule. Manyresearchershavebeenusingthesetechniques 

in order to analyze what neural networks learn [Eim88, Pol90, SSCM89]. In such cases, 
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clustersofpatternsarerequiredtobereducedandseparatedfromeachotherclearly. In 

fact,however,networksacquireredundantpattern representation,sotbatpatternsdonot 

form reduced clusters. 

Another way to analyze patterns is to deal with each unit in a neural network as a 

certain primitive symbol and the activation of the unit as a probability of the symbol. 

In this technique, each unit is required to be suitable as a primitive element that is 

independent from each other. In fact, however, it is not assured that all units become 

independent after learning of a neural network. Therefore some units remain redundant. 

lnthiscase,itisdifficulttofindwhichmlltsareprimitive. 

A fundamental issueunderlyingthesedifficultiesis: 

How to eliminate redundant representation which networks learn. 

Thisisalsoageneralproblemofneuralprocessingbecausethisissueconcernstheproblem 

ofgeneralizationabilityofnetworklea:rning. 

1.3 Data Structures 

Consider a case in which a neural module receives data from a symbol module in a 

hybrid system. In this case we need to represent structured data by patterns that can 

be processed by neural networks. Aconventionaltechniquetorepresentdatastructures 

in neuralnetworksistoconstructneuralnetworksthathavethesamestructuresa.sthe 

data. In this technique, however, the network can not manipulate or learn structures 

Oneofthemajorproblemsofrepresentingstructureddatabypatternsisthe\'ariety 

inthesizeofrepresentation. Thesizeofpatternswhichneuralnetworksprocessisfixed, 

while the size of structured data generally varies. Temporal sequence processing is a 

te~.hnique to deal with variable-sized databyaprocessorwhich processesfu:ed-sized data. 

Thereforewecanso\vetheproblem byprocessingstructureddataastemporalsequences 

byusingrecurrentneuralnetworks. 

Yet,the'temporalprocessing'techniquegivesrisetoanotherproblem,thatisthe'/ong 

dtslonce dependency {LDD)' problem: In temporal sequence processing, inputs might be 

givenlongbeforeprocessorsrequireinformationabouttheinputs. Inthisca.seprocessors 

must keep information about inputs until it becomes needless. For example, when a 

processor checks an agreement of a subject noun and its verb in a sentence such as 
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"The dog which chased cats is mine", 

"Dogswhiebchasedea.tsaremine", 

theprocessormustkeepinforma.tionaboutasubjednounduringarelativeclause. In 

order to solve this problem, a technique to find LDDs is required. In the context of 

neural networks, we must solve the problem of how to train recurrent networks to process 

temporal sequences that have LDDs. 

Temporal processing provides another viewofrepresentingandprocessingstructured 

data. In automata theory, state-transitions of a transducer that processes sequential 

datarepresentsequentized structures. On the other hand, it has been pointed out by 

many researche~s that a recurrent net"ll.•ork can be treated as a. finite state transduce~. 

Therefore we can consider a. method in which a recurrent network can deal with data. 

struct•Jresthrough stat~-traneitionso!thene!wcrk. Inordertocon:1p!ete!his~ethod, l'."e 

needa.tecbniquetolea.rnsuitablestate-transitionsofrecurrentnetworks. 

1.4 Biological Plausibility 

Intheresea.rchofneuralprocessing,biologicalpla.usibilityisanimportantpointofcon· 

sideration. 

The idea of neural processing comes from biological models of actual nervous systems. 

However, many of artificial neural network models are not biologically plausible. For 

example, the 'back-propagation through time' method [WZ89) requires to store all states 

ofthenetworksduringprocessing. Suchmechanismsa.renotplausibleasa.c:tualnervous 

systems[GA9l]. 

In works described in this thesis, such plausibility is considered carefully, espe<:ially, 

withrespecttothefollowingpoints. 

• Locality of calculations 

Locality of calculations is one of the important features of neural processing. It 

issaidthattherearenoglobalsupervisorstba.tcontrolcalculationsinbiological 

nervous systems. Insteadofthem,ca.lculationsa.rerealizedascooperationsbetween 

neurons. Such cooperations are done in physically local area. Thus, in artificial 

models of neural networks, calculations should be done locally. For example, cal

cula.tionsoftbeback·propa.ga.tionlea.rninga.relocal,sotbatitisplausibleinthis 
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Time-locality is also important. No mechanisms to memorize activation patterns 

inneuralnetworksovertimebavebeenfound. Thereforeallcalculationssbouldbe 

done using current activation patterns. This becomes a.n important issue when a 

neural network processes temporal sequences. For example, the 'back-propagation 

throughtime'methodisnottime-local, becauseitrequiresallpa.stactivationsof 

networks. Thusitisnotplausible. 

• Penalty functions 

Learning procedures such as the back-propagation method may also be implausible 

a.sanactuallearningprocedureinnervoussystems. Inordertomakemodelsinde· 

pendentf!orelearningprocel:!ures,Ifocuspenaltyf'-lnctionsthata.:-eminimizec!by 

suchlearningprocedures.Inlearningmethodsproposedinthisthesis,onlypenalty 

implement these methods using other learning procedures. Note that such penalty 

functionsshouldbecalculatedlocally. 

1.5 Outline of the Thesis 

In this thesis, I describe learning methods for neural networks to solve the following 

problems described above: 

1. Howtoeliminateredundantrepresentation. 

2. How to find LDDs in temporal sequences. 

3 How to learn suitable state-transitions. 

In chapter 2, I describe a method to solve the first problem. First I consider that 

redundant representation is caused by too many bidden units for a given task. In other 

words,theissueishowtobalancethenumberofunitsandtbecomplexityofata.sk. In 

ordertobalancetbem,Jproposeamethod,calledthe'overloadlearning'metbod.Jnthis 

method, anetworkistrained to learn an additional task togetherwitha.noriginaltask 

Becauselearningofthe additional task requires to use hidden units, the number of units 

thatareusedfortheoriginalta.skdecrea.ses.lfwecancontrollearningofbotbta.sks,the 

networkwillusethesuitablenumberofunitsfortheoriginaltask. Ialsoexplainresults 

ofvariousexperimentsandshoweffectsofthismetbod. 
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In chapter 3, I describe two methods to solve the second problem. I consider that 

a recurrent network needs to keep mformation about input histories on hidden layers 

as long as possible in order to lind LDDs. Then I formalize measures of information 

represented by patterns of hidden layers in two ways. Based on these measures, two 

methods to decrease lossoftheinformationabout inputhistoriesue proposed. In one 

way, information is measured by the distance between patterns. I analyze the relation 

between thechangeofthedistance andadistributionofweightvaluesoflinks. Based on 

thisrelation,amethod,calledthe'distance-keeping'methodisderived. In another way, 

lossofinformationisdefinedinthemannerofShannon'sinformationtheory. I show the 

relationbetweenthelossofinformationandlearningofidentityfunctionsbythree-layered 

networks. Based on this relation, a method, called the 'information-loss minimiu.tion' 

method is derived. 

Inchapter4,Idescribeamethodtoso)vethethirdproblem. Initially a procedure to 

constructafinitestatetransducerfromexa.mplesofinput-outputsequeneesiscomposed 

usingthestate-minimizationtechnique.Thenea.chstepoftheprocedureisrecoBstrueted 

aslear11i11g of a. neural network. Finally those networks and their leuningmethods are 

combined into a. model, eal.led the 'SGH model.' The ability of the SGH model is demon

strated throughexperimentsoflearningvariousstate-transitions. 

In chapterS, I discuss about proposed models and methods from various points of 

view. First the comparison of simple recurrent networks and finite state transducers is 

discussed. Althoughasimplerecurrentnetworkcanbetreatedasafinitestatetransducer 

as discussed in chapter 4, abilities of them are slightly different. In this discussion, I 

focusonthegeneralizationabilityandllexibihtyofstate-transitJons.Second,Iproposea 

prototypeoftheformalizationofsemanticnetworksthataresuitabletoprocessbysimple 

recurrent networks. Semantic networks are a framework to represent various information 

used in symbol processing. This formalization will provide a way to combine neural 

and symbol processing tightly. Finally, the biological plausibility of proposed models is 

discussed. Whileneuralnetworksareoriginallydetivedfrombiologicalnervoussystems 

in brains, many artificial neural networks are not so plausible as actual brain models. I 

examine proposed methods and models from various points of view. 

Chapter6outlinestheconclusionsofthisthesis. 
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Chapter 2 

Symbolization by Overload Learning 

2.1 Introduction 

In order to i11~grate symbol processing &Rd pattern processing io neural networks, we 

need kl analyze pattern represeDt&tiOD in neural networks from the view point of symbols. 

Oae way to analyze pa.Uems is to deal with each dimell&ion of the pattern space as aa 

iadependent micro-feature. In this case each dimeuion is desired to be independent 

&om each other. Thus it is oeeessary that there are no redundant dimeDSioDs in the 

patterD space. In other words, it is neeessary to reduce the number of dimensions of 

paUems, especially a.etive dimensioas of patterns, eo that the oumber of active dimensions 

is suitable for represelltiq:iDlormatioD for a givea task. Generally, however, it is difficult 

to determine how many dimensi.ODs are required for Pven tasks. 

Another way to analyze patterns is to classify paUerns into dusters by dusterin& 

methods. After c:lusterin&, each dust.er is interpreted as M individual symbol!OGM92, 

Elm91, CSSL89J. In this case, clusters of patterns are required to be separated clea.dy. 

Especially, clustering will become easy when each cluster or pa.ttems is c011verged into 

small compact area.. However, clusters tend to spread if there is room in the pattern 

space. Clusterspreadingupsetssuita.bleclust.eriDJofpa.tterns. 

Furthermore, in the general purpose of neural networks, it is important to lind the 

minimal number of units or dimensi011s for given tub. The reason is that minimizati011 or 
the number of dimen&iotl& increases the generalization ability of leuniq. Unfortunately, 

itusllallyisa'tobviouswhatsizeisbestforagiventask. 

These problems come (rom one issue: how to balaace the capacity or networks aod 

the complexity of tub. In order to solve this issue, a net'IIIOrk should contain a. suita.ble 
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number of hidden units for a given task. Oo the other hand, a network is trai11ed with 

toomanyhiddenunitsbeca.useoftheguara.nteeofsuccessesoflearning. A conventional 

waytosolvethisissueistoadjustthecapacityofanetworksuchasthenumberofunits 

to the complexity of a task[WK90, Hag91] by using certain criterion or pruning methods. 

Inthischapter,Iproposea.notherwayin which the complexityofataskisadjusted to 

thecapacityofanetwork. 

2.2 Overload Learning 

2.2.1 Activeness and Redundancy 

SupposethatwetrainanetworktolearnagiveDtask. Wesayaunitis'adive'forthe 

task when the activation of the unitcba.ngesforvariousinputsofthetask,and 'mactive' 

fortheta.skwhentheaetivationdoesnotchange. Moreover,wesayaunitis'redund1mt' 

fortheta.skwhenthenetworkca.Ilachievetheta.skwithoutthatunit. 

Weusethesethreewords,'aetive','inaetive'and'tedunda.nt',notonlyforunitsbut 

abo for dimeDSions of a vector spa.ce of bidden patterns. For example, we say a dimension 

isa.ctivefortheta.skwben apositionofahidden pattern cba.ngesalongtbedimensionin 

thepatternveetorspaceforvariousinputs. 

Whenwetrainanetworktolearnagiventa.sk,inordertoguaranteethesuecessoftbe 

learnin~j:process,weusuallyuseanetworkthatha.smorebiddenunitstbantbeta.skwill 

require.lnthisea.sethereremainsomeredundantunitsordimensionsinthehiddenlayer. 

In those redundant units/dimensio11s, inactive units/dimensions are not so important, 

beeausetheydonotaffecttheactionofthenetworkortheabilityofgeneralizatlon. On 

the other band, redundant and active units/dimensions are important. They should be 

eliminated be<:auseofthe following reasons: 

• Redundant and activeunits/dimensionsde<:reasetbegenera.lizationabilityofleun

ing. Redundant and active units/dimensions increase degrees of freedom of the 

representation. Generally, moredegreesoffreedomoftherepresentationbringless 

generalization. Therefore redundant and activeumts/dimensionsupset the gener

alization. 

• Theyupsetanalysisofpatternsofahiddenlayer. Usua.lly,aetiveunitsfdimensions 

are treated as primitives each of whieb indicates independent element of information 
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Input 

Figure 2.1: Three-Layered Networks 

from each other. But redundant units/dimensions indicate duplicate information. 

Itisdifficu\ttoeliminatesuchduplicateinformationatastageofthea..nalysis. 

2.2.2 How to Eliminate Active and Redundant Dimensions 

Consider a case in which a three-layered network shown in Fig. 2.1 is trained to 

learnagiventask(ca.lledan'originaltask'). Asmentionedinthepreviousseetion,some 

dimensionsinthehiddenlayerbecomeredunda.ntanda.ctiveforthetask. Next, consider a 

case in which new input a.nd output layers are added to the network as shown in Fig. 2.2. 

The network is trained to learn another task (called an 'additional task') using these 

additionalinputandoutputlayers. Thislearningisdoneatthesametimeofthelearning 

oftheorigina.ltask.lnthiscase, redundantdimensionsfortheoriginaltaskwiUbecome 

used for achieving the additional task. When the additional task is independent from 

the original task, redundant and active dimensions for the original task be<:ome inactive 

for the original task. Therefore, we can eliminate active and redundant dimensions by 

tra.iningthenetworktolea.rnana.dditionaltasksimultaneouslybya.ddingadditionalinput 

and output layers. I call such a. method 'overloadleaming(OLL).' 

Inordertoeliminatea.ctiveandredundantdimensionsefl"ectively,tbeadditiona.Jtask 

shouldsa.tisfythefollowingconditions· 

1. Theadditionaltaskisindependentfromtheoriginaltask 
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Additional Original 
Task Task 

Figure 2.2: Three-Layer Networks with Additional input/Output Layers 

2. The additional task requiresthela:rgernumberofhiddenunitsthanthegivennet

work. 

3. A neutral ioput of the additional task is easy to prepare. After learning, the addi

tionaltasklsnotnecessaryandupsetstheanalysisofpatternsfortheoriginaltask 

Thereforeweneedawaytoavoideffectsoftlteadditiona!ta.sk 

Moreover,wemustcontrolthelearningofthesetwota.sksinordertogiveprioritytothe 

originalta.skoverthea.dditionalta.sk. 

2.2.3 Overload Learning with Random Task 

An identity mapping of random patterns (called a 'random task') was chosen a.s an addi

tional task. In this task, randomly generated patterns are put mto the additional-input 

layer. The additional output layer is required to output the same pattern as inputs. This 

taskcansatisfythethreeconditionsfortheadditionaltaskasfollows. Thistaskisobvi

ouslyindependelltfromanyothertask,soitcansatisfythefirstconditioll. The random 

task requires the same 11umber of hidden units as the size of input patterns. Therefore the 
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secondconditionissatisfiedwhenthesizeoftheadditional-inputlayerislargerthanthe 

stzeofthebiddenla.yer. Moreover,thethirdconditionissa.tisfiedbyusingthea.verageof 

allpatternsasa.neutralinput. 

For OLL with the random task, a. network shown in Fig. 2.3 is used. This network is 

called a.n OLL network. In this network, ;nput and output layers a..re used for the original 

task, and random-inpnt and random-output layers ate for the random task. The size of 

the random-output layer is the same as the size of the ra.ndom-input layer, and larger 

tha.nthesizeofthehiddenla.yer. Inexperimentsdescribedinthenextsection,thesesizes 

aretwkeofoneofthebiddenlayer. 

Inthelea.rningphase,a.ninputpa.tternoftheoriginalta.skissetintotheinputlayer 

and a required output pattern is given to the output layer as a target. At the same time, 

a randomly generated pattern is set into the ra..ndom-inputlayerand the same pattern 

is given totherandom-outputlayera.sa.target. After learning, tbera..ndom-input layer 

is fixed to the average pattern of random patterns. The network is trained by back

propagation to minimize the following penalty function. 

where o.,.,P"" O,an<I·<~••P•• and 01aod·oopu 1 are output patterns of output, random-output, 

ra.ndo!Xl-inputlayets respeetively;t•••P•' is the target pattern of the original task.< r > 
means an average value of .x; lzl is the norm of vector z; et is a positive coefficient. In (2.1 ), 

thefitsttermoftherightsideistbepenaltyfortheoriginaltaska.ndtheseeondtermis 

thepenaltyfortheadditionalta.sk.Inordertogiveprioritytotheoriginalta.skoverthe 

ra.ndomone,etissetrela.tivelysmallerthanl. Inthisca.se,thepenaltyfortheorigina.l 

ta.sksha.resamajorpartofE,sothatthenetworklearnstheoriginalta.skprima.rilyand 

the random task secondarily. In the following expenments, et is set 0.3 - 0.5 

2.3 Experiments and Discussion 

2.3.1 Finding Minimum Dimension 

In ordertodeterminethekindofeffectsofOLLoverformingpatternrepresentation 

onthehiddenlayer,thefollowingexperimentwa.scarriedout: lnitially,atargetnetwork, 

whoseinput,biddena..ndoutputlayersconsistofn,m.a.ndlunitsrespectively,iscreated. 

Using this target network, 1000 input-output pa.its are generated. Then an OLL network, 
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random pattern original input 

Figure 2.3: Structure of OLL Networks 

Output 

Figure 2.4: Setup of Experiment of Finding Mmimum Dimension 
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(learningwithoutrandomta.sk) 

Figure 2.5: Eigenvalues of Hidden Patterns. (target: 5 hidden units) Eigenvalues are 

shown in log scale. 
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(learningwithoutra.ndomtask) 

Figu.re 2.6: Eigenvalues of Hidden Patterns. (target: 10 hiddeo units) Eigenvalues are 

sbowD in log scale. 
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whoseinput,hidden,outputa.odraodom-input (alsorandom-output)layersconsistofn, 

k, I and 2k units respectively, is trained by these examples with a random task. Fig. 2.4 

showsthesetupofthisexperiment. Aftertraining,patternsonthehiddenlayerfor\"arious 

inputs are analyzed by principle component analysis (PCA). When a certain eigenvector 

of PCA has a significant eigenvalue, the dimension along the vector is adive for the task 

Fig. 2.S shows a result of the analysis where n = 20, m. = S, I= 20 and k = 30. This 

graph sbowschangesofthe 1st-20th eigenvalues of hidden patterns through learning. 

In the case of learning with the random task (the upper graph), that is OLL, only up 

totheStheigenvaluesremainsignificaot,aodtherestbecomeverysmallastbelearning 

proceeds. This means that only Sdimensionsare active for the task. On the other 

band, without the random task (the lower graph), that is a conventional learning, all 

eigenvalues remain significant. Fi-8. 2.6 shows another result where m = 10. In this case, 

ll e1genvalues remain Significant by OLL. 

From these results, we can say that OLL reduces the number of active dimensions of 

hiddenpatternsintotbesuitablenumberofdimensionsfortheoriginaltask. 

2.3.2 Finding Primitive Dimension 

Inordertoshowthatanetworkcanfindprimitivesofinformationaboutagiventask 

by OLL, the following experiment was carried out. 

Considerthateachapex,edgeand plaoeofacubeislabeled as shown in Fig. 2.i,and 

make a mapping from an edge to two planes and two apeJCes that connect to the edge. 

For example, ao edge 'lOx' is mapped to plaoes 'txx, xox' and apexes '100, 101.' This 

mapping is represented by patterns using localist representaticnas shown in Fig. 2.8. Then 

a network shown in Fig. 2.9 is trained to learn this mapping by OLL. In this network, 12 

unitsisusedfortbeedgelayer,12unitsforthehiddenlayer,6unitsfortheplanelayer, 

8 units for the apex layer and 24 units for the random-input layer and random-output 

layer. In order to test the generalization ability, underlined patterns in Fig. 2.8 are not 

given to the network as targets during learning 

Fig. 2.10 shews outputs of the apex and plane layers after learning. Fig. 2.10-{a) 

is the case ofOLL and (b) is the case of the conventicnallea.rning. lo the case of the 

conventional learning, outputs wh1ch the network has not been taught are not correct, 

while all outputs are correct in the case of OLL. This result shows OLL increases the 

gencral.izationabilityfortbistask. 

Whydoesthisgeneralizaticnarise? Ianalyzedhiddcnpatternsforcachedgelabel 
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110 

(Opposite sides of xxl, xOx and lxx are xxO, xlx 

and 0xx respe.:tively.) 

Figure 2.7: Labelling of Edges, Apues and Planes of a Cube. 
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INPUT OUTPUT 

Plane Aoex 

Figure 2.8: Ma.pp1ng from A edge to Planes and Apexes (Cube Mapping) 

edge 

Figure 2.9 Network for Learning Cube Mapping 



20 Chapler 2. Symbolization by Overload Learning 

input by PCA. Then I found only 3 dimensions remain active in hidden pattern space. 

In the 3 dimensional space each pattern lor ueb edge label is arranged like Fig. 2.11-

(a). This arrangement is the same as of midpoints of edges of a cube (Fig. 2.12). On 

theotherhand,thearrangementofpatternsintbecaseoftheconventionallearningis 

like Fig. 2.11-(b). In this case, it is difficult to find correspondence of Fig. 2.11-(b) and 

Fig. 2.12. 

From this result, we can say that the OLL network fouod three primitive dimensions of 

thetaskandrepresentedinformationbypatternssuitableforthetask. Then the network 

becameabletogeneralizethetaskandrespondedforunknownoutputcorredly. 

2.3.3 Converging of Pattern Clusters 

One purpose of OLL is to make internal represenlation tcoropa.ct. :W order to a.na.lyze hid· 

denpatternsassymbolsbyclusteringtechniques,itisimporta.ntthatthesepatternsform 

dearly-separated clustel"S. For example, many researchers have been trying to a.na.lyze 

pattern tra.nsitiollS of simple recurrent networks[OGM92, Elm91]. his, however, difficult 

tolindadearstructureoftra.nsition becausepatternsdonotformcompa.ctclustersin 

patternspa.ees. 

On the other hand, OLL is expected to have an effect on convergence of these dusters. 

Thiseffectisledasfollows. Wbenac\usterofpatternsfortheorigina.ltaskgetsexpanded, 

it will behave as noise to the random task. Therefore, the network learns to accommodate 

therandomtaskbyconvergingthec\usterintocompactareas. 

In order to demonstrate this effect, the following experiment was carried out: A simple 

recurrent network with a random task (Fig. 2.13) is trained to predict the order of char

actersinsequences[Eim88]. Ateachpointintime,acharacterinasequencegenerated 

by the Reber grammar (F1g. 2.14 [CSSL89[) is presented to the network. The network's 

target output is simply the next character in the sequence. For example, when the Re

ber grammar generates a sequence 'TSXXVPS', the network receives an input sequence 

'TSXXVPS' and a target sequence 'SXXVPSu'. (u indicates the end of a sequence.) In 

this learning, the network is trained to aehieve the task with a random task in the same 

manner as OLL. The experiment was carried out using the network whose input, hidden 

and output layers consisted of 10,30 and 10 units respectively. (Each of random-input 

a.ndrandomoutpui \ayersconsistedof60units.) 

After learning, hidden patterns during processing sequences of the Reber grammar 

were ana.lyud by PCA. The result of the ana.lysis is shown in Fig. 2.Hi. In this figure, 
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Plane Apex 

::::~ 
ollx~ 

(a) Wnh Random Task 
Plane Apex 

• • • 
• 

. . 
(b) Without Random Task 

F1gure2.10· ResuhsofLearmngof:-1apping 
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{a) With Random Task 

(b)WithoutR.utdomTask 

Figure 2.11: Locations of Hidden Patterns of Each Edge Input. 
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Figure 2.12: LocatioDs of Mid Points of Edges of a Cube 

ea.::bletterio thegraphmea.nstbepositionofapatterncorrespondingtothestatein 

Fig. 2.14whose number is tbesa.meastbeletter. In case of the conventiona.llea.rning 

(the lower graph), patterns form some clusters. But these cluster are spread and mixed 

complexly. On the other hand, OLL cooverges clusters of patterns ioto very compact areas 

in tbema.nnerdescribedabove. As a result, patterns in the same clusterareidentica.l. 

Therefore, it seems that there are very few points in the space in the upper graph (that 

is the case ofOLL) although thesa.menumberofpointsare plotted. 

2.3.4 Generalization by Clustering 

Inthefieldofmachinelearning,findingclassesofdataisa.nimportanttopic.Inthiscase, 

a'dass'meanstbata.lldataintheclasssharesomeproperties. Thesec\assesareusedfor 

generalization in the following manner: When a datum has one of shared properties of a 

class,thedatumisassumedtobelongtotheclass. Thentbedatumisexpectedtohave 

othersharedpropertiesoftheda.ss 

OLLis expected to have a similar generalization ability. OLL converges dusters of 

hidden patterns into very compact areas. Such compact dusters can be interpreted as 

classes of input patterns, beeause a network outputs similar patterns for inputs when 
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original targe1 

random pauern original input 

Figure Z.IJ: Simple Re~urrent Ketwork with R.lndom Ta.sk 

s q_x_® 

St~~~p~ 
~ /v 
l~~-v-0 

Figure 2 14: Reber Grammar 
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(iearDiDs with random tuk) 

(Jeaming without random task) 

Figure 2.15; Distribution of State Patterns of Reber Gram~nar. Each r;raph shows the 

positiono(patternsintheht,2ndand5thprincipleco~nponentsspace. 



26 Chapter 2. Symbolization by Overload Learning 

hidden patterns for the inputs belong to the same cluster. Therefore when a network 

canacquireasuitablecompactclusterofhiddenpatternsfromincompleteinformation 

by OLL, we can say OLL has an effect of generalization by finding classes. 

lnordertotesttbiselfeds,thefollowingexperimentwascarriedout: Initially,16pat

terns (pxdX E {A,B,C,D},i E {1,2,3,4}, size of pattern is 20) are generated randomly 

and two property values (qx, rx,) are defined for each pattern px, where qx, "' qx1 , 

rx, "'rx, for any i,j. In other words, there are four classes of patterns {that are class 

'A', 'B', 'C' and 'D') each of which has the same pair of property \'alues. Then an OLL 

network, which consists of two output layers for property values qx;, rx; and 10 hidden 

units, is trained to output qx;, rx, when it re<:eives px,. But the network is not taught 

about qx4, rx 1 and rn for each X E {A,B,C,D}. In other words, the network gets 

incomplete information about property values 

Fig. 2.16 sbowspropertyvaluesthe network outputs for each input patternpx, after 

learning. In the case of conventional learning, the networkcannotoutput correct values 

for unknown properties. On the other hand, in the case of OLL, the network outputs 

correctlyforunknownpropertiesexceptforrc1• Thismeansthatthenetworkfindclasses 

of input patteros corredly by the converging effect of OLL, so that the network increases 

the generalization ability 

2.4 Summary 

Inthischapter,anewlea.rniogmethod,over/o(ldle(ln~ing,isproposed. In this method, an 

additionalrandomta.skismergedintoagivenoriginaltaskinordertoadjustthenetwork 

sizeandthecomplexityoftasks. Thismethodhastbefo\lowingeft'e<:ts· 

• Itreducesactivedimensionsofhiddenpatternsfortheoriginaltask. 

•ltconvergestbeclusterofpa.tterns. 

Theseeffectsprovidethefollowingmerits. 

• We can get the minimum number of dimensions of hidden patterns for a given task. 

It will he useful to determine the suitable size of networks for tasks. Moreover, a 

network acquires suitable representation by reducing dimensions of pattern repre· 

sentation. Asaresulttbegeneralizationa.bilityincreases 
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Figure 2.16: Output Values for Each Pattern. 
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Patterns with underlines are not given to thenetworkasteachersignalsduringlearning. 
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• Convergedclustersareusefultoanalyzepatternsofahiddenlayerassymbols. They 

alsoeausegeneralizationofta.sks. 

Therealsorerna.in the following open problems 

• A priority of tasks in learning is controlled by p111ameter ao in a penalty function 

(Z.l). The value of a is set empifieally. We need to develop a technique to set this 

parameter automatically. 

• This learning method should be applied to other models. This learning method is 

very simple, so that it may be easy to apply to various network models. 



Chapter 3 

Pattern Representation of Sequence 

3.1 Introduction 

Information which humans process is complex. In symbol processing, in the field of 

artificialintelligence,suchcomplexinformation is often arranged in data structures like 

lrstsin LISP.Tbeinformatio11 is represented and processed Hex.ibly through operations 

of such structures. On the other hand, patterns processed by neural networks can not 

representsucbstructuresexplicitly. Asaresultitisdifficultforneuralnetworkstoprocess 

suchcomplexinforma.tiondirectly. 

The variety of the size of data that represent such information is one of the major 

problems that arise from trying to process structured information by neural networks. 

Whilethesizeofstructureddatausedinsymbolprocessingvaries,neuralnetworksgen

eral.lyprocesslixed-sized patterns. Temporal-sequence processing is a way to process 

vatiable-sizeddatabyaprocessorthatoperateslixed-sizeddata: Va:riable-sizeddataa:re 

divided into fixed-sized fragments. Tben the processor operates on these fragments one 

byoneinaeertainorder. 

Many resea:rchers have been trying to apply layered neural networks with recurrent 

links to process temporal sequences. EIDla.n analyzed behavior of such networks when 

they lea:rned a. prediction ta.sk ofva:rioussequences[Elm88]. Cleeremans et.al. tried to 

train networks to leatn finite state gramma.rs[CSSL89]. In these works, networks were 

trained by the back-propagation method to minimize output errors within one time step 

Such a method issimplc enough so that it is biologically plausible. However, it ha.sa 

disadvantagetbatitisdifficulttolea.rncomplextemporal-sequenceprocessing,espeeially 

with long distance dependencies (LDD). One way to avoid the disadvantage is to use 

29 
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utpu 

····"'"'"'"""'' State 

(~I Conteti~ 
Figure 3.1: Simple Recurrent Network. 

the buk-propagation through time (BPTI) method !WZ89]. This method. however. has 

another disadvantage that it requirestore<:ord whole states during processing. Such a 

mechanismisnotplausiblebiologically. 

In order to process temporal-sequences with LDD, a network needs a mechanism to 

holdinformationaboutinputsthroughtime. In this chapter, I focus information about 

input histories that is represented byactivi.typatterusofneural networks, and propose 

twomethodstosolvetheabovedisadvanta.ge 

3.2 Simple Recurrent Networks 

3.2.1 Elman's Networks 

Elman proposed a model of simple recurre11t networks (SRN) shown in Fig. 3.1 for 

learning sequential tasks. This modelconsistsofinput, conte:ct, hidden and output layers 

and links between input and hidden layers, context a.nd bidden layers, and hidden and 

output layers. Anda.lso,itbasafeedbackconnectionfromthehiddenlayertothecontext 

layer, which copies patterns on the bidden layer to the context layer for the next time 

step. 

This network works like a three-layered feed-forward network within one time step 

Initially a.n input patten1 is set into the input layer a.nd a hidden pattern at the previous 

timestepisseton thecOIItextlayerbythefeedbaekconnection. Activations of units on 

hiddenandoutputlayersareca.lculatedinthefollowingmanner. 

inpu~(t) == L W;jOj(t)+9, ,,u, 
o;(t) == 41(inpu~) 

(3.1) 

(3.2) 
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•1•1 
1 

l+exp(-:r./T) 
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{3.3) 

wheretindieatesatimestep;i,ja.reidentitiesofunits;input;(!),o,(!}and6,areinput, 

activationandthresholdvaluesofunitirespedively;U,isasetofuni!.sconnecttounit 

t; w,1 is a weight of a link from unit j to unit i; and T is the temperature parameter of 

the network. 

lnalearningphase,a.desiredoutputpatternisgiventotheoutputlayerasa.ta.rget 

in each time step. The network changes weights of links and threshold values of units by 

the back-propagation method to minimize the following penalty function: 

E = :[ (o;(t)- O;(t)f {3.4) 
o~ootpu< loyot 

wher.,O,(t)isa<iesiredoulputvaiueoiunitt. Inthisiearning,euoriniorma.tionisinck· 

propa.gatedwitbinonetimestepandnotha.ck-propa.gatedthroughtimebyusingfeedba.ck 

connectionsfromthehiddenlayertothe context layer. 

Elman reported that SRNs found structures in time of sequential tasks through learn· 

ing [Elm88]. For example, when an SRN is trained to learn the predtction truk 1 of XOR 

sequences 2 , the network foundthatthelength ofa.funda.mentalcydeoftbistaskwas 

3, and in one cycle, the first andtheseconddatawererandom valueandthelastdata. 

was the exclusive-OR of these two values. Cleeremans et. al. applied similar networks 

to a task of predicting sequences that generated by an regular grammar. They showed 

theahilitythatSRNsfoundthesa.mesta.te-transitionsasofafinitestateautomatonthat 

correspondstotheregula:r grarnmar(CSSL89]. 

3.2.2 Disadvantage of Simple Recurrent Networks 

SRNs, however, have a disadvantage that they can not find 'long distance dependencies 

(LDD)' in sequential tasks. An LDD is a phenomena. that an input effect outputs long 

time after the input occurs in a. sequential task. An embedded structure of a. complex 

1Ata.oktopredtclnextdo.taofgiven .. quencelineachtimes\Op.lnthecuewheno.giveniO<jUOnce 

••o1,o2,o3 .... an SRN outputsoHt when it rocoivo•o1 in timonepr. 
2Asequenceofbino.rydat.athatisconstructedbynndomlye.:rneatoutingeumplo•ofiftputfoutput 

pai,-s of XOR, that i• 2-bit input and !-bit output A sample of o.n XOR .. quence might be 



32 Chapter 3. Pauern .Representation of Sequence 

sentence in a natural language is au example of LDDs. In a complex sentence, there are 

somecouelationslikesub;ect-verbagJUrnentbetween bothsideso[anembeddedelause 

as follows: 

"Thedogwhichcha.sedcatsismine", 

"Dogswhichchasedcatsaremine". 

Conventional SR.I\i's do not have the ability to learn sequential tasks with LDDs, be

causetheyaretrained byback-propagationtominimizeoutputerrorswithinonetime 

step. For example, consider an experiment in which an SRN is trained to achieve a 

prediction task of an 'n-sequence' sho,..rn in Fig. 3.2 (experiment-1). Ann-sequence is 

cyclic. InoneqelethefirstsymbolisP0 ,followed byoneof{a,b,c,d,e} (calleda'pre

embedded symbol'), a sequen'e 'P1 P2 --·Pn' ('all~ an 'embedded sequ;,nc~'), the ,;arne 

symbol as the pre-embedded symbol (called a 'post-embedded symbol'), and a sequence 

'Pn+ 1 ···Pm'· In other words, a cycle of ann-sequence has an LDD that there is acorre. 

Iation between a pre-embedded symbol and a post-embedded symbol over an embedded 

sequence. In this experiment, each symbol in n-sequenees was represented by a pattern 

shown in Fig. 3.3. The SRN consists of 15 input units, 50 context units, 50 state units 

and 15output units. Initial weightsoflinksweresetrandomlyin the ra.ngeof[-1,1[ 

Learning was done independently for each n = 0 - 9 . After learning, I recorded outputs 

of the network at the timing whe11 it predicted a post-embedded symbol of each cyele, and 

calculated accuracies 3 of the prediction. Fig. 3.4 shows how the accuracy changes when 

ni11creases. As shown in this graph, tbeucuruy of the prediction goes down suddenly. 

In order to process temporal sequences that have LDDs like n-sequences, a.n SRN 

must retain informationabouthistoriesofinputsin patterns of a context layer. In the 

ca.se of n-sequences, information about a pre-embedded symbol must be retain in patterns 

ofaconteJLt!ayeruntilanetworkpredictsapost-embedded symbol. In learning of the 

eJLperiment-1, however, it is not considered how to retain such information. Therefore the 

information is lost, so that the network can not predict post-embedded symbols correctly 

whenembeddedsequencesarelong. 

In the following sections, I discuss how to measure information about input histo

ries retained in patternso11 the context layer and propose two methods to retain sueh 

lnfortnationellectively. 

'CorTolationcoeflicionuoroutpuuandtarge\5 



3.2. Simple Recurrent Networks 

F1gure 3.2· n-sequence 
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Figure 3.4: Performance of Learning n·sequence by SRNs 
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3.3 Retaining Information in Difference between Pat

terns 

3.3.1 Information and Difference of Patterns 

All information is represented by activation patterns in a neural network. However. 11 LS 

meaningless that all patterns occur in thenetworkarethesame, because it outputs only 

constantpatternsforanyinputs. For meaningful processing, the pattern must vary. In 

other words, information is retained in the difference betwun patterns. Hence I focus the 

distance between patterns as a measure of difference of patterns. that is a measure how 

muchinformationisrepresentedbypatterns. 

To start out, let's examine a change of the distance between corresponding patterns of 

a context layer while an SRN is processing two kinds of cycles of a '7-sequence' problem. 

Init1ally, I recorded a sequence of context patterns while the network was processing 

an a-cycle 4 after an a-cycle. This sequence was treated as a base sequence. Then, I 

r«.ordedanothersequenceofcontextpatternsduringab-cydeafterann-cyde (a-ob). 

This sequence was compared with the base sequence in order to calc11late diStances of 

correspondingcontextpatternsofthesesequences.Ialsorecordedsequencesofcontext 

patterns in the case of an a-cydeafterab-cycle(b _,a) and in thecaseofan a-cycle 

afterana-cyele(a-ta,thisisdifferentfrom the base sequence), and calculated distances 

between corresponding patterns of each of them and the base sequence. Fig. 3.~ shows 

changes of these distances in a cycle. In this graph, time= 2 is a timing when the network 

receives pre-embedded symbols, and time= 9 is a timing when the network predicts post-

embedded symbols. At a timing of time = 2, the distance between a .... b and the base 

sequence is large enough, while the distance between a pattern of a .... a and the base 

seq11ence IS small. However, the distance between a_, band the base sequence becomes 

smaller and smaller during the processmg of embedded sequences. Finally, at a timing of 

llme=9,thedistancebetweena.->bandthebasesequenceiscomparabletothedistance 

between a _, a and the base sequence. This means that a pattern in each cycle becomes 

almost the same with each other after processing embedded sequences. Therefore the 

networkcannotpredkt post-embeddedsymbolscorrectly. 

This. phenomenon is caused by the fact thatthedistanceofpatternson the hidden 

layer is smaller than that of patterns on the context layer when patterns on the input 

·~ 'z'.cyole means the eycle whose pre-emWd..J symbol IS 'z' 
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00-·- -··-.- ~-:.:: 

Figure 3.5: Change of Distance between Patterns of State Layer during Embedded Se-
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Figure 3.6: Pattern Transformation Network 

layer are the same. In the fol!owing se<:tion, I discuss how to avoid this phenomenon 

3.3.2 Transformation of Patterns and Change of Distance be

tween Patterns 

Consider a pattern-transformation-network like Fig. 3.6 which consists of input and 

output layers. As.sumethatthefollowingconditionsaboutthepattern-transformation

networkhold. 

• The distribution of w, a weight of a link between input and output layers, is a 

Gaussian distribution G{w;O,u,.), whose mean is 0 and variance <7!. 

• Theaverageactivity,/3,ofinput patternsisaconsta.nt 

/3 _ ](input pat.tern ve~tor)j7 
- (numberofdimenstonsofmputpattern) 

(3.5) 

• All threshold valuesofunitsin the output layer are all 0. 

• Theoutputfunctionofunitsmtheoutputlayerisdefinedasfollows: 5 

f(:s;)= {.,G({;O,r)d{ (3.6} 

Moreover,'anonrulli:eddtstance'betweenpatterns:tandyisdelinedasfol!ows· 

Q= lz-yj~ 
2x(numberofdtmenstonsofpatterns) 

(3.7) 

'Thio fun~Lion i• not exactly Lho nme u (3.3), but io v~ry •imilo.r and i• usumed I<> be a\>le 1<1 

approX1m&te(3.3). 
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Figure 3.7: Relation between a. and a, 

Given these assumptions, we can derive the foUowing relation between a., a normalized 

distance of two input patterns, and o-0 , normalized distance of output patterns of the 

network that receives the input patterns. (See appendix A for the detail.) 

where N is the number of dimensions of input patterns. This result is a generalized version 

oftherelationofnormalizeddistancesofinputandoutputpatternsbythetransformations 

of random networks ([Ama78[). ' Fig. 3.7 shows the relation between o:; and Clo for various 

u~ where N = .SO, /J = 0.5, T = 1.0. 

Note that a differential coefficient 8o./8o., at a, = 0 is a finite value in the case of 

T > 0. 8o.,.f8a; decreases as No! decreases. This means that if No! is small enough, 

8a~f8a, at a, = 0 is less than 1, so that the normalized distance of patterns decreases 

by the pattern transformation. In this case, thenormalizeddistancefallsdowntoO by 

0The ruullofjAra&78J iolheease of~ =Oin (3.8). 
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recursive transformation of patterns by a pattern-transformation-network. As a result, 

all patterns become the same. On the other band, in the case when N11~ is large enough 

and fJa.J8a; > 1 at a, = 0, the normalized distance is attracted to a positive value by 

recursive transformations of patterns. Tbismea.nstbattbedifferenceofpatternsiskept 

through recursive transformations. 

3.3.3 Distance Keeping Method 

As shown in Fig. 3.5, differences of patterns on the context layer become similar during 

the processing of embedded sequences ofn-sequence in theexperiment-1. This is the 

case when Nu~ is small enough in (3.8). From the result of discussions m the previous 

section, we can find that this 'decreasing distance' problem is avoided by making N11~ 

largeenough.Inthiscase,a.differenceofpatternsthatoccursbyreceivingpre-embedded 

symbols is kept during processing embedded sequence. As a result, the network can 

predict post-embedded symbols correctly. I call this method the 'distaru:e keeping (DK)' 

method. 

There are two ways to make Nu~ large: to make N large or to make a.., large. I 

tookthelatterinexperimentsinsection3.5. Inordertodothis, Isetinitialvaluesof 

weightsoflinksfromacontextlayertoastatelayeraccording to a distribution with a 

large variance. 

3.4 Minimization of Information-Loss 

In section 3.3, information represented by patterns is measured by distances between 

patlerns. On the other hand, we can also define a measure of such information in the 

mannerofSha.nnon'sinformationtheory. lntbissection,a.nothermethodbasedonsucb 

a measure is described. 

3.4.1 Measure Information-Loss 

Consider a. pattern-transformation-network shown in Fig. 3.6 again Let X = {:~:,} be a set 

of input patterns to the network and Y = {y,} be a set of output patterns of the network. 

lalsouse'X'and'Y'assymbolstoindicateinformationsourcesthatprovideinputa.nd 

output patterns respectively. In Shannon's information theory, a mutual information I 
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betweenXandYisdefineda.sfoUows: 

where 

I( X, Y) := H(X)- H(XIY) 

H(X) = - j)Iogp(z))p{z)dz 

H(XIY) = - fxllogp(z)y)]p(z)dz 

(3.9) 

(3.10) 

(3.11) 

andp(z) isaprobabilitydensity,andp(z)y) is a conditional probability density of input 

patterns when an output pattern is y respectively. In (3.9), I(X,Y) means how much 

information about mput patterns is retained in output patterns. Moreover, H(X) means 

a original quantity of the iniormation. Therefore in the ease when H(X) is constant, we 

can treat H(X)Y) a.s a measure of loss of iuformation about input patterns. 

3.4.2 Minimum Square Error 

In order to process sequence with LDD, we need a technique to minimize H(XJY). How-

ever, direct minimization of H(XJY) is difficult. 

Let's consider the loss of information from another point of view. The loss of illfonna.

tion through a pattern transformation corresponds to the degree of ambiguity when input 

patterns a.:re reconstructed from output patterns. Thus, we can measure loss of informa

tion by a minimum squa.:re error of estimation of input patterns from output patterns as 

fo!lows: 

En = mjn LJ,(z-F(y;Ajfp{z,y)dzdy (3.12) 

where F IS a vector function with parameters A. 

It is easy to implement a mechanism to minimize En to network learning as fo!lows 

Consider a network like Fig. 3.8. This network is trained to output the same patterns on 

the reconst(= reconstruct) layera.s of the input layer. In this case, the network solves 

the following optimization problem by the back-propagation method. 

(3.13) 

where z is a.n output pattern on the reconst layer, and W1o and WoR ;ue weight matrices 

fromtheinputlayerto theoutputlayerand from the output layertothereconstlayer 

respectively. (3.13)isreformedasfollows: 

(3.14) 
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Figure 3.8: Pattern Transformation Network with Reconst Layer 

In ~his eq;;ativn, ~he term in [-] corresponds to the mir,imam square ~rror ERin (3.12/. 

Thus !earning of the network in Fig. 3.8 minimizes ER. 

3.4.3 Relation between IL and MSE 

In this section, the relation between the measure of the loss of information H(XIY) and 

the minimum square error ER is discussed. Suppose the following assumptions: 

• A distribution of output patterns, p(y), remains constant even if weights of links 

change by learning 

• For any output patterns y, a conditional distribution p(a:ly} is a multi dimensional 

Gaussia.ndistributionwhosecovaria.ncematrixisdiagonal. 

Given these assumptions, the following relation between H(XIY) and ER holds: 

2H(:IY) :5 log~+log21f (3.15) 

(See appendix B for more detail.) In other words, ER is a.n upper limit of H. Therefore 

His minimized indirectly hy minimizing ER. When the network in Fig. 3.8 is trained to 

minimize ER, the loss of information by transforming patterns from the input layer to the 

output layer becomes small. As a result, patterns of the output layer become to represent 

information aboutpatternsoftheinput layer effectively. 
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3.4.4 X Model 

Fromthediscussionintheprevioussection,wecanderiveanewlearningmethod,called 

the 'injormatto11-lo$$ mtmmi:wlio11 (ILM)' method for SRNs. Consider a network like 

Fig. 3.9. Thts network is called 'X-modet' In this network, i11put, context, sto2te and 

output layers are the same as in an SRN in Fig. 3.1. Recon.st-input a.nd recon.si-C0111e:tt 

layerscorrespondtoarecoii.Stlayerin Fig.3.8,astatelayercorrespondstoan output layer 

m Fig. 3.8, and context and mput layers correspond to a.n mput layer in Fig. 3.8. 

In the learning phase, an input pattern is set into the input layer and a previous 

patternofthestatelayerissetintothecontextlayer. Simultaneously, as target patterns, 

adesiredoutputpatternisgiventotheoutputlayerandpatternsoftheinputandcontext 

layers are given tothereconst-input andreconst-contextlayersrespedively. Then the 

networkistrainedtominimizethefollowingpenaltyfunction: 

where :r:0 , zRl, ZRc, z,, zc are activation pattern vectors of the output, reconst-input, 

ruonst-context, input a.nd context layers respectively; :r:T is a required output pattern 

vectorgivenfromar~externalteacher. 

Asdiseussedintheprevioussection,thenetworkleatnstorepresentinformationa.bout 

patternsoftbeinputandcor~textlayerselfectivelybya.patternoftbesta.telayer. Because 

thepatternoftbestatela.yerbecomesanextpa.tternofthecontextlayer.anextpatternof 

thestatelayeralsorepreseotstheinformationaboutthecurrentpatternsoftheinputand 

context layers. Inthisway,informationabouttheinputandcontextlayersisrepresented 

bypatternsoftbestatela.yer(alsothecontextlayer)recursively. As a result, information 

about input pa.tternslSreta.inedinpa.tterosofthestatelayerforalongtime. Using such 

information, the network becomes to be able to learn LDDs. 

3.5 Experiments and Discussions 

In order to show the proposed methods in the previous sedions perform well, the following 

experimentsusingthesa.metaska.sinexperiment-1 wereca.rriedout 

3.5.1 Learning Prediction Task of n-sequences by DK Method 

Inordertoma.keavarianceofadistributionofweigbtsD"!large, Weightsoflinksfrom 

thecontextla.yertothestatelayerareseta.ccordingtoauniformdistributionin [-5,5[ 
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Figure3.9: X Model 

i!!~!ead. o! [-1, l]. O!~e: to:~di!ions we:e the sa...-ne as i;; exye;i;;;er..i-1. Afte; !eornir.g, I 

anaiyzedtheperforma.nceofthenetworkinthesa.mewayasin experiment·!. 

The result is shown hy plus marks(+) in Fig. 3.10. In this graph, while the perfor· 

ma.nce in the case of the experiment·! goes down quic!cly when n is greater than 4, the 

performance of the DK method is kept high where n is Jess than 7. This means that the 

differenceofpatternsofthecontextlayeriskeptduringembeddedsequence,sothatthe 

network can distinguish pre-embedded symbols when the network preditts post-embedded 

symbols. 

However, the performance goes down slowly where n > 7. The reason is as follows: 

As shown in Fig. 3.7, in the case of large variances, a distance of patterns increases 

if an originaldJsta.nceissmall, whileadistancedecreasesifanoriginaldistanceislillge 

enough. Thismeansthatsmalldilferencesbynoiseandlargedifferencesbyinputsbe<:ome 

similarandbecomeindistinguishablefromeachotherafterrecursivetranslations. This is 

unavoidablebecausethesettingoftheweightsdoesnotrellectthenatureofgiventasks 

in this method. 

3.5.2 Learning Prediction Task of n-sequence by ILM Method 

In the experiment of the ILM method, the number of units in the reconst layer (that is, 

reconst-input and reconst-context layer) is 6~ and other conditions are the same as in 

experiment·!. The result is shown by square mark! {0) in Fig. 3.10. We can find the 

a«.uracy of ILM method remains high even if n-sequences have long embedded sequences 

liken= 7,8 
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·, 
----.. 

·~.--~--~--~.~~.~~.~~==~~~ 
t.onslhof~Seq""not!n) 

Figure 3.10: Performance of Lea111ing n-sequence by DK Method and by ILM Method 



3.6. Summary 

As shown in Fig. 3.10, the performance of the ILM method is beHer than that of the 

DK method. The reason is that while weights of links are set randomly regardless of a 

given task in the DK method, they a:re tuned to a g~ven task through lea:rningin the 

ILM method. Therefore patterns on the context layer represent mformation about input 

histories more effectively in the ILM method than the DK method. However, the ILM 

method also has a limit. Since a network hasafixed-s1zed state layer, the capacity to 

retain information in patterns is limited. Because of the limited capacity, only a finite 

lengthofinputhistoriesa:reretainedinthenetwork. Therdorethenetworkcannotlearn 

tasksthathavelongerdistancedependenciesthanthefinitelength 

3.5.3 Comparison of Two Method 

Thesetwomethodsi:Laveadvantagesovereachother 

As mentioned in the previous section, the ILM method is better than the DK method 

from the viewpointoftheabilityinlearning 

On the other hand, from the viewpoint of the speed of learning, the DK method LS 

beHer than the ILM method. The reason is that while a mechanism to keep information 

aboutinputhistoriesisconstruetedthroughlearningintheiLMmethod,itisconstructed 

before learning in the DK method. As a result, the ILM method takes more time to learn. 

From these advantages, we can consider preferred types of tasks for these methods 

The ILM method is suitable [or tasks with complex LDDs in which the distribution of 

inputs is constant. On the other hand, the DK method is suitable for tasks in which the 

distributionchangessothatanetworkmustadaptitselftothechangesquickly 

3.6 Sununary 

In this chapter, I proposed two methods, the distatLce keeping {DK) method aJLd the infor

mation loss minimization (ILM) method, for simple recurrent networks. These methods 

solvethedisadvantagethatitisdtfficultforsimplerecurrentnetworkstolea:rntemporal 

sequence processing with long distance dependencies (LDD) 

In the DK method, initial weights of links are set according to a distribution whose 

variance is large enough. By means of the large variance of weights, the difference of 

patterns of context layers is kept through time. As a result, a network can process 

sequences with LDDs 
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In the ILM method, new layers are added to a given network. The network learns to 

output the same patterns on the new layers a.s those of context and input layers. This 

learningminimizesthequantityoflossofinformationaboutinputhistoriesindiredly,so 

that the network beo:omes to be able to process sequences with LDDs through learning. 

These methods do not depend on the back-propagation method. Thus it is easy 

to apply them to other learning methods and network models. For example, the ILM 

method can be implemented to Boltzmann machines in the same manner described in 

thischapter[Nod89]. 

There remain the following open problems for these methods: 

• These methods make it difficult to analyze patterns of a state layer and extract 

structuresofmformation of sequential processing. These methods are derived by 

focusing only efficiency ofrepresentin~information of input histories b~· patterns of 

the state layer. Thus, information of even useless inputs is also represented by the 

patterns. 

• There is a certain limit to the length of LDD which networks tan learn to deal with. 

Whilealongerdistancedependencyrequiresmorecapacitytokeepinputhistories, 

the size of a hidden layer of a network is fixed. Therefore a network trained by 

these method can not deal with LDDs that requires more capacity than one of the 

network. 

Theseproblemswillbesolvedpartiallyintbenextchapter. 



Chapter 4 

Learning State Transition of Finite 

State Transducers 

4.1 Introduction 

Oneofcharacteristicsofsimplerecurrentnetworksisthecorrespondencewithfinitestate 

transducers. Inprocessiugbyfinitestatetransducers,structuresofinformationarerep

resentedbystate-transitionsofthetra.nsducers. Manyresea.rchcrshavefocusedonthis 

point. They tried to analyze pattern transitions of simple recurrent networks as state· 

tra.nsitionsoffinitestatetransducersinordertoextractstructuresofprocessingthatthe 

networks learned. In these works, there remains an open problem that networks do not 

entirely acquire suitable state-traJJsitions. This problem comes from a lad of correspon

deo<::ebetweenlea.rningofsimplerecurreotnetworksandfinitestatetransducers. 

In this chapter, anew method for simple recurrent networks to learn suitable state

transitions is proposed. Themethodha.scorrespondencewiththelearnmgoflinitestate 

transducers. InordertoderJveit,aproceduretoconstructafinitestatetransducer 

from input-output examples is composed using the state-minimization technique {in sec

tion4.2). Theneachstepofthemethodisr«:onstructedasalearningofneuralnetworks 

(insection4.3) 

4.2 SRN and FST 

4.2.1 Simple Recurrent Networks (SRN) 
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Figure U: Simple Recurrent Network with Sigma-Pi Link. 

Co.asider a simple recurrent p.etwork (SRN) like Fig. 4.1. All SRN consists of input, 

pmriou-.r!o:te, state aad output layers, Sigm•-Pi-type links !GSCT90J 1 from input and 

previOIIs-statela.yerstotbestatelayet,ll!ldSipa-typelinksfromthesta.telayertothe 

output layer. Moreover, the network h• rec:urre11t links to copy pat teras of state layer to 

theprevious-statelayerwith 1 time delay. 

This network works iD discrete time. In each time step, an external input pattern is set 

into the input layer and a previous pa.ttem of the state layer is set iDto the previous-state 

la;yer. Then patterns of state and output layers are calculated ia the maaner of standard 

feed-!or<QJ'dnetworks. 

Note that it is not necessary to use Sipa-Pi-type li11ks amoa.g input, previous-state 

and state layers. It is ooly for avoiding a lilnitation of transitions of SRN'IGSC+90J. 2 We 

ca.n have the same discussion asia the rest of this chapter in the case of using Sipa-type 

linksinsteadofSigJDa-Pi-typeliaks. 

There are two strategies to train an SRN to learn a given sequeDtial task. One strategy 

is to use the 'back-propagation throush time (BPTT)' method to miuimi:&e output error. 

BPTT is powerful. However, it has a demerit that it requires to record whole status of 

a ne\work durins processing. Such a mechaai&m is not plausible biologically. Another 

input~ = LLw,;_o:,o:; 
oePS;el 

wbere 'P$', 'I' are respectively oel.l ofuniu of pn•ious-otatt Mel input IIJien; o:, io an output ohhe unit 

i;"';J.~oil•lftisln.ofthelintl'romthenaitiMdtheunitjtotheunit.l:. 

"Tbil limitltian ..,;n bt cliocuiMd in oecti011 &.1.2. 
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Figure4.2: Finite State Transducer 

strategy is to use the back-propagation simply within one time step (called a simple BP, 

or SBP). A merit of this strategy is that learning is simple and plausible biologically. 

However,itba.sademeritthatitha.spoorabilityto\earncomplexsequentialta.sks. 

Intbesestrategies,Italr.ethelaterforlearninganSRN. 

4.2.2 Finite State Transducer (FST) 

In the automata theory, a finite state transducer (FST) is defined by the following 

6-tup\e. 

FST == < Q,E,A,l!,t/l,qo > 

where Q isasetofstates, Eisa set of input symbols, {J is a state-transition function, 

q0 is an initial state, A is a set ofo11tput symbols, and ,Pis an 011tput function. Fig. 4.2 

showsaschemaofstate-tra.nsitionsofan FST. 

4.2.3 Learning FST from given examples 

When a set of examples of input-output sequences is given, we can construct an FST 

that performs these input-output sequences with minimum states. This IS based on the 

state-minimization technique of FSTs[HU79]. The procedure is as fo!lows: 

[Learning FSTJ 
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SI Makestateseachofwhichcorrespondstoapossibleinputhistory. 

52 Assign an output ,.aJuetoeachstateaccordingtoexamples. Thengroupstatesinto 

groupsaccordingtooutputsofstates. 

SJ Groupstatesinagroupintosub-groupsaccordmgtothegroupofnextstatesafter 

transttions from the states. Repeat this sub-grouping until no more groups are 

generated. 

54 Unify states belonging to the same group together a state, and reform state-transitions 

andoutputsofeachstate. 

(For more details, see appendix C.) 

4.2.4 Correspondence between SRN and FST 

As shown in Fig. 4.1 and Fig. 4.2, it ts easy to consider a correspondence between a.n 

SRN and an FST. Activation patterns of input, output, previous-state and state layers 

respectivelyeorrespondtomputsymbols,outputsymbols,eurrentstatesandnextstates 

after transitions. Links from input and previous-state layers to a state layer correspond 

toastate-uansitionfunetion,andlinksfromastatelayertoanoutputlayereorrespond 

toanoutputfunetion. 

On the other hand, learning of SRNs described in soction 4.2.1 does not correspond to 

learning of FSTs. Therefore, it is not sure that SRNs acquire suitable state-transitions as 

FSTs. As a result of acquiring unsuitable state transitions, the ability of SRNs decrease 

andalsoitbecomesdifficulttoanalyzepatternsofthestatelayer. 

In the next section, in order to solve this problem, I propose anew network model 

anditsleallling method, which corresponds to the learniogofFSTs. 

4.3 SGH Model 

4.3.1 Network Architecture 

Fig. 4.3 shows an oven·iew of the network architecture of tbe proposed model, called 

the 'SGH model'. It consists of 'SRN', 'grouping' and 'history' modules. In learning 

phase, the history module is trained first, the grouping module second, and the SRN 
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mputpattem 

Figure 4.3: Whole Network Architecture 

module third After learning, the SRN module works alone as an SR!'i. In other words, 

groupingandhistorymodulesareusedonlyforlearning 

The history modulelearnspatternrepresentationsinwhichinformationabout input 

histories is represented by patterns effectively. ThislearningcorrespondstothestepSl 

of the FSTlearningprocedure. Afterlearning,thismoduleoutputspatternsrepresentmg 

input histories to the grouping module as input patterns. 

The grouping module classifies patterns of input histories into groups a.ecording to 

requiredoutputsandnextstates. Thisclassificationisperformedthroughlearning. This 

learningcorrespondstotbestepS2a.ndthestepS3. Afterlearning,thismoduleoutputs 

patternsrepresentinggroupsofstatestotheSR.N"moduleasteacherpatterns. 

The SRN module learns final state-transitions and an output function according to 

patternsofstate-groupsfrom thegroupingmoduleand required output patterns from 

external teachers. ThislearningcorrespondstothestepS4. Afterlearning,apartofthis 

moduleworksa.loneasanSRN. 

Inthefollowingse<llons, thedeta.iloflearningofeach module is described. Note that 

only theSBP method is used in learning of each module. 

4.3.2 History Module 

The learning of the history module corresponds to the step Sl in the FST learning, 

that is, makingstatescorrespondingtohistonesofinputdata. In order to realiuthis, 

An X model network with the ILM method described in chapter 3 is used. By this model 
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same as 
His10ryJ"auem lnp~lpattem 

fro~ 
external input 

Figure4.4: History Module. 

and method, input bistoriesca.n be represented by patterns. These patterns can be seen 

as states corresponding to input histories. Actually, l use a network like Fig. 4.4. In this 

uetwork, an external input patteru is set into the input layer, and a pattern of the nel:t· 

his!orylayerin the previous time step is copied into the history layer. Fortugetsignals, 

the same patterns of input and history layers are given to rtCOn$t·inputand reconst-history 

layers respectively. 

This network trained to minimize the following penalty 

Eh""''Y =< j:l:l:U- :J:ll2 + lz~ll- :z:kl 2 > (4.1) 

where z:U, :cl, :1:~11 and zk are respectively pa.Hern vectors of reconst-input, input, 

re<onst-historyand history layers at timestept. Through thisleacning, information 

about input histories becomes to be represented bypatternsofthehistorylayer. After 

leacning,thismoduleoutputsthesepatternsofthebistorylayertothegroupingmodule 

aspatternsofstateseonespondtoinputhistories. 

4.3.3 Grouping Module 

Theleacningofthegroupingmodulecorrespondstothestep52a.ndthestepSJ,that 

isgroupingstatesaccordingtotheoutputandthenextstateaftertransitions.lnorder 

todothis,lconsiderateehniqueofgroupinginputpatternsonahiddenlayer. 
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Table 4.1: Relat1on Between Difference of Input/Target Data and of Hidden Patterns. 

target data 

input I dif. 

data dif. I I dif 

Temporary-Group 
pauem. 

fr~m H1s1oryl3yer 
inH>sloryModule 

Figure4.5: Grouping Module. 
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Grouping Input Patterns on A Hidden Layer 

Suppose that a feed-forward three-layer network is trained by using two pairs of inputs 

and tilrget outputs. We caa not know what patterns will occur on the hidden layer aRer 

learning. However, we can know whether two hidden patterns for the two inputs are the 

S<LIIIe or not. Tab. 4.1 shows whether hidden patterns for eaeh of two inputs are the same 

ordiffereotineachcasewhentwoinputsa.rethesa.meordifferentandtwotargetsarethe 

same or different. From this table, we can find that hidden patterns are different when 

inputsandtargetsa.redifferent.Tbismeansthatinputsaregroupedintopatternsofthe 

hiddenlayeraecordingtotbetargetoutput. 

Conside~ a :~etwork shown in Fig. 4.5 as a grouving mod-..Je. Ir. this network, a pat:ern 

ofthehislorylayerinthehistorymoduleissetonthehistorylayer,a<::urrentexternal 

ne:tl·mputlayer. As target signals, arequiredoutputpatternisgiven to the output layer, 

and a pattern of the temporal-group layer at the next time step is given to the nezl· 

group layer. Moreover, links from group and nezt·input layers to the nezt-group layer are 

Sigma-Pi-type links. The network is trained to minimize the following penalty: 

(4.2) 

where :z:l:,, ::.:~c and ::.:~:'"J are respe<:tively pattern vectors of output, next-group layen at 

time step t and of the temporal layer at time step t + l; :z:~ is a required output pattern 

vectorsattimestept 

Note that weights of links to the temporal-group layer are copied from links to the 

group layer at long enough inten·als <::ompared with a time scale of weight learning (in 

experiments in the next section, each .SOOO ..... JQOOO epochs). Therefore patterns of the 

temporary-grouplayerarealmostthesa.measthoseofthegrouplayer,butmorestable 

than them. Thislayerisusedforprovidingstableteacberpatternsforthenext-group 

layer. 

Asmentionedabove,patternsofhistoryandinputlayersaregrouped into patterns of 

the group layer according to z~ and z~"J. This means that states that correspond to input 

historiesaregroupedintogroupsrepresentedhypaHernsofthegrouplayeraccordingto 

outputofthestates. Thiscorrespondstothestep 52. Also,sta.tesaregroupedaceording 

tothegroupofnextstatesa.ftertransitionsfromthestates,heeauselinkstothetemporal

grouplayerareeopiesoflinkstothegrouplayer,sothat :z:iJ indi<::atesagroupo[anext 
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Figure 4.6: Actual Grouping Module 

state. ThiscorrespondstothestepSJ. 3 

After learning, this module outputs patterns of the group layer to the SRN module a.s 

patternsofgroupsofstates 

Inhibition of Redundant Groups 

As shown in Tab. 4.1, it is not assured that patterns of the hidden layer become 

the same in the case of different inputs and the same target outputs Therefore some 

redundantgroupingofstates may occur. In order to avoid this redundant grouping, the 

OLL method described in chapter 2 is used. The OLL method inhibits redundant grouping 

because the OLL method ha.s an effect to eliminate redundant pattern representation of 

hidden layers. Thise!leetisenhaneedbyinstalbnganewintermediatelayerbetweeninput 

and hidden layers. Moreover, it is empirically known that grouping of states becomes 

effective if the grouping layer receives previous patterns of the group layer. For these 

reasons, a network shown m Fig. 4.6 is actually used for the grouping module. (For 

simplicityintermediatelayersareeliminatedinthisfigure.) 

'Coneeptuo.Jiy,it works in the samemanner>n the case of using p..tt<rnsofthegrouplayerinstead 

oftbetemporal·grouplayerasal.argetofthenext·grouplayer. However,learn>ng progr ... esgraduo.Jly, 

andthenetworkeannotgetsu>tablelargetsigno.l•aboutgroupsofnextsta\esinthem>ddleoflearning. 

u..,ofthe"'mporo.l-groupl&~ravoidsthio&ndprovidnstabletargetoigno.Js 
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from from 
Groupl;yer uternal!eaeher 

Figure4.7: SRN Module 

4.3.4 SRN Module 

The SRN module constructs reduced state transitions by using information about 

groupsofstatesfrom the grouping module. Inordertodothis,anetworklikeFig. 4.7is 

considered. This network is the same as a SR.~ in Fig. 4.1 except for the current-group 

layer. In this network, an external input pattern issei on the mputlayerand a pattern 

of the state layer at the previous time step is set on the previou8-slate!ayer. As target 

signals,arequiredoutputpatternisgiventotheoutputlayera.ndapatternofthegroup 

layerm thegroupingmoduleisgiventotbe current-group layer. Thenetworkistrained 

tominimizethefo\lowingpenalty: 

(4.3) 

where %~cis a pattern vector of the current-group layer at time step t. Moreover, m 

order to avoid generating redundant states, the OLL method is used on the state layer. 

Bytheeffectoftheseeondtermoftherigbtsideof(4.J),eaebpatternofthestatelayer 

comestohaveaoBe·to-onecorrespondencetoapatternofthegrouplayerinthegrouping 

module. As a result, eaehstateofthe SRN part corresponds to a group of states that 

have the same output and the same next states. In other words, states in a group unified 

into one state. ThiscorrespondstothestepS4. Themodulealsoconstructsanoutput 

functionbyminimizingthefirstterm. 
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4.4 Experiments 

4.4.1 Learning Process of Grouping Module 

Inordertodemonstratehowagroupingmodulegroupssta.tescorrespondtoinputhisto-

ries,thefollowingexperiment(Ex.l)wasearriedout. 

Consider a finite state automaton that has state-transitions shown in Fig. 4.8. This 

automaton generates four sequences, that is 'AEFGHI', 'BEFGHI', 'CEFGHJ' and 'DE

FGHJ'. An SGH network learns a sequence pffil1ction ttuk 4 using these sequences. If 

the network acquires the same state-transitions as Fig. 4.8, we ean say that the learning 

issuccessfu:. In thi~ experiment, each of history, next-history and reconst-history layers 

consistsofJOunits, ea.ehofgroup, previous-group, temporal-group, next-group, state, 

yrevious-.;;tate and current-grvup layers coosist~ of G units, and each of input anO out

put layers consists of 10 units. In input and output layers, each symbol io Fig. 4.8 was 

representeda.slocalistrepresenta.tion 5 . 

!recorded patternsofthegrouplayerduringlea.rningandana.ly~edthem by principle 

component analysis (PCA). Fig. 4.9 shows the process of learning of the grouping mod

ule. Each graph shows changes of the first principle component of patterns of the group 

Jayerduringtheprocessingofeachofsequencesinacerta.instageoflearning.Inthese 

gra.ph,ea.ehsequentialpositioncorrespondstosta.tesinFig.4.8asfollows: The sequential 

position 0 correspoods to state qo; l corresponds to q1 and 112< 2 corresponds to q, and 

q4; 3 corresponds to q5 and qG; 4 corresponds to q7 and qs; 5 corresponds to q, and q,o 

Fig. 4.9-(a.) isa.sta.gewhen the network ha.sgroupedstatesaccordingtooutputs. In this 

stage,stateq,andsta.teq10 inFig.4.8a.rerepresented hydifferentpa.tterns. But each pair 

of {q~o'b}, {q3 ,q4 }, {q5 ,q~} and {q;,q6 } is represented by the same pattern because two 

states of each pair have the same output. It means two states of each pair are grouped 

into the same group. In a. stage of Fig. 4.9-(b), q1 and q8 come to be represeoted by 

differentpa.tternsbecausethnextsta.tesofthesesta.tes,thatisq9 a.ndq10,a.rerepresented 

by different patterns. Inthesa.memanner,sta.tesofea.chpa.irof{ql,q2}, (q,,q.}a.nd 

{q5,q6)cometoberepresentedbydifferentpa.ttemsinsta.ge(c).stage(d)a.ndsta.ge(e) 

respectively. Finally the network acquires patterns of groups each of which corresponds 

'Th~ task I<> prHlict succ .. sive elements of a sequuco. When a ••quenc~ {;;,.;;,.zl·"'• ... ) is giv•n, 

th•notworkroc•iv .. z, asaninpulandlearnstooutput%1.,.1 at tim• I. 
'In loc&liotrepreo•nt.o.tion, ....,h unite<orre•pondstoasymbol one·by·one,andJUSt on•unotthat 

correspondstoasymboli.<>repr .. entisutivatHI 
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Figure 4.8: State-Transition of An Automata for Ex. I. 

to a state in Fig. 4.8 one-by-oDe. Subsequently the SRN module started to learn and 

constructed an SRN that had the same state-transitions as Fig. 4.8 

4.4.2 Learning Flip-flop 

The second experiment is learning the same state-transitions as of a ftip-flop like Fig. 4.10. 

A task a network learns is that the network receives a random binary ('0' or 'l ') sequence 

followed by a terminal symbol ('s'), and then outputs a parity of the number of 'l's in 

the sequence. In this experiment, each of history, next-history and reconst-history layers 

consistsof30units, eachofgroup,previous-group, temporal-group, next-group, state, 

previous-state and current-gro11playersconsistsof 10 units, each of input layers consists 

orJunitsandeachofoutputlayersconsistsof2units. 

After learning, I analyzed patterns of the state layer by PCA. Fig. 4.11 shows an 

example of a result of PCA. In this figure the first and se<ond principle components of a 

pattern of the state layer at each time step are plotted. As shown in this figure, the SRN 

moduleofthenetwork acquired thesa.mestate-transitionsas Fig. 4.10. 

For comparison, 1 also trained SRNs with tiO bidden units by SBP, SRNs with 10 

hidden units by BPTT, and X models with 50 hidden units. Fig. 4.12 shows the average 

outputerrororeachmodelrorvariouslengthsofbina.ryinputsequences. Wecanseethat 

errors or SRNs by SBP and X models increase suddenly when input sequences bttome 

long, while errors of SGH models and SRN by BPTT are kept small even for long input 

sequences. The cause of this advantage or SGH models and SRNs by BPTT is that these 

networks acquire the same state-transitions as Fig. 4.10. Note that SGH models use the 

SBP method rather than back-propagating error information through time like the BPTT 

method. 
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(•) ::tS/\,~1 •• ~1 .. a.. 
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Figure 4.9: Learning Process of Group Layer in Grouping Part. 
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F~g-Jr':' 4 !Q· F!ip Flop 

(\ fl~ 

l J)' ,_ 

·~sdo 
" " " 

Figure4.ll: Example of State-Transition of Flip-flop. 
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Figure 4.12: Output ErrorofFI.Jp-llop 
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4.4.3 Learning of Processing with Long Distance Dependency 

In the field ofnaturallanguageprocessing, one important problem is how to deal with 

long distance dependencies (LDD). For example, agreement between subject and main 

verb holds even 1f subordinate clauses are embedded between them like 

The dog that eha.sedcats is mine. 

Dogthatchasedcats o.remme. 

I tested the ability of SGH models to deal with LDDs as follows. Consider sequences 

generated by an automaton thatbasstate-transitionsshowoin Fig.4.13. If the first data 

of the seque:~ce is 'a' or 'b', the last data of the sequecce is 'i'. Co:n·ersely, the first 

data is 'c' or 'd', the last data is 'j'. Between these correspondences, There are embedded 

sequences have LDDs. An SGH model is trained to adieve a sequence prediction task 

using them. Inordertopredictthelastdataofthesequencescorrectly,thenetworkmust 

reta.intheinformationaboutfirstdatainitthrough embedded sequences. One solution 

ofreta.iningsuchinformation is to acquire thesa.mestate·transitionsas Fig. 4.13. 

Inthisexperiment,eachofhistory,next-historyandreconst-bistorylayersconsistsof 

60units,eachofgroup,previous-group,temporal-group, next-group,state,previous-state 

a.ndcurrent-grouplayersconsistsofl5unitsandeacbofinputandoutputlayersconsists 

of 9 units. I also trained an X model with 75 hidden units for comparison. Fig. 4.14 shows 

averageoutputerrorsofbothmodelsatpredictinglastdata. Wecanseethaterrorsof 

X models jp.crea.se for longer embedded sequences, while errors of SGH models are kept 

small. 

Although the X model was proposed in order to deal with LDDs, the ability to deal 

with LDDs is limited by the capacity of the network. On the other band, the SGH 

model deals with LDDs better than the X model in this case. The SGH model is aimed at 

acquiring suitable state-transitions. Fig.4.15showsanexampleofstate-transitionswhich 

SRN modules of an SGH model acquired. This transition map is the same as Fig. 4.13. 

Becauseofthesetransitions,itbeca.meabletopredictlastdatacorrectlyevenifembedded 

sequences become long. As this case, the SGH model has an ability to deal with very long 

distancedependenciesthatiscausedbyloop-typeembeddedstat-transitions. 

In addition to it, SGH model solve another problem of the X model. Pattern transitions 

ofthe state layer in the SGH model is simple Ol.S shown in Fig. 4.15, so tbat it is easy to 

analyzesucbtransitionsinordertofindstructuresoflearnedsequeP.tialtasks. 
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Figure4.13: State-Transition with Embedded Loop 

UngthofEmbeddedSequences 

SGII

< --

Figure 4.14: Prediction Error after Embedded Sequences. 

63 



.. Chapter 4. Learning State Transjtion of Finite State Thansducers 

Figure 4.15: Example of State-Transition after Lea.t11i11g 

4.5 Summary 

In this chapter, a model, called the SGH model, and its learning method to acquire 

suitable state-transitions are proposed. The method is derived from a procedure to con

struct a finite state transducer from input-output examples using the state-minimization 

te.:hnique.Thealgorithmconsistsofthreesteps: Thefirststepistogeneratestatescor

respondtoinputhistories. These.:ondstepistogroupthestatesintogroupsaccording 

to outputs and next states of each state. The third step is to unify states in the same 

groups. Three network modules and lea.rning methods for them are reconstructed from 

these three steps and combined into the SGH modeL 

Theproposedmethodhasthefollowing[eatures· 

• Tbelearningprocedureusedinthismethodisthesimpleback-propagationmethod, 

in which an error signal may not be back-propagated through time. Moreover, 

proposed learning methods are independent from the learning procedure, bec.ause 

only penalty functions to minimize are modified. Therefore it is easy to apply 

anotherlearningproceduretothismethod 
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• Penalties used in learning a:re calculated by signals that generated in the network 

itself except for required outputs. Therefore no other teachers or observers a:re 

requiredforlea:rning. 

Thesefeaturesarefitforbiologicalmodelsofbrainsandalsosuitforimplementinginto 

hard wares. 

Therealsoremainthefollowingopenproblems: 

• We must carefully choose lea:rning parameters. Espe<:ially the timings to switch 

learning stages are important, becausethelearningofeach module must be done 

one by one. Automatic methods to switch them should be examined. 

• Patternrepresentationofinputhistoriesinthehistorymoduleisamajorfactorin 

d.e~e;:m~;:;ir.g the ability of the lll.odel. A;:; X mudel iletwo;:k generates patterr. reptt· 

sentationthatrepresentsinputhistorieseffectively. Such representation, however, is 

not always suitable for learning of the grouping module. We need to try to combine 

va.rioustypesofmethodstorepresentinputbistoriesinordertoimprovetheability 

of the model. 
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Chapter 5 

Discussion 

5.1 FST versus SRN 

As mentioned in section 4.2, simple recurrent networks (SRK) have the same structure 

as finite state transducers (FST). However, their abilities are slightly different. In this 

section I discuss advantages and disadvantages of SRNs as compared to FSTs. 

5.1.1 Advantage of SRN 

Itiswellknownthatmajoradvantagestoneuralnetworksaretherobustnesstonoiseand 

the ability to deal Wlth analog values. In addition to it, I focus on another advantage, 

whicbisconcernedwiththegeneralizationabiUtyoflea.rning. 

Sequences used inexperimentsinchapter3andchapter4areable to be generated by 

regular grammars (RG). On the other hand, there are more powerful classes of grammars 

than RG. Context free grammars (CFG) are one of those classes. They are widely used in 

symbol processing, becauseitispowerfulenough andalsoea.sytoprocessbycomputers. 

Theoretically, it is hard for SRNs to process CFGs perfectly, because processing of CFGs 

requires an infinite stack memory. However, we can discuss whether SRNs can deal with 

features of CFGs. Here, I focus on one feature of CFGs, called sub-grammars. 

lnanaturallanguage,therearelocalsyntacticstructuresthatarefreefromcontext. 

For example, in English, a noun phrase in a sentence has a certain syntactic structure 

that is free from changes in therestofthesentence. These local structures are called 

'sub-grammars'. In order to represe11t a sub-grammar in CFG, we usually define a non· 

terminal symbol for the sub-grammar, and write rules that have the symbol in the left 

67 
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band. For example, noun phrases are represented a.s follows: 

N'P __. DET-N 

NP ..... DET-ADJ·!\' 

We can embed such a sub-grammar in positions where sentences should have a syntactic 

structure defined by the sub-grammar. For example, a subject part in a sentence has the 

same structure as NP and also each obje<:t part in a verb phrase has the same structure 

asi\P. Wecanexplainthisbywritingthefollowingrules. 

S -. NP-VP 

\'P - \' . ~:p . ~:p 

On the other hand, in the case of RG, we need to define a non-termioal symbol of NP for 

each position as follows: 

S ..... NP 1 -VP 

VP __, V-NP1 -NP3 

NPt __, DETt · Nt 

NP1 __. DET2·ADJ1·N2 

NP2 ..... DET3 · N~ 

Such simpleness of representmg sub-grammars is one of major reasons why CFG is used 

innaturallanguageprocessing. 

The difference of representation of a sub-grammar in CFG and RG causes a difference 

oflhegeneralizalionabilitybyleiUIIing. Forexa..rnple,ifasystem,whichprocessesEngli.sh 

sentences by CFG, Jeuns a new synta.etic structure of a suhjed part, such a structure 

will be generalized as a new syntactic structure of NP. Thus the system wiU become able 

to process sentences that have such anew structure in an object part of a verb phrase. 

On the other hand, in the case of RG, effects of learning a new syntactic structure will 

belimitedinasubjectput. 

Using this difference of generalization abilities, I consider the following setup to de-

tennine a network learns a sub·gra.mmar successfully or not: 
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I. First a network learns a prediction task of sequences in a 0AI3o (where a 0, A and l3o 
aresetsofsequences). 1 

2. Next the network learns a prediction task of sequences in a 1A')31, where A' is a 

subset of A. 

3. Finally the network receives sequences in a1A", where A" is a subset of A and the 

intersection of A' andA"isnullset. 

Consider a case when thenetworklearnedtotreatAasasetofsequeneesgenerated by a 

sub-grammar at step 1. In this case, the network will become able to generah~e to process 

sequences in a 1 .4.,B1 at step 2. Therefore, the network wil! predict seque::ces i:: ;31 at steji 

3 because A" is a subset of A. Otherwise, the network will predict sequences in fJo or 

Intheaetualexperiment,anetworklearnedthepredictiontaskofsequencesgenerated 

by a grammar shown in Fig. 5.2, where P was a sub-grammar to learn. In the experiment, 

the network learned grammar G (corresponds to aoAfJo in the previous paragraph) at first, 

grammar H (corresponds to a 1A'I:l1) at second and finally the network received sequences 

generated by grammar H' (corresponds to a 1A/:l1 ). A simplified SGH model shown in 

Fig. 5.1 was used as a network to learn this task. In this model, a SRN module and a 

temporal-group layer in a grouping module in an SGH model are removed for simplicity. 

Moreoveranext-grouplayeristrainedtooutputnextpatternsofagroup\ayerinstea.d 

oftbetemporal-grouplayer. 

Fig. 5.3showsresponses (predictions of a next input)ofthenetworkwhen it receives 

sequencesofHthatthenetworkha.snotlearned. Wecanseethatthenetworkprediets 

correct next data in most eases. In eases of the 3rd line (predicting 'c1') and the 4th 

line (predicting 'd1') in Fig. 5.3, outputs for correct predictions are weak, but they are 

stronger than other outputs. From this result we can say that simplified SGH models can 

learnsub-gra.mmarstoacertaindegree. 

Why can the network learn sub-grammars? It is speculated that a topology of patterns 

makes it possible. In the automata theory, states of FST are represented by symbols, 

between which no relations are defined. Therefore it is impossible to cha~aeterize state· 

transitionsandtodefinesimila~itiesbetweenstate-transitionsbyusingrelationsofstates. 

On the other hand, states of SRN are represented by patterns, between which a topology 

1a-0AP, means a seL of sequences thu ue gener&led by conc&tenuing ~hree sequences in a-o, A and 
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from 
extemalmput 

Figure 5.1: Simplified SGH model 

is defined. Thereforestate-uansitionscanbedefinedastrajectoriesintbepatternspace. 

Thus 11 1s e;,sy to define similarities between these trajedones by their diredions or length 

of. Usingthesesimilaritiesthenetworkcanmanagestate-transitionsindependentlyfrom 

actual states. As a result, itcanlearnsub-grammars. 

5.1.2 Disadvantage of SRN 

A disadvantage of SRN is that state-transitions are constrained. For example, an SRN 

shown in Fig. 3.1 can not realize state-transitions like Fig. 5.4, because these transitions 

are the same as mappings of exclusive-OR. Such mappmg can not he realized by two-layer 

networks [MP69, GSC"'"90). State-transitions of a ft1p-fiop used in section 4.4.2 are also 

this type of transitions. We can escape this problem by using Sigma· Pi-type links like 

in chapter 4 or by putting m additional hidden layers. However, even if we use these 

techniques,otberconstra.intsofstate-transitionsarise. 

Thisdisadvantageiscausedbypattemrepresentationofstates. Asmentionedinsec

tion5.l.l,patternrepresentationhasatopologyandthetopologyconstra.intstransitions 

of states. In other words, topology of state-representation brings both advantage in the 

generali7.ationabilityanddisadvantageinthereal.Lzationability. 



~-1- FST versus SRN 71 

G - g,Pg,lg,Gg;(i= 1, .. ,6) 

H - aoPoa,lboP,b,egP2cLI 

doP,d1eoP,e,P,foP&/L 

H' - B<~Pa1 IBoPB,CoPC1 1 

cfoPd,eoPe,PfoP!L 

p - ZPoiPLZP21P2ZPLIP3ZP3 

p, - ZPoiPLZPL P3 """'P>ZP:LiPlZp, 

P, - ZPoiPLZp, P, -p,ZPJIPJZP3 

P, - ZPoiP2ZP3 Ps """'P2Zp,lpJZJl3 

z - zlzZ 

Figure S.2: Sample grammar. 

laput Output of the 0 Layer 

Sequence a 1 b, c1 d1 e1 / 1 

• 

• 
•_, m icatet esequencecont1nue romt eupperrow. 

FigureS.3: Resultofaloca.l grammar learning. 
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Figure 5.4: A State-Transition Which SRN Can 1'\ot Le.u:n 

Hanako obJeet drink 

Figure 5.5: Example of Semantic Network 

5.2 Representation of Semantic Networks 

This work is aimed at developing methods of neural networks to process complicated in for· 

mationsuchasinformationprocessedbysymbolprocessing. Inthissection,aprototype 

of a method to represent semantic networks by usmg results of this work is described 

5.2.1 Formalization of Semantic Networks 

Semantic networks are a framework to represent structured information schematically 

Fig. 5.5 shows an example of semantic networks. As shown in Fig. 5.5, a semantic network 

consists of nodes that represent things or events 2 at~d links that represent relations 

'N<>da aho repnoen\ coneepts in OOrn<' forma.li:~~t.tion. But in th<' formo.li:~~t.tion d•S<"rib<'d h<'r<' nodes 

repraentonlymdividuo.linotancesofthingoorevents. 
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between nodes. Formally a. semantic network is defined as a S-tuple as follows· 

Sema.~tic 1\etwork = < N, T, P, r,p > 

whereNisasetofnodes,Tisa.setoftypesofrelations, Visasetofproperty-values, 

r is a. map of relations, and pis a. map of properties. For example, the semantic network 

in Fig. 5.5 is defined a tuple< N,T, V,r,f >where 

N = {nhn2,n3,1lj,n~} 

T "' {a.gent,obje.:t} 

V = {Hanako.see.Taro.milk} 

r(n,a.gent) =n2 

T(n3,a.gent) =n4 

r(n3,objeel)=ns 

p(n.)=

p{n2)=Ha.na.ko 

p{n~J =drink 

p(nt)=Taro 

p{ns)=milk 

In addition to this formalization, focuses are added on to the semantic networks. In 

a. semantic network, just one node is focused. The focus can move from a node to a node 

along a relation between them. Weca.naeces.sonlypropertiesofafocusednodefrom 

the outside of the semantic network. The function of a semantic network with a focus is 

formalized as follows: 

Initially, 611 inili6lfocw;ed node is give71 to 6 sem6ntic network. Then 6S it 

recervestypesofrel6ttonso71e byo71e, rtmoves thefocusalongthe type of 

relation, tmdoutputsproperlles of a focused node. 

In other words, I treatasemanticnetworkasablack·boxthat recetvestypesandoutputs 

properties one by one 

Using this formalization, we can consider the following correspondence between se

mantic networks and finite state transducers: Nodes, types and properties correspond 
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to states, inputs and outputs respectively. Relation and property maps correspond to 

state-transition and output functions respe<:tlvely. In other words, a semantic network is 

treated as a chart of state-transitions of a finite state transducer. Under this correspon

dence, semantic networks can be constructed in the same way as learning of finite state 

trusducers. Thus learning of a semantic network is formalized as follows: 

To construct a sem11.ntic network from ezamples of sequences of pairs of relati<m

twesandpropertiesthatthesemanticnetworkisrequiredtoprocess. 

5.2.2 Realization of Semantic Networks by Neural Networks 

As mentioned in section 4..2, a simple recurrent network has the same structure as a finite 

state transducer. Therefore we can represent a semantic network by a simple recurrent 

network as shown in Fig. 5.6 according to the formalization in the previous section. In 

tbisrepresentation,nodes,typesofrelatious,propertiesarerepresentedbypatternsof 

node, type and property layers respectively. A relation map is represented by a link from 

tbepre-nodeandtypelayerstothenodelayer. Apropertymapisrepresentedbyalink 

fromtbenodelayertothepropertylayer. 

Asmentionedabove,asemanticnetworkisregardedasstate-transitionsoflinitestate 

tran$ducers. Moreover, simple recurrent networks that have suitable state-transitioos 

can be constructed by learning of SGH models. Therefore we can get a simple recurrent 

network tbat represents a semantic network by learning of an SGH model. In this learning, 

sequencesofpa.irsofrelation-types and properties ate given to the SGH model and the 

SGH model acquires state-transitions whO!le structure is the same as a semantic network 

to learn. 

5.2.3 Experiments 

In order to show that this formalization of semantic networks performs well, a simple 

experiment was carried out. 

Consider a semantic network like Fig. 5.i. In this network, properties of nodes 'X', 

'Y','Z'and'W'areselectedinthefollowingsets: 

{Human, Thing} 

Y: {a.b,c,d} 

Z : {Large,Middle,Small} 
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Figure 5.6: Simple Recurrent Network for representing Sema.nti(. Network 

\\' {Yes,~o} 

where there is a correlation between propertieS of node 'X' and node 'W' as follows 

When a. property of 'X' is 'Human', a. property of 'W' must be 'Yes'. Conversely when a. 

property of 'X' is 'Thing', a. property of 'W' must be '!'\o'. Thus there axe 24 combinations 

of networks. 21 combina.tiollSofthem axe used for genera.tinga.trainingsetofexa.mple 

sequences of type-property pairs, a.nd other 3 comhina.tionsaxe used for a test set. A 

simpli6.edSGHmodelwith20unitsin thegrouplayera.nd JOunitsinthe history layer 

was used to learn the sema.r~tic network. Fig. 5.8 shows output patterns of the property 

layera.fterleaxning. Each line in Fig. 5.8showsaproperty thataneuralnctworkoutputs 

when its state comes to each node of 'X', 'Y', 'Z' a.nd 'W'. Fig. 5.8-(a) is a case of a 

comhinationinthetrainingsetand (h) isacaseofacombina.tion inthetestset. In 

both cases the network outputs the property that the network memorized. This means 

that the network works as a semantic network as shown in Fig. 5.7. Moreover, although 

properties of node 'W' were not given when the network memorized a semantic network, 

the network outputs suitable properties of node 'W'. This means that the network found 

thecorrela.tionbetweenpropertiesofnode'X'andnode'W'tbroughlea.rning,a..ndinferred 

a.propertyof'W'fromapropertyof'X'. 

5.2.4 Discussion 

The formalization of semantic networks and 1ts realization by simple recurrent networks 

havethefollowingadvantages: 
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'""m'"X·"''''' , .... , .. , 
. . 

z 
{Yaa,No) {large,Miclclle,Small} 

Figun 5. 7: Semantic Network to Lea:rn. 

Nodes in Units of Property Layer 

Fig. 5.7 H T Y N a b c d L M S 

y • 

·• (a) X= Thing, Y = d, Z = Middle (in the training set) 

Nodes in Units of Property Layer 

Fig. 5.7 H T Y N a b c d L M S X. 
v H++-!!!.!!!--H-+...1--~ • 
w •· 

(b) X= Human, Y =a, Z =Large (in the testsel) 

Figure 5.8: Outputs of Property Layer for Each Node 



5.3. Bio/ogicaJP/ausibility 

• In the conventional implementation of semantic networks to neural networks like 

IWP85, Sba88]. neural Mtworks can not operate or learn semantic structures, that 

isrelationsofnodes,diredly.Thereforeadditionalmeehanisrnstooperaterelations 

arerequiredoutsideneuralnetworks. On theotherhand,in the formalization de

scribed here, a network can operate and learn semantic structure. This will provide 

thepossibilityofconstructingasystemtoprocesssemanticinforrnationbyneural 

networks. 

• While information in semantic networks is represented in maps of relations in symbol 

processing, it is represented by patterns of node layers in this formalization. As 

mentionedinsection5.l.l.patternshaveatopology. Usingthetopology,simila.rities 

between information are define.:! naturally. Such similarities and topology provide 

theabilityofgeneralization.lnferenceofpropertiesofnode'W'inthl'experiroent 

in section 5.2.3 isa.D example of this generalization ability. 

We ca.D get a more powerful ability of generalization by supposing more strong 

topology of pattern representation of information. For example, the network will 

become able to perform multi-step inferences when pattern transitions from the 

pre-node layer to thenodelayerareliner. Too strong topology, however, decreases 

the ability of representation as semantic networks. Therefore we must balance the 

tradeoffbetweentheseabilities. 

Adisadvantageofthisformalizationis: 

• Concepts can not be dealt within this formalization Nodes in this formalization 

can representonlyconcretethingsorevents. Onewaytodealwith concepts is to 

represent them as properties whose patterns represent a hierarchy of concepts 

5.3 Biological Plausibility 

The most important feature of artificial neural networks is that these networks are derived 

from models of the nervous system in brains. However many of them are not plausible 

as brain models. For example, the real time recurrent learning method IWZ89I requires 

that each unit must retain information about whole links in a network. It is difficult to 

supposethatanactualnervoussystem has such a mechanism. 

lnthissection,Idiscussbiologicalplausibilityofmodelsproposedinthisthesisfrom 

variouspointsofview. 
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5.3.1 Network Structure 

Itissaidthatthenumberofneuronsinabraindoesnotehange. lntheproposedmodels, 

additional layers are required for lea.rning, but whole structures of these networks are 

fixed. Thus we need notehange the numberofunitsduringlea.rning. 

Itisalsosaid that a neuron inabraincanperform relatively simple calculations. In 

the proposed models, each unit calculates weightedsummationsofaetivationsofunits 

connectedbylinksanddecidesitsactivationfromthesummationsaecordingtoasigmoid 

function.Thesecalculationsaresimpleenoughforamodelofaetualneurons. 

5.3.2 Locality of Calculations 

Eachcalculationofprocessingand lea.rningin brainsisgeneral.ly"-uppos~d to;>l.,..rer[o;>rm~d 

in a local a.rea like a synapse. In the proposed models, all procedures of processing 

and leatDing are performed in links and units. Furthermore whole data used in these 

proceduresarepropaga.tedonlythroughlink.s.ltisea.sytorealizetheseproceduresby 

ealculationsinlocalarea.s. 

Timelocalityofcalculationsisalsorequired. For example, it is difficult to realize the 

back-propagation through time method ]WZ89] by calculations local in time. It requires to 

recordal.lhistoriesofaetivationsofunits. Such a mechanism is not plausible biologically. 

On the other hand, the X model requires only data in current time step. Also the SGH 

model requires only data. in previous and current time step. Therefore it is possible to 

constructthesemodelsbycalculationslocalintime. 

5.3.3 Target Signals 

A major problem of supervised learning is who provides ta.rget signals. In the proposed 

models, whole target signals are generated in the models except for required external 

outputs. For example, in the X model teacher signals for the reconst-input and reeons!· 

context layers are patterns of the input and context layers respectively. In the SGH model, 

teachersignalsfortheeurrent-groupandnext-groupla.yersa.repa.tternsofthegrouplayer 

at the same and the next time steps respectively. Therefore additional mechanisms to 

providesuchtargetsarenotnecessary. 

Moreover, in theea.sewhen the networks learn the sequence prediction ta.sk like in 

eltperiments described in section 3.5 and section 4.4, no external teachers are required. 
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Inthiseasetargetsignalsforoutputlayersarenextinputpatterns.ltisimportantthat 

thenetworkseanlearn strueturesofgiven$equences thro1,1gh suchsimpleta.sks[Eim88[ 

5.3.4 Learning Procedure 

The hack-propagation method may he not plausible as biological mode]$, beeau$e it re

quires slightly complicated procedures to propagate error mformation. Fortunately, in 

theproposedmodelsonlypenaltyfunctionsaremodifiedratherthanlearningproced"'res. 

Thereforeitiseasytoreplacetheba.ck-propagationwithanotherlearningprocedure. For 

example. we can 1,15e the reinforcement learmng method to minimtze the penalty functions. 

5.3.5 Toward Biological Model 

As diSCI,ISSed above, the proposed mode]$ are p]a1,1sible as brain models For example, we 

ca.n draw out a brief structure of nervous systems of the simplified SGH model (Fig. 5.1) 

which learns apredictioD task of input sequences. Fig. 5.9showsthe brief structure. In 

thisfigure,ea.chlargerectanglemeansalayerofneurons. Ea.chsmallsquaremea.nsadelay

unit that propagatesactivatioDsafter ODe time delay. Each arrow mea.nsaconnection 

between two layers. Furthermore, each circle means a unit that ca.lc"'lates differe11ces 

ofpatterDs of two layers. Using these differences, weights of connections are modified. 

For example, in the case of a reinforcement learning method, weights are reinforced by a 

certain mechanism when the differences are small. The$e mechantsms are simple enough 

to be plausible as biological models. 

5.3.6 Disadvantages as Biological Models 

There are the following disadvantages to the proposed models a.s biological model$. 

• While actual brains work in continuous time. the X model and the SGH model work 

indiscrete time 

• In the SGH model, an operation to copy weights o£ links is required. Such a mech

anismisnotpla"'sibleasbrainmodels. 
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Figure 5.9: Simplified SGH Model as Brain Model 

5.4 Related Works 

5.4.1 Symbolization of Patterns 

Many resea~chers try to minimize the number of hidden units by so-called a pruning 

method ]Hag91, 5088, OOY93, MS89, KM91, OG93, Ree93] A major strategy of these 

worksisremoYingredundant units that are inactiveorduplicateanother The pruning 

method, however, does not force llnitsto be.::ome obviously redundant, so that we can 

not always find the minimum number of bidden units. On the other hand, the OLL 

methodproposedinehapter2forceunitstobe.::omeobviouslyredundant. Consequently, 

we cil.ll find the minimum dimensions instead of the minimum hidden units. Yet, OLL 

does not minimize the number of hidden units dire<:tly. We will be able to construct a 

more powerful pruning method by combining the OLL method 

There is another method to find simple networks, called the 'weight-decay method' 

[Ish89, PNH86). In !his method, complexity of networks is defined according to weight.s 

of hnks. The complexity is minimized through learning. As a result a reduced network IS 

acquired. An effed of this method 1s different from the OLL method, because the weight

decay method minimizes mainly the number of links rather than hidden units. Thus we 

ca.nusethosemethodscomplementarily. 
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5.4.2 Sequential Processing and Learning FST by SRN 

Simple tecurrent networks (SRN) ate hardly studied as machines of sequential processing. 

Elman investigated behavior of SRNs after ttaining a prediction task[Elm88, Elm89]. 

He showed that networks could find structures in sequences through a simple hack· 

propagation learning. Simila.rnetworksa.reusedtolearnregulargrammarsandlinitestate 

automata [SSCM89, Pol91), and to process natural languages [MD89, JM90]. Gha.b.ra· 

mani and Allen [GA91] proposed a model based on the same idea of an X model after 

an X model was proposed. Yet, they did not treat simple recurrent networks as finite 

stateautomatainlearning. Thusnetworkscannotachievesuitablestate-transitionseven 

if the networks have a capacity to realize such state-transitions. Compared with them. 

learning of an SGH modelisbasedon learningoffinitestatetransducers. Therefore an 

SGH model can acquire more suitable state-transitions than their models. 

Giles and his colleagues ue developing methods to process sequential tasks by re

current networks and to construct minimum state-transitions of such networks [Gsc·go, 

GCM+91a, GCM~9lb, OGM92J. Main differences between my works and them are: 

• They use the 'back-propagation through time (BPTT)' method to learn sequential 

tasks, while I use the simple BP method. The BPTT method is powerful but less 

plausiblebiologieally. 

• Their method to construct minimum state-transition is off-line, while my method is 

on-line. 

5.4.3 Other Symbol Processing by Neural Networks 

There are several works to represent or deal with data structures by neural networks. Pol-

lack proposed a method to represent CONS cells of LISP using sand-glass-type networks[Pol89, 

Pol90]. Toureuky also proposed a method to represent CONS using Boltzrnann·macbines[Tou90[. 

Smolenskyandhiscolleaguestudiedtherepresentationofdatastructuresandvariable 

bindings by tensor products [Smo90, LMS91). The strategy of these works is similar to the 

methodtorepresentsemanticnetworksbyneuralnetworksdescribedinsection5.2. In this 

strategy, data structures arerepresentedassequencesofoperationsofneural networks. 

Through these operations, information is convoluted into patterns. Hmton summarized 

such a strategy a.sa'between-leve\ timesharing' [Hin90) 
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Chapter 6 

Conclusions 

Hybridandintegratedsysternsofsymbola.ndneuralproccssinga.reexpe<:ted to provide 

flexible and robust problem solving methods. Yet it is difficult to transfer information 

between both proeessingsystemsbecauseofthedifferenttypeofda.tathatusedin them 

From the viewpoint of neural processing, this difficulty comes from two essential charac

teristicsofdatarepresentationinsymbolprocessing: 

• Symbols: each of which indicates dis.erete and independent i11formation. 

• Data structuT!ls: by which complicated information is arranged 1\ex.ibly. 

In this thesis I have discussed issues that arise when data a.re translated between 

symbol and neuralprocessingmodulesinahybridsystem. Based on thesedis<:ussions, 

I have proposed learning methods for neural networks to deal with symbols and data 

Inchapter2, a method to make pattern representationsuitableforanalyzingassym· 

bolswa.sdescdbed. 

When a symbol processing module receives information from a neural processing mod· 

ule,patternrepresentationintheneuralproces.singmodulemustbeanalyzedfromthe 

viewpoint of symbols. Tbereareseveraltecbniques,sucb asclustering,forthepurpose 

toanalyzepatternsassymbols. Itis,however,difficulttosymbolizepatternsusingthese 

techniques when pattern representation is redundant. This redundant pattern represen· 

tationiscausedbytoomanyhiddenunitsforthecomplexityofata.sk. 

Inordertobalancethenumberofhiddenunitsandthecomplexityofthetask,anew 

learning method, 'overload learning', was proposed. In this method, a network is trained 

to leun an additional task together with the original one Since the redundant part of 
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thepa.tternsofthehiddenlayersisusedfortheadditionaltask,minimumdimeo.sionsof 

hiddenpatternscontinuetowork for the original ta.sk. 

Va:rious experiments showed tba.t the proposed method ha.d the following effeds· 

etoreducepa.tternrepresentationofa.hiddenlayerfortbeoriginalta.sk. 

etoconvergeclustersofpatternsofahiddenlayer. 

These effects make the symbolization of patterns ea.sy. The concept ofthis method is very 

simple,sothatitisea.sytoapplythismethodtootbernetworkstructuresandlea:rning 

methods. 

In chapter 3, Jea:rning methods for simple recurrent networks to solve the problem of 

how to find LDDs in temporal ~uences were described 

When the neural processing module receives data from the symbol processing module, 

a problem of bow to deal with structured data by ueural networks arises. Oue of the 

ma.jorca.usesofthis problem is thesizeofda.ta.. Although the sbeofstruetured data 

geuera.llyva.ries,ueuralnetworksusuallyprocessfu::ed-sizedpatterns. Temporal-sequence 

processingisa.ttthuiquetoprocesssuchvaria.ble-sizeddatabyusingprocessorsthatcan 

processfi:ted-sizedda.ta. Yet,iu sucha.ttthuique the processors need to learn to process 

seque11ces that have long distance dependeucies (LOD). In order to find LDDs, a simple 

recurreutuetworkneedstoretaininformationaboutinputhistoriesinpatternsofahidden 

layer. I formalized two measures bow much information represented by the patterns. 

In the first formalization, a measure of the information was defined by distances be

tween patterns of a hidden layer. Using this measure, the 'distance-keeping' method was 

proposed. In this method, the divergence of weight values of links from a context layer 

to a. state layer is made large in order to keep distances of patterns through pattern 

transitions. 

In the second formalization, a. measure of loss of the information was defined in the 

manner of Shannon's information theory. Based on this measure, the 'information-loss 

minimization' method was proposed. This method was derived from the relation between 

themeasureofinforma.tion·lossand mea.n-square-errorsofa.nidentityfunctionrealized 

by a three-layered network. 

I carried out experiments to learn a. sequential task with LDDs by using proposed 

methods. Results of these experiments showed that both methods increased the ability 

to learn tasks with LDDs hy simple recurrent networks as compared with a conventional 
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back-propagationlea.ming. Thesetwomethodsha.vediffereutfeatures: In the'distance

keeping'method,learningfinishesquickly. Ontheotherband,in the'information-loss 

minimization' method, networks can learn tasks with longer distance dependencies than 

thedistance-keepingmethod. 

In chapter 4, a. method to construct suitable state-transitions of simple recurrent 

networks was described. 

Temporalsequenceprocessingprovidesanotherpointofviewforrepresentingstruc

tureddata.. Simplerecurrentnetworksha.veasimilustructuretofinitestatetra.nsducers. 

Ontheotherhand,iotbeautomatatheory,state-transitionsofatransducerrepresenta. 

structureofsequencesprocessed by it. Simplerecurre!lt networks, however, cannot at· 

quire suitable state-transitions by conventional learning methods. Therefore the network 

can not il'ar!! rl'presentatio!! of strurt\lres of s!quen~es. 

In order to solve this problem, I proposed a network model, called the 'SGH modef, 

a.nditslearningmethod. Inordertoderivethemodel,initiallyaproceduretoconstruct 

afinitestatetra.nsducerfromex&lllplesofinput-outputswa.scomposed using the state· 

minimization technique. Thisprocedureconsistsofthreesteps,the'keepinginputhistory' 

step,the'groupingstates'step,and the'constructingstate-transitions'step. Then each 

step wa.s reconstructed as learning of a neural network. Finally, three networks were 

combined into the SGH model. By 11sing this model, we can get & simple recurrent 

network that ha.ssuitablest&te-transitionsfor a given task. 

I carried outsomeexperimentstolea.tnseveralk.indsofstate-transitions. In every 

case, the network acquired suitable state-transitions. Experiments also showed that it 

increased the ability of simple recurrent networks to process temporal sequences with 

LDDs. 

InchapterS,Idiscussedaboutproposed modelsandmethodsfromvariouspointsof 

First, the ability of a simple rec11rrent network and one of a finite state transducer 

were compared. Becauseofatopologyofpatterns,thellexibilityofstate-transitionsofa 

simple recurrent network is limited compa.ted with a finite state transducer. On the other 

hand,thetopologyincrea.sesthegeneralizationabilityoflearningstate-transitionssucha.s 

$Ub·grammars. A simple experiment to learn a sub-grammu by a simplified SGH model 

was carried out. The result showed that simplified SGH models dealt with sub-grammars 

in a framework of a context free grammar. 
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Second, a formalization ofsemanticnetworksthat weresuitableforprocessingby the 

SGH model was discussed. In this formalization, a semantic network is treated as a chart 

ofstate-transJtionsofafinitestatetransducers. Thesestate-transitionscanbelearnedby 

a SGH modeL Semantic networks are a framework of representation of various kinds of 

informatiou used in symbol processing. Thus this formalization provides a way to combine 

orintegrateoeuralandsymbolprocessingtightly. 

Finally, biological plausibility of proposed models was discussed. While artificial neural 

networks are originally derived from biological nervous systems in brains, many of them 

ue not plausible as nervous systems. Proposed methods and models are simple enough 

and relatively plausible as biological models from various points of view. Especially, every 

learningmethodsispresentedbypenaltyfunctions,eachofwhichha.sa.simpleconceptual 

meaning. This makes it possible to apply the methods to various network models and 

learmngmethods,whichareplausiblea.snervoussystems. 



Appendix A 

Derivation of (3.8) 

Let z:1, :c2 be two input pattern vectors of a pattern translator network in Fig. 3.6, and 

zh,z2; bemputs to unit tin the output layer when the network receives input pattern 

zh :Z:t respectively. Because weights of links are set randomly, z1; and z4, can be viewed 

as ra.adom variables that are independent from each other. The distribution of these 

numbers is a Gaussian distribution whose variance a;, and covariance ":2 are: 

a;,= a;2 = u; = (1Nu! 
ar2 = (/3-o;)Na! 

Hence,ifthenumberofunitsintheoutputlayerisla.rgeenough, a normalized distance 

o~ between output patterns for z 1 and :z:2, is: 

1/2] jlfl•d-/(•,))'p .. (•,,,),,,,,, 
= l/2[A(l,2)-A(l,l)) (A.l) 

where 

and p .. (z,,z2) is a joint probability density of .;J a.nd z2. Because the output function 

/(z) = f~oo G(~; 0, 'T)d{ can be interpreted as "a probability of the case when ~he sum of 

~and a Gaussian noise-{ is positil·e", A(l.2) becomes· 

where 

~; "' ZJ +~J 

~; = z1 +~1 
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and e.,6 are random vacia.bles whose distributiou are independent Ga.ussia,u distributiou 

with average= 0 and variance= ,-1 , and P.,(z;,z;) is a two dimensional Gaussian dis

tribution whose center is the origin and each variance and covarianceiso; +r2 and of2 

respectively. Wecancalcula.tethedefiniteintegralin(A.2)byroeansofa.tecbniqueused 

in[Ama78)asfollows: 

A(1,2) = ; tan- 1 ( 2!3 a,~~~:;:,.~ 

Moreover, A.(l,l) corresponds to A(l,2) in the case of a,,= 0. Therefore (3.8) is derived 

bysubstitutingresultsofA(l,l)andA(l,2)in(A.l). 
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Derivation of (3.15) 

Let .,.~,(y) be a variance of a distribution of the •-th element of an input pattern vector 

:r: when au output pattern vector is y. Under two assumptions described in section 3.4.3, 

H(X]Y)in{J.ll)a.udERin(J.lZ)is: 

H(X]Y) < ~logu.;(y) >, +log.f2; (B.l) 

ER < ~o!;(Y) >, (8.2} 

where < · >, is the mean aecording to y. Hence, the arithmetic mean A, and the 

geometric mean A, of D'~;(Y) according to i andy is 

N 

A, = < 1/N~u~,(y) >, 

A,= exp(<l/Nt,logu!,(y)>.) 

Thus (B.l) and (8.2) be.:ome: 

H(XIY) = (Iog2'11" + NlogA,)/2 

ER = NA, 

(8.3) 

(8.4) 

On the other hand, from the Caucby-Schwarz's inequality the following inequality holds: 

(8.5) 

By substituting (B.J) and (8.4) for A, and A, in (8.5), we can derive (3.15). 
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Appendix C 

Procedure of Learning a FST from 

Examples 

The procedure of learning a finite state transducer (FST) from given input-output exam

p\esconsistsoftwosub-procedures,whicharethegenera!ionprocedureandthereduction 

procedure. The generation proceduregenera.tesaninitial FSTtha.thasredunda.ntstates. 

The reduction procedure reduces the initial FST and constructs final FST that has the 

minimumnumberofstates. 

C.l Generation Procedure 

LetZ beasetofexa:nplese<p.~<mcesofinput-outputpairs,where 

Z = {znl::n=:[z:lt=O,l,2, ... ],z:=<:c~,y:>n=0,1,2, .,N} 

and x~ and 11~ are respectively input and output at time t of n-th example sequences 

Hence we cau get an FST that rea.li~es the same input-output responses as the given 

examples 

(Generation] 

Gl Create an initial state q0 , label it, and assign a set Z and a length Oto it. 

G2 Pick a labeled state q~ and unlabel it. Let z~ be an assigned set to q~ and /~ be au 

assigned leogth to q~. Theo, Classify examples ;zn in z~ into subsets Z, according 

to xi;, ... 1, that is (It+ 1)-th input of example zn. Let x, be the (I~+ 1)-th ioput of 
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examples in Z, that is zj,+l, a.nd y, be the (I~+ 1)-th output of examples in Z, 

thatisy;:,+ 1• 1 

GJ Create a new set q; for each Z; created in step G2, label it, and assign a set Z, and 

length 1•+1 toq,. Moreover, add a transition from q• toq; by input z, into the 

state-transition map, andanoutputy, ofthestateq; into the output map. 

G4 Repeat step G2 and GJ until no labeled states remain 

C.2 Reduction Procedure 

An FST generated by the generation procedure has many redundant states. We can 

reduce such a.n FST using the 'state-minimuation' technique[HU79). The procedure is a.s 

follows: 

(Reduction] 

Rl Classifyallstatesintogroupsaccordingtotheoutputofeacbofthestates. 

R2 Pickagroup,a.Ddcla.ssifystatesinthegroupintosub-groupsaccordingtothegroup 

towhio::hthenextstateoftransitionsforeachinputfromeachofthestatesbelongs. 

R3 Repeat step R2 for all groups until no more new groups are o::reated. 

R4 Unify states belonging thesamegroupstogetherintoastate, andeonstruettransi· 

lions and output functions of unified states. 

'Wh~n th~ (I~+ 1)-th outputs of enmpl~s in~ .. t Z,- not th~ .am~, l~t y, be a repr ... ntative 

...Jueofthoseoutputll. 
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