
Neural Networks that Learn

Symbolic and Structured

Representation of Information

ltsuki Noda

1994

Kyoto University

Abstract

In theresearehofartificialintelligenee, symbol processing has been providing powerful

toolstorepresenta.ndprocesscomplicateda.ndvariedinformation. However,ithasdisad­

va.ntagesin 'analogy', 'uncerlainty', and 'leaming/Gdapting', Neural networks have been

expectedtocooquertbesedisadvantagesofsymbolprocessing. Inordertoprovide8.exi­

ble and robust problem solving methods, many researchers have been trying to construct

hybridorintegra.tedsystemsofsymboland neural processing.

However, there remains a problem in such a hybrid way, which comes from difference of

characteristicsofdatathatneuralandsymbolprocessingsdealwith. Especially, following

twoessentialcharac!.eristicsofdatarepresentationinsymbolproces.singareimportant.

• Symbols: each of which indicates discrete and independent information.

• Da!a struch<re$: by whieb complicated infonnation is arranged flexibly.

Because neural networks originally have not mechanisms to deal with these cha.ra.cteris­

tics, itisdifficulttotransfer informationll.exi.bly betweenneuralandsymbolprocessing

modulesinahybridsystem.

In this thesis, I describe learning methods of neural networks that provide a way to

deal with symbol:; and da.t4 stroch<res.

First, the symbolization of patterns in neural networks is investigated. In order to

analyzepa.tternsassymbols,itisusefultha.tpa.tternrepresenta.tionissimpleandhasno

redundant part. However,networksgetredundantrepresentationthroughitslearning,so

that such analysis becomes difficult.

Inebapter2,anewlea.rningmethod,'overloa.dlearning',tosolvetheproblemofhow

toeliminatesuchredundantrepresentationisdescribed. In this method, a network is

trainedtolea.rnanadditionaltasktogetherwithanoriginalone. Since a redundant part

ofpatternrepresenta.tionisusedforthea.dditionalta.sk,onlyminimumrepresenta.tion

becomes to be used for the original task. Various experiments show that the proposed

methodmakesthesymbolizationofpatternseasy.

Se<:ond, pattern representation of data structures is investigated. The variety of the

sizeofdataisoneofthemajorcausesoftbedifficultyofprocessingstructureddataby

neural networks. Althoughthesizeofstructured datageneral.lyvaries,neuralnetworks

usuallyprocessfixed-sizedpatterns. Temporal-sequenceprocessingisate<:hniquetopro­

o;esssuchavariable-sizeddatabyusingprocessorsthatcanproo;essfixed-sizeddata. Yet,

in such a technique the processors need to learn to process sequences that have long

distance dependencies(LDD).

In chapter 3, learning methods for simple recurrent networks to solve the problem

of how to find LDDs are described. In order to find LDDs, a simple recurrent network

11eeds to retain inforroatioo about input histodes in patterns. I formalize two measures

of how much information is retai11ed i11 patterns. In the first formalization, a measure

of the information is defined by distances between patterns. Using this measure, the

'distance-keeping' method is proposed. In the second formalization, ameasureoflossof

theiuformationisdefinedinthemannerofShannon'sinformationtheory. Based on this

measure, 'information-loss minimi~ation' method is proposed. Experiments show that

both methods increase the ability to deal with LDDs as compared with a conveutional

back-propagation learning.

Temporal sequence processing providesanotherpointofviewforrepreseittingstruc­

tureddata. Simplerecurrentnetworkshaveasimilarstructuretofinitestatetransducers.

On the other hand, in the automatatheory,state-transitionsofatransducer represent a

structure of sequences which the tra~~sducer processes. In the same way, simple recurrent

networks have the ability to represent a structure of the sequences. However, they can

notacquiresuitablestate-transitionsbyconventionallearningmethods.

In chapter 4, a model, called the 'SGH moder, and its learning method are proposed.

They construct a simple re<:urrent network that has suitable state-transitions for a given

task. They are derived from a procedure to construct a finite state transducer using

the state-minimization technique. Experiments show that the SGH model ca.n acquire

suitablestate-transitionsforgiventasks.

In chapter .S, I discuss about proposed models and methods from various points of

view. First, the ability of simple recurrent networks and that of finite state transducers

are compared. Because of a topology of patterns, the flexibility of state-transitions of

simple recurrent networks is limited as eompared with finite state tra.nsdueers. On the

otherhand,thetopologyinerea.sesthegeoeralizationabilityoflea.rningstate-transitions

I show this advantage through an experiment to deal with $Ub-grommars, Se<:ond, the

formali7.ationofasemanticnetworkthatissuitableforprocessingbyasimplerecurrent

network is discu!!Sed. In this formalization, a semantic network is treated as a chart of

state-transitionsofasimplerecurrentnetwork. Finally, biologicalplausibilityofproposed

modtlsisdiscussed. Wbilea.rtilicialneuralnetworksa.reoriginallyderivedfrombiological

nervoussystemsinbrains,manyofthemarenotplausibleasnervoussystems. Proposed

methods and models are simple enough and relatively plausible as biological models from

va.riouspointsofview.

Acknowledgments

I would like to acknowledge my sincere a.ppreciatio11 to Professor ~bkoto l'iagao of Kyol.o

Universityforhissuperl'isiouandoontinuousencouragcment.

I would like to express my greatest gratiwde to Professor SalOshi Salo of Ad1·an<:<>d

lnstitut.e of Science and Teclinology, Hokuriku for his constructive discussions ill!d con·

tinuoussupport.

I would also like t.o thank Professor Juo-icbi Tsujii of the i:niversity of Manchester.

Professor Jun-ichi Nakamura of Kyushu Institute of Technology, Professor Yuji Mat­

sumoto of Advanced lnstitut.e of Science and Technology, 1\ara. and Professor Yuichi

1'\akamura of Tsukuba University for their stimulating discussions aod valuable advice

when they areal Kyoto University.

I am grateful to Motoi Suwa, Direcl.or of Information Science Division of E!ectroteclmi­

cal L.aborat.oryand l<azubisa!\iki, ChiefofCognitiveSc1enceSectionfor tbe1rsupport. I

am also grat.eful to my colleagues in Electrot.e<:bnical Laboratory. especially Dr. Hideyuki

Nakashima and Dr. Hitoshi Matsubara.

I am grateful t.oall previousandcurrentmembersofProfessor Nagao"s laboratory,

especially Dr. Yasuharu Den of ATR Interpretinj! Tele<:ommunications Research L.abora-

t.ories.

I would like to thank Dr. Alan W. Black of ATR Interpreting Telecommunications

Researeh L.aborat.oriesforhishelpfulcommentsonadraftofthisthesis.

Contents

Abstract

Acknowledgments

Introduction

1.2

1.3

1.4

1.5

2 Symbolization by Overload Learning

2.1 Introduction

2.2

2.3

2.3.1

2.4 Summary

3 Pattern Representation of Sequence

3.1 Introduction

10

10

12

13

13

17

20

23

26

29

29

30

viii

4

3.3

Confenfs

30

31

" " 3.3.2 Transformation of PaHerns and Change of Distance between Patterns 37

39

34 39

3.4.1 39

34.2 40

3.4.3

34.4 42

3.5 42

42

43

45

3.6 Summary 45

Learning State Transition of Finite State Transducers 41

47

4.2

4.2.1

49

49

50

4.3 SGH Model 50

4.3.1 50

4.3.2

4.3.3 52

4.34 56

44 57

57

" 62
4.5 Summary 64

Contents

5 Discussion

S.l FSTversusSRN

5.2

5.2.1

5.2.3 Experiments

5.2.4 Discussion

5.3 Biological Plausibility.

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.4 RclatedWorks.

5.4.1

5.4.3 Other Symbol Processing by 1\eural Networks

6 Conelusions

A Derivationof(3.8)

B Derivationof(3.15)

C Procedure or Learning a FST from Examples

C. I Generation Procedure

C.2 Reduction Procedure

Bibliography

67

67

70

72

72

74

74

75

78

78

78

79

79

79

80

80

81

81

83

89

91

91

92

93

Contents

Chapter 1

Introduction

1.1 Symbol Processing and Neural Processing

Resea:rchesofartilicialintelligence(AI)aimtounderstandhumaninformationprocessing

and to realize human intelligence on computers. Human information processing bas the

following features.

• Complexity

A human can process complicated information. Such processing is abo complicated.

• Vuiety

Ahumancanprocessvaciousinformation

• Analogy

Ahumancanprocessunknowninformationbyusinganalogy.

• Uncertainty

A human can process noisy and ambiguous information.

• Adaptability

Ahumancanadapthisprocessingtovariousenvironmentsandacquireconcepts.

In works in AI on symbol processing, the complexity has been focused first. Symbols

and data structures are powerful tools to process s"'cb complex information. Symbol& pro­

'·ide high operationality of information because they are discrete and independent from

each other. Data stroe!ure$ provide a rich framework to represent compliea.ted informa·

tion. Complicatedinformationisazrangedbyusingdatastructures. Such information is

processedwiththehelpoftheoperationalityofsymbols.

Chapterl. Introduction

Data.structuresa.realsousefultorepresentvariousinformation. Using data structures,

various information is composed of pieces of information flexibly. Symbols and data.

structureshavebroughtma.nysucce-ssestoAI research.

On the other hand, other features are weak points of symbol processing. In order

to process information by means of analogy, similarities of information must be deDned.

Sinceanysimilaritiesareoriginallynotdefinedbetweendatainsymbolprocessing,weneed

additional mechanisms to deal with similarities of information. Memory based reasoning

is one of such mechanisms. In memory based reasoning, however, there also remain

problems: how to define similarity between symbols and how to deal with various data

Symbol processing also requires mechanisms to deal with uncertainty. Probabilities

and the fuzzy theory are widely used as such mechanisms. It is easy to implement them

iBtosymbolprocessingandalsoeasytounderstandthemintuitively. However,represen­

tatioBofuncertaintyislimitedbysymbolsanddatastructures,becausesuchmechanisms

are implemented as a. property of symbols and data structures. In other words, we can

only represent uncertainty of information that is represented explicitly by symbols and

data structures. Therefore we must earefuUy define what kind of information, symbols

and data structures represent. However, there has not been a general method that tells

us what should be represented by them. In addition, we need another mechanism to

interpret raw data from environments, such as sensor inputs, which are main sources of

uncertainty.

Machinelearninghasbeenhea.,·ilyinvestiga.tedin Aiinordertoadaptprocessingto

various environments. However, there remain severe problems. One problem is that most

machine learningsystemsaredomain-dependent and are not robust to noise. Another

problemistha.tthea.bilityofma.chinelearningisstronglydependentontherepresenta.tion

of information. Therefore we must carefully define such representation. However, general

methodshowtodefinesuitablerepresentation have not been proposed.

In order to conquer these weak points of symbol processing, neural networks have

been given atlention. Neural networks process patterns, which have a topology. Using

thistopology,similaritiesofinformationaredefined. Thusneuralnetworkscan process

informa.tiona.ccordingtosuchsimilaritiesnaturally. Pattern representation also provides

a method to deal with uncertainty. For example, it is easy to interpret an a.etivation of

each element of a pattern as a probability or a possibility of certain information. More­

over, Neural networks have powerful learning methods to adapt themselves to various

1.2. Symbols

environments. Mostofthesemethodsaregeneral-purposeandrobusttonoise. In addi­

tion toit,networkscanac:quiresuitableinternalrepresentationforgiven tasks through

learning.

However, neural processing is ba.d at dealing with complexity and variety of human

information processing. Since pattern representation is .flat, it is difficult to represent

structured data explicitly like symbol processing. Moreover,apieceofinformation is

distributed in a pattern. Thereforeitisnoteasytocomposeva.riousinformationfrom

pieces of information.

In order to complement weak points of symbol and neural processing, hybrid or in­

tegrated systems of these twokindsofprocessingarefocused. In such systems, symbol

processingprovidesmethodstodea.lwithcomplex.itya..ndva.riety,a..ndneuralpl"(lCessing

provides methods to deal with analogy, 11ncertainty and adaptability. Such systems are

expected to provide Hex.ible problem solving methods like human information processing.

However, there is a crucial problem of how to transfer information between symbol and

neuralprocessing.Thetypeofrepresentationofinfor:mationusedinhothprocessingsare

quite different. Therefore it becomes a bottleneck to transfer information between symbol

a..ndneuralprocessingmodules. Themainca.useofthisproblemisthatitisdifficultto

represent symbols and data structures in a symbol processing module by patterns in a

neura.l processing module. In order to provide a method of tight communication between

thosemodules,Ipayattentiontothefollowingtwopoints:

• Howtoa.nalyzepatternsas symbols.

• How to deal with data strocturesby neural networks.

1.2 Symbols

Consider a hybrid system of neural and symbol processing. When the neural module

tra.nsfersinforma.tiontothesymbolmodule,tbesystemneedstoanalyzepatternrepre­

sentation in the neural module a.s symbols. Generally patterns do not represent symbols

explicitly, so that the analysis becomes a major problem of hybrid systems.

One way to analyze patterns a.s symbols is clustering. Patterns in a neural module are

cla.ssiliedintoclustersbyvariousclusteringtechniques. Then,eachclusterisinterpreted

asasymbolinthesymbolmodule. Manyresearchershavebeenusingthesetechniques

in order to analyze what neural networks learn [Eim88, Pol90, SSCM89]. In such cases,

Chapter 1. IntroductioJJ

clustersofpatternsarerequiredtobereducedandseparatedfromeachotherclearly. In

fact,however,networksacquireredundantpattern representation,sotbatpatternsdonot

form reduced clusters.

Another way to analyze patterns is to deal with each unit in a neural network as a

certain primitive symbol and the activation of the unit as a probability of the symbol.

In this technique, each unit is required to be suitable as a primitive element that is

independent from each other. In fact, however, it is not assured that all units become

independent after learning of a neural network. Therefore some units remain redundant.

lnthiscase,itisdifficulttofindwhichmlltsareprimitive.

A fundamental issueunderlyingthesedifficultiesis:

How to eliminate redundant representation which networks learn.

Thisisalsoageneralproblemofneuralprocessingbecausethisissueconcernstheproblem

ofgeneralizationabilityofnetworklea:rning.

1.3 Data Structures

Consider a case in which a neural module receives data from a symbol module in a

hybrid system. In this case we need to represent structured data by patterns that can

be processed by neural networks. Aconventionaltechniquetorepresentdatastructures

in neuralnetworksistoconstructneuralnetworksthathavethesamestructuresa.sthe

data. In this technique, however, the network can not manipulate or learn structures

Oneofthemajorproblemsofrepresentingstructureddatabypatternsisthe\'ariety

inthesizeofrepresentation. Thesizeofpatternswhichneuralnetworksprocessisfixed,

while the size of structured data generally varies. Temporal sequence processing is a

te~.hnique to deal with variable-sized databyaprocessorwhich processesfu:ed-sized data.

Thereforewecanso\vetheproblem byprocessingstructureddataastemporalsequences

byusingrecurrentneuralnetworks.

Yet,the'temporalprocessing'techniquegivesrisetoanotherproblem,thatisthe'/ong

dtslonce dependency {LDD)' problem: In temporal sequence processing, inputs might be

givenlongbeforeprocessorsrequireinformationabouttheinputs. Inthisca.seprocessors

must keep information about inputs until it becomes needless. For example, when a

processor checks an agreement of a subject noun and its verb in a sentence such as

1.4. BiologicaJP/ausibility

"The dog which chased cats is mine",

"Dogswhiebchasedea.tsaremine",

theprocessormustkeepinforma.tionaboutasubjednounduringarelativeclause. In

order to solve this problem, a technique to find LDDs is required. In the context of

neural networks, we must solve the problem of how to train recurrent networks to process

temporal sequences that have LDDs.

Temporal processing provides another viewofrepresentingandprocessingstructured

data. In automata theory, state-transitions of a transducer that processes sequential

datarepresentsequentized structures. On the other hand, it has been pointed out by

many researche~s that a recurrent net"ll.•ork can be treated as a. finite state transduce~.

Therefore we can consider a. method in which a recurrent network can deal with data.

struct•Jresthrough stat~-traneitionso!thene!wcrk. Inordertocon:1p!ete!his~ethod, l'."e

needa.tecbniquetolea.rnsuitablestate-transitionsofrecurrentnetworks.

1.4 Biological Plausibility

Intheresea.rchofneuralprocessing,biologicalpla.usibilityisanimportantpointofcon·

sideration.

The idea of neural processing comes from biological models of actual nervous systems.

However, many of artificial neural network models are not biologically plausible. For

example, the 'back-propagation through time' method [WZ89) requires to store all states

ofthenetworksduringprocessing. Suchmechanismsa.renotplausibleasa.c:tualnervous

systems[GA9l].

In works described in this thesis, such plausibility is considered carefully, espe<:ially,

withrespecttothefollowingpoints.

• Locality of calculations

Locality of calculations is one of the important features of neural processing. It

issaidthattherearenoglobalsupervisorstba.tcontrolcalculationsinbiological

nervous systems. Insteadofthem,ca.lculationsa.rerealizedascooperationsbetween

neurons. Such cooperations are done in physically local area. Thus, in artificial

models of neural networks, calculations should be done locally. For example, cal­

cula.tionsoftbeback·propa.ga.tionlea.rninga.relocal,sotbatitisplausibleinthis

Chapter 1. Introduction

Time-locality is also important. No mechanisms to memorize activation patterns

inneuralnetworksovertimebavebeenfound. Thereforeallcalculationssbouldbe

done using current activation patterns. This becomes a.n important issue when a

neural network processes temporal sequences. For example, the 'back-propagation

throughtime'methodisnottime-local, becauseitrequiresallpa.stactivationsof

networks. Thusitisnotplausible.

• Penalty functions

Learning procedures such as the back-propagation method may also be implausible

a.sanactuallearningprocedureinnervoussystems. Inordertomakemodelsinde·

pendentf!orelearningprocel:!ures,Ifocuspenaltyf'-lnctionsthata.:-eminimizec!by

suchlearningprocedures.Inlearningmethodsproposedinthisthesis,onlypenalty

implement these methods using other learning procedures. Note that such penalty

functionsshouldbecalculatedlocally.

1.5 Outline of the Thesis

In this thesis, I describe learning methods for neural networks to solve the following

problems described above:

1. Howtoeliminateredundantrepresentation.

2. How to find LDDs in temporal sequences.

3 How to learn suitable state-transitions.

In chapter 2, I describe a method to solve the first problem. First I consider that

redundant representation is caused by too many bidden units for a given task. In other

words,theissueishowtobalancethenumberofunitsandtbecomplexityofata.sk. In

ordertobalancetbem,Jproposeamethod,calledthe'overloadlearning'metbod.Jnthis

method, anetworkistrained to learn an additional task togetherwitha.noriginaltask

Becauselearningofthe additional task requires to use hidden units, the number of units

thatareusedfortheoriginalta.skdecrea.ses.lfwecancontrollearningofbotbta.sks,the

networkwillusethesuitablenumberofunitsfortheoriginaltask. Ialsoexplainresults

ofvariousexperimentsandshoweffectsofthismetbod.

1.5. OutlineoftheThesis

In chapter 3, I describe two methods to solve the second problem. I consider that

a recurrent network needs to keep mformation about input histories on hidden layers

as long as possible in order to lind LDDs. Then I formalize measures of information

represented by patterns of hidden layers in two ways. Based on these measures, two

methods to decrease lossoftheinformationabout inputhistoriesue proposed. In one

way, information is measured by the distance between patterns. I analyze the relation

between thechangeofthedistance andadistributionofweightvaluesoflinks. Based on

thisrelation,amethod,calledthe'distance-keeping'methodisderived. In another way,

lossofinformationisdefinedinthemannerofShannon'sinformationtheory. I show the

relationbetweenthelossofinformationandlearningofidentityfunctionsbythree-layered

networks. Based on this relation, a method, called the 'information-loss minimiu.tion'

method is derived.

Inchapter4,Idescribeamethodtoso)vethethirdproblem. Initially a procedure to

constructafinitestatetransducerfromexa.mplesofinput-outputsequeneesiscomposed

usingthestate-minimizationtechnique.Thenea.chstepoftheprocedureisrecoBstrueted

aslear11i11g of a. neural network. Finally those networks and their leuningmethods are

combined into a. model, eal.led the 'SGH model.' The ability of the SGH model is demon­

strated throughexperimentsoflearningvariousstate-transitions.

In chapterS, I discuss about proposed models and methods from various points of

view. First the comparison of simple recurrent networks and finite state transducers is

discussed. Althoughasimplerecurrentnetworkcanbetreatedasafinitestatetransducer

as discussed in chapter 4, abilities of them are slightly different. In this discussion, I

focusonthegeneralizationabilityandllexibihtyofstate-transitJons.Second,Iproposea

prototypeoftheformalizationofsemanticnetworksthataresuitabletoprocessbysimple

recurrent networks. Semantic networks are a framework to represent various information

used in symbol processing. This formalization will provide a way to combine neural

and symbol processing tightly. Finally, the biological plausibility of proposed models is

discussed. Whileneuralnetworksareoriginallydetivedfrombiologicalnervoussystems

in brains, many artificial neural networks are not so plausible as actual brain models. I

examine proposed methods and models from various points of view.

Chapter6outlinestheconclusionsofthisthesis.

Cbapter 1. Introduction

Chapter 2

Symbolization by Overload Learning

2.1 Introduction

In order to i11~grate symbol processing &Rd pattern processing io neural networks, we

need kl analyze pattern represeDt&tiOD in neural networks from the view point of symbols.

Oae way to analyze pa.Uems is to deal with each dimell&ion of the pattern space as aa

iadependent micro-feature. In this case each dimeuion is desired to be independent

&om each other. Thus it is oeeessary that there are no redundant dimeDSioDs in the

patterD space. In other words, it is neeessary to reduce the number of dimensions of

paUems, especially a.etive dimensioas of patterns, eo that the oumber of active dimensions

is suitable for represelltiq:iDlormatioD for a givea task. Generally, however, it is difficult

to determine how many dimensi.ODs are required for Pven tasks.

Another way to analyze patterns is to classify paUerns into dusters by dusterin&

methods. After c:lusterin&, each dust.er is interpreted as M individual symbol!OGM92,

Elm91, CSSL89J. In this case, clusters of patterns are required to be separated clea.dy.

Especially, clustering will become easy when each cluster or pa.ttems is c011verged into

small compact area.. However, clusters tend to spread if there is room in the pattern

space. Clusterspreadingupsetssuita.bleclust.eriDJofpa.tterns.

Furthermore, in the general purpose of neural networks, it is important to lind the

minimal number of units or dimensi011s for given tub. The reason is that minimizati011 or
the number of dimen&iotl& increases the generalization ability of leuniq. Unfortunately,

itusllallyisa'tobviouswhatsizeisbestforagiventask.

These problems come (rom one issue: how to balaace the capacity or networks aod

the complexity of tub. In order to solve this issue, a net'IIIOrk should contain a. suita.ble

10 Chapter 2. Symbolizatio11 by Overload Lear11i11g

number of hidden units for a given task. Oo the other hand, a network is trai11ed with

toomanyhiddenunitsbeca.useoftheguara.nteeofsuccessesoflearning. A conventional

waytosolvethisissueistoadjustthecapacityofanetworksuchasthenumberofunits

to the complexity of a task[WK90, Hag91] by using certain criterion or pruning methods.

Inthischapter,Iproposea.notherwayin which the complexityofataskisadjusted to

thecapacityofanetwork.

2.2 Overload Learning

2.2.1 Activeness and Redundancy

SupposethatwetrainanetworktolearnagiveDtask. Wesayaunitis'adive'forthe

task when the activation of the unitcba.ngesforvariousinputsofthetask,and 'mactive'

fortheta.skwhentheaetivationdoesnotchange. Moreover,wesayaunitis'redund1mt'

fortheta.skwhenthenetworkca.Ilachievetheta.skwithoutthatunit.

Weusethesethreewords,'aetive','inaetive'and'tedunda.nt',notonlyforunitsbut

abo for dimeDSions of a vector spa.ce of bidden patterns. For example, we say a dimension

isa.ctivefortheta.skwben apositionofahidden pattern cba.ngesalongtbedimensionin

thepatternveetorspaceforvariousinputs.

Whenwetrainanetworktolearnagiventa.sk,inordertoguaranteethesuecessoftbe

learnin~j:process,weusuallyuseanetworkthatha.smorebiddenunitstbantbeta.skwill

require.lnthisea.sethereremainsomeredundantunitsordimensionsinthehiddenlayer.

In those redundant units/dimensio11s, inactive units/dimensions are not so important,

beeausetheydonotaffecttheactionofthenetworkortheabilityofgeneralizatlon. On

the other band, redundant and active units/dimensions are important. They should be

eliminated be<:auseofthe following reasons:

• Redundant and activeunits/dimensionsde<:reasetbegenera.lizationabilityofleun­

ing. Redundant and active units/dimensions increase degrees of freedom of the

representation. Generally, moredegreesoffreedomoftherepresentationbringless

generalization. Therefore redundant and activeumts/dimensionsupset the gener­

alization.

• Theyupsetanalysisofpatternsofahiddenlayer. Usua.lly,aetiveunitsfdimensions

are treated as primitives each of whieb indicates independent element of information

2.2. OverloadWarning 11

Input

Figure 2.1: Three-Layered Networks

from each other. But redundant units/dimensions indicate duplicate information.

Itisdifficu\ttoeliminatesuchduplicateinformationatastageofthea..nalysis.

2.2.2 How to Eliminate Active and Redundant Dimensions

Consider a case in which a three-layered network shown in Fig. 2.1 is trained to

learnagiventask(ca.lledan'originaltask'). Asmentionedinthepreviousseetion,some

dimensionsinthehiddenlayerbecomeredunda.ntanda.ctiveforthetask. Next, consider a

case in which new input a.nd output layers are added to the network as shown in Fig. 2.2.

The network is trained to learn another task (called an 'additional task') using these

additionalinputandoutputlayers. Thislearningisdoneatthesametimeofthelearning

oftheorigina.ltask.lnthiscase, redundantdimensionsfortheoriginaltaskwiUbecome

used for achieving the additional task. When the additional task is independent from

the original task, redundant and active dimensions for the original task be<:ome inactive

for the original task. Therefore, we can eliminate active and redundant dimensions by

tra.iningthenetworktolea.rnana.dditionaltasksimultaneouslybya.ddingadditionalinput

and output layers. I call such a. method 'overloadleaming(OLL).'

Inordertoeliminatea.ctiveandredundantdimensionsefl"ectively,tbeadditiona.Jtask

shouldsa.tisfythefollowingconditions·

1. Theadditionaltaskisindependentfromtheoriginaltask

l2 Chapter 2. Symbolization by Overload Learning

Additional Original
Task Task

Figure 2.2: Three-Layer Networks with Additional input/Output Layers

2. The additional task requiresthela:rgernumberofhiddenunitsthanthegivennet­

work.

3. A neutral ioput of the additional task is easy to prepare. After learning, the addi­

tionaltasklsnotnecessaryandupsetstheanalysisofpatternsfortheoriginaltask

Thereforeweneedawaytoavoideffectsoftlteadditiona!ta.sk

Moreover,wemustcontrolthelearningofthesetwota.sksinordertogiveprioritytothe

originalta.skoverthea.dditionalta.sk.

2.2.3 Overload Learning with Random Task

An identity mapping of random patterns (called a 'random task') was chosen a.s an addi­

tional task. In this task, randomly generated patterns are put mto the additional-input

layer. The additional output layer is required to output the same pattern as inputs. This

taskcansatisfythethreeconditionsfortheadditionaltaskasfollows. Thistaskisobvi­

ouslyindependelltfromanyothertask,soitcansatisfythefirstconditioll. The random

task requires the same 11umber of hidden units as the size of input patterns. Therefore the

2.3. Experiments and Discussjon 13

secondconditionissatisfiedwhenthesizeoftheadditional-inputlayerislargerthanthe

stzeofthebiddenla.yer. Moreover,thethirdconditionissa.tisfiedbyusingthea.verageof

allpatternsasa.neutralinput.

For OLL with the random task, a. network shown in Fig. 2.3 is used. This network is

called a.n OLL network. In this network, ;nput and output layers a..re used for the original

task, and random-inpnt and random-output layers ate for the random task. The size of

the random-output layer is the same as the size of the ra.ndom-input layer, and larger

tha.nthesizeofthehiddenla.yer. Inexperimentsdescribedinthenextsection,thesesizes

aretwkeofoneofthebiddenlayer.

Inthelea.rningphase,a.ninputpa.tternoftheoriginalta.skissetintotheinputlayer

and a required output pattern is given to the output layer as a target. At the same time,

a randomly generated pattern is set into the ra..ndom-inputlayerand the same pattern

is given totherandom-outputlayera.sa.target. After learning, tbera..ndom-input layer

is fixed to the average pattern of random patterns. The network is trained by back­

propagation to minimize the following penalty function.

where o.,.,P"" O,an<I·<~••P•• and 01aod·oopu 1 are output patterns of output, random-output,

ra.ndo!Xl-inputlayets respeetively;t•••P•' is the target pattern of the original task.< r >
means an average value of .x; lzl is the norm of vector z; et is a positive coefficient. In (2.1),

thefitsttermoftherightsideistbepenaltyfortheoriginaltaska.ndtheseeondtermis

thepenaltyfortheadditionalta.sk.Inordertogiveprioritytotheoriginalta.skoverthe

ra.ndomone,etissetrela.tivelysmallerthanl. Inthisca.se,thepenaltyfortheorigina.l

ta.sksha.resamajorpartofE,sothatthenetworklearnstheoriginalta.skprima.rilyand

the random task secondarily. In the following expenments, et is set 0.3 - 0.5

2.3 Experiments and Discussion

2.3.1 Finding Minimum Dimension

In ordertodeterminethekindofeffectsofOLLoverformingpatternrepresentation

onthehiddenlayer,thefollowingexperimentwa.scarriedout: lnitially,atargetnetwork,

whoseinput,biddena..ndoutputlayersconsistofn,m.a.ndlunitsrespectively,iscreated.

Using this target network, 1000 input-output pa.its are generated. Then an OLL network,

Chapter 2. Symbolization by Overload Learning

random pattern original input

Figure 2.3: Structure of OLL Networks

Output

Figure 2.4: Setup of Experiment of Finding Mmimum Dimension

2.3. Experiments and Discussion 15

(learningwithoutrandomta.sk)

Figure 2.5: Eigenvalues of Hidden Patterns. (target: 5 hidden units) Eigenvalues are

shown in log scale.

16 Cbapler 2. SymbolizaliOD by Overload Lelll"uiug

(learningwithoutra.ndomtask)

Figu.re 2.6: Eigenvalues of Hidden Patterns. (target: 10 hiddeo units) Eigenvalues are

sbowD in log scale.

2.3. Experiments and Discussion 17

whoseinput,hidden,outputa.odraodom-input (alsorandom-output)layersconsistofn,

k, I and 2k units respectively, is trained by these examples with a random task. Fig. 2.4

showsthesetupofthisexperiment. Aftertraining,patternsonthehiddenlayerfor\"arious

inputs are analyzed by principle component analysis (PCA). When a certain eigenvector

of PCA has a significant eigenvalue, the dimension along the vector is adive for the task

Fig. 2.S shows a result of the analysis where n = 20, m. = S, I= 20 and k = 30. This

graph sbowschangesofthe 1st-20th eigenvalues of hidden patterns through learning.

In the case of learning with the random task (the upper graph), that is OLL, only up

totheStheigenvaluesremainsignificaot,aodtherestbecomeverysmallastbelearning

proceeds. This means that only Sdimensionsare active for the task. On the other

band, without the random task (the lower graph), that is a conventional learning, all

eigenvalues remain significant. Fi-8. 2.6 shows another result where m = 10. In this case,

ll e1genvalues remain Significant by OLL.

From these results, we can say that OLL reduces the number of active dimensions of

hiddenpatternsintotbesuitablenumberofdimensionsfortheoriginaltask.

2.3.2 Finding Primitive Dimension

Inordertoshowthatanetworkcanfindprimitivesofinformationaboutagiventask

by OLL, the following experiment was carried out.

Considerthateachapex,edgeand plaoeofacubeislabeled as shown in Fig. 2.i,and

make a mapping from an edge to two planes and two apeJCes that connect to the edge.

For example, ao edge 'lOx' is mapped to plaoes 'txx, xox' and apexes '100, 101.' This

mapping is represented by patterns using localist representaticnas shown in Fig. 2.8. Then

a network shown in Fig. 2.9 is trained to learn this mapping by OLL. In this network, 12

unitsisusedfortbeedgelayer,12unitsforthehiddenlayer,6unitsfortheplanelayer,

8 units for the apex layer and 24 units for the random-input layer and random-output

layer. In order to test the generalization ability, underlined patterns in Fig. 2.8 are not

given to the network as targets during learning

Fig. 2.10 shews outputs of the apex and plane layers after learning. Fig. 2.10-{a)

is the case ofOLL and (b) is the case of the conventicnallea.rning. lo the case of the

conventional learning, outputs wh1ch the network has not been taught are not correct,

while all outputs are correct in the case of OLL. This result shows OLL increases the

gencral.izationabilityfortbistask.

Whydoesthisgeneralizaticnarise? Ianalyzedhiddcnpatternsforcachedgelabel

18 Chapter 2. Symbolization by Overload Learniog

110

(Opposite sides of xxl, xOx and lxx are xxO, xlx

and 0xx respe.:tively.)

Figure 2.7: Labelling of Edges, Apues and Planes of a Cube.

2.3. Experiments and Discussion

INPUT OUTPUT

Plane Aoex

Figure 2.8: Ma.pp1ng from A edge to Planes and Apexes (Cube Mapping)

edge

Figure 2.9 Network for Learning Cube Mapping

20 Chapler 2. Symbolization by Overload Learning

input by PCA. Then I found only 3 dimensions remain active in hidden pattern space.

In the 3 dimensional space each pattern lor ueb edge label is arranged like Fig. 2.11-

(a). This arrangement is the same as of midpoints of edges of a cube (Fig. 2.12). On

theotherhand,thearrangementofpatternsintbecaseoftheconventionallearningis

like Fig. 2.11-(b). In this case, it is difficult to find correspondence of Fig. 2.11-(b) and

Fig. 2.12.

From this result, we can say that the OLL network fouod three primitive dimensions of

thetaskandrepresentedinformationbypatternssuitableforthetask. Then the network

becameabletogeneralizethetaskandrespondedforunknownoutputcorredly.

2.3.3 Converging of Pattern Clusters

One purpose of OLL is to make internal represenlation tcoropa.ct. :W order to a.na.lyze hid·

denpatternsassymbolsbyclusteringtechniques,itisimporta.ntthatthesepatternsform

dearly-separated clustel"S. For example, many researchers have been trying to a.na.lyze

pattern tra.nsitiollS of simple recurrent networks[OGM92, Elm91]. his, however, difficult

tolindadearstructureoftra.nsition becausepatternsdonotformcompa.ctclustersin

patternspa.ees.

On the other hand, OLL is expected to have an effect on convergence of these dusters.

Thiseffectisledasfollows. Wbenac\usterofpatternsfortheorigina.ltaskgetsexpanded,

it will behave as noise to the random task. Therefore, the network learns to accommodate

therandomtaskbyconvergingthec\usterintocompactareas.

In order to demonstrate this effect, the following experiment was carried out: A simple

recurrent network with a random task (Fig. 2.13) is trained to predict the order of char­

actersinsequences[Eim88]. Ateachpointintime,acharacterinasequencegenerated

by the Reber grammar (F1g. 2.14 [CSSL89[) is presented to the network. The network's

target output is simply the next character in the sequence. For example, when the Re­

ber grammar generates a sequence 'TSXXVPS', the network receives an input sequence

'TSXXVPS' and a target sequence 'SXXVPSu'. (u indicates the end of a sequence.) In

this learning, the network is trained to aehieve the task with a random task in the same

manner as OLL. The experiment was carried out using the network whose input, hidden

and output layers consisted of 10,30 and 10 units respectively. (Each of random-input

a.ndrandomoutpui \ayersconsistedof60units.)

After learning, hidden patterns during processing sequences of the Reber grammar

were ana.lyud by PCA. The result of the ana.lysis is shown in Fig. 2.Hi. In this figure,

2.3 ExperimePis and Discussio11 21

Plane Apex

::::~
ollx~

(a) Wnh Random Task
Plane Apex

• • •
•

. .
(b) Without Random Task

F1gure2.10· ResuhsofLearmngof:-1apping

22 Chapter 2. Symbolization by Overload Learning

{a) With Random Task

(b)WithoutR.utdomTask

Figure 2.11: Locations of Hidden Patterns of Each Edge Input.

2.3. ExperimeDIS and DiscussioD 23

Figure 2.12: LocatioDs of Mid Points of Edges of a Cube

ea.::bletterio thegraphmea.nstbepositionofapatterncorrespondingtothestatein

Fig. 2.14whose number is tbesa.meastbeletter. In case of the conventiona.llea.rning

(the lower graph), patterns form some clusters. But these cluster are spread and mixed

complexly. On the other hand, OLL cooverges clusters of patterns ioto very compact areas

in tbema.nnerdescribedabove. As a result, patterns in the same clusterareidentica.l.

Therefore, it seems that there are very few points in the space in the upper graph (that

is the case ofOLL) although thesa.menumberofpointsare plotted.

2.3.4 Generalization by Clustering

Inthefieldofmachinelearning,findingclassesofdataisa.nimportanttopic.Inthiscase,

a'dass'meanstbata.lldataintheclasssharesomeproperties. Thesec\assesareusedfor

generalization in the following manner: When a datum has one of shared properties of a

class,thedatumisassumedtobelongtotheclass. Thentbedatumisexpectedtohave

othersharedpropertiesoftheda.ss

OLLis expected to have a similar generalization ability. OLL converges dusters of

hidden patterns into very compact areas. Such compact dusters can be interpreted as

classes of input patterns, beeause a network outputs similar patterns for inputs when

Chapter 2. Symbolization by Overload Learning

original targe1

random pauern original input

Figure Z.IJ: Simple Re~urrent Ketwork with R.lndom Ta.sk

s q_x_®

St~~~p~
~ /v
l~~-v-0

Figure 2 14: Reber Grammar

2.3. Experimenls a.od Discussion "

(iearDiDs with random tuk)

(Jeaming without random task)

Figure 2.15; Distribution of State Patterns of Reber Gram~nar. Each r;raph shows the

positiono(patternsintheht,2ndand5thprincipleco~nponentsspace.

26 Chapter 2. Symbolization by Overload Learning

hidden patterns for the inputs belong to the same cluster. Therefore when a network

canacquireasuitablecompactclusterofhiddenpatternsfromincompleteinformation

by OLL, we can say OLL has an effect of generalization by finding classes.

lnordertotesttbiselfeds,thefollowingexperimentwascarriedout: Initially,16pat­

terns (pxdX E {A,B,C,D},i E {1,2,3,4}, size of pattern is 20) are generated randomly

and two property values (qx, rx,) are defined for each pattern px, where qx, "' qx1 ,

rx, "'rx, for any i,j. In other words, there are four classes of patterns {that are class

'A', 'B', 'C' and 'D') each of which has the same pair of property \'alues. Then an OLL

network, which consists of two output layers for property values qx;, rx; and 10 hidden

units, is trained to output qx;, rx, when it re<:eives px,. But the network is not taught

about qx4, rx 1 and rn for each X E {A,B,C,D}. In other words, the network gets

incomplete information about property values

Fig. 2.16 sbowspropertyvaluesthe network outputs for each input patternpx, after

learning. In the case of conventional learning, the networkcannotoutput correct values

for unknown properties. On the other hand, in the case of OLL, the network outputs

correctlyforunknownpropertiesexceptforrc1• Thismeansthatthenetworkfindclasses

of input patteros corredly by the converging effect of OLL, so that the network increases

the generalization ability

2.4 Summary

Inthischapter,anewlea.rniogmethod,over/o(ldle(ln~ing,isproposed. In this method, an

additionalrandomta.skismergedintoagivenoriginaltaskinordertoadjustthenetwork

sizeandthecomplexityoftasks. Thismethodhastbefo\lowingeft'e<:ts·

• Itreducesactivedimensionsofhiddenpatternsfortheoriginaltask.

•ltconvergestbeclusterofpa.tterns.

Theseeffectsprovidethefollowingmerits.

• We can get the minimum number of dimensions of hidden patterns for a given task.

It will he useful to determine the suitable size of networks for tasks. Moreover, a

network acquires suitable representation by reducing dimensions of pattern repre·

sentation. Asaresulttbegeneralizationa.bilityincreases

2.4. Summary

target output w rand. task w/orand. task

input qx, ,,,
!'"!!·~~~·I~!! ·[~I
1'"11···' ~~~---·1~11"""'1"'--1 P.u ... • ... • ... • ... • ... • ... •

'"!!!.....c

'"'!... ~ .:...:!:..,.

Pn!..., ~ , ..
,:!:.!..c

Pc.!.....c

Pc•!.....c

Pc•

Pc•!.....c

Poo

Figure 2.16: Output Values for Each Pattern.

.000-.125

-.375

-.625

-.875

-1.000

27

Patterns with underlines are not given to thenetworkasteachersignalsduringlearning.

28 Chapter 2. Symbolization by Overload LeaciJiDg

• Convergedclustersareusefultoanalyzepatternsofahiddenlayerassymbols. They

alsoeausegeneralizationofta.sks.

Therealsorerna.in the following open problems

• A priority of tasks in learning is controlled by p111ameter ao in a penalty function

(Z.l). The value of a is set empifieally. We need to develop a technique to set this

parameter automatically.

• This learning method should be applied to other models. This learning method is

very simple, so that it may be easy to apply to various network models.

Chapter 3

Pattern Representation of Sequence

3.1 Introduction

Information which humans process is complex. In symbol processing, in the field of

artificialintelligence,suchcomplexinformation is often arranged in data structures like

lrstsin LISP.Tbeinformatio11 is represented and processed Hex.ibly through operations

of such structures. On the other hand, patterns processed by neural networks can not

representsucbstructuresexplicitly. Asaresultitisdifficultforneuralnetworkstoprocess

suchcomplexinforma.tiondirectly.

The variety of the size of data that represent such information is one of the major

problems that arise from trying to process structured information by neural networks.

Whilethesizeofstructureddatausedinsymbolprocessingvaries,neuralnetworksgen­

eral.lyprocesslixed-sized patterns. Temporal-sequence processing is a way to process

vatiable-sizeddatabyaprocessorthatoperateslixed-sizeddata: Va:riable-sizeddataa:re

divided into fixed-sized fragments. Tben the processor operates on these fragments one

byoneinaeertainorder.

Many resea:rchers have been trying to apply layered neural networks with recurrent

links to process temporal sequences. EIDla.n analyzed behavior of such networks when

they lea:rned a. prediction ta.sk ofva:rioussequences[Elm88]. Cleeremans et.al. tried to

train networks to leatn finite state gramma.rs[CSSL89]. In these works, networks were

trained by the back-propagation method to minimize output errors within one time step

Such a method issimplc enough so that it is biologically plausible. However, it ha.sa

disadvantagetbatitisdifficulttolea.rncomplextemporal-sequenceprocessing,espeeially

with long distance dependencies (LDD). One way to avoid the disadvantage is to use

29

30 Chapter 3. Pattern Representation of Sequence

utpu

····"'"'"'"""'' State

(~I Conteti~
Figure 3.1: Simple Recurrent Network.

the buk-propagation through time (BPTI) method !WZ89]. This method. however. has

another disadvantage that it requirestore<:ord whole states during processing. Such a

mechanismisnotplausiblebiologically.

In order to process temporal-sequences with LDD, a network needs a mechanism to

holdinformationaboutinputsthroughtime. In this chapter, I focus information about

input histories that is represented byactivi.typatterusofneural networks, and propose

twomethodstosolvetheabovedisadvanta.ge

3.2 Simple Recurrent Networks

3.2.1 Elman's Networks

Elman proposed a model of simple recurre11t networks (SRN) shown in Fig. 3.1 for

learning sequential tasks. This modelconsistsofinput, conte:ct, hidden and output layers

and links between input and hidden layers, context a.nd bidden layers, and hidden and

output layers. Anda.lso,itbasafeedbackconnectionfromthehiddenlayertothecontext

layer, which copies patterns on the bidden layer to the context layer for the next time

step.

This network works like a three-layered feed-forward network within one time step

Initially a.n input patten1 is set into the input layer a.nd a hidden pattern at the previous

timestepisseton thecOIItextlayerbythefeedbaekconnection. Activations of units on

hiddenandoutputlayersareca.lculatedinthefollowingmanner.

inpu~(t) == L W;jOj(t)+9, ,,u,
o;(t) == 41(inpu~)

(3.1)

(3.2)

3.2. Simple Recurrent Networks

•1•1
1

l+exp(-:r./T)

31

{3.3)

wheretindieatesatimestep;i,ja.reidentitiesofunits;input;(!),o,(!}and6,areinput,

activationandthresholdvaluesofunitirespedively;U,isasetofuni!.sconnecttounit

t; w,1 is a weight of a link from unit j to unit i; and T is the temperature parameter of

the network.

lnalearningphase,a.desiredoutputpatternisgiventotheoutputlayerasa.ta.rget

in each time step. The network changes weights of links and threshold values of units by

the back-propagation method to minimize the following penalty function:

E = :[(o;(t)- O;(t)f {3.4)
o~ootpu< loyot

wher.,O,(t)isa<iesiredoulputvaiueoiunitt. Inthisiearning,euoriniorma.tionisinck·

propa.gatedwitbinonetimestepandnotha.ck-propa.gatedthroughtimebyusingfeedba.ck

connectionsfromthehiddenlayertothe context layer.

Elman reported that SRNs found structures in time of sequential tasks through learn·

ing [Elm88]. For example, when an SRN is trained to learn the predtction truk 1 of XOR

sequences 2 , the network foundthatthelength ofa.funda.mentalcydeoftbistaskwas

3, and in one cycle, the first andtheseconddatawererandom valueandthelastdata.

was the exclusive-OR of these two values. Cleeremans et. al. applied similar networks

to a task of predicting sequences that generated by an regular grammar. They showed

theahilitythatSRNsfoundthesa.mesta.te-transitionsasofafinitestateautomatonthat

correspondstotheregula:r grarnmar(CSSL89].

3.2.2 Disadvantage of Simple Recurrent Networks

SRNs, however, have a disadvantage that they can not find 'long distance dependencies

(LDD)' in sequential tasks. An LDD is a phenomena. that an input effect outputs long

time after the input occurs in a. sequential task. An embedded structure of a. complex

1Ata.oktopredtclnextdo.taofgiven .. quencelineachtimes\Op.lnthecuewheno.giveniO<jUOnce

••o1,o2,o3 an SRN outputsoHt when it rocoivo•o1 in timonepr.
2Asequenceofbino.rydat.athatisconstructedbynndomlye.:rneatoutingeumplo•ofiftputfoutput

pai,-s of XOR, that i• 2-bit input and !-bit output A sample of o.n XOR .. quence might be

32 Chapter 3. Pauern .Representation of Sequence

sentence in a natural language is au example of LDDs. In a complex sentence, there are

somecouelationslikesub;ect-verbagJUrnentbetween bothsideso[anembeddedelause

as follows:

"Thedogwhichcha.sedcatsismine",

"Dogswhichchasedcatsaremine".

Conventional SR.I\i's do not have the ability to learn sequential tasks with LDDs, be­

causetheyaretrained byback-propagationtominimizeoutputerrorswithinonetime

step. For example, consider an experiment in which an SRN is trained to achieve a

prediction task of an 'n-sequence' sho,..rn in Fig. 3.2 (experiment-1). Ann-sequence is

cyclic. InoneqelethefirstsymbolisP0 ,followed byoneof{a,b,c,d,e} (calleda'pre­

embedded symbol'), a sequen'e 'P1 P2 --·Pn' ('all~ an 'embedded sequ;,nc~'), the ,;arne

symbol as the pre-embedded symbol (called a 'post-embedded symbol'), and a sequence

'Pn+ 1 ···Pm'· In other words, a cycle of ann-sequence has an LDD that there is acorre.

Iation between a pre-embedded symbol and a post-embedded symbol over an embedded

sequence. In this experiment, each symbol in n-sequenees was represented by a pattern

shown in Fig. 3.3. The SRN consists of 15 input units, 50 context units, 50 state units

and 15output units. Initial weightsoflinksweresetrandomlyin the ra.ngeof[-1,1[

Learning was done independently for each n = 0 - 9 . After learning, I recorded outputs

of the network at the timing whe11 it predicted a post-embedded symbol of each cyele, and

calculated accuracies 3 of the prediction. Fig. 3.4 shows how the accuracy changes when

ni11creases. As shown in this graph, tbeucuruy of the prediction goes down suddenly.

In order to process temporal sequences that have LDDs like n-sequences, a.n SRN

must retain informationabouthistoriesofinputsin patterns of a context layer. In the

ca.se of n-sequences, information about a pre-embedded symbol must be retain in patterns

ofaconteJLt!ayeruntilanetworkpredictsapost-embedded symbol. In learning of the

eJLperiment-1, however, it is not considered how to retain such information. Therefore the

information is lost, so that the network can not predict post-embedded symbols correctly

whenembeddedsequencesarelong.

In the following sections, I discuss how to measure information about input histo­

ries retained in patternso11 the context layer and propose two methods to retain sueh

lnfortnationellectively.

'CorTolationcoeflicionuoroutpuuandtarge\5

3.2. Simple Recurrent Networks

F1gure 3.2· n-sequence

-1111111111
b 1-1!1111111

11-111111!1
d·l-11111111 -pl I I I

p2 I I I
p3 I I I
p4 I I I

p~ I I I

P, I I I

II I I I I I I
-IIIII
I-IIII
II-III
I I I -I I
I I I I - I
I I I I I -P, I I I I I I I I I - I

p, : I I I I I I I I I -p, I I • I I I I I I -p, I I I -I I I I I I •
Ftgure 3.3. Patterns ofSymbolsiun-sequence

33

Chapter 3. Pattern Representation of Sequence

Figure 3.4: Performance of Learning n·sequence by SRNs

3.3. Retaining Information in Difference between Patterns

3.3 Retaining Information in Difference between Pat­

terns

3.3.1 Information and Difference of Patterns

All information is represented by activation patterns in a neural network. However. 11 LS

meaningless that all patterns occur in thenetworkarethesame, because it outputs only

constantpatternsforanyinputs. For meaningful processing, the pattern must vary. In

other words, information is retained in the difference betwun patterns. Hence I focus the

distance between patterns as a measure of difference of patterns. that is a measure how

muchinformationisrepresentedbypatterns.

To start out, let's examine a change of the distance between corresponding patterns of

a context layer while an SRN is processing two kinds of cycles of a '7-sequence' problem.

Init1ally, I recorded a sequence of context patterns while the network was processing

an a-cycle 4 after an a-cycle. This sequence was treated as a base sequence. Then, I

r«.ordedanothersequenceofcontextpatternsduringab-cydeafterann-cyde (a-ob).

This sequence was compared with the base sequence in order to calc11late diStances of

correspondingcontextpatternsofthesesequences.Ialsorecordedsequencesofcontext

patterns in the case of an a-cydeafterab-cycle(b _,a) and in thecaseofan a-cycle

afterana-cyele(a-ta,thisisdifferentfrom the base sequence), and calculated distances

between corresponding patterns of each of them and the base sequence. Fig. 3.~ shows

changes of these distances in a cycle. In this graph, time= 2 is a timing when the network

receives pre-embedded symbols, and time= 9 is a timing when the network predicts post-

embedded symbols. At a timing of time = 2, the distance between a b and the base

sequence is large enough, while the distance between a pattern of a a and the base

seq11ence IS small. However, the distance between a_, band the base sequence becomes

smaller and smaller during the processmg of embedded sequences. Finally, at a timing of

llme=9,thedistancebetweena.->bandthebasesequenceiscomparabletothedistance

between a _, a and the base sequence. This means that a pattern in each cycle becomes

almost the same with each other after processing embedded sequences. Therefore the

networkcannotpredkt post-embeddedsymbolscorrectly.

This. phenomenon is caused by the fact thatthedistanceofpatternson the hidden

layer is smaller than that of patterns on the context layer when patterns on the input

·~ 'z'.cyole means the eycle whose pre-emWd..J symbol IS 'z'

36 Chapter 3. Pattern Representation of Sequence

00-·- -··-.- ~-:.::

Figure 3.5: Change of Distance between Patterns of State Layer during Embedded Se-

3.3. Retaining Information in DiHerence between Patterns 37

Figure 3.6: Pattern Transformation Network

layer are the same. In the fol!owing se<:tion, I discuss how to avoid this phenomenon

3.3.2 Transformation of Patterns and Change of Distance be­

tween Patterns

Consider a pattern-transformation-network like Fig. 3.6 which consists of input and

output layers. As.sumethatthefollowingconditionsaboutthepattern-transformation­

networkhold.

• The distribution of w, a weight of a link between input and output layers, is a

Gaussian distribution G{w;O,u,.), whose mean is 0 and variance <7!.

• Theaverageactivity,/3,ofinput patternsisaconsta.nt

/3 _](input pat.tern ve~tor)j7
- (numberofdimenstonsofmputpattern)

(3.5)

• All threshold valuesofunitsin the output layer are all 0.

• Theoutputfunctionofunitsmtheoutputlayerisdefinedasfollows: 5

f(:s;)= {.,G({;O,r)d{ (3.6}

Moreover,'anonrulli:eddtstance'betweenpatterns:tandyisdelinedasfol!ows·

Q= lz-yj~
2x(numberofdtmenstonsofpatterns)

(3.7)

'Thio fun~Lion i• not exactly Lho nme u (3.3), but io v~ry •imilo.r and i• usumed I<> be a\>le 1<1

approX1m&te(3.3).

38 Chapter 3. Pattern Representation of Sequence

Figure 3.7: Relation between a. and a,

Given these assumptions, we can derive the foUowing relation between a., a normalized

distance of two input patterns, and o-0 , normalized distance of output patterns of the

network that receives the input patterns. (See appendix A for the detail.)

where N is the number of dimensions of input patterns. This result is a generalized version

oftherelationofnormalizeddistancesofinputandoutputpatternsbythetransformations

of random networks ([Ama78[). ' Fig. 3.7 shows the relation between o:; and Clo for various

u~ where N = .SO, /J = 0.5, T = 1.0.

Note that a differential coefficient 8o./8o., at a, = 0 is a finite value in the case of

T > 0. 8o.,.f8a; decreases as No! decreases. This means that if No! is small enough,

8a~f8a, at a, = 0 is less than 1, so that the normalized distance of patterns decreases

by the pattern transformation. In this case, thenormalizeddistancefallsdowntoO by

0The ruullofjAra&78J iolheease of~ =Oin (3.8).

3.4. Minimizationoflnformation·Loss 39

recursive transformation of patterns by a pattern-transformation-network. As a result,

all patterns become the same. On the other band, in the case when N11~ is large enough

and fJa.J8a; > 1 at a, = 0, the normalized distance is attracted to a positive value by

recursive transformations of patterns. Tbismea.nstbattbedifferenceofpatternsiskept

through recursive transformations.

3.3.3 Distance Keeping Method

As shown in Fig. 3.5, differences of patterns on the context layer become similar during

the processing of embedded sequences ofn-sequence in theexperiment-1. This is the

case when Nu~ is small enough in (3.8). From the result of discussions m the previous

section, we can find that this 'decreasing distance' problem is avoided by making N11~

largeenough.Inthiscase,a.differenceofpatternsthatoccursbyreceivingpre-embedded

symbols is kept during processing embedded sequence. As a result, the network can

predict post-embedded symbols correctly. I call this method the 'distaru:e keeping (DK)'

method.

There are two ways to make Nu~ large: to make N large or to make a.., large. I

tookthelatterinexperimentsinsection3.5. Inordertodothis, Isetinitialvaluesof

weightsoflinksfromacontextlayertoastatelayeraccording to a distribution with a

large variance.

3.4 Minimization of Information-Loss

In section 3.3, information represented by patterns is measured by distances between

patlerns. On the other hand, we can also define a measure of such information in the

mannerofSha.nnon'sinformationtheory. lntbissection,a.nothermethodbasedonsucb

a measure is described.

3.4.1 Measure Information-Loss

Consider a. pattern-transformation-network shown in Fig. 3.6 again Let X = {:~:,} be a set

of input patterns to the network and Y = {y,} be a set of output patterns of the network.

lalsouse'X'and'Y'assymbolstoindicateinformationsourcesthatprovideinputa.nd

output patterns respectively. In Shannon's information theory, a mutual information I

40 Chaplet 3. Pattern RepteseJJta.tion of Sequence

betweenXandYisdefineda.sfoUows:

where

I(X, Y) := H(X)- H(XIY)

H(X) = - j)Iogp(z))p{z)dz

H(XIY) = - fxllogp(z)y)]p(z)dz

(3.9)

(3.10)

(3.11)

andp(z) isaprobabilitydensity,andp(z)y) is a conditional probability density of input

patterns when an output pattern is y respectively. In (3.9), I(X,Y) means how much

information about mput patterns is retained in output patterns. Moreover, H(X) means

a original quantity of the iniormation. Therefore in the ease when H(X) is constant, we

can treat H(X)Y) a.s a measure of loss of iuformation about input patterns.

3.4.2 Minimum Square Error

In order to process sequence with LDD, we need a technique to minimize H(XJY). How-

ever, direct minimization of H(XJY) is difficult.

Let's consider the loss of information from another point of view. The loss of illfonna.­

tion through a pattern transformation corresponds to the degree of ambiguity when input

patterns a.:re reconstructed from output patterns. Thus, we can measure loss of informa­

tion by a minimum squa.:re error of estimation of input patterns from output patterns as

fo!lows:

En = mjn LJ,(z-F(y;Ajfp{z,y)dzdy (3.12)

where F IS a vector function with parameters A.

It is easy to implement a mechanism to minimize En to network learning as fo!lows

Consider a network like Fig. 3.8. This network is trained to output the same patterns on

the reconst(= reconstruct) layera.s of the input layer. In this case, the network solves

the following optimization problem by the back-propagation method.

(3.13)

where z is a.n output pattern on the reconst layer, and W1o and WoR ;ue weight matrices

fromtheinputlayerto theoutputlayerand from the output layertothereconstlayer

respectively. (3.13)isreformedasfollows:

(3.14)

3.4. Minimizationofinformation-Loss

Figure 3.8: Pattern Transformation Network with Reconst Layer

In ~his eq;;ativn, ~he term in [-] corresponds to the mir,imam square ~rror ERin (3.12/.

Thus !earning of the network in Fig. 3.8 minimizes ER.

3.4.3 Relation between IL and MSE

In this section, the relation between the measure of the loss of information H(XIY) and

the minimum square error ER is discussed. Suppose the following assumptions:

• A distribution of output patterns, p(y), remains constant even if weights of links

change by learning

• For any output patterns y, a conditional distribution p(a:ly} is a multi dimensional

Gaussia.ndistributionwhosecovaria.ncematrixisdiagonal.

Given these assumptions, the following relation between H(XIY) and ER holds:

2H(:IY) :5 log~+log21f (3.15)

(See appendix B for more detail.) In other words, ER is a.n upper limit of H. Therefore

His minimized indirectly hy minimizing ER. When the network in Fig. 3.8 is trained to

minimize ER, the loss of information by transforming patterns from the input layer to the

output layer becomes small. As a result, patterns of the output layer become to represent

information aboutpatternsoftheinput layer effectively.

42 Chapter 3. Patlern Representation of Sequence

3.4.4 X Model

Fromthediscussionintheprevioussection,wecanderiveanewlearningmethod,called

the 'injormatto11-lo$$ mtmmi:wlio11 (ILM)' method for SRNs. Consider a network like

Fig. 3.9. Thts network is called 'X-modet' In this network, i11put, context, sto2te and

output layers are the same as in an SRN in Fig. 3.1. Recon.st-input a.nd recon.si-C0111e:tt

layerscorrespondtoarecoii.Stlayerin Fig.3.8,astatelayercorrespondstoan output layer

m Fig. 3.8, and context and mput layers correspond to a.n mput layer in Fig. 3.8.

In the learning phase, an input pattern is set into the input layer and a previous

patternofthestatelayerissetintothecontextlayer. Simultaneously, as target patterns,

adesiredoutputpatternisgiventotheoutputlayerandpatternsoftheinputandcontext

layers are given tothereconst-input andreconst-contextlayersrespedively. Then the

networkistrainedtominimizethefollowingpenaltyfunction:

where :r:0 , zRl, ZRc, z,, zc are activation pattern vectors of the output, reconst-input,

ruonst-context, input a.nd context layers respectively; :r:T is a required output pattern

vectorgivenfromar~externalteacher.

Asdiseussedintheprevioussection,thenetworkleatnstorepresentinformationa.bout

patternsoftbeinputandcor~textlayerselfectivelybya.patternoftbesta.telayer. Because

thepatternoftbestatela.yerbecomesanextpa.tternofthecontextlayer.anextpatternof

thestatelayeralsorepreseotstheinformationaboutthecurrentpatternsoftheinputand

context layers. Inthisway,informationabouttheinputandcontextlayersisrepresented

bypatternsoftbestatela.yer(alsothecontextlayer)recursively. As a result, information

about input pa.tternslSreta.inedinpa.tterosofthestatelayerforalongtime. Using such

information, the network becomes to be able to learn LDDs.

3.5 Experiments and Discussions

In order to show the proposed methods in the previous sedions perform well, the following

experimentsusingthesa.metaska.sinexperiment-1 wereca.rriedout

3.5.1 Learning Prediction Task of n-sequences by DK Method

Inordertoma.keavarianceofadistributionofweigbtsD"!large, Weightsoflinksfrom

thecontextla.yertothestatelayerareseta.ccordingtoauniformdistributionin [-5,5[

3.5. ExperimentsandDiscussions 43

Figure3.9: X Model

i!!~!ead. o! [-1, l]. O!~e: to:~di!ions we:e the sa...-ne as i;; exye;i;;;er..i-1. Afte; !eornir.g, I

anaiyzedtheperforma.nceofthenetworkinthesa.mewayasin experiment·!.

The result is shown hy plus marks(+) in Fig. 3.10. In this graph, while the perfor·

ma.nce in the case of the experiment·! goes down quic!cly when n is greater than 4, the

performance of the DK method is kept high where n is Jess than 7. This means that the

differenceofpatternsofthecontextlayeriskeptduringembeddedsequence,sothatthe

network can distinguish pre-embedded symbols when the network preditts post-embedded

symbols.

However, the performance goes down slowly where n > 7. The reason is as follows:

As shown in Fig. 3.7, in the case of large variances, a distance of patterns increases

if an originaldJsta.nceissmall, whileadistancedecreasesifanoriginaldistanceislillge

enough. Thismeansthatsmalldilferencesbynoiseandlargedifferencesbyinputsbe<:ome

similarandbecomeindistinguishablefromeachotherafterrecursivetranslations. This is

unavoidablebecausethesettingoftheweightsdoesnotrellectthenatureofgiventasks

in this method.

3.5.2 Learning Prediction Task of n-sequence by ILM Method

In the experiment of the ILM method, the number of units in the reconst layer (that is,

reconst-input and reconst-context layer) is 6~ and other conditions are the same as in

experiment·!. The result is shown by square mark! {0) in Fig. 3.10. We can find the

a«.uracy of ILM method remains high even if n-sequences have long embedded sequences

liken= 7,8

" Chapter 3. Pa.UettJ Representation of Sequence

·,
----..

·~.--~--~--~.~~.~~.~~==~~~
t.onslhof~Seq""not!n)

Figure 3.10: Performance of Lea111ing n-sequence by DK Method and by ILM Method

3.6. Summary

As shown in Fig. 3.10, the performance of the ILM method is beHer than that of the

DK method. The reason is that while weights of links are set randomly regardless of a

given task in the DK method, they a:re tuned to a g~ven task through lea:rningin the

ILM method. Therefore patterns on the context layer represent mformation about input

histories more effectively in the ILM method than the DK method. However, the ILM

method also has a limit. Since a network hasafixed-s1zed state layer, the capacity to

retain information in patterns is limited. Because of the limited capacity, only a finite

lengthofinputhistoriesa:reretainedinthenetwork. Therdorethenetworkcannotlearn

tasksthathavelongerdistancedependenciesthanthefinitelength

3.5.3 Comparison of Two Method

Thesetwomethodsi:Laveadvantagesovereachother

As mentioned in the previous section, the ILM method is better than the DK method

from the viewpointoftheabilityinlearning

On the other hand, from the viewpoint of the speed of learning, the DK method LS

beHer than the ILM method. The reason is that while a mechanism to keep information

aboutinputhistoriesisconstruetedthroughlearningintheiLMmethod,itisconstructed

before learning in the DK method. As a result, the ILM method takes more time to learn.

From these advantages, we can consider preferred types of tasks for these methods

The ILM method is suitable [or tasks with complex LDDs in which the distribution of

inputs is constant. On the other hand, the DK method is suitable for tasks in which the

distributionchangessothatanetworkmustadaptitselftothechangesquickly

3.6 Sununary

In this chapter, I proposed two methods, the distatLce keeping {DK) method aJLd the infor­

mation loss minimization (ILM) method, for simple recurrent networks. These methods

solvethedisadvantagethatitisdtfficultforsimplerecurrentnetworkstolea:rntemporal

sequence processing with long distance dependencies (LDD)

In the DK method, initial weights of links are set according to a distribution whose

variance is large enough. By means of the large variance of weights, the difference of

patterns of context layers is kept through time. As a result, a network can process

sequences with LDDs

Chapter 3. Pattern Representation of Sequence

In the ILM method, new layers are added to a given network. The network learns to

output the same patterns on the new layers a.s those of context and input layers. This

learningminimizesthequantityoflossofinformationaboutinputhistoriesindiredly,so

that the network beo:omes to be able to process sequences with LDDs through learning.

These methods do not depend on the back-propagation method. Thus it is easy

to apply them to other learning methods and network models. For example, the ILM

method can be implemented to Boltzmann machines in the same manner described in

thischapter[Nod89].

There remain the following open problems for these methods:

• These methods make it difficult to analyze patterns of a state layer and extract

structuresofmformation of sequential processing. These methods are derived by

focusing only efficiency ofrepresentin~information of input histories b~· patterns of

the state layer. Thus, information of even useless inputs is also represented by the

patterns.

• There is a certain limit to the length of LDD which networks tan learn to deal with.

Whilealongerdistancedependencyrequiresmorecapacitytokeepinputhistories,

the size of a hidden layer of a network is fixed. Therefore a network trained by

these method can not deal with LDDs that requires more capacity than one of the

network.

Theseproblemswillbesolvedpartiallyintbenextchapter.

Chapter 4

Learning State Transition of Finite

State Transducers

4.1 Introduction

Oneofcharacteristicsofsimplerecurrentnetworksisthecorrespondencewithfinitestate

transducers. Inprocessiugbyfinitestatetransducers,structuresofinformationarerep­

resentedbystate-transitionsofthetra.nsducers. Manyresea.rchcrshavefocusedonthis

point. They tried to analyze pattern transitions of simple recurrent networks as state·

tra.nsitionsoffinitestatetransducersinordertoextractstructuresofprocessingthatthe

networks learned. In these works, there remains an open problem that networks do not

entirely acquire suitable state-traJJsitions. This problem comes from a lad of correspon­

deo<::ebetweenlea.rningofsimplerecurreotnetworksandfinitestatetransducers.

In this chapter, anew method for simple recurrent networks to learn suitable state­

transitions is proposed. Themethodha.scorrespondencewiththelearnmgoflinitestate

transducers. InordertoderJveit,aproceduretoconstructafinitestatetransducer

from input-output examples is composed using the state-minimization technique {in sec­

tion4.2). Theneachstepofthemethodisr«:onstructedasalearningofneuralnetworks

(insection4.3)

4.2 SRN and FST

4.2.1 Simple Recurrent Networks (SRN)

.. Chapter 4. Lu.rning State 1i-&IJSifio.a of Finite State TI-aasducers

Figure U: Simple Recurrent Network with Sigma-Pi Link.

Co.asider a simple recurrent p.etwork (SRN) like Fig. 4.1. All SRN consists of input,

pmriou-.r!o:te, state aad output layers, Sigm•-Pi-type links !GSCT90J 1 from input and

previOIIs-statela.yerstotbestatelayet,ll!ldSipa-typelinksfromthesta.telayertothe

output layer. Moreover, the network h• rec:urre11t links to copy pat teras of state layer to

theprevious-statelayerwith 1 time delay.

This network works iD discrete time. In each time step, an external input pattern is set

into the input layer and a previous pa.ttem of the state layer is set iDto the previous-state

la;yer. Then patterns of state and output layers are calculated ia the maaner of standard

feed-!or<QJ'dnetworks.

Note that it is not necessary to use Sipa-Pi-type li11ks amoa.g input, previous-state

and state layers. It is ooly for avoiding a lilnitation of transitions of SRN'IGSC+90J. 2 We

ca.n have the same discussion asia the rest of this chapter in the case of using Sipa-type

linksinsteadofSigJDa-Pi-typeliaks.

There are two strategies to train an SRN to learn a given sequeDtial task. One strategy

is to use the 'back-propagation throush time (BPTT)' method to miuimi:&e output error.

BPTT is powerful. However, it has a demerit that it requires to record whole status of

a ne\work durins processing. Such a mechaai&m is not plausible biologically. Another

input~ = LLw,;_o:,o:;
oePS;el

wbere 'P$', 'I' are respectively oel.l ofuniu of pn•ious-otatt Mel input IIJien; o:, io an output ohhe unit

i;"';J.~oil•lftisln.ofthelintl'romthenaitiMdtheunitjtotheunit.l:.

"Tbil limitltian ..,;n bt cliocuiMd in oecti011 &.1.2.

4.2. SRN and FST

Figure4.2: Finite State Transducer

strategy is to use the back-propagation simply within one time step (called a simple BP,

or SBP). A merit of this strategy is that learning is simple and plausible biologically.

However,itba.sademeritthatitha.spoorabilityto\earncomplexsequentialta.sks.

Intbesestrategies,Italr.ethelaterforlearninganSRN.

4.2.2 Finite State Transducer (FST)

In the automata theory, a finite state transducer (FST) is defined by the following

6-tup\e.

FST == < Q,E,A,l!,t/l,qo >

where Q isasetofstates, Eisa set of input symbols, {J is a state-transition function,

q0 is an initial state, A is a set ofo11tput symbols, and ,Pis an 011tput function. Fig. 4.2

showsaschemaofstate-tra.nsitionsofan FST.

4.2.3 Learning FST from given examples

When a set of examples of input-output sequences is given, we can construct an FST

that performs these input-output sequences with minimum states. This IS based on the

state-minimization technique of FSTs[HU79]. The procedure is as fo!lows:

[Learning FSTJ

50 Chapter 4. Learning State 1Tansition of Finite State TI-ansducers

SI Makestateseachofwhichcorrespondstoapossibleinputhistory.

52 Assign an output ,.aJuetoeachstateaccordingtoexamples. Thengroupstatesinto

groupsaccordingtooutputsofstates.

SJ Groupstatesinagroupintosub-groupsaccordmgtothegroupofnextstatesafter

transttions from the states. Repeat this sub-grouping until no more groups are

generated.

54 Unify states belonging to the same group together a state, and reform state-transitions

andoutputsofeachstate.

(For more details, see appendix C.)

4.2.4 Correspondence between SRN and FST

As shown in Fig. 4.1 and Fig. 4.2, it ts easy to consider a correspondence between a.n

SRN and an FST. Activation patterns of input, output, previous-state and state layers

respectivelyeorrespondtomputsymbols,outputsymbols,eurrentstatesandnextstates

after transitions. Links from input and previous-state layers to a state layer correspond

toastate-uansitionfunetion,andlinksfromastatelayertoanoutputlayereorrespond

toanoutputfunetion.

On the other hand, learning of SRNs described in soction 4.2.1 does not correspond to

learning of FSTs. Therefore, it is not sure that SRNs acquire suitable state-transitions as

FSTs. As a result of acquiring unsuitable state transitions, the ability of SRNs decrease

andalsoitbecomesdifficulttoanalyzepatternsofthestatelayer.

In the next section, in order to solve this problem, I propose anew network model

anditsleallling method, which corresponds to the learniogofFSTs.

4.3 SGH Model

4.3.1 Network Architecture

Fig. 4.3 shows an oven·iew of the network architecture of tbe proposed model, called

the 'SGH model'. It consists of 'SRN', 'grouping' and 'history' modules. In learning

phase, the history module is trained first, the grouping module second, and the SRN

4.3. SGHModel 51

mputpattem

Figure 4.3: Whole Network Architecture

module third After learning, the SRN module works alone as an SR!'i. In other words,

groupingandhistorymodulesareusedonlyforlearning

The history modulelearnspatternrepresentationsinwhichinformationabout input

histories is represented by patterns effectively. ThislearningcorrespondstothestepSl

of the FSTlearningprocedure. Afterlearning,thismoduleoutputspatternsrepresentmg

input histories to the grouping module as input patterns.

The grouping module classifies patterns of input histories into groups a.ecording to

requiredoutputsandnextstates. Thisclassificationisperformedthroughlearning. This

learningcorrespondstotbestepS2a.ndthestepS3. Afterlearning,thismoduleoutputs

patternsrepresentinggroupsofstatestotheSR.N"moduleasteacherpatterns.

The SRN module learns final state-transitions and an output function according to

patternsofstate-groupsfrom thegroupingmoduleand required output patterns from

external teachers. ThislearningcorrespondstothestepS4. Afterlearning,apartofthis

moduleworksa.loneasanSRN.

Inthefollowingse<llons, thedeta.iloflearningofeach module is described. Note that

only theSBP method is used in learning of each module.

4.3.2 History Module

The learning of the history module corresponds to the step Sl in the FST learning,

that is, makingstatescorrespondingtohistonesofinputdata. In order to realiuthis,

An X model network with the ILM method described in chapter 3 is used. By this model

52 Chapter 4. Learning State TI-ansition of Finite State 1TansduceiS

same as
His10ryJ"auem lnp~lpattem

fro~
external input

Figure4.4: History Module.

and method, input bistoriesca.n be represented by patterns. These patterns can be seen

as states corresponding to input histories. Actually, l use a network like Fig. 4.4. In this

uetwork, an external input patteru is set into the input layer, and a pattern of the nel:t·

his!orylayerin the previous time step is copied into the history layer. Fortugetsignals,

the same patterns of input and history layers are given to rtCOn$t·inputand reconst-history

layers respectively.

This network trained to minimize the following penalty

Eh""''Y =< j:l:l:U- :J:ll2 + lz~ll- :z:kl 2 > (4.1)

where z:U, :cl, :1:~11 and zk are respectively pa.Hern vectors of reconst-input, input,

re<onst-historyand history layers at timestept. Through thisleacning, information

about input histories becomes to be represented bypatternsofthehistorylayer. After

leacning,thismoduleoutputsthesepatternsofthebistorylayertothegroupingmodule

aspatternsofstateseonespondtoinputhistories.

4.3.3 Grouping Module

Theleacningofthegroupingmodulecorrespondstothestep52a.ndthestepSJ,that

isgroupingstatesaccordingtotheoutputandthenextstateaftertransitions.lnorder

todothis,lconsiderateehniqueofgroupinginputpatternsonahiddenlayer.

4.3. SGH Model

Table 4.1: Relat1on Between Difference of Input/Target Data and of Hidden Patterns.

target data

input I dif.

data dif. I I dif

Temporary-Group
pauem.

fr~m H1s1oryl3yer
inH>sloryModule

Figure4.5: Grouping Module.

54 Chapter 4. Uarning State Transition of Finite State TI-ansduceJS

Grouping Input Patterns on A Hidden Layer

Suppose that a feed-forward three-layer network is trained by using two pairs of inputs

and tilrget outputs. We caa not know what patterns will occur on the hidden layer aRer

learning. However, we can know whether two hidden patterns for the two inputs are the

S<LIIIe or not. Tab. 4.1 shows whether hidden patterns for eaeh of two inputs are the same

ordiffereotineachcasewhentwoinputsa.rethesa.meordifferentandtwotargetsarethe

same or different. From this table, we can find that hidden patterns are different when

inputsandtargetsa.redifferent.Tbismeansthatinputsaregroupedintopatternsofthe

hiddenlayeraecordingtotbetargetoutput.

Conside~ a :~etwork shown in Fig. 4.5 as a grouving mod-..Je. Ir. this network, a pat:ern

ofthehislorylayerinthehistorymoduleissetonthehistorylayer,a<::urrentexternal

ne:tl·mputlayer. As target signals, arequiredoutputpatternisgiven to the output layer,

and a pattern of the temporal-group layer at the next time step is given to the nezl·

group layer. Moreover, links from group and nezt·input layers to the nezt-group layer are

Sigma-Pi-type links. The network is trained to minimize the following penalty:

(4.2)

where :z:l:,, ::.:~c and ::.:~:'"J are respe<:tively pattern vectors of output, next-group layen at

time step t and of the temporal layer at time step t + l; :z:~ is a required output pattern

vectorsattimestept

Note that weights of links to the temporal-group layer are copied from links to the

group layer at long enough inten·als <::ompared with a time scale of weight learning (in

experiments in the next section, each .SOOO JQOOO epochs). Therefore patterns of the

temporary-grouplayerarealmostthesa.measthoseofthegrouplayer,butmorestable

than them. Thislayerisusedforprovidingstableteacberpatternsforthenext-group

layer.

Asmentionedabove,patternsofhistoryandinputlayersaregrouped into patterns of

the group layer according to z~ and z~"J. This means that states that correspond to input

historiesaregroupedintogroupsrepresentedhypaHernsofthegrouplayeraccordingto

outputofthestates. Thiscorrespondstothestep 52. Also,sta.tesaregroupedaceording

tothegroupofnextstatesa.ftertransitionsfromthestates,heeauselinkstothetemporal­

grouplayerareeopiesoflinkstothegrouplayer,sothat :z:iJ indi<::atesagroupo[anext

4.3. SGHMode/

Figure 4.6: Actual Grouping Module

state. ThiscorrespondstothestepSJ. 3

After learning, this module outputs patterns of the group layer to the SRN module a.s

patternsofgroupsofstates

Inhibition of Redundant Groups

As shown in Tab. 4.1, it is not assured that patterns of the hidden layer become

the same in the case of different inputs and the same target outputs Therefore some

redundantgroupingofstates may occur. In order to avoid this redundant grouping, the

OLL method described in chapter 2 is used. The OLL method inhibits redundant grouping

because the OLL method ha.s an effect to eliminate redundant pattern representation of

hidden layers. Thise!leetisenhaneedbyinstalbnganewintermediatelayerbetweeninput

and hidden layers. Moreover, it is empirically known that grouping of states becomes

effective if the grouping layer receives previous patterns of the group layer. For these

reasons, a network shown m Fig. 4.6 is actually used for the grouping module. (For

simplicityintermediatelayersareeliminatedinthisfigure.)

'Coneeptuo.Jiy,it works in the samemanner>n the case of using p..tt<rnsofthegrouplayerinstead

oftbetemporal·grouplayerasal.argetofthenext·grouplayer. However,learn>ng progr ... esgraduo.Jly,

andthenetworkeannotgetsu>tablelargetsigno.l•aboutgroupsofnextsta\esinthem>ddleoflearning.

u..,ofthe"'mporo.l-groupl&~ravoidsthio&ndprovidnstabletargetoigno.Js

56 Chapter 4. Le.uning State Tha.nsition of Finite Stale 'llansducers

from from
Groupl;yer uternal!eaeher

Figure4.7: SRN Module

4.3.4 SRN Module

The SRN module constructs reduced state transitions by using information about

groupsofstatesfrom the grouping module. Inordertodothis,anetworklikeFig. 4.7is

considered. This network is the same as a SR.~ in Fig. 4.1 except for the current-group

layer. In this network, an external input pattern issei on the mputlayerand a pattern

of the state layer at the previous time step is set on the previou8-slate!ayer. As target

signals,arequiredoutputpatternisgiventotheoutputlayera.ndapatternofthegroup

layerm thegroupingmoduleisgiventotbe current-group layer. Thenetworkistrained

tominimizethefo\lowingpenalty:

(4.3)

where %~cis a pattern vector of the current-group layer at time step t. Moreover, m

order to avoid generating redundant states, the OLL method is used on the state layer.

Bytheeffectoftheseeondtermoftherigbtsideof(4.J),eaebpatternofthestatelayer

comestohaveaoBe·to-onecorrespondencetoapatternofthegrouplayerinthegrouping

module. As a result, eaehstateofthe SRN part corresponds to a group of states that

have the same output and the same next states. In other words, states in a group unified

into one state. ThiscorrespondstothestepS4. Themodulealsoconstructsanoutput

functionbyminimizingthefirstterm.

4.4. Experiments

4.4 Experiments

4.4.1 Learning Process of Grouping Module

Inordertodemonstratehowagroupingmodulegroupssta.tescorrespondtoinputhisto-

ries,thefollowingexperiment(Ex.l)wasearriedout.

Consider a finite state automaton that has state-transitions shown in Fig. 4.8. This

automaton generates four sequences, that is 'AEFGHI', 'BEFGHI', 'CEFGHJ' and 'DE­

FGHJ'. An SGH network learns a sequence pffil1ction ttuk 4 using these sequences. If

the network acquires the same state-transitions as Fig. 4.8, we ean say that the learning

issuccessfu:. In thi~ experiment, each of history, next-history and reconst-history layers

consistsofJOunits, ea.ehofgroup, previous-group, temporal-group, next-group, state,

yrevious-.;;tate and current-grvup layers coosist~ of G units, and each of input anO out­

put layers consists of 10 units. In input and output layers, each symbol io Fig. 4.8 was

representeda.slocalistrepresenta.tion 5 .

!recorded patternsofthegrouplayerduringlea.rningandana.ly~edthem by principle

component analysis (PCA). Fig. 4.9 shows the process of learning of the grouping mod­

ule. Each graph shows changes of the first principle component of patterns of the group

Jayerduringtheprocessingofeachofsequencesinacerta.instageoflearning.Inthese

gra.ph,ea.ehsequentialpositioncorrespondstosta.tesinFig.4.8asfollows: The sequential

position 0 correspoods to state qo; l corresponds to q1 and 112< 2 corresponds to q, and

q4; 3 corresponds to q5 and qG; 4 corresponds to q7 and qs; 5 corresponds to q, and q,o

Fig. 4.9-(a.) isa.sta.gewhen the network ha.sgroupedstatesaccordingtooutputs. In this

stage,stateq,andsta.teq10 inFig.4.8a.rerepresented hydifferentpa.tterns. But each pair

of {q~o'b}, {q3 ,q4 }, {q5 ,q~} and {q;,q6 } is represented by the same pattern because two

states of each pair have the same output. It means two states of each pair are grouped

into the same group. In a. stage of Fig. 4.9-(b), q1 and q8 come to be represeoted by

differentpa.tternsbecausethnextsta.tesofthesesta.tes,thatisq9 a.ndq10,a.rerepresented

by different patterns. Inthesa.memanner,sta.tesofea.chpa.irof{ql,q2}, (q,,q.}a.nd

{q5,q6)cometoberepresentedbydifferentpa.ttemsinsta.ge(c).stage(d)a.ndsta.ge(e)

respectively. Finally the network acquires patterns of groups each of which corresponds

'Th~ task I<> prHlict succ .. sive elements of a sequuco. When a ••quenc~ {;;,.;;,.zl·"'• ...) is giv•n,

th•notworkroc•iv .. z, asaninpulandlearnstooutput%1.,.1 at tim• I.
'In loc&liotrepreo•nt.o.tion,,h unite<orre•pondstoasymbol one·by·one,andJUSt on•unotthat

correspondstoasymboli.<>repr .. entisutivatHI

" Chapter 4. Learning State TI-ansition o(Finite State Transducers

Figure 4.8: State-Transition of An Automata for Ex. I.

to a state in Fig. 4.8 one-by-oDe. Subsequently the SRN module started to learn and

constructed an SRN that had the same state-transitions as Fig. 4.8

4.4.2 Learning Flip-flop

The second experiment is learning the same state-transitions as of a ftip-flop like Fig. 4.10.

A task a network learns is that the network receives a random binary ('0' or 'l ') sequence

followed by a terminal symbol ('s'), and then outputs a parity of the number of 'l's in

the sequence. In this experiment, each of history, next-history and reconst-history layers

consistsof30units, eachofgroup,previous-group, temporal-group, next-group, state,

previous-state and current-gro11playersconsistsof 10 units, each of input layers consists

orJunitsandeachofoutputlayersconsistsof2units.

After learning, I analyzed patterns of the state layer by PCA. Fig. 4.11 shows an

example of a result of PCA. In this figure the first and se<ond principle components of a

pattern of the state layer at each time step are plotted. As shown in this figure, the SRN

moduleofthenetwork acquired thesa.mestate-transitionsas Fig. 4.10.

For comparison, 1 also trained SRNs with tiO bidden units by SBP, SRNs with 10

hidden units by BPTT, and X models with 50 hidden units. Fig. 4.12 shows the average

outputerrororeachmodelrorvariouslengthsofbina.ryinputsequences. Wecanseethat

errors or SRNs by SBP and X models increase suddenly when input sequences bttome

long, while errors of SGH models and SRN by BPTT are kept small even for long input

sequences. The cause of this advantage or SGH models and SRNs by BPTT is that these

networks acquire the same state-transitions as Fig. 4.10. Note that SGH models use the

SBP method rather than back-propagating error information through time like the BPTT

method.

4.4. Experiments "

(•) ::tS/\,~1 •• ~1 .. a..

'• ' ·~--· ..
(b)

(<)

(d)

(•)

Figure 4.9: Learning Process of Group Layer in Grouping Part.

60 Chapter 4. Uarning State Transition of Finite State Transducers

F~g-Jr':' 4 !Q· F!ip Flop

(\ fl~

l J)' ,_

·~sdo
" " "

Figure4.ll: Example of State-Transition of Flip-flop.

4A. Experiments

....... -;-r::.:::::: .. ::_-.,..
f. I

i

f r

f I

! T

" " LengthoflnputSequences

Figure 4.12: Output ErrorofFI.Jp-llop

61

SII.N+SBP .,....

SRN•BPTT --

62 Chapter 4. Learnjng State TI-ansition of Finite Stale TI-ansducer:s

4.4.3 Learning of Processing with Long Distance Dependency

In the field ofnaturallanguageprocessing, one important problem is how to deal with

long distance dependencies (LDD). For example, agreement between subject and main

verb holds even 1f subordinate clauses are embedded between them like

The dog that eha.sedcats is mine.

Dogthatchasedcats o.remme.

I tested the ability of SGH models to deal with LDDs as follows. Consider sequences

generated by an automaton thatbasstate-transitionsshowoin Fig.4.13. If the first data

of the seque:~ce is 'a' or 'b', the last data of the sequecce is 'i'. Co:n·ersely, the first

data is 'c' or 'd', the last data is 'j'. Between these correspondences, There are embedded

sequences have LDDs. An SGH model is trained to adieve a sequence prediction task

using them. Inordertopredictthelastdataofthesequencescorrectly,thenetworkmust

reta.intheinformationaboutfirstdatainitthrough embedded sequences. One solution

ofreta.iningsuchinformation is to acquire thesa.mestate·transitionsas Fig. 4.13.

Inthisexperiment,eachofhistory,next-historyandreconst-bistorylayersconsistsof

60units,eachofgroup,previous-group,temporal-group, next-group,state,previous-state

a.ndcurrent-grouplayersconsistsofl5unitsandeacbofinputandoutputlayersconsists

of 9 units. I also trained an X model with 75 hidden units for comparison. Fig. 4.14 shows

averageoutputerrorsofbothmodelsatpredictinglastdata. Wecanseethaterrorsof

X models jp.crea.se for longer embedded sequences, while errors of SGH models are kept

small.

Although the X model was proposed in order to deal with LDDs, the ability to deal

with LDDs is limited by the capacity of the network. On the other band, the SGH

model deals with LDDs better than the X model in this case. The SGH model is aimed at

acquiring suitable state-transitions. Fig.4.15showsanexampleofstate-transitionswhich

SRN modules of an SGH model acquired. This transition map is the same as Fig. 4.13.

Becauseofthesetransitions,itbeca.meabletopredictlastdatacorrectlyevenifembedded

sequences become long. As this case, the SGH model has an ability to deal with very long

distancedependenciesthatiscausedbyloop-typeembeddedstat-transitions.

In addition to it, SGH model solve another problem of the X model. Pattern transitions

ofthe state layer in the SGH model is simple Ol.S shown in Fig. 4.15, so tbat it is easy to

analyzesucbtransitionsinordertofindstructuresoflearnedsequeP.tialtasks.

4.4. Experiments

Figure4.13: State-Transition with Embedded Loop

UngthofEmbeddedSequences

SGII­

< --

Figure 4.14: Prediction Error after Embedded Sequences.

63

.. Chapter 4. Learning State Transjtion of Finite State Thansducers

Figure 4.15: Example of State-Transition after Lea.t11i11g

4.5 Summary

In this chapter, a model, called the SGH model, and its learning method to acquire

suitable state-transitions are proposed. The method is derived from a procedure to con­

struct a finite state transducer from input-output examples using the state-minimization

te.:hnique.Thealgorithmconsistsofthreesteps: Thefirststepistogeneratestatescor­

respondtoinputhistories. These.:ondstepistogroupthestatesintogroupsaccording

to outputs and next states of each state. The third step is to unify states in the same

groups. Three network modules and lea.rning methods for them are reconstructed from

these three steps and combined into the SGH modeL

Theproposedmethodhasthefollowing[eatures·

• Tbelearningprocedureusedinthismethodisthesimpleback-propagationmethod,

in which an error signal may not be back-propagated through time. Moreover,

proposed learning methods are independent from the learning procedure, bec.ause

only penalty functions to minimize are modified. Therefore it is easy to apply

anotherlearningproceduretothismethod

4.5. Summary "
• Penalties used in learning a:re calculated by signals that generated in the network

itself except for required outputs. Therefore no other teachers or observers a:re

requiredforlea:rning.

Thesefeaturesarefitforbiologicalmodelsofbrainsandalsosuitforimplementinginto

hard wares.

Therealsoremainthefollowingopenproblems:

• We must carefully choose lea:rning parameters. Espe<:ially the timings to switch

learning stages are important, becausethelearningofeach module must be done

one by one. Automatic methods to switch them should be examined.

• Patternrepresentationofinputhistoriesinthehistorymoduleisamajorfactorin

d.e~e;:m~;:;ir.g the ability of the lll.odel. A;:; X mudel iletwo;:k generates patterr. reptt·

sentationthatrepresentsinputhistorieseffectively. Such representation, however, is

not always suitable for learning of the grouping module. We need to try to combine

va.rioustypesofmethodstorepresentinputbistoriesinordertoimprovetheability

of the model.

" Cllapter 4. Learning State TI-iLIIsition of Finite State Transducers

Chapter 5

Discussion

5.1 FST versus SRN

As mentioned in section 4.2, simple recurrent networks (SRK) have the same structure

as finite state transducers (FST). However, their abilities are slightly different. In this

section I discuss advantages and disadvantages of SRNs as compared to FSTs.

5.1.1 Advantage of SRN

Itiswellknownthatmajoradvantagestoneuralnetworksaretherobustnesstonoiseand

the ability to deal Wlth analog values. In addition to it, I focus on another advantage,

whicbisconcernedwiththegeneralizationabiUtyoflea.rning.

Sequences used inexperimentsinchapter3andchapter4areable to be generated by

regular grammars (RG). On the other hand, there are more powerful classes of grammars

than RG. Context free grammars (CFG) are one of those classes. They are widely used in

symbol processing, becauseitispowerfulenough andalsoea.sytoprocessbycomputers.

Theoretically, it is hard for SRNs to process CFGs perfectly, because processing of CFGs

requires an infinite stack memory. However, we can discuss whether SRNs can deal with

features of CFGs. Here, I focus on one feature of CFGs, called sub-grammars.

lnanaturallanguage,therearelocalsyntacticstructuresthatarefreefromcontext.

For example, in English, a noun phrase in a sentence has a certain syntactic structure

that is free from changes in therestofthesentence. These local structures are called

'sub-grammars'. In order to represe11t a sub-grammar in CFG, we usually define a non·

terminal symbol for the sub-grammar, and write rules that have the symbol in the left

67

68 Cha.pter5. Discussion

band. For example, noun phrases are represented a.s follows:

N'P __. DET-N

NP DET-ADJ·!\'

We can embed such a sub-grammar in positions where sentences should have a syntactic

structure defined by the sub-grammar. For example, a subject part in a sentence has the

same structure as NP and also each obje<:t part in a verb phrase has the same structure

asi\P. Wecanexplainthisbywritingthefollowingrules.

S -. NP-VP

\'P - \' . ~:p . ~:p

On the other hand, in the case of RG, we need to define a non-termioal symbol of NP for

each position as follows:

S NP 1 -VP

VP __, V-NP1 -NP3

NPt __, DETt · Nt

NP1 __. DET2·ADJ1·N2

NP2 DET3 · N~

Such simpleness of representmg sub-grammars is one of major reasons why CFG is used

innaturallanguageprocessing.

The difference of representation of a sub-grammar in CFG and RG causes a difference

oflhegeneralizalionabilitybyleiUIIing. Forexa..rnple,ifasystem,whichprocessesEngli.sh

sentences by CFG, Jeuns a new synta.etic structure of a suhjed part, such a structure

will be generalized as a new syntactic structure of NP. Thus the system wiU become able

to process sentences that have such anew structure in an object part of a verb phrase.

On the other hand, in the case of RG, effects of learning a new syntactic structure will

belimitedinasubjectput.

Using this difference of generalization abilities, I consider the following setup to de-

tennine a network learns a sub·gra.mmar successfully or not:

5.1. FST versus SRN 69

I. First a network learns a prediction task of sequences in a 0AI3o (where a 0, A and l3o
aresetsofsequences). 1

2. Next the network learns a prediction task of sequences in a 1A')31, where A' is a

subset of A.

3. Finally the network receives sequences in a1A", where A" is a subset of A and the

intersection of A' andA"isnullset.

Consider a case when thenetworklearnedtotreatAasasetofsequeneesgenerated by a

sub-grammar at step 1. In this case, the network will become able to generah~e to process

sequences in a 1 .4.,B1 at step 2. Therefore, the network wil! predict seque::ces i:: ;31 at steji

3 because A" is a subset of A. Otherwise, the network will predict sequences in fJo or

Intheaetualexperiment,anetworklearnedthepredictiontaskofsequencesgenerated

by a grammar shown in Fig. 5.2, where P was a sub-grammar to learn. In the experiment,

the network learned grammar G (corresponds to aoAfJo in the previous paragraph) at first,

grammar H (corresponds to a 1A'I:l1) at second and finally the network received sequences

generated by grammar H' (corresponds to a 1A/:l1). A simplified SGH model shown in

Fig. 5.1 was used as a network to learn this task. In this model, a SRN module and a

temporal-group layer in a grouping module in an SGH model are removed for simplicity.

Moreoveranext-grouplayeristrainedtooutputnextpatternsofagroup\ayerinstea.d

oftbetemporal-grouplayer.

Fig. 5.3showsresponses (predictions of a next input)ofthenetworkwhen it receives

sequencesofHthatthenetworkha.snotlearned. Wecanseethatthenetworkprediets

correct next data in most eases. In eases of the 3rd line (predicting 'c1') and the 4th

line (predicting 'd1') in Fig. 5.3, outputs for correct predictions are weak, but they are

stronger than other outputs. From this result we can say that simplified SGH models can

learnsub-gra.mmarstoacertaindegree.

Why can the network learn sub-grammars? It is speculated that a topology of patterns

makes it possible. In the automata theory, states of FST are represented by symbols,

between which no relations are defined. Therefore it is impossible to cha~aeterize state·

transitionsandtodefinesimila~itiesbetweenstate-transitionsbyusingrelationsofstates.

On the other hand, states of SRN are represented by patterns, between which a topology

1a-0AP, means a seL of sequences thu ue gener&led by conc&tenuing ~hree sequences in a-o, A and

70 Chapter 5. Discussion

from
extemalmput

Figure 5.1: Simplified SGH model

is defined. Thereforestate-uansitionscanbedefinedastrajectoriesintbepatternspace.

Thus 11 1s e;,sy to define similarities between these trajedones by their diredions or length

of. Usingthesesimilaritiesthenetworkcanmanagestate-transitionsindependentlyfrom

actual states. As a result, itcanlearnsub-grammars.

5.1.2 Disadvantage of SRN

A disadvantage of SRN is that state-transitions are constrained. For example, an SRN

shown in Fig. 3.1 can not realize state-transitions like Fig. 5.4, because these transitions

are the same as mappings of exclusive-OR. Such mappmg can not he realized by two-layer

networks [MP69, GSC"'"90). State-transitions of a ft1p-fiop used in section 4.4.2 are also

this type of transitions. We can escape this problem by using Sigma· Pi-type links like

in chapter 4 or by putting m additional hidden layers. However, even if we use these

techniques,otberconstra.intsofstate-transitionsarise.

Thisdisadvantageiscausedbypattemrepresentationofstates. Asmentionedinsec­

tion5.l.l,patternrepresentationhasatopologyandthetopologyconstra.intstransitions

of states. In other words, topology of state-representation brings both advantage in the

generali7.ationabilityanddisadvantageinthereal.Lzationability.

~-1- FST versus SRN 71

G - g,Pg,lg,Gg;(i= 1, .. ,6)

H - aoPoa,lboP,b,egP2cLI

doP,d1eoP,e,P,foP&/L

H' - B<~Pa1 IBoPB,CoPC1 1

cfoPd,eoPe,PfoP!L

p - ZPoiPLZP21P2ZPLIP3ZP3

p, - ZPoiPLZPL P3 """'P>ZP:LiPlZp,

P, - ZPoiPLZp, P, -p,ZPJIPJZP3

P, - ZPoiP2ZP3 Ps """'P2Zp,lpJZJl3

z - zlzZ

Figure S.2: Sample grammar.

laput Output of the 0 Layer

Sequence a 1 b, c1 d1 e1 / 1

•

•
•_, m icatet esequencecont1nue romt eupperrow.

FigureS.3: Resultofaloca.l grammar learning.

72

~
A

ChapterS. Discussion

Figure 5.4: A State-Transition Which SRN Can 1'\ot Le.u:n

Hanako obJeet drink

Figure 5.5: Example of Semantic Network

5.2 Representation of Semantic Networks

This work is aimed at developing methods of neural networks to process complicated in for·

mationsuchasinformationprocessedbysymbolprocessing. Inthissection,aprototype

of a method to represent semantic networks by usmg results of this work is described

5.2.1 Formalization of Semantic Networks

Semantic networks are a framework to represent structured information schematically

Fig. 5.5 shows an example of semantic networks. As shown in Fig. 5.5, a semantic network

consists of nodes that represent things or events 2 at~d links that represent relations

'N<>da aho repnoen\ coneepts in OOrn<' forma.li:~~t.tion. But in th<' formo.li:~~t.tion d•S<"rib<'d h<'r<' nodes

repraentonlymdividuo.linotancesofthingoorevents.

5.2. .Repte$entation of Semantic Networks 13

between nodes. Formally a. semantic network is defined as a S-tuple as follows·

Sema.~tic 1\etwork = < N, T, P, r,p >

whereNisasetofnodes,Tisa.setoftypesofrelations, Visasetofproperty-values,

r is a. map of relations, and pis a. map of properties. For example, the semantic network

in Fig. 5.5 is defined a tuple< N,T, V,r,f >where

N = {nhn2,n3,1lj,n~}

T "' {a.gent,obje.:t}

V = {Hanako.see.Taro.milk}

r(n,a.gent) =n2

T(n3,a.gent) =n4

r(n3,objeel)=ns

p(n.)=­

p{n2)=Ha.na.ko

p{n~J =drink

p(nt)=Taro

p{ns)=milk

In addition to this formalization, focuses are added on to the semantic networks. In

a. semantic network, just one node is focused. The focus can move from a node to a node

along a relation between them. Weca.naeces.sonlypropertiesofafocusednodefrom

the outside of the semantic network. The function of a semantic network with a focus is

formalized as follows:

Initially, 611 inili6lfocw;ed node is give71 to 6 sem6ntic network. Then 6S it

recervestypesofrel6ttonso71e byo71e, rtmoves thefocusalongthe type of

relation, tmdoutputsproperlles of a focused node.

In other words, I treatasemanticnetworkasablack·boxthat recetvestypesandoutputs

properties one by one

Using this formalization, we can consider the following correspondence between se­

mantic networks and finite state transducers: Nodes, types and properties correspond

74 Chapter 5. DiscuSltiOD

to states, inputs and outputs respectively. Relation and property maps correspond to

state-transition and output functions respe<:tlvely. In other words, a semantic network is

treated as a chart of state-transitions of a finite state transducer. Under this correspon­

dence, semantic networks can be constructed in the same way as learning of finite state

trusducers. Thus learning of a semantic network is formalized as follows:

To construct a sem11.ntic network from ezamples of sequences of pairs of relati<m­

twesandpropertiesthatthesemanticnetworkisrequiredtoprocess.

5.2.2 Realization of Semantic Networks by Neural Networks

As mentioned in section 4..2, a simple recurrent network has the same structure as a finite

state transducer. Therefore we can represent a semantic network by a simple recurrent

network as shown in Fig. 5.6 according to the formalization in the previous section. In

tbisrepresentation,nodes,typesofrelatious,propertiesarerepresentedbypatternsof

node, type and property layers respectively. A relation map is represented by a link from

tbepre-nodeandtypelayerstothenodelayer. Apropertymapisrepresentedbyalink

fromtbenodelayertothepropertylayer.

Asmentionedabove,asemanticnetworkisregardedasstate-transitionsoflinitestate

tran$ducers. Moreover, simple recurrent networks that have suitable state-transitioos

can be constructed by learning of SGH models. Therefore we can get a simple recurrent

network tbat represents a semantic network by learning of an SGH model. In this learning,

sequencesofpa.irsofrelation-types and properties ate given to the SGH model and the

SGH model acquires state-transitions whO!le structure is the same as a semantic network

to learn.

5.2.3 Experiments

In order to show that this formalization of semantic networks performs well, a simple

experiment was carried out.

Consider a semantic network like Fig. 5.i. In this network, properties of nodes 'X',

'Y','Z'and'W'areselectedinthefollowingsets:

{Human, Thing}

Y: {a.b,c,d}

Z : {Large,Middle,Small}

5.2. Representation of Semantic Nerworks

Figure 5.6: Simple Recurrent Network for representing Sema.nti(. Network

\\' {Yes,~o}

where there is a correlation between propertieS of node 'X' and node 'W' as follows

When a. property of 'X' is 'Human', a. property of 'W' must be 'Yes'. Conversely when a.

property of 'X' is 'Thing', a. property of 'W' must be '!'\o'. Thus there axe 24 combinations

of networks. 21 combina.tiollSofthem axe used for genera.tinga.trainingsetofexa.mple

sequences of type-property pairs, a.nd other 3 comhina.tionsaxe used for a test set. A

simpli6.edSGHmodelwith20unitsin thegrouplayera.nd JOunitsinthe history layer

was used to learn the sema.r~tic network. Fig. 5.8 shows output patterns of the property

layera.fterleaxning. Each line in Fig. 5.8showsaproperty thataneuralnctworkoutputs

when its state comes to each node of 'X', 'Y', 'Z' a.nd 'W'. Fig. 5.8-(a) is a case of a

comhinationinthetrainingsetand (h) isacaseofacombina.tion inthetestset. In

both cases the network outputs the property that the network memorized. This means

that the network works as a semantic network as shown in Fig. 5.7. Moreover, although

properties of node 'W' were not given when the network memorized a semantic network,

the network outputs suitable properties of node 'W'. This means that the network found

thecorrela.tionbetweenpropertiesofnode'X'andnode'W'tbroughlea.rning,a..ndinferred

a.propertyof'W'fromapropertyof'X'.

5.2.4 Discussion

The formalization of semantic networks and 1ts realization by simple recurrent networks

havethefollowingadvantages:

76 Chapler 5. Diseuss.ioo

'""m'"X·"''''' , , .. ,
. .

z
{Yaa,No) {large,Miclclle,Small}

Figun 5. 7: Semantic Network to Lea:rn.

Nodes in Units of Property Layer

Fig. 5.7 H T Y N a b c d L M S

y •

·• (a) X= Thing, Y = d, Z = Middle (in the training set)

Nodes in Units of Property Layer

Fig. 5.7 H T Y N a b c d L M S X.
v H++-!!!.!!!--H-+...1--~ •
w •·

(b) X= Human, Y =a, Z =Large (in the testsel)

Figure 5.8: Outputs of Property Layer for Each Node

5.3. Bio/ogicaJP/ausibility

• In the conventional implementation of semantic networks to neural networks like

IWP85, Sba88]. neural Mtworks can not operate or learn semantic structures, that

isrelationsofnodes,diredly.Thereforeadditionalmeehanisrnstooperaterelations

arerequiredoutsideneuralnetworks. On theotherhand,in the formalization de­

scribed here, a network can operate and learn semantic structure. This will provide

thepossibilityofconstructingasystemtoprocesssemanticinforrnationbyneural

networks.

• While information in semantic networks is represented in maps of relations in symbol

processing, it is represented by patterns of node layers in this formalization. As

mentionedinsection5.l.l.patternshaveatopology. Usingthetopology,simila.rities

between information are define.:! naturally. Such similarities and topology provide

theabilityofgeneralization.lnferenceofpropertiesofnode'W'inthl'experiroent

in section 5.2.3 isa.D example of this generalization ability.

We ca.D get a more powerful ability of generalization by supposing more strong

topology of pattern representation of information. For example, the network will

become able to perform multi-step inferences when pattern transitions from the

pre-node layer to thenodelayerareliner. Too strong topology, however, decreases

the ability of representation as semantic networks. Therefore we must balance the

tradeoffbetweentheseabilities.

Adisadvantageofthisformalizationis:

• Concepts can not be dealt within this formalization Nodes in this formalization

can representonlyconcretethingsorevents. Onewaytodealwith concepts is to

represent them as properties whose patterns represent a hierarchy of concepts

5.3 Biological Plausibility

The most important feature of artificial neural networks is that these networks are derived

from models of the nervous system in brains. However many of them are not plausible

as brain models. For example, the real time recurrent learning method IWZ89I requires

that each unit must retain information about whole links in a network. It is difficult to

supposethatanactualnervoussystem has such a mechanism.

lnthissection,Idiscussbiologicalplausibilityofmodelsproposedinthisthesisfrom

variouspointsofview.

78 ChapterS. Discussion

5.3.1 Network Structure

Itissaidthatthenumberofneuronsinabraindoesnotehange. lntheproposedmodels,

additional layers are required for lea.rning, but whole structures of these networks are

fixed. Thus we need notehange the numberofunitsduringlea.rning.

Itisalsosaid that a neuron inabraincanperform relatively simple calculations. In

the proposed models, each unit calculates weightedsummationsofaetivationsofunits

connectedbylinksanddecidesitsactivationfromthesummationsaecordingtoasigmoid

function.Thesecalculationsaresimpleenoughforamodelofaetualneurons.

5.3.2 Locality of Calculations

Eachcalculationofprocessingand lea.rningin brainsisgeneral.ly"-uppos~d to;>l.,..rer[o;>rm~d

in a local a.rea like a synapse. In the proposed models, all procedures of processing

and leatDing are performed in links and units. Furthermore whole data used in these

proceduresarepropaga.tedonlythroughlink.s.ltisea.sytorealizetheseproceduresby

ealculationsinlocalarea.s.

Timelocalityofcalculationsisalsorequired. For example, it is difficult to realize the

back-propagation through time method]WZ89] by calculations local in time. It requires to

recordal.lhistoriesofaetivationsofunits. Such a mechanism is not plausible biologically.

On the other hand, the X model requires only data in current time step. Also the SGH

model requires only data. in previous and current time step. Therefore it is possible to

constructthesemodelsbycalculationslocalintime.

5.3.3 Target Signals

A major problem of supervised learning is who provides ta.rget signals. In the proposed

models, whole target signals are generated in the models except for required external

outputs. For example, in the X model teacher signals for the reconst-input and reeons!·

context layers are patterns of the input and context layers respectively. In the SGH model,

teachersignalsfortheeurrent-groupandnext-groupla.yersa.repa.tternsofthegrouplayer

at the same and the next time steps respectively. Therefore additional mechanisms to

providesuchtargetsarenotnecessary.

Moreover, in theea.sewhen the networks learn the sequence prediction ta.sk like in

eltperiments described in section 3.5 and section 4.4, no external teachers are required.

5.3. Biologir:aJP/ausibility 79

Inthiseasetargetsignalsforoutputlayersarenextinputpatterns.ltisimportantthat

thenetworkseanlearn strueturesofgiven$equences thro1,1gh suchsimpleta.sks[Eim88[

5.3.4 Learning Procedure

The hack-propagation method may he not plausible as biological mode]$, beeau$e it re­

quires slightly complicated procedures to propagate error mformation. Fortunately, in

theproposedmodelsonlypenaltyfunctionsaremodifiedratherthanlearningproced"'res.

Thereforeitiseasytoreplacetheba.ck-propagationwithanotherlearningprocedure. For

example. we can 1,15e the reinforcement learmng method to minimtze the penalty functions.

5.3.5 Toward Biological Model

As diSCI,ISSed above, the proposed mode]$ are p]a1,1sible as brain models For example, we

ca.n draw out a brief structure of nervous systems of the simplified SGH model (Fig. 5.1)

which learns apredictioD task of input sequences. Fig. 5.9showsthe brief structure. In

thisfigure,ea.chlargerectanglemeansalayerofneurons. Ea.chsmallsquaremea.nsadelay­

unit that propagatesactivatioDsafter ODe time delay. Each arrow mea.nsaconnection

between two layers. Furthermore, each circle means a unit that ca.lc"'lates differe11ces

ofpatterDs of two layers. Using these differences, weights of connections are modified.

For example, in the case of a reinforcement learning method, weights are reinforced by a

certain mechanism when the differences are small. The$e mechantsms are simple enough

to be plausible as biological models.

5.3.6 Disadvantages as Biological Models

There are the following disadvantages to the proposed models a.s biological model$.

• While actual brains work in continuous time. the X model and the SGH model work

indiscrete time

• In the SGH model, an operation to copy weights o£ links is required. Such a mech­

anismisnotpla"'sibleasbrainmodels.

80 ChapterS. Discussion

Figure 5.9: Simplified SGH Model as Brain Model

5.4 Related Works

5.4.1 Symbolization of Patterns

Many resea~chers try to minimize the number of hidden units by so-called a pruning

method]Hag91, 5088, OOY93, MS89, KM91, OG93, Ree93] A major strategy of these

worksisremoYingredundant units that are inactiveorduplicateanother The pruning

method, however, does not force llnitsto be.::ome obviously redundant, so that we can

not always find the minimum number of bidden units. On the other hand, the OLL

methodproposedinehapter2forceunitstobe.::omeobviouslyredundant. Consequently,

we cil.ll find the minimum dimensions instead of the minimum hidden units. Yet, OLL

does not minimize the number of hidden units dire<:tly. We will be able to construct a

more powerful pruning method by combining the OLL method

There is another method to find simple networks, called the 'weight-decay method'

[Ish89, PNH86). In !his method, complexity of networks is defined according to weight.s

of hnks. The complexity is minimized through learning. As a result a reduced network IS

acquired. An effed of this method 1s different from the OLL method, because the weight­

decay method minimizes mainly the number of links rather than hidden units. Thus we

ca.nusethosemethodscomplementarily.

5.4. RelatedWor.l:s 81

5.4.2 Sequential Processing and Learning FST by SRN

Simple tecurrent networks (SRN) ate hardly studied as machines of sequential processing.

Elman investigated behavior of SRNs after ttaining a prediction task[Elm88, Elm89].

He showed that networks could find structures in sequences through a simple hack·

propagation learning. Simila.rnetworksa.reusedtolearnregulargrammarsandlinitestate

automata [SSCM89, Pol91), and to process natural languages [MD89, JM90]. Gha.b.ra·

mani and Allen [GA91] proposed a model based on the same idea of an X model after

an X model was proposed. Yet, they did not treat simple recurrent networks as finite

stateautomatainlearning. Thusnetworkscannotachievesuitablestate-transitionseven

if the networks have a capacity to realize such state-transitions. Compared with them.

learning of an SGH modelisbasedon learningoffinitestatetransducers. Therefore an

SGH model can acquire more suitable state-transitions than their models.

Giles and his colleagues ue developing methods to process sequential tasks by re­

current networks and to construct minimum state-transitions of such networks [Gsc·go,

GCM+91a, GCM~9lb, OGM92J. Main differences between my works and them are:

• They use the 'back-propagation through time (BPTT)' method to learn sequential

tasks, while I use the simple BP method. The BPTT method is powerful but less

plausiblebiologieally.

• Their method to construct minimum state-transition is off-line, while my method is

on-line.

5.4.3 Other Symbol Processing by Neural Networks

There are several works to represent or deal with data structures by neural networks. Pol-

lack proposed a method to represent CONS cells of LISP using sand-glass-type networks[Pol89,

Pol90]. Toureuky also proposed a method to represent CONS using Boltzrnann·macbines[Tou90[.

Smolenskyandhiscolleaguestudiedtherepresentationofdatastructuresandvariable

bindings by tensor products [Smo90, LMS91). The strategy of these works is similar to the

methodtorepresentsemanticnetworksbyneuralnetworksdescribedinsection5.2. In this

strategy, data structures arerepresentedassequencesofoperationsofneural networks.

Through these operations, information is convoluted into patterns. Hmton summarized

such a strategy a.sa'between-leve\ timesharing' [Hin90)

82 Chapter5. Discussion

Chapter 6

Conclusions

Hybridandintegratedsysternsofsymbola.ndneuralproccssinga.reexpe<:ted to provide

flexible and robust problem solving methods. Yet it is difficult to transfer information

between both proeessingsystemsbecauseofthedifferenttypeofda.tathatusedin them

From the viewpoint of neural processing, this difficulty comes from two essential charac­

teristicsofdatarepresentationinsymbolprocessing:

• Symbols: each of which indicates dis.erete and independent i11formation.

• Data structuT!ls: by which complicated information is arranged 1\ex.ibly.

In this thesis I have discussed issues that arise when data a.re translated between

symbol and neuralprocessingmodulesinahybridsystem. Based on thesedis<:ussions,

I have proposed learning methods for neural networks to deal with symbols and data

Inchapter2, a method to make pattern representationsuitableforanalyzingassym·

bolswa.sdescdbed.

When a symbol processing module receives information from a neural processing mod·

ule,patternrepresentationintheneuralproces.singmodulemustbeanalyzedfromthe

viewpoint of symbols. Tbereareseveraltecbniques,sucb asclustering,forthepurpose

toanalyzepatternsassymbols. Itis,however,difficulttosymbolizepatternsusingthese

techniques when pattern representation is redundant. This redundant pattern represen·

tationiscausedbytoomanyhiddenunitsforthecomplexityofata.sk.

Inordertobalancethenumberofhiddenunitsandthecomplexityofthetask,anew

learning method, 'overload learning', was proposed. In this method, a network is trained

to leun an additional task together with the original one Since the redundant part of

83

" Cllapter6. Conclusions

thepa.tternsofthehiddenlayersisusedfortheadditionaltask,minimumdimeo.sionsof

hiddenpatternscontinuetowork for the original ta.sk.

Va:rious experiments showed tba.t the proposed method ha.d the following effeds·

etoreducepa.tternrepresentationofa.hiddenlayerfortbeoriginalta.sk.

etoconvergeclustersofpatternsofahiddenlayer.

These effects make the symbolization of patterns ea.sy. The concept ofthis method is very

simple,sothatitisea.sytoapplythismethodtootbernetworkstructuresandlea:rning

methods.

In chapter 3, Jea:rning methods for simple recurrent networks to solve the problem of

how to find LDDs in temporal ~uences were described

When the neural processing module receives data from the symbol processing module,

a problem of bow to deal with structured data by ueural networks arises. Oue of the

ma.jorca.usesofthis problem is thesizeofda.ta.. Although the sbeofstruetured data

geuera.llyva.ries,ueuralnetworksusuallyprocessfu::ed-sizedpatterns. Temporal-sequence

processingisa.ttthuiquetoprocesssuchvaria.ble-sizeddatabyusingprocessorsthatcan

processfi:ted-sizedda.ta. Yet,iu sucha.ttthuique the processors need to learn to process

seque11ces that have long distance dependeucies (LOD). In order to find LDDs, a simple

recurreutuetworkneedstoretaininformationaboutinputhistoriesinpatternsofahidden

layer. I formalized two measures bow much information represented by the patterns.

In the first formalization, a measure of the information was defined by distances be­

tween patterns of a hidden layer. Using this measure, the 'distance-keeping' method was

proposed. In this method, the divergence of weight values of links from a context layer

to a. state layer is made large in order to keep distances of patterns through pattern

transitions.

In the second formalization, a. measure of loss of the information was defined in the

manner of Shannon's information theory. Based on this measure, the 'information-loss

minimization' method was proposed. This method was derived from the relation between

themeasureofinforma.tion·lossand mea.n-square-errorsofa.nidentityfunctionrealized

by a three-layered network.

I carried out experiments to learn a. sequential task with LDDs by using proposed

methods. Results of these experiments showed that both methods increased the ability

to learn tasks with LDDs hy simple recurrent networks as compared with a conventional

85

back-propagationlea.ming. Thesetwomethodsha.vediffereutfeatures: In the'distance­

keeping'method,learningfinishesquickly. Ontheotherband,in the'information-loss

minimization' method, networks can learn tasks with longer distance dependencies than

thedistance-keepingmethod.

In chapter 4, a. method to construct suitable state-transitions of simple recurrent

networks was described.

Temporalsequenceprocessingprovidesanotherpointofviewforrepresentingstruc­

tureddata.. Simplerecurrentnetworksha.veasimilustructuretofinitestatetra.nsducers.

Ontheotherhand,iotbeautomatatheory,state-transitionsofatransducerrepresenta.

structureofsequencesprocessed by it. Simplerecurre!lt networks, however, cannot at·

quire suitable state-transitions by conventional learning methods. Therefore the network

can not il'ar!! rl'presentatio!! of strurt\lres of s!quen~es.

In order to solve this problem, I proposed a network model, called the 'SGH modef,

a.nditslearningmethod. Inordertoderivethemodel,initiallyaproceduretoconstruct

afinitestatetra.nsducerfromex&lllplesofinput-outputswa.scomposed using the state·

minimization technique. Thisprocedureconsistsofthreesteps,the'keepinginputhistory'

step,the'groupingstates'step,and the'constructingstate-transitions'step. Then each

step wa.s reconstructed as learning of a neural network. Finally, three networks were

combined into the SGH model. By 11sing this model, we can get & simple recurrent

network that ha.ssuitablest&te-transitionsfor a given task.

I carried outsomeexperimentstolea.tnseveralk.indsofstate-transitions. In every

case, the network acquired suitable state-transitions. Experiments also showed that it

increased the ability of simple recurrent networks to process temporal sequences with

LDDs.

InchapterS,Idiscussedaboutproposed modelsandmethodsfromvariouspointsof

First, the ability of a simple rec11rrent network and one of a finite state transducer

were compared. Becauseofatopologyofpatterns,thellexibilityofstate-transitionsofa

simple recurrent network is limited compa.ted with a finite state transducer. On the other

hand,thetopologyincrea.sesthegeneralizationabilityoflearningstate-transitionssucha.s

$Ub·grammars. A simple experiment to learn a sub-grammu by a simplified SGH model

was carried out. The result showed that simplified SGH models dealt with sub-grammars

in a framework of a context free grammar.

86 Cha.pter6. Coudus:ions

Second, a formalization ofsemanticnetworksthat weresuitableforprocessingby the

SGH model was discussed. In this formalization, a semantic network is treated as a chart

ofstate-transJtionsofafinitestatetransducers. Thesestate-transitionscanbelearnedby

a SGH modeL Semantic networks are a framework of representation of various kinds of

informatiou used in symbol processing. Thus this formalization provides a way to combine

orintegrateoeuralandsymbolprocessingtightly.

Finally, biological plausibility of proposed models was discussed. While artificial neural

networks are originally derived from biological nervous systems in brains, many of them

ue not plausible as nervous systems. Proposed methods and models are simple enough

and relatively plausible as biological models from various points of view. Especially, every

learningmethodsispresentedbypenaltyfunctions,eachofwhichha.sa.simpleconceptual

meaning. This makes it possible to apply the methods to various network models and

learmngmethods,whichareplausiblea.snervoussystems.

Appendix A

Derivation of (3.8)

Let z:1, :c2 be two input pattern vectors of a pattern translator network in Fig. 3.6, and

zh,z2; bemputs to unit tin the output layer when the network receives input pattern

zh :Z:t respectively. Because weights of links are set randomly, z1; and z4, can be viewed

as ra.adom variables that are independent from each other. The distribution of these

numbers is a Gaussian distribution whose variance a;, and covariance ":2 are:

a;,= a;2 = u; = (1Nu!
ar2 = (/3-o;)Na!

Hence,ifthenumberofunitsintheoutputlayerisla.rgeenough, a normalized distance

o~ between output patterns for z 1 and :z:2, is:

1/2] jlfl•d-/(•,))'p .. (•,,,),,,,,,
= l/2[A(l,2)-A(l,l)) (A.l)

where

and p .. (z,,z2) is a joint probability density of .;J a.nd z2. Because the output function

/(z) = f~oo G(~; 0, 'T)d{ can be interpreted as "a probability of the case when ~he sum of

~and a Gaussian noise-{ is positil·e", A(l.2) becomes·

where

~; "' ZJ +~J

~; = z1 +~1

87

(A.2)

88 Appendix A. Deriva.tio.o of (3.8)

and e.,6 are random vacia.bles whose distributiou are independent Ga.ussia,u distributiou

with average= 0 and variance= ,-1 , and P.,(z;,z;) is a two dimensional Gaussian dis­

tribution whose center is the origin and each variance and covarianceiso; +r2 and of2

respectively. Wecancalcula.tethedefiniteintegralin(A.2)byroeansofa.tecbniqueused

in[Ama78)asfollows:

A(1,2) = ; tan- 1 (2!3 a,~~~:;:,.~

Moreover, A.(l,l) corresponds to A(l,2) in the case of a,,= 0. Therefore (3.8) is derived

bysubstitutingresultsofA(l,l)andA(l,2)in(A.l).

Appendix B

Derivation of (3.15)

Let .,.~,(y) be a variance of a distribution of the •-th element of an input pattern vector

:r: when au output pattern vector is y. Under two assumptions described in section 3.4.3,

H(X]Y)in{J.ll)a.udERin(J.lZ)is:

H(X]Y) < ~logu.;(y) >, +log.f2; (B.l)

ER < ~o!;(Y) >, (8.2}

where < · >, is the mean aecording to y. Hence, the arithmetic mean A, and the

geometric mean A, of D'~;(Y) according to i andy is

N

A, = < 1/N~u~,(y) >,

A,= exp(<l/Nt,logu!,(y)>.)

Thus (B.l) and (8.2) be.:ome:

H(XIY) = (Iog2'11" + NlogA,)/2

ER = NA,

(8.3)

(8.4)

On the other hand, from the Caucby-Schwarz's inequality the following inequality holds:

(8.5)

By substituting (B.J) and (8.4) for A, and A, in (8.5), we can derive (3.15).

89

90 Appendix B. Derivation of (3.15)

Appendix C

Procedure of Learning a FST from

Examples

The procedure of learning a finite state transducer (FST) from given input-output exam­

p\esconsistsoftwosub-procedures,whicharethegenera!ionprocedureandthereduction

procedure. The generation proceduregenera.tesaninitial FSTtha.thasredunda.ntstates.

The reduction procedure reduces the initial FST and constructs final FST that has the

minimumnumberofstates.

C.l Generation Procedure

LetZ beasetofexa:nplese<p.~<mcesofinput-outputpairs,where

Z = {znl::n=:[z:lt=O,l,2, ...],z:=<:c~,y:>n=0,1,2, .,N}

and x~ and 11~ are respectively input and output at time t of n-th example sequences

Hence we cau get an FST that rea.li~es the same input-output responses as the given

examples

(Generation]

Gl Create an initial state q0 , label it, and assign a set Z and a length Oto it.

G2 Pick a labeled state q~ and unlabel it. Let z~ be an assigned set to q~ and /~ be au

assigned leogth to q~. Theo, Classify examples ;zn in z~ into subsets Z, according

to xi;, ... 1, that is (It+ 1)-th input of example zn. Let x, be the (I~+ 1)-th ioput of

91

92 Appendix C. Procedure of Le11tning a FST from Examples

examples in Z, that is zj,+l, a.nd y, be the (I~+ 1)-th output of examples in Z,

thatisy;:,+ 1• 1

GJ Create a new set q; for each Z; created in step G2, label it, and assign a set Z, and

length 1•+1 toq,. Moreover, add a transition from q• toq; by input z, into the

state-transition map, andanoutputy, ofthestateq; into the output map.

G4 Repeat step G2 and GJ until no labeled states remain

C.2 Reduction Procedure

An FST generated by the generation procedure has many redundant states. We can

reduce such a.n FST using the 'state-minimuation' technique[HU79). The procedure is a.s

follows:

(Reduction]

Rl Classifyallstatesintogroupsaccordingtotheoutputofeacbofthestates.

R2 Pickagroup,a.Ddcla.ssifystatesinthegroupintosub-groupsaccordingtothegroup

towhio::hthenextstateoftransitionsforeachinputfromeachofthestatesbelongs.

R3 Repeat step R2 for all groups until no more new groups are o::reated.

R4 Unify states belonging thesamegroupstogetherintoastate, andeonstruettransi·

lions and output functions of unified states.

'Wh~n th~ (I~+ 1)-th outputs of enmpl~s in~ .. t Z,- not th~ .am~, l~t y, be a repr ... ntative

...Jueofthoseoutputll.

Bibliography

[Ama78] Shun-ichi Amari. Shinke1-Ko1romou no Suuri. Sangyo Tosho, 1978.

[CSSL89) Axel Cleeremans, David Servan-Schreiber, and James L.MacCle\land Fi·

nile State Automata and Simple Recurrent Networks. Neu...U Computation,

Vol.l,pp.372-381, 1989

[Elm88] Jeffrey L. Elman. Finding Structure in Time. Technical Report CRL-TR-

8801, Center for Research in Language, University of California, San Diego,

Aprill988.

[Elm89] Jeffrey L. Elman. Struct11red Representations and Connectionist Models. In

Eleventh Annual Conference r;f the Cognitive Science Socaety, pp. 531-546,

1989.

[Elm91) Jefferey L. Elman. Distributed Representations, Simple Recurrent !\etworks,

a.ndGrarnmaticalStructure. MaehineLearnmg,Vol.7,pp.l95-225,1991.

[GA91] Zoubin Ghahra.mani and Robert B. Allen. Temporal Processing with Con­

nectionistl"etworks. In IJCNN9J,pp. J1-[114-S46,June 1991

[GCM+9la) C.L. Giles, D. Chen, C.B. Miller, H.H. Chen, G.Z. Sun, and Y.C. Lee.

Second-Order Re<urrent Neural Networks. In IJCNN91, pp. Il-273-281,

June199l.

[GCM+9tb) G. L. Giles, D. Chen, C. B. Miller, H. H. Chen, G. Z. Sun, and Y. C. Lee.
Second-Order Reo::urrent Neural Networks for Grammartical Inference. In

JJCNN'9J-Seatle,pp. Il-273-281, 1991

[GSC~90J C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen. Higher Order

Recurrent Networks & Grammatical Inference. In NIPS2, pp. 380-387.

MorganKaufmann,l990.

93

94 Bibliography

]Hag91] Masafuroi Hagiwara. Back-Propagation with Artificial Selection- Reduction

of the Number of Learning Times and That of Hidden Units-. Trans.

of dte Institute of Electronics, Information and Communacataon Enginieers,

Vol. J74-D·II, No. 6,pp. 812-818,1991

]Hin90] Geoffrey E. Hinton. Mapping Part-Whole Hierarchies into Connedionist

Networks. Artificialintellrgence, Vol. 46, No. 1-2, pp. 47-75, 1990.

]HU79] John E. Hopcroft and Jeferey D. Ullman. Introductaon to Automata Theory,

Languages, and Compufution. Addison-Wesley, 1979.

]Isb89] M. Ishikawa. A structural learning algorithm with forgetting of link weights.

In IJCNN: International Joint Confereru:e on Neural Networks, pp. vol.2

p.626,Jun.l989.

[JM90) Mark F. St. John and Jame~ L. McClelland. Learning and Applying Contex­

tual Constraints in Sentence Comprehension. Artificial Intelligence, Vol. 46,

No.l-2,pp. 217-257,1990.

[KM91) John K. Kruschke and Javier R. Movellan. Benefits of Gain: Speeded Learn­

ing and Minimal Hidden Layers in back-Propagation Networks. IEEE funs.

on Systems, Man, and Cybernetics, Vol. 21, No. 1, pp. 273-280, 1991.

[LMS91) Geraldine Legendre, Yosbio Miyata, and Paul Smolensky. Distributed Re·

cursive Structure Processing. In NJPS3, pp. 591-597. Morgan Kaufmann,

1991.

]MD89) Risto Miikkulainen and Michael G. Dyer. A Modular Network Architecture

for Sequential Paraphrasing of Script-Based Stories. In JJCNN: Jnternatloll41

Joint Conference on Neural Networks, pp. 11-49-56, 1989.

[MP69) Marvin L. Minsky and Seymore A. Papert. Perceptrons. MIT Press, 1969.

[MS89) Michael C. Mozer and Paul Smolensky. Skeletonization: A Technique for

Trimming the Fat From A Network via Relevance Assessment. In NIPS,

pp. 10i-115.MorganKa.ufmann, 1989.

[Nod89] Itsuki Noda. Method of Learning Markov Sequence Pattern by Boltzmann

Machine with Feedback Loop. Master's thesis, Faculty of Engineering, Kyoto

University,1989.

Bibliography 9.)

[OG93] Christian W. Omlin and C. Lee Giles. Pruning Recurrent !\eural Networks

for Improved Generaliution Performance. Technical Report No. 93-6, Com­

puter Science Department, Rensselaer Plytechnic Institute, Troy, N.T., April

1993

[OGM92] C. W. Omlin, C. L. Giles, and C. B. Miller. Heuristics for the Extraction

of Rules from Discrete-Time Recurrent Neural Networks. In IJCN/1''9£­

Baltimore,pp. l-33-JS,June 1992.

[OOY93] Ta.ka.hiro Oshino, Jun Ojima, and Shinji Yamamoto. Method for Gradually

Reducing a Number of Hidden Units on Back Propagation Learning Algo­

rism. Trans. of th.e Imtitute of Electronics, Information and Commumeation

En91nieers. Vol. J76·D-II. No. 7. p~. 1414.-1424. 1993.

[PNH86] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning

by back propagation. Tech. Rep. CMU-CS-86-126, Carnegie Mellon Univ.,

1986.

[Pol89] Jordan B. Pollack. Implications of Recursive Distributed Representations

In NIPS1, pp. 527-.>36. Morgan Kaufmann, 1989.

[Pol90] Jordan B. Pollack. R.ttursive distributed representations. Artificiallntelli·

gence, Vo!.46,No.l-2,pp. 77-10.>, 1990.

[Pol91] Jordan B. Pollack. The Induction of Dynamical Recognizers. Mach me Learn­

ing, Vol. 7, pp. 227-252,1991

[Ree93] Russell Reed. Pruning Algorithms - A Survey. IEEE Trans. on Neural

Networks, Voi.4,No. S,pp. 740-747,1993.

[5088] J. Sietsmaand R.J.F. Dow. Neural Net Pruning- Why and How. In Proc. of

IEEE Inrernationol Conference on Neural Networks, pp. I-325-l-333, Jul.

1988.

[Sha88] Lokendra Shastri. Semantic Networks: An Evidential Formaluation and its

Connectionist Realization. Research Notes in Artificial Intelligence. Pitman,

London, 1988.

96 Bibliography

)Smo90) Paul Smolensky. Tensor Product Variable Bindiug arJd the Represeutation of

Symbolic Structures in Conneetioust Systems. Artificia.llntelligence, Vol. 46,

1\o. 1-2, pp. 159-216,1990.

JSSCM89] David Servan-Schreiber, Axel Cleeremans, and James L. McClelland. Le;un­

ipg Sequential Structure in Simple Recurrent Networks. In NJPSJ, pp. 643-

652.MorganKaufma.nn,1989.

JTou90] DavidS. Touretzky. BoltzCONS: Dynamic Symbol Structures in a Connec­

tionist Network. Artificial Intelligence, Vol. 46, No. 1-2, pp. 5-46, 1990.

!WK90) Wasubiro Wada arJd Mitsuo Kawato. Selectioll of Neural Network Struc­

ture with Generalizatioll Capability by Using New Informatio Criterion (in

Ja!'anese\. Technical Re!'ort NC90-20. The Institute of Electroni~- Infor­

mation and Communication Enginee~, 7 1990.

[WP85] D. L. Waltz and J. B. Pollack. Massively Parallel Parsing: A Strongly Inter­

active Model of Natural Language Iuterpretation. Cognitive Science, Vol. 9,

No.1, pp. 51-74,1985.

[WZ89] Rouald J. Williams and David Zipser. Gradieut-Based Learuing Algorithms

for Recuneut Networks. In Y. Chauvin and D. E Rumelhart, editor, Back­

propagation: Theory, Architedures and Applications, chapter, pp. Hills­

dale, NJ:Erbaum, 1989.

List of Publications

List of Major Publications

\1] Jtsuki Noda and Makoto Kaga.o. Learning Methods for Simple Recurrent Networks

Based on Minimizing Information Loss (in JapaneS<'). Truns. of The Instl!u!e

of Electronics, lnformahon and Communication Engineers, Vol. J74-D-Il, 1\;o. 2,

pp. 239-247,1991.

[2] Itsuki Noda and Ma.koto Nagao. A Learning Method for Recurrent Ketworks Based

on Minimization of Finite Automata. In IJCNN'92-Baltimore, pp. 1-27-32, Jun.

1992.

[3] Itsuki Noda. Learning Method by Overload. In IJCNN'93-Nagoya, pp. 135i-1360,

Oct. 1993.

!4] Itsuki Noda.. A Learning Method for Re<urrent Neural Networks Based on Mini­

mization of States of Finite State Transducer (in Japanes~)- T'mns. of The /nshtute

of Eleetronics, Information and Commun•cation Engmeers, Vol. J77-D-II, No. 11,

to appear.

[5] hsuki Noda. A Model of R~urrent Neural !'<etworks thM Learn State-Transitions

of Finite State Transducers. WCNN'9.j-San Diego, pp IV-447-452, Jun. 1994.

List of Other Publications

[1] Itsuki Nada and Makoto Nagao. Learning Method for Boltzmann Machine with

Feedback Loop (in Japanese). In Proc. of 38th Convention of IPSJ, 3 1989.

[2) ltsuki Koda and Makoto Nagao. Learning Method of Recurrent !'\eural Networks

base on Minimization of Information Loss (in Japanese) Technical Report NC89-

97

98 Lis! of Publications

55, ~o. 430, The Institute of Electronics, Information and Communication Engi­

neers,ll990.

[3] ltsuki Noda. Grammar Acquisition by R.tturrent Neural Networks. In Proe.

WorkshoponWrning '91, 11991.

[4] Itsuki Noda. A Model of Recurrent Networks that Learn the Finite Automaton from

Given Input-Output Sequences. In JnCernotional Sym.bosium on Neural Information

Processing {u a part of International Syrnpo5ia on lnformatUm Sc1ences (!SKIT

'92}},pp. 197-200,Jul.l992.

/5] l:s:.:l;i !'\'oCa.. Connectionist Symbol Processing. Systems, Control and Information,

Vol. 36, No. 10, pp. 661-668,1992.

[6] ltsuki Noda.. Formalization of Semantic Networks for Neural Networks. In Proe.

rJ/ 3rd Convention of JNNS, pp. 153-154, 12 1992.

[7) Itsuki Noda. Representation of Semantic Networks for Connectionist Model. In

Workshop Of Learning '92, 11992.

[8) Itsuk.i Noda. Analogy on Connectionist Semantic Networks. In Prcc. of Workshop

OfLea.ming '93,11993.

[9] Itsuk.i Noda. Cooperative Natural Language Processing. In Prccudings of the S~th

Annun!l CUNY Sentence Processing Conference, pp. 77, March 1993.

[10] Itsuk.i Noda. Overload Learning. Teehnical Report NC93-28, The Institute of

Eleetronics, Information and Communication Engineers, 7 1993

	0003_2R
	0004_1L
	0004_2R
	0005_1L
	0005_2R
	0006_1L
	0006_2R
	0007_1L
	0007_2R
	0008_1L
	0008_2R
	0009_1L
	0009_2R
	0010_1L
	0010_2R
	0011_1L
	0011_2R
	0012_1L
	0012_2R
	0013_1L
	0013_2R
	0014_1L
	0014_2R
	0015_1L
	0015_2R
	0016_1L
	0016_2R
	0017_1L
	0017_2R
	0018_1L
	0018_2R
	0019_1L
	0019_2R
	0020_1L
	0020_2R
	0021_1L
	0021_2R
	0022_1L
	0022_2R
	0023_1L
	0023_2R
	0024_1L
	0024_2R
	0025_1L
	0025_2R
	0026_1L
	0026_2R
	0027_1L
	0027_2R
	0028_1L
	0028_2R
	0029_1L
	0029_2R
	0030_1L
	0030_2R
	0031_1L
	0031_2R
	0032_1L
	0032_2R
	0033_1L
	0033_2R
	0034_1L
	0034_2R
	0035_1L
	0035_2R
	0036_1L
	0036_2R
	0037_1L
	0037_2R
	0038_1L
	0038_2R
	0039_1L
	0039_2R
	0040_1L
	0040_2R
	0041_1L
	0041_2R
	0042_1L
	0042_2R
	0043_1L
	0043_2R
	0044_1L
	0044_2R
	0045_1L
	0045_2R
	0046_1L
	0046_2R
	0047_1L
	0047_2R
	0048_1L
	0048_2R
	0049_1L
	0049_2R
	0050_1L
	0050_2R
	0051_1L
	0051_2R
	0052_1L
	0052_2R
	0053_1L
	0053_2R
	0054_1L
	0054_2R
	0055_1L
	0055_2R
	0056_1L
	0056_2R
	0057_1L
	0057_2R
	0058_1L

