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Abstract

For a diagram of a knot, Lee associated a complex which is called Lee’s complex. We
introduce the notion of a state cycle of Lee’s complex, which is a certain cycle of Lee’s
complex. We describe state cycles which represent the canonical class of Lee’s homology
of a knot. As a corollary, we give the shaper slice-Bennequin inequality for the Rasmussen
invariant of a knot in the viewpoint of cycles of Lee’s complex.
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1. Introduction

In [16], Rasmussen introduced a smooth concordance invariant of a knot K, now called
the Rasmussen invariant s(K), which is defined by cycles of Lee’s complex. There are many
computation results on the Rasmussen invariant. For example, see [3], [5], [6], [7], [8], [10],
[11], [12], [13], [18] and [19]. However very little is known on cycles of Lee’s complex. Our
goal is to simplify the computation of the Rasmussen invariant by studying cycles of Lee’s
complex.

In this paper, we introduce the notion of state cycles for Lee’s complex. We describe
state cycles which represent the canonical class of Lee’s homology of a knot (Theorem 3.6
and Lemma 6.1). The definition of the canonical class of Lee’s homology of a knot is given in
Remark 2.3. As a corollary, we give a new proof of the sharper slice-Bennequin inequality
for the Rasmussen invariant (Theorem 5.4) in the viewpoint of cycles of Lee’s complex,
which was first proved by Kawamura [7]. In Section 7, we consider the Rasmussen invariant
of the pretzel knot of type (3,−5,−7), denoted by P (3,−5,−7). Let D be the standard
pretzel diagram of P (3,−5,−7). Then we explicitly give a cycle of Lee’s complex of D
which determine the Rasmussen invariant of P (3,−5,−7). Here we do not use Rudolph’s
theory to determine the Rasmussen invariant of P (3,−5,−7).
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Figure 1: 0- and 1-smoothings
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2. Review of Lee’s homology of a knot

Lee [9] constructed a homology theory which is closely related to Khovanov homology
theory. We review the results in [9].

2.1. The construction of Lee’s homology of a knot

In this subsection, we recall the construction of Lee’s homology of a knot.
Let K be a knot, D a diagram of K, c1, · · · , cn the crossings of D and n−(D) the number

of negative crossings of D. A state s = (s1, · · · , sn) for D is a vertex of the n-dimensional
cube [0, 1]n, that is, an element of {0, 1}n. The grading of s is the sum

∑n
i=1 si−n−(D) and

denote it by |s|. A 0-smoothing and a 1-smoothing are local moves on a link diagram as in
Figure 1. We denote by Ds the loops which are obtained from D by applying si-smoothing
at ci (i = 1, · · · , n) and by |Ds| the number of components of Ds. Let V = Q[x]/(x2 − 1)
be a vector space, which is spanned by 1 and x. The object of Lee’s complex is defined as
follows:

Ci
Lee(D) =

⊕
s∈{0,1}n : |s|=i

V ⊗|Ds| and C∗
Lee(D) =

⊕
i∈Z

Ci
Lee(D).

The multiplication m : V ⊗V → V and the comultiplication ∆ : V → V ⊗V are defined by

m(1⊗ 1) = m(x⊗ x) = 1, ∆(1) = 1⊗ x+ x⊗ 1,
m(1⊗ x) = m(x⊗ 1) = x, ∆(x) = x⊗ x+ 1⊗ 1.

Let ξ = (ξ1, · · · , ξi, · · · , ξn) be an edge of the n-dimensional cube [0, 1]n, that is, an element
of {0, ∗, 1}n with just one ∗. Suppose that ξi = ∗. Then we define to be |ξ| = ξ1+ · · ·+ ξi−1,
ξ(0) = (ξ1, · · · , ξi−1, 0, ξi+1, · · · , ξn), ξ(1) = (ξ1, · · · , , ξi−1, 1, ξi+1, · · · , ξn) and ξ(∗) = i. For
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example, suppose that n = 5 and ξ = (1, 1, ∗, 0, 1). Then |ξ| = 2, ξ(0) = (1, 1, 0, 0, 1),
ξ(1) = (1, 1, 1, 0, 1) and ξ(∗) = 3.

For an edge ξ, we associate the cobordism Sξ from Dξ(0) to Dξ(1) as follows: we remove
a neighborhood of the ξ(∗)-th crossing, assign a product cobordism, and fill the saddle
cobordism between the 0- and 1-smoothings around the ξ(∗)-th crossing. The cobordism is
either of the following two types: (i) two circles of Dξ(0) merge into one circle of Dξ(1), or
(ii) one circle of Dξ(0) splits into two circles of Dξ(1). Furthermore, we associate the map

dξ : V
⊗|Dξ(0)| −→ V ⊗|Dξ(1)| as follows: the homeomorphism dξ is induced by the map m if

the cobordism Sξ is of type (i) and by the map ∆ if the cobordism Sξ is of type (ii). Note
that we set dξ to be the identity on the tensor factors corresponding to the loops that do
not participate. For an element x ∈ V ⊗|Ds| ⊂ Ci

Lee(D), we define di as follows,

di(x) =
∑

ξ∈{0,∗,1}n : ξ(0)=s

(−1)|ξ|dξ(x),

where s is a state for D. Let d be
⊕

i∈Z d
i. We obtain d2 = 0. The complex C∗

Lee(D) =
(C∗

Lee(D), d) is called Lee’s complex. The Lee’s homology of K, H∗
Lee(K), is defined to be

the homology group of C∗
Lee(D). By the following lemma, H∗

Lee(K) does not depend on the
choice of diagrams of K.

Lemma 2.1 ([9]). Let D and D′ be diagrams of a knot K. Then C∗
Lee(D) and C∗

Lee(D
′)

are chain homotopic.

2.2. The basis of Lee’s homology of a knot

Lee’s homology of a knot is very simple as a vector space. Lee [9] showed that dimH∗
Lee(K) =

2 and described a basis of Lee’s homology of a knot K. In this subsection, we explain these
results.

It is useful to use the basis {a, b} for V , where a = 1 + x and b = 1− x1. With respect
to this basis, we have

m(a⊗ a) = 2a, m(b⊗ b) = 2b, ∆(a) = a⊗ a,
m(a⊗ b) = 0, m(b⊗ a) = 0, ∆(b) = −b⊗ b.

For a state s for D, we define col(Ds) to be the set of coloring maps from the components
of Ds to V . Note that an element of col(Ds) is naturally identified with an element of

V ⊗|Ds| ⊂ C
|s|
Lee(D). Hereafter we always identify an element of col(Ds) with the element of

V ⊗|Ds| ⊂ C
|s|
Lee(D). We call an element of col(Ds) an enhanced state.

Let o be the orientation of D and so the state for D corresponding to o, that is, the
state whose i-th element is 0 if the sign of ci is positive and 1 if the sign of ci is negative.
Then, by definition, Dso are the Seifert circles and |so| = 0. Let fo(D) ∈ col(Dso) be the

1Lee defined to be a = x+1 and b = x− 1 and Rasmussen used this notation. Our convention is suitable
for our purpose since a+ b = 2. For example, our convention helps us state Lemma 3.3.
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enhanced state whose values of any adjacent Seifert circles are a and b respectively and the
outer most right-handed Seifert circle is a and the outer most left-handed Seifert circle is b
(see Figure 4). Let o be the reversed orientation of D. Then fo(D) and fo(D) are cycles of
C0
Lee(D) and we obtain the following.

Theorem 2.2 ([9]). Let K be a knot. Then

H i
Lee(K) =

{
Q⊕Q i = 0,

0 i ̸= 0.

Furthermore, a basis of H0
Lee(K) consists of [fo(D)] and [fō(D)] for a diagram D of K.

Remark 2.3. The two cycles fo(D) and fō(D) are determined up to multiplication of 2c,
where c is an integer (see [9]). Therefore we call [fo(D)] and [fō(D)] canonical classes of
H∗

Lee(K). In particular, we call [fo(D)] the canonical class 2 of H∗
Lee(K). Here after, we

simply denote fo(D) by fo and fō(D) by fo, respectively.

3. State cycles which represent canonical classes

Elliott [4] introduced the notion of a state cycle for the Khovanov complex. In this
section, we introduce the notion of a state cycle for Lee’s complex, which is a certain cycle
of C0

Lee(D). We describe some state cycles which represent the same element of Lee’s
homology of a knot (Lemmas 3.3 and 3.4) and state the main result (Theorem 3.6).

Let D be a diagram of a knot. A Seifert circle for D is strongly negative if signs of the
adjacent crossings to it are all negative. Figure 2 (the first figure from the right) may help
us understand the definition. We define colo(Dso) to be the set which consists of enhanced
states g ∈ col(Dso) such that g(l) = fo(l) for any Seifert circle l which is not strongly
negative. Now we prove the following lemma.

Lemma 3.1. Any enhanced state g ∈ colo(Dso) is a cycle of C0
Lee(D) i.e. d0(g) = 0.

Proof. Recall that

d0(g) =
∑

ξ∈{0,∗,1}n : ξ(0)=so

(−1)|ξ|dξ(g).

Let ξ be an edge of the n-dimensional cube [0, 1]n with ξ(0) = so. Now we prove that
dξ(g) = 0. Let αξ(∗) be the trace of the crossing cξ(∗) of D. Then adjacent Seifert circles
to αξ(∗) are not strongly negative since cξ(∗) is positive. Then, by definition, the values of
g of adjacent Seifert circles to αξ(∗) are same as that of fo, that is, a and b, respectively.
Therefore dξ(g) = 0. This implies that d0(g) = 0.

2Note that a canonical class of H∗
Lee(K) implies [fo(D)] or [fō(D)] and the canonical class of H∗

Lee(K)
implies [fo(D)].
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According to Lemma 3.1, we call an enhanced state of colo(Dso) a state cycle. A typical
state cycle is fo. The following example demonstrates three state cycles which represent
the same element of Lee’s homology.

Example 3.2. Let D be the standard pretzel diagram of P (3,−3,−3) and number the
crossings of D from 1 to 9, see the first figure from the left in Figure 2. Figure 2 also
illustrates signs of crossings of D, the Seifert circles for D and strongly negative Seifert
circles for D.

Recall that fo is a state cycle, see Figure 4. Let g and h ∈ C−1
Lee(D) be the enhanced

states as in Figure 3. Then we can see that fo − d−1(g) and fo − d−1(g)− d−1(h) are also
state cycles as in Figure 4. Therefore [fo] has, at least, three representatives fo, fo− d−1(g)
and fo − d−1(g)− d−1(h) which are state cycles, and Figure 5 illustrates this fact.

The first equality in Figure 5 is generalized as follows:

Lemma 3.3. Let be a state cycle whose values of adjacent strongly negative Seifert
circles are a and b. Then

[ ] = [ ] = [ ],

where and are the state cycles such that and differ by a single value

of the Seifert circle from a to 2 and and differ by a single value of the Seifert
circle from b to 2.

Proof. Let i be a positive integer such that the trace of the crossing ci is the dotted arc in

. Let ξ be the edge of the n-dimensional cube [0, 1]n such that ξ(∗) = i and ξ(1) = so.

Let ∈ col(Dξ(0))(⊂ C−1
Lee(D)) be the enhanced state such that values of

and agree for the Seifert circles which are not the adjacent strongly negative Seifert

circles. Then one can see that d−1( ) = dξ( ) = (−1)|ξ|+1 . Therefore [

] = [ +(−1)|ξ|+1d−1( ) ] = [ + ] = [ ].
Let ∈ col(Dξ(0))(⊂ C−1

Lee(D)) be the enhanced state such that values of

and agree for the Seifert circles which are not the adjacent strongly negative Seifert

circles. Then one can see that d−1( ) = dξ( ) = (−1)|ξ| . Therefore [ ]

= [ +(−1)|ξ|d−1( ) ] = [ + ] = [ ].

The second equality in Figure 5 is generalized as follows:

Lemma 3.4. Let be a state cycle whose values of two adjacent Seifert circles are a

and b such that the left sided Seifert circle in is strongly negative and the right sided

Seifert circle in is not strongly negative. Then
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Figure 2: the first figure from the left is the standard pretzel diagram D of P (3,−3,−3) and the second one
illustrates signs of crossings of D. The third one denotes the Seifert circles for D and the last one illustrates
strongly negative Seifert circles for D. Here, black circles represent strongly negative Seifert circles.

Figure 3: two enhanced state g and h ∈ C−1
Lee(D) and its images −d−1(g) and −d−1(h) ∈ C0

Lee(D)

Figure 4: three state cycles which represent the same element

Figure 5: three homology classes are the same.
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[ ] = [ ],

where the state cycle whose values of the left sided Seifert circle in is 2 and

whose values of the other Seifert circles coincide with that of .

Let be a state cycle whose values of the adjacent Seifert circles are a and b such

that the left sided Seifert circle in is not strongly negative and the right sided Seifert

circle in is strongly negative. Then

[ ] = [ ],

where ∈ colo(Dso) the enhanced state whose values of the left sided Seifert circle in

is 2 and whose values of the other Seifert circles coincide with that of .

Proof. We only prove the first half of this theorem. Let i be a positive integer such that the

trace of the crossing ci is the dotted arc in . Let ξ be an edge of the n-dimensional

cube [0, 1]n such that ξ(∗) = i and ξ(1) = so. Let ∈ col(Dξ(0))(⊂ C−1
Lee(D)) be the

enhanced state such that values of and agree for the Seifert circles which are

not the two strongly negative Seifert circles. Then one can easily see that d−1( ) =

dξ( ) = (−1)|ξ|+1 . Therefore [ ] = [ +(−1)|ξ|+1d−1( ) ] = [

+ ] = [ ]. We can prove the later half similarly.

Let f2 be the state cycle such that f2(l) = 2 for strongly negative Seifert circles l.
Then [f2] is determined up to multiplication of 2c, where c is an integer (see Remark 2.3).
Example 3.2 implies that [fo] = [f2] for the standard pretzel diagram of P (3,−3,−3).
Another example is the following.

Example 3.5. Figure 6 illustrates, from the left, a diagram D of P (1, 3, 3) and signs of
crossings of D 3, the Seifert circles for D and strongly negative Seifert circles for D. Then,
by Lemmas 3.3 and 3.4, we obtain [fo] = [f2]. See Figures 7, 8 and 9. In particular, we
used Lemma 3.4 to show the second equality in Figure 9

Examples 3.2 and 3.5 give us the idea of a proof of the following theorem.

Theorem 3.6. Let D be a non-negative diagram of a knot. Then [fo] = [f2].

The proof is given in the next section.

4. A graph-theoretical argument

In this section, we prove Theorem 3.6 by a graph-theoretical argument.

3We also number the crossings of D from 1 to 9 arbitrarily.
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Figure 6: a diagram D of P (1, 3, 3) and signs of its crossings, the Seifert circles for D and strongly negative
Seifert circles for D. Here, black circles represent strongly negative Seifert circles.

Figure 7: the homology class of fo

Figure 8: the homology class of fo

Figure 9: the homology class of fo

8



Figure 10: move1s

Figure 11: move2s

4.1. Colorings of vertices of a graph

In this subsection, we study colorings of vertices of a graph.
Let G be a graph. We denote by V (G) the vertices of G. We define col(V (G)) to be the

set of maps V (G) −→ V , where V is the two dimensional vector space which is spanned by
a and b. We call an element of col(V (G)) a coloring of V (G). For c ∈ V , we associate a map
fc : V (G) −→ V such that fc(v) = c for any v ∈ V (G). By abuse of notation, we simply
denote the map fc by c. Suppose that G is a bipartite graph and (X,Y ) the bipartition. A
coloring f ∈ col(V (G)) is canonical if f

∣∣
X

= a and f
∣∣
Y
= b or f

∣∣
X

= b and f
∣∣
Y
= a.

Now we define a local move on col(V (G)). A move1 is a local move on colorings which
change one of values of adjacent vertices as in Figure 10.

Lemma 4.1. For a connected bipartite graph G, let f be a canonical coloring of V (G), v a
vertex of G and gv the coloring of V (G) such that f(v) = gv(v) and gv

∣∣
V (G)\v = 2. Then f

and gv are related by a sequence of move1s.

Proof. The proof is reduced to the case where G is a tree by taking its spanning tree of G.
Thus we suppose that G is a tree. We prove the lemma by induction on the number n of
V (G). If n is one, the lemma is true. We suppose that the lemma is true for n = N ≥ 1.
Suppose that G be a graph such that the number of V (G) is N + 1. Then we choose a leaf
l of G which is not v. By using a move1 once, we obtain the coloring h such that h(l) = 2
(and h(u) = f(u) for the other vertices u). Now we consider the subgraph G′ of G such
that V (G′) = V (G) \ l and E(G′) = E(G) \ e, where e is the edge which is incident to l.
Note that the number of V (G′) is N and h

∣∣
V (G′)

is a canonical coloring of V (G′). Using

the assumption of the induction, h
∣∣
V (G′)

and gv
∣∣
V (G′)

are related by a sequence of move1s

and we see that f and gv are related by a sequence of move1s. Therefore this lemma is also
true for n = N + 1.
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A graph is marked if, at least, one of edges of each connected component of the graph
is marked. The top lefts in Figures 12 and 13 are examples of marked graphs. Let G be a
marked graph. We define another local move on col(V (G)). A move2 is a local move on
colorings which change a value of a marked vertex as in Figure 11.

Lemma 4.2. For a marked bipartite graph G, let f be a canonical coloring of V (G) and
h the constant coloring of V (G) (i.e. h = 2). Then f and h are related by a sequence of
move1s and move2s.

Proof. Suppose that G is connected. Let v be a marked vertex of G and gv ∈ col(V (G))
the coloring such that f(v) = gv(v) and gv

∣∣
V (G)\v = 2. By Lemma 4.1, f and gv are related

by a sequence of move1s. By applying a move2 to v, we obtain h. From the construction, f
and h are related by a sequence of move1s and a move2. If G is not connected, we obtain h
from f by a sequence of move1s and move2s by the same argument component-wisely.

4.2. Colorings of vertices of a strongly negative Seifert graph

In this subsection, we introduce a marked graph which is derived from a diagram of a
knot, and prove Theorem 3.6.

Let D be a diagram of a knot. The Seifert graph G(D) of D is constructed as follows:
for each Seifert circle for D, we associate a vertex of G(D) and two vertices of G(D) are
connected by an edge if there is a crossing of D whose adjacent two Seifert circles are
corresponding to the two vertices.

Here we suppose that D has a strongly negative Seifert circle. We denote by O<(D) the
number of strongly negative Seifert circles for D. A vertex of G(D) is strongly negative if
the corresponding Seifert circle is strongly negative. We can associate a marked graph for
D : let G<(D) be the induced graph by the strongly negative vertices. We give a mark to
a vertex v of G<(D) if there exists a non-strongly negative vertex which is adjacent to v.
Then G<(D) is the marked graph. A state cycle of colo(Dso) is identified with a coloring
of col(V (G<(D)))(we just consider a strongly negative Seifert circle as a vertex of G<(D),
see Figures 12 and 13). Therefore we obtain the following map.

Φ: colo(Dso) −→ col(V (G<(D))).

Note that the map Φ is bijective.

Lemma 4.3. Let D be a diagram of a knot with O<(D) > 0. Let be a coloring of

V (G(D)) and and the colorings which are obtained from by a move1,
respectively. Then[

Φ−1
( )]

=
[
Φ−1

( )]
=

[
Φ−1

( )]
.

Proof. It is immediately obtained from Lemma 3.3.
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Figure 12: an example of Φ from Example 3.2

Figure 13: an example of Φ from Example 3.5
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Lemma 4.4. Let D be a diagram of a knot with O<(D) > 0.
(1) Let be a coloring which is obtained from Φ(fo) by a sequence of move1s and move2s

and the coloring which is obtained from by a move2. Then[
Φ−1

( )]
=

[
Φ−1

( )]
.

(2) Let be a coloring which is obtained from Φ(fo) by a sequence of move1s and move2s

and the coloring which is obtained from by a move2. Then[
Φ−1

( )]
=

[
Φ−1

( )]
.

Proof. (1) Since is a coloring which is obtained from Φ(fo) by a sequence of move1s and

move2s, we can denote Φ−1
( )

by , where the left sided Seifert circle in is

corresponding to and the left sided Seifert circle in is not strongly negative. By
Lemma 3.4, [

Φ−1
( )]

= [ ] = [ ] =
[
Φ−1

( )]
.

(2) We can prove by the same argument.

Proof of Theorem 3.6. If O<(D) = 0, then fo = f2. Therefore [fo] = [f2]. Now we assume
that O<(D) > 0. Then we obtain the signed bipartite graph G<(D) and the map

Φ: colo(Dso) −→ col(V (G<(D))).

Note that Φ(fo) is a canonical coloring of G<(D) and Φ(f2) = 2. Here we note that the
notion of a canonical coloring is only defined for a bipartite graph.

By Lemma 4.2, Φ(fo) and Φ(f2) are related by a sequence of move1s and move2s. By
Lemmas 4.3 and 4.4, [fo] = [f2].

5. Estimations for the Rasmussen invariant of a knot

In this section, we recall the definition of the Rasmussen invariant of a knot and give a
new proof of a refinement of the slice-Bennequin inequality for the Rasmussen invariant by
Kawamura [7].

For a diagram D of a knot K, a filtration of C∗
Lee(D) is defined as follows: We define a

grading p on V by setting p(1) = 1 and p(x) = −1 and extend it to V ⊗n by p(v1⊗v2⊗· · ·⊗
vn) =

∑n
i=1 p(vi). Next we define a filtration grading q for a monomial v of Ci

Lee(D) by
q(v) = p(v) + i+ ω(D), where ω(D) is the writhe of D and extend it to a non-zero element
v of Ci

Lee(D) by q(v) = min{q(vj)
∣∣v =

∑n
j=1 vj ,where vj is a monomial}. Let

F iC∗
Lee(D) = {v ∈ C∗

Lee(D) \ {0}
∣∣q(v) ≥ i} ∪ {0}.
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Then {F iC∗
Lee(D)}∞i=−∞ is a filtration of C∗

Lee(D). Note that one can easily check that q(v)
is always odd. Therefore F2iC∗

Lee(D) = F2i+1C∗
Lee(D). Rasmussen showed the following.

Lemma 5.1 ([16]). Let D and D′ be diagrams of a knot. Then C∗
Lee(D) and C∗

Lee(D
′) are

filtered chain homotopic.

By this lemma, we can also define a filtration grading q of H∗
Lee(K) by

q(x) = max
{
q(y)

∣∣x = [y], y ∈ C∗
Lee(D)

}
4,

where x ∈ H∗
Lee(K) \ {0}. Let F i = {x ∈ H∗

Lee(K) \ {0}
∣∣q(x) ≥ i} ∪ {0}. Then {F i}∞i=−∞

is a filtration of H∗
Lee(K). For this filtration, Rasmussen also showed the following.

Theorem 5.2 ([16]). Let D be a diagram of a knot K. Then

Q⊕Q ≃ H0
Lee(K) = H∗

Lee(K) = · · · = Fqmin ⊋ F
qmax−qmin

2 = Fqmax ⊋ Fqmax+1 = 0, and

qmin = q([fo]) = q([fo]),

where qmax = max{q(x)
∣∣x ∈ H∗

Lee(K), x ̸= 0} and qmin = min{q(x)
∣∣x ∈ H∗

Lee(K), x ̸= 0}.

The Rasmussen invariant of a knot K, s(K), is define to be
qmax − qmin

2
. Note that

s(K) is equal to q
(
[fo]

)
+ 1 by Theorem 5.2. This implies that, for a diagram D of a knot

K, the Rasmussen invariant is completely determined by cycles which are homotopic to fo,
and any cycle which is homotopic to fo gives a lower bound for s(K).

Inequality (5.1) is the slice-Bennequin inequality for the Rasmussen invariant which was
proved by Plamenevskaya [15] and Shumakovitch [17]. For the sake of the reader, we give
a proof.

Theorem 5.3 ([15] and [17]). Let D be a diagram of a knot K. Then

w(D)−O(D) + 1 = q(fo) ≤ s(K), (5.1)

where O(D) denotes the number of the Seifert circles for D.

Proof. We can easily check that q(fo) = w(D)−O(D). By the definition of the Rasmussen
invariant, we obtain

s(K) = q([fo]) + 1 ≥ q(fo) + 1 = w(D)−O(D) + 1.

4For convenience, we use the same symbol as the filtration grading q of Ci
Lee(D).
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In Theorem 5.3, if D is positive, then the equality holds (see [16]). If D is not positive,
then it does not always hold the equality and, indeed, there exists many diagrams such that
the equality does not hold. However, there is a refinement of the slice-Bennequin inequal-
ity for the Rasmussen invariant, the shaper slice-Bennequin inequality for the Rasmussen
invariant, which was first proved by Kawamura [7]. We give another proof of the shaper
slice-Bennequin inequality for the Rasmussen invariant of a knot. Furthermore, we explic-
itly give a cycle which gives the lower bound for the shaper slice-Bennequin inequality for
the Rasmussen invariant of a knot as follows:

Theorem 5.4. Let D be a non-negative diagram of a knot K. Then

w(D)−O(D) + 1 + 2O<(D) = q(f2) + 1 ≤ s(K) (5.2)

Proof. By Theorem 3.6, [fo] = [f2]. This implies that q([fo]) = q([f2]). We can easily check
that q(f2) = w(D)+ (−O(D)+ 2O<(D)). By the definition of the Rasmussen invariant, we
obtain

s(K) = q([fo]) + 1 = q([f2]) + 1 ≥ q(f2) + 1 = w(D) + (−O(D) + 2O<(D)) + 1.

This completes the proof.

Remark 5.5. In Theorem 5.3, ifD is negative, then the inequality (5.2) does not hold. This
is because G<(D) is not a marked graph. In the next section, we consider the Rasmussen
invariant of a negative knot.

6. The Rasmussen invariant of a negative knot

In this section, we study the Rasmussen invariant of a negative knot.
Let D be a negative diagram of a knot K. Then all Seifert circles of D are strongly

negative. We choose a Seifert circle l for D. We define fl to be the state cycle such that
fl(l) = fo(l) and fl(l

′) = 2 for a Seifert circle l′ ̸= l for D. Then we obtain the following.

Lemma 6.1. Let D be a negative diagram of a knot and l a Seifert circle for D. Then

[fo] = [fl].

Proof. The coloring Φ(fo) is a canonical coloring of V (G<(D)), and Φ(fl) is the coloring of
V (G<(D)) such that

Φ(fo)(v) = Φ(fl)(v) and Φ(fl)
∣∣
V (G<(D))\v = 2,

where v is the vertex of V (G<(D)) which is corresponding to l. By Lemma 4.2, Φ(fo) and
Φ(fl) are related by a sequence of move1s. By Lemma 4.3, [fo] = [fl].

Rasmussen showed the following.
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Theorem 6.2 ([16]). Let D be a negative diagram of a knot K. Then

s(K) = −c(D) +O(D)− 1.

As a corollary, we obtain a cycle which determine the Rasmussen invariant of a knot
which has a negative diagram.

Corollary 6.3. Let D be a negative diagram of a knot K and l a Seifert circle for D. Then

s(K) = q(fl) + 1.

Proof. We can easily check that q(fl) = w(D) + (O(D) − 2). By the definition of the
Rasmussen invariant and Lemma 6.1, we obtain

s(K) = q([fo]) + 1 = q([fl]) + 1 ≥ q(fl) + 1 = −c(D) +O(D)− 1.

By Theorem 6.2, this implies that s(K) = q(fl) + 1.

Remark 6.4. Let D be a negative diagram of a knot K. The cycle fl is not uniquely
determined for D and, of course, it depends on choice of Seifert circles l for D. Corollary
6.3 implies that there are, at least, O(D) state cycles which determine s(K).

7. Non-state cycles which represent canonical classes

In this section, for the standard pretzel diagram of P (3,−5,−7), we explicitly give a
cycle of Lee’s complex which determine the Rasmussen invariant of P (3,−5,−7).

Let D be a diagram of a knot. We define O+(D) to be the number of connected
components of the diagram which is obtained from D by smoothing all negative crossings
of D. Kawamura [8] and Lobb [13] independently obtained the following estimation for the
Rasmussen invariant, which is stronger than the shaper slice-Bennequin inequality for the
Rasmussen invariant.

Theorem 7.1 ([8] and [13]). Let D be a diagram of a knot K. Then

w(D)−O(D) + 1 + 2(O+(D)− 1) ≤ s(K).

A homogeneous diagram is a generalization of alternating diagrams and positive dia-
grams. For the definition of a homogeneous diagram, see [1]. In [1], we determine the
Rasmussen invariant of a knot which has a homogeneous diagram as follows:

Theorem 7.2 ([1]). Let D be a homogeneous diagram of a knot K. Then

s(K) = w(D)−O(D) + 1 + 2(O+(D)− 1).
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Figure 14: the first figure from the left is the standard pretzel diagram of P (3,−5,−7) and the second and
third ones illustrate state cycles fo and f2, respectively. The final one illustrates a PD-notation for D.

Therefore we are interested in knots which have no homogeneous diagrams. A typical knot
which has no homogeneous diagrams is P (3,−5,−7). LetD be the standard pretzel diagram
of P (3,−5,−7) and number the crossings of D from 1 to 15 as in Figure 14. Here we let
f3 be the cycle of C0

Lee(D) as in Figure 15 5. We prove that the cycle f3 determine the
Rasmussen invariant of P (3,−5,−7) as follows:

Theorem 7.3. Let D be the standard pretzel diagram of P (3,−5,−7). Then

s(P (3,−5,−7)) = q(f3) + 1 = 2.

Proof. For a knot K, Rasmussen [16] showed

|s(K)| ≤ 2g∗(K) ≤ 2g(K),

where g∗(K) and g(K) denote the 4-ball genus of K and the genus of K, respectively. Since
g(P (3,−5,−7)) = 1, we obtain that s(P (3,−5,−7)) is equal to −2, 0 or 2. On the other
hand, it is not too difficult to see that q(f3) = 1. Here, by the definition of f3 and Theorem
3.6, we have

[fo] = [f2] = [f3].

Therefore we obtain

s(K) = q([fo]) + 1 = q([f3]) + 1 ≥ q(f3) + 1 = 2.

This implies that s(P (3,−5,−7)) = q(f3) + 1 = 2.

Remark 7.4. Let D be the standard pretzel diagram of P (3,−5,−7). Then fo and f2 are
the cycles as in Figures 14 and these cycles give the following estimations

−4 = q(fo) + 1 ≤ s(P (3,−5,−7)),

5The order of crossings for D is derived from the PD-notation for D of the first figure from the right in
Figure 15. For more details, see [2].
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Figure 15: the definition of the cycle f3
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Figure 16: a state cycle which is contained in f2

0 = q(f2) + 1 ≤ s(P (3,−5,−7)).

Note that Theorem 7.3 partially solves Problem 6.1 in [14] which was proposed by the
author. To find the cycle f3, we used a Mathematica program, which was slightly modified
from Bar-Natan’s one. On the other hand, we can check that q(f3) = 1 by hand.

Here we briefly explain why q(f3) = 1. We can see that f2 = g + h1, where g is the
state cycle as in Figure 16 and h1 is some element of C0

Lee(D) with q(h1) ≥ 1. Note that
q(g) = −1. Let f3 = f2−4d−1(h2), where h2 is the sum of the 17 enhanced states in Figure
15. Then we can check that 4d−1(h2) = g + h3, where h3 is some element of C0

Lee(D) with
q(h3) ≥ 1. Therefore q(f3) = 1.
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Topol. 8 (2004) 735–742.

[11] C. Livingston, Slice knots with distinct Ozsváth-Szabó and Rasmussen invariants, Proc.
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Kôkyûroku Bessatsu 1716 (2010), 119–141.

[15] O. Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13
(2006), no. 4, 571–586.

[16] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no.
2, 419–447.

[17] A. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of
knots math, J. Knot Theory Ramifications 16 (2007), no. 10, 1403–1412.

[18] R. Suzuki, Khovanov homology and Rasmussen’s s-invariants for pretzel knots, J. Knot
Theory Ramifications 19 (2010), no. 9, 1183–1204.

[19] S. Wehrli, Categorification of the colored Jones polynomial and Rasmussen invariant
of links, Canad. J. Math. 60 (2008), no. 6, 1240–1266.

19


