1	Inter-annual variation in nut abundance is related to agonistic interactions of foraging
2	female Japanese macaques (Macaca fuscata)
3	
4	Yamato Tsuji ^{1,2*} and Seiki Takatsuki ^{3,4}
5	¹ School of Agriculture and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku,
6	Tokyo, 113-8657, Japan
7	² Primate Research Institute, Kyoto University, 41-2, Kanrin, Inuyama, Aichi, 484-8506,
8	Japan
9	³ University Museum, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033,
10	Japan
11	⁴ Department of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku,
12	Sagamihara, Kanagawa, 252-5201, Japan
13	*Corresponding author
14	Address: 41-2, Kanrin, Inuyama, Aichi 484-8506, Japan
15	E-mail: ytsuji@pri.kyoto-u.ac.jp
16	Tel / Fax: +81-568-63-0539
16 17	Tel / Fax: +81-568-63-0539

19	The importance of dominance status to foraging and ultimately survival and or
20	reproductive success in wild primates is known; however, few studies have addressed
21	these variables simultaneously. We investigated foraging and social behaviour among 17
22	adult female Japanese macaques (Macaca fuscata) on Kinkazan Island, northern Japan,
23	from September to November in two consecutive years (2004 and 2005) to determine
24	whether inter-annual variation in food availability was related to variation in agonistic
25	interactions over food resources and the feeding behaviour of animals of different
26	dominance rank. We compared energy obtained with daily energy requirements and also
27	examined the effect of variation in feeding behaviour on female survival and
28	reproductive success. Fruiting conditions differed considerably between the two years:
29	of four nut-producing species, only Torreya nucifera nuts fruited in 2004, whereas all
30	four species, particularly Fagus crenata, produced nuts in abundance in 2005. The
31	abundance and average crown size of <i>T. nucifera</i> trees were smaller than those of <i>F</i> .
32	crenata, and there was a higher frequency of agonistic interactions during 2004, when
33	dominant, but not subordinate, individuals were able to satisfy daily energy
34	requirements from nut feeding alone through longer nut feeding bouts. In contrast, all
35	macaques, regardless of their dominance rank, were able to satisfy their energy
36	requirements by feeding on nuts in 2005. Subordinate macaques appeared to counter

37	their disadvantage in 2004 by moving and searching for food more and maintaining
38	larger inter-individual distances. Several lower-ranking females died during the
39	food-scarce season of 2004, and only one dominant female gave birth the following
40	birth season. In contrast, none of the adult females died during the food-scarce season of
41	2005, and 12 females gave birth the following birth season. These findings suggest that
42	an interaction between dominance rank and inter-annual variation in food availability
43	are related to macaque behaviour, survival and reproduction.
44	Key-words: dominance rank, energy intake, foraging success, fruiting, inter-annual
45	

46 Introduction

47	A fundamental problem facing group-living animals is that individuals are unable to
48	avoid within-group competition completely (Tilson and Hamilton 1984). In social
49	mammals, the influence of within-group competition on foraging success can ultimately
50	affect population levels by affecting adult mortality (Cheney et al. 1988), birth rate
51	(Holekamp et al. 1996) and infant mortality (Borries et al. 1991). Agonistic interactions
52	often cause differences in resource acquisition among individuals (Sutherland 1996;
53	Robichard et al. 1996; Holand et al. 2004). Such interactions become more frequent
54	and/or more severe when food resources are concentrated, food patches are small and/or
55	inter-patch distances are long, resulting in the monopolization of food resources by
56	dominant animals (Vogel et al. 2007). For example, in tufted capuchins (Cebus apella),
57	white-faced capuchins (C. capucinus) and Hanuman langurs (Semnopithecus entellus),
58	foraging success among dominant individuals is greater than that of subordinates when
59	resources are more concentrated, but not when more dispersed resources are available
60	(Janson 1985; Koenig 2000; Vogel et al. 2007). Foraging success can ultimately affect
61	population parameters like adult mortality (Wrangham 1981; Cheney et al. 1988), birth
62	interval (Frank 1986), birth rate (Bulger and Hamilton 1987; Holekamp et al. 1996),
63	and infant mortality (Borries et al. 1991).

64	Nuts are the staple foods of many frugivorous mammals in temperate regions of
65	Japan, Fagaceae, Betulaceae and Ulmaceae (Koike 2010). The abundance, distribution
66	and size of nut food patches/feeding sites available to animals vary from year to year
67	(Suzuki et al. 2005). Thus, we can predict that the rate of agonistic interactions
68	displayed by group-living animals will also vary between years, as in tropical regions
69	(Barton 1993). For example, in years when nuts are available but are monopolizable,
70	dominant individuals would achieve greater foraging success through agonistic defence
71	of food resources, leading to lower mortality and higher birth rates. Conversely, to
72	compensate for potential energy shortages, subordinate individuals might increase their
73	foraging effort, e.g., by prolonging their total feeding time (van Schaik and van
74	Noordwijk 1985) and increasing inter-individual distances to avoid agonistic
75	interactions (van Noordwijk and van Schaik 1987).
76	We tested the importance of dominance status in foraging, survival and short-term
77	reproductive success among wild Japanese macaques (Macaca fuscata) on Kinkazan
78	Island in northern Japan. Several previous studies have addressed the relationships
79	between i) inter-annual variation in the availability of nuts (i.e., the distribution of
80	nut-producing patches, patch size and density of nuts) and ii) the frequency of agonistic
81	interactions (Barton and Whiten 1993; Saito 1996), i) and iii) foraging-related behaviour

82	and foraging success among dominant and subordinate animals (Iwamoto 1987), and ii)
83	and iii) (Foerster et al. 2011) but few studies have systematically addressed all three
84	variables simultaneously, as we do in the present study. In addition, few studies
85	addressing inter-annual variation in food availability on mortality and the reproductive
86	output of dominant and subordinate animals (Bercovich and Strum 1993), have
87	considered foraging behaviour. Japanese macaques are a group-living, matrilocal
88	primate species typified by a clear, linear dominance hierarchy among adult females
89	(Kawamura 1958). Between September and November, which corresponds to the
90	mating season (Fujita et al. 2004), the macaques of Kinkazan feed on four main species
91	of fallen nut: Fagus crenata, Zelkova serrata, Carpinus spp. (including C. tshonoskii
92	and C. laxiflora) and Torreya nucifera (Tsuji et al. 2006). As the nutritional content, unit
93	weight and feeding speed are all greater for these nuts than other food items, their
94	acquisition allows macaques to deposit fat (Nakagawa 1989; Tsuji et al. 2008), which is
95	important for female oestrus and conception (Takahashi 2002; Fujita et al. 2004) and for
96	over-winter survival (Muroyama et al. 2006). Nut production on Kinkazan varies
97	greatly from year to year (Tsuji 2010), and the food habits (Tsuji et al. 2006) and
98	ranging patterns (Tsuji and Takatsuki 2009) of Kinkazan macaques vary accordingly. A
99	lack of predators and low intergroup competition (Saito et al. 1998) control for these

100	potentially confounding variables, and we can readily evaluate nut availability because
101	the macaques on Kinkazan feed mainly on nuts that have fallen to the ground during
102	this season (Nakagawa 1989).
103	We examined inter-annual variation in the availability of nuts, the frequency of
104	agonistic interactions, foraging-related behaviour and foraging success among dominant
105	and subordinate animals, and mortality and the reproductive output of dominant and
106	subordinate animals. We compared these variables over 2 years (2004–2005) to test the
107	hypothesis that inter-annual variation in nut availability is linked to variation in
108	agonistic interactions over nuts. In 2004, only T. nucifera fruited, whereas all four
109	nut-bearing species fruited in 2005, with F. crenata being especially abundant (Tsuji
110	2010). As a result, the energy available from the nuts was extremely low in 2004, but
111	higher in 2005 than any other year between 2000 and 2006 (Tsuji 2010). Under these
112	conditions, we tested the following four predictions.
113	Prediction 1: Agonistic interactions related to feeding would be more frequent in 2004
114	than in 2005.
115	Prediction 2: Agonistic interactions in 2004 would be linked to differences in
116	foraging-related behaviour (e.g., activity budgets, length of feeding bouts,
117	inter-individual distances) among females of different dominance rank, but there

118	would be fewer differences in 2005.
119	Prediction 3: In 2004, agonistic interactions would lead to greater foraging success
120	among dominant female macaques; this difference would be smaller in 2005.
121	Prediction 4: Inter-annual variation in the foraging success of females of different
122	dominance rank would be reflected in differential mortality and/or birth rates
123	during the following birth season.
124	Figure 1 should appear here
125	Methods
126	Study area
127	Our study site was Kinkazan Island (141°35'E, 38°16'N), located 0.7 km off Oshika
128	Peninsula of northern Japan. The island is 5.1 km long and 3.7 km wide, with a total
129	area of 9.6 km ² . The highest peak is 445 m above sea level. The mean (\pm SD) daily
130	rainfall on the island did not differ significantly between 2004 and 2005 between
131	September and November (paired <i>t</i> -test, $t = 1.47$, df = 90, $p = 0.144$), which
132	corresponds to the mating season, and between December and February (paired t -test, t
133	= 0.46, df = 89, p = 0.444), which corresponds to the food-scarce season (data source:
134	Ishinomaki Weather Station; http//:www.data.kishou.go.jp; Fig. 1a). In contrast, while
135	the mean (\pm SD) temperature between September and November did not differ between

137	significantly different between December and February of the 2 years (paired <i>t</i> -test, $t =$
138	3.77, df = 89, $p < 0.001$; Fig. 1b).
120	
139	
140	Study animals and dominance rank
141	Six troops of wild Japanese macaque live on Kinkazan (Izawa 2009). We studied
142	Troop A, which lives in the north-western part of the island (Tsuji and Takatsuki 2009).
143	Troop A have been habituated to observation at close proximity (< 10 m) since 1982.
144	During the study period, the troop size varied from 29 to 39 individuals, including 2–5
145	adult males (> 5 y), 14–17 adult females (> 5 y), 8–9 juveniles (1–5 y) and 1–12 infants
146	(< 1 y). Data on the maternal kinship and dominance ranks of 17 adult females was
147	available prior to the study (Table I, see also Tsuji 2007). We confirmed the dominance
148	hierarchy using a matrix based on submissive behaviours observed during ad libitum
149	sampling (see Lehner 1979), giving 4 high-ranking (<i>H</i>), 6 middle-ranking (<i>M</i>), and 7
150	low-ranking (L) females (Table I). Landau's index of linearity (h) for the adult females
151	was 0.926, reflecting an almost linear hierarchy (Lehner 1979). Japanese macaques are
152	seasonal breeders, and females on Kinkazan mate mainly from October to November
153	and give birth mainly between April and June (Fujita et al. 2004). From 1982 to 1995,

2004 and 2005 (paired *t*-test, t = 1.47, df = 90, p = 0.144), the mean temperature was

136

154	no female gave birth the year after a surviving infant was born (Izawa 2009). Thus, we
155	assumed that all females without an infant during the mating season could potentially
156	conceive (Fujita et al. 2004). Based on this, nine females had the potential to conceive
157	in 2004 ($H = 2$, $M = 3$, and $L = 4$) and 13 in 2005 ($H = 3$, $M = 4$, and $L = 6$; Table I).
158	Data collection
159	We observed A-troop from late September to late November in both years (41 d in 2004
160	and 36 d in 2005). Total data collection time was 578 hrs (304 hrs in 2004 and 274 hrs
161	in 2005). We followed the troop (17 females in 2004 and 14 females in 2005) from
162	dawn to dusk, during which time we conducted focal animal observations as follows: in
163	the morning we searched for females for whom we had less behavioural data than other
164	females. Once we found an appropriate female we started a focal sample. When we lost
165	the female during the sampling or we had obtained 6 hr of focal data, we terminated the
166	given focal sample, and searched for the next candidate females and started a new focal
167	sample after an interval of several minutes. We followed one to three adult females daily,
168	conducting a total of 146 focal samples during the study (72 focal samples in 2004 and
169	74 focal samples in 2005) (Table I). Mean length of a focal sample was 257 ± 70
170	minutes ($N = 146$). We ensured that we sampled all females during both the morning
171	(6:00–12:00) and afternoon (12:00–18:00) on different days (Table I). We did not follow

172	females in oestrus, who we identified by facial redness and/or consortship with adult
173	males (Fujita et al. 2004), to eliminate the effect of this physiological status on foraging
174	behaviour (Matsubara and Sprague 2004). Table I shows total sampling time for each
175	female. Our methodology adhered to Japanese legal requirements.
176	Activity and food habits
177	We recorded the behavioural state of the focal animal every minute using
178	instantaneous sampling. We classified activity into five categories: 1) feeding (including
179	picking up, processing and chewing at one location), 2) moving (including quadrupedal
180	walking, searching for food and running), 3) resting (including standing, sitting, lying
181	without motion), 4) social grooming and 5) others (including drinking, fighting and
182	alarm calling). If the animals were feeding at a given sampling point, we recorded the
183	number of food items consumed (e.g., one leaf, one entire fruit and nut, or a single bite
184	of bark). We categorised food items as 1) nuts (including F. crenata, T. nucifera, Z.
185	serrata, Carpinus spp. and others), 2) fruits/seeds (except for nuts), 3) leaves, 4) other
186	woody plant materials (including buds, bark, sap and gum), 5) herbaceous plants, 6)
187	fungi, 7) animal materials and 8) others (including soil and unidentified materials). As
188	the macaques fed on herbaceous plants with great rapidity, such plants were difficult to
189	identify. The females rarely discarded any part of the feeding unit. When the focal

190	female fed on a given food item at locations where observation conditions were poor
191	(e.g., within a tree crown or on a cliff), we recorded only the food item(s) and the
192	number of instantaneous sampling points to determine the duration of the feeding
193	episode. We defined the proportion of instantaneous sampling points for consuming
194	food item <i>i</i> relative to all sampling points associated with feeding as the "feeding time
195	percentage for food item <i>i</i> ".
196	Nut-feeding bout, size of feeding trees and number of neighbouring macaques
197	For each nut feeding bout on the ground, we recorded the onset (when the focal
198	female ingested the first nut) and end of nut feeding (when the focal female left the
199	feeding tree). We also visually estimated the crown diameters of feeding trees in 1-m
200	intervals, from which we calculated the size of ground area (obtained by diameter ² × π)
201	beneath the feeding tree (m^2) . Finally, we recorded the number of adult females within 3
202	m of the focal animal every 5 min to provide an indication of inter-individual distances.
203	Three metres has been shown to be the minimum distance tolerated by Japanese
204	macaques before agonistic interactions become more common while foraging (Saito
205	1996).
206	Nut availability

207 To evaluate the availability of edible nuts on the ground from the four different

208	species in the feeding patches for 2004 and 2005, we positioned 0.5×0.5 -m quadrats at
209	ground level under randomly selected nut-producing trees ($N = 36$ for each species), and
210	estimated the number of nuts $(\#/m^2)$ from these quadrats. To calculate temporal changes,
211	we repeated this procedure every 2 to 3 weeks (2004: five times, 2005: six times), using
212	different trees each time. In 2004 only T. nucifera produced fruit so sampling was
213	limited to this species, while in 2005 all four species fruited and were sampled.
214	Agonistic interactions
215	We recorded agonistic behaviour on a continuous basis. We recorded only agonistic
216	interactions directed by the focal female toward other individuals, not those received by
217	the focal female, to simplify the analyses. Following previous studies (Barton 1993;
218	Saito 1996), we recorded both overt (e.g., attack) and subtle (e.g., displacement and
219	threat) agonistic interactions.
220	Estimation of foraging success
221	a) Estimation of metabolizable energy intake (MEI)
222	During the study period, we collected almost all food items consumed by the study
223	subjects (72 of 80 food items). Of these, we reported the nutritional characteristics of 37
224	items elsewhere (Tsuji et al. 2007; Tsuji and Takatsuki 2008). We report the nutritional
225	characteristics of the remaining 35 food items here. We dried each food item and

226	weighed it according to its feeding unit (g) ($N = 5$). Then we milled and analysed the
227	item for crude proteins (%CP, obtained by C.N. coder), neutral detergent fibre (%NDF,
228	obtained from the remnants left after neutral detergent boiling), crude lipids (%CL,
229	determined in a Soxhlet tube) and crude ash (%CA, obtained from the ignition loss)
230	(Tsuji et al. 2008). We measured the nutritional contents in duplicate and took the mean
231	of the results. We calculated the gross energy content of food item i (e_i , kcal/g) using the
232	following formula (Maynard et al. 1979):
233	$e_i = 0.0415 \times (100 - [\% CP_i + \% CL_i + \% CA_i]) + 0.0565 \times \% CP_i + 0.0940 \times \% CL_i$
234	We calculated the rate of consumption of different food items as the dry weight
235	consumed/min, and the rate of energy intake (EIS) by multiplying this number by the
236	gross energy content/g of that food item.
237	We estimated the amount of energy intake (kcal) for a focal female during an focal
238	sample, which provides a good indicator of foraging success, by combining behavioural
239	data from the subjects and EIS for each food item, as employed by Iwamoto (1982),
240	Nakagawa (1989) and Tsuji et al. (2008). First, we calculated the gross energy intake
241	(GEI) for a focal female during a focal sample (kcal), using the following formula:
242	$GEI_i = \sum_{i=1}^n EIS_i \times FT_i$,

243 where FT_i represents the number of instantaneous sampling points for consuming food

item *i*. To estimate the energy intake from food item *i* when observation conditions were 244poor, we used the average EIS for the given food item (Nakagawa 1989; Tsuji et al. 2452008). Then we multiplied the apparent energy digestibility for a given wild food item 246247(55%, Nakagawa 1989; Tsuji et al. 2008) by GEI to estimate the digestible energy intake. Finally, we calculated metabolizable energy intake (MEI, kcal) during the focal 248sample by subtracting the energy lost in urine (estimated as 4% of GEI, Nagy and 249Milton 1979) from the digestible energy intake. 250 $MEI_i = \left(\sum_{i=1}^n EIS_i \times FT_i\right) \times 0.51$ 251b) Estimation of energy requirements (ER) during focal samples 252We estimated daily energy requirements according to Nakagawa (1989): a non-nursing 253adult female (8 kg in body weight) requires 517.9 kcal during one whole day in autumn 254(600 min). This gave us the energy required per minute, and we calculated the energy 255requirement during the focal sample i (ER_i) (kcal) using the following formula: 256

$$ER_{i} = \left(\frac{517.9}{600}\right) \times OT_{i}$$
$$= 0.863 \times OT_{i}$$

where OT_i represents the duration of the focal sample *i*. When MEI_i was inferior to ER_i,

- we considered the focal female to be experiencing an energy shortage.
- 260 Population parameters
- 261 During the birth season (from April to June) of 2005 and 2006, we recorded all births

262	and the presence of each adult female. We assumed that females who had disappeared
263	during our observations in the two seasons had died. For each dominance rank, we
264	calculated a modified birth rate and adult mortality (Fujita et al. 2004):
265	Modified birth rate = [# of females that delivered]
266	/ [# of adult females with no infant < 1 y]×100
267	Adult mortality = [# of females disappeared]
268	/ [# of adult females in last May]×100
269	Statistical analyses
270	We employed the Kruskal-Wallis tests and post hoc Steel-Dwass tests to test the
271	temporal change in nut availability. We employed the Mann-Whitney U tests to test the
272	difference in the average crown size of nut producing trees between 2004 and 2005. For
273	these analyses we set significant levels at 5%.
274	We constructed generalised linear mixed models (GLMMs) to examine the effects
275	of year, dominance rank and their interaction on 1) the frequency of agonistic
276	interactions, 2) the mean length of nut-feeding bouts in the focal sample, 3) time spent
277	on a given activity (represented by the number of instantaneous scan samples), 4)
278	number of neighbouring macaques and 5) MEI. We treated a single focal sample as a
279	unit of data. We conducted the statistical tests using the glmmML, lme4, MASS and aod

280	packages in the statistical software package R.2.9.1 (R Development Core Team, Vienna,
281	Austria). We included the identity of each individual as a random effect in our models
282	(Bolker et al. 2008). We analysed the main effects of year and rank and their interaction
283	on nut feeding and eating other food items separately. In order to eliminate the effect of
284	difference in focal sample lengths on the given dependent variables, we added an offset
285	term to the model for each analysis, except for the length of nut-feeding bouts, which
286	are independent of focal sample length (Table II). We selected the best models using the
287	"stepAIC" function in the MASS package in the statistical software package R.2.9.1 (R
288	Development Core Team, Vienna, Austria). We omitted seven focal samples where we
289	achieved less than 2 hrs of observation from the analyses.
290	Tables I and II should appear here
291	Results
292	Food habits in autumn
293	We obtained 19817 instantaneous scan samples (13859 in 2004 and 5958 in 2005) over
294	146 focal samples (Appendix 1). The females ate 60 different food items (excluding
295	unidentified insects and soil) in 2004 and fed mainly on fruits and seeds other than nuts
296	(5987 scans, 43.2% of all feeding time). Of the available nuts, the females spent more
297	time feeding on T. nucifera than any other nut variety (1109 scans, 8.0% of all feeding

298	time and 64.1% of total feeding time for all nuts; Appendix 1). Herbaceous plants (4060
299	scans, 29.3%) were also important food items in 2004. Conversely, in 2005, focal
300	females consumed 47 different food items, but fed mainly on nuts (3592 scans, 60.3%
301	of all feeding time). Of the nuts, the percentage of <i>F. crenata</i> consumed was the largest
302	(2872 scans, 48.2% of all feeding time and 79.9% of total feeding time for nuts)
303	(Appendix 1). The contributions of fruits and seeds other than nuts (1144 scans, 19.2%)
304	and herbaceous plants (560 scans, 9.4%) was lower in 2005.
305	
306	Description of nut-producing trees
307	In 2004, 93 of the 128 nut-producing trees used by macaques were of the species T.
308	<i>nucifera</i> . The next most commonly used species was <i>Quercus serrata</i> ($N = 31$). The

- 309 mean \pm SD nut tree size was 40 \pm 28 m² (34 \pm 20 m² for *T. nucifera*). In contrast, 220 of
- the 294 nut-producing trees used by the macaques in 2005 were F. crenata. In addition,
- macaques fed on the nuts of *T. nucifera* (N = 28), *Q. serrata* (N = 17), *Carpinus* spp. (N
- 312 = 13) and Z. serrata (N = 9). The average crown size of nut-producing trees was
- 313 significantly smaller in 2004 than in 2005 (Mann-Whitney U- test: all trees: U = 10895,
- 314 $N_1 = 128, N_2 = 294, p < 0.001$).

315

316 Nut availability

317The density of T. nucifera nuts beneath the crowns of the trees examined peaked at 20/m² in September 2004, and decreased dramatically to almost zero in early December. 318 319The temporal difference in nut availability was statistically significant (Kruskal-Wallis test: H = 12.5, df = 4, p = 0.013), though multiple comparisons did not show any 320 significant differences among sampling times (Steel-Dwass tests, p > 0.05). In 2005, the 321nut density under the crowns of F. crenata, Z. serrata and Carpinus spp. increased until 322November, with densities maintained at over $50/m^2$ even in early December. All species 323 exhibited statistically significant temporal changes in 2005 (Kruskal-Wallis tests: F. 324*crenata*: *H* = 17.8, df = 5, *p* = 0.003; *T. nucifera*: *H* = 14.1, df = 5, *p* = 0.015; *Z. serrata*: 325H = 11.7, df = 5, p = 0.039; Carpinus spp.: H = 13.3, df = 5, p = 0.021), although 326 multiple comparisons did not show any significant differences among sampling times 327(Steel-Dwass tests, p > 0.05) except for *F. crenata*, in which number of nuts on the 328 ground in early November was significantly greater than that in early December 329 (Steel-Dwass test, p < 0.05). 330 331332Agonistic interactions (Prediction 1)

333 We observed a total of 257 agonistic interactions during the study period. The mean (\pm

334	SD) frequency of agonistic interactions initiated by the focal animals (times/sampling
335	hour) was significantly greater in 2004 (0.68 \pm 0.78, $N = 17$) than in 2005 (0.22 \pm 0.27,
336	N = 14; paired <i>t</i> -test, $t = 2.62$, df = 13, $p = 0.021$). Agonistic interactions occurred more
337	frequently during feeding (both nut feeding and other feeding) in 2004, whereas they
338	occurred more frequently during resting and grooming in 2005 (Table IIIa). Selected
339	models showed that year affected the occurrence of agonistic interactions during all
340	activities with the exception of resting (i.e., the frequencies of agonistic interactions
341	were greater in 2004; Table IIIa). The frequency of agonistic interactions was greater
342	during resting in 2005 than in 2004 (Table IIIa). Moreover, rank showed a negative
343	association with the frequency of aggressive behaviour during feeding and moving
344	(Table IIIa). Finally, we found an interaction between rank and year for feeding on other
345	food items, showing that dominance status affected the frequency of agonistic
346	interactions during feeding in 2004, but not in 2005 (Table IIIa).
347	Table III should appear here
348	Foraging-related behaviour (Prediction 2)
349	The frequencies of total feeding, feeding on other items and moving all decreased from
350	2004 to 2005, whereas resting and grooming both increased from 2004 to 2005 (Table
351	IIIb). Furthermore, rank showed a negative association with total feeding $(H > M > L)$.

352	Our models showed an interaction between rank and year for nut feeding, moving and
353	resting such that rank was negatively correlated with nut feeding in 2004 ($H > M > L$),
354	but this effect was not clear in 2005 ($H > M = L$; Table IIIb). Subordinates spent longer
355	moving and resting than dominants ($H < M < L$) in 2004 during the nut shortage,
356	whereas this relationship was not apparent in 2005 ($H = M = L$), when many nuts were
357	available (Table IIIb).
358	Year had a positive effect on the number of neighbours within 3 m of a focal
359	female during moving and resting (2005 > 2004; Table IIIc). Rank showed a negative
360	association with the number of neighbours a focal female had while moving $(H > M >$
361	L). Finally, an interaction between rank and year affected the number of neighbours a
362	focal female had during feeding (on both nuts and other items) and grooming. During
363	feeding, rank showed a negative association with the number of neighbours in 2004 (H
364	> M > L); however, there was no clear relationship in 2005 (H > M < L ; Table IIIc).
365	Similarly, rank was negatively related to the number of neighbours while grooming in
366	2004 ($H > M > L$); however, this effect was not apparent in 2005 ($H = M < L$; Table
367	IIIc).
368	Year, rank and their interaction in our models all affected the length of feeding

369 bouts on nuts, on other food items and on all food items. Rank showed a negative

association with nut feeding in 2004 (H > M > L) but not in 2005 (H = M = L; Table

371 IV).

372

373 Foraging success (Prediction 3)

We found clear differences in the association between MEI and rank in 2004 (Fig. 2, 374Table IV). Most of the dominant individuals obtained enough energy from nuts to 375exceed their estimated ER (Fig. 2a); they generally obtained less energy from other food 376 items than did subordinates (Fig. 2b). Furthermore, the MEI from all food items was 377 greater for dominant than for subordinate individuals (Fig. 2c). These differences in 378MEI among females of different rank disappeared in 2005, when all females were able 379 to satisfy most of their ER by consuming nuts. We found no difference in MEI between 380 381individuals of different rank in 2005 (Fig. 2, Table IV). Table IV should appear here 382Survival and reproduction (Prediction 4) 383 Three adult females (two middle-ranking and one low-ranking) died during the winter 384of 2004 (mortality: 0% [0/4] for H, 33% [2/6] for M and 14% [1/7] for L), whereas no 385386 adult females died during the winter of 2005 (Table I). However, the mortality of adult

females, as a group, did not significantly vary between 2004 and 2005 ([3/17] vs [0/14];

388 Fisher's exact test, p = 0.251).

389

390	Only one high-ranking female gave birth in the spring of 2005 (modified birth rate: 50%
391	[1/2] for H , 0% [0/3] for M and 0% [0/4] for L). In contrast, 12 females gave birth in the
392	spring of 2006 (modified birth rate: 100% [4/4] for <i>H</i> , 75% [3/4] for <i>M</i> and 83% [5/6]
393	for L; Table I). One of the high-ranking females with a surviving infant born in 2005
394	(Kr) also gave birth in 2006. The difference in birth rate between 2004 and 2005 was
395	close to significant ([1/9] vs [12/14]; Fisher's exact test, $p = 0.060$).
396	Figure 2 should appear here
397	
398	Discussion
399	The frequency of agonistic interactions during each activity, with the exception of
400	resting, was greater in 2004 than in 2005, and decreased with dominance during feeding
401	(both on nuts and other food items) and moving in 2004 but not in 2005. Thus, our
402	results support Prediction 1. We found an interaction between year and dominance rank
403	during "other feeding" in 2004, when dominant females frequently initiated agonistic

- 404 interactions, however we did not find this same interaction during 2005 season . This
- 405 finding reflected differences in the main food items in the two years: food items other

406	than nuts consumed during the autumn of 2004 mainly consisted of fruits and seeds. In
407	2005, competition for such food items decreased because the macaques spent
408	significantly more time feeding on nuts, the availability of which was markedly higher
409	than in 2004, particularly those of <i>F. crenata</i> .
410	Engaging in aggressive interactions is disadvantageous for subordinate individuals,
411	because in addition to losing the opportunity to access quality food resources such as
412	nuts, they run the risk of physical injury (Sutherland 1996). In the present study,
413	low-ranking individuals were unable to remain at feeding trees for long periods in 2004,
414	possibly because of the increased risk of agonistic interactions. Among long-tailed
415	macaques (Macaca fascicularis) subordinate individuals tend to increase their foraging
416	effort when faced with food restrictions, e.g., they prolong total feeding time (van
417	Schaik and van Noordwijk 1985) and increase their inter-individual distances (van
418	Noordwijk and van Schaik 1987). In the current study, subordinate individuals engaged
419	in longer periods of moving (perhaps thereby increasing the amount of time available
420	for searching for food on the ground) and appeared to avoid getting within close
421	proximity to neighbouring macaques by increasing their inter-individual distances and
422	often feeding alone. Therefore, it seems that low-ranking macaques in our study
423	modified their foraging tactics in response to inter-annual variation in the food

424 environment. These findings support Prediction 2.

425	In 2004, the MEI from nuts available to subordinate individuals was much lower
426	than that available to dominant females, due to differences in the length of nut-feeding
427	bouts exhibited by the different dominance ranks. Previous studies have shown that the
428	amount of time spent at feeding patches is important to an animal's foraging success
429	(Janson 1985; van Noordwijk and van Schaik 1987), and our results support these
430	findings. In the present study, subordinate individuals were able to increase their MEI
431	by resorting to other food items and, in this way, some were able to obtain sufficient
432	total energy. Such foraging tactics only occurred over the short term because T. nucifera
433	nuts were not available in 2004 beyond late November, after which subordinate
434	individuals fed on non-nut foods. As a consequence, the MEI after late November could
435	not satisfy the ER of these individuals. From December to February, which corresponds
436	to the food-scarce season, Japanese macaques expend body fat accumulated during the
437	previous season (Muroyama et al. 2006), and it is possible that subordinate individuals
438	were unable to deposit adequate amounts of body fat after late November, 2004. A food
439	shortage at this time could thus cause more serious long-term consequences for
440	lower-ranking individuals. The fact that two mid-ranking adults and one low-ranking
441	adult died during the food-scarce season of 2004, and only one female gave birth the

442	next birth season, supports this hypothesis. However, nut production in 2005 was much
443	greater (Tsuji 2010) and the macaques were able to feed on nuts until the following
444	April (Tsuji personal observation). The MEI did not differ among females of different
445	dominance rank in 2005. Nutritional conditions during the food-scarce season of 2005
446	were therefore the same regardless of the dominance rank of focal females. The fact that
447	none of the females died during the food-scarce season of 2005, and 12 females gave
448	birth in the spring of 2006 supports this notion.
449	The physical conditions of temperature and rainfall often affect population
450	parameters (Pavelka et al. 2003); however, these conditions did not play a role in the
451	results of the present study because both daily rainfall and temperature during the
452	mating season (September to November) and following the food-scarce season
453	(December to February of the next year) were similar in 2004 and 2005, with the
454	exception of the temperature during the food-scarce season. The fact that no females
455	died during the food-scarce season of 2005, when the temperature was lower (that is,
456	more severe for the macaques) than that in 2004, further suggests that physical
457	conditions were not a factor in the present study. Our results therefore support
458	Predictions 3 and 4, although the findings for Prediction 4 are inconclusive owing to the
459	small sample size. The large annual variation in birth rate and mortality on the island

460	reported by Izawa (2009) may be partially explained by the yearly variation in nut
461	availability and consequent variation in feeding behaviour of animals in different
462	dominance rank. However, a longer-term study of population parameters needs to be
463	undertaken to confirm this hypothesis.
464	In conclusion, a great deal of evidence indicates that yearly changes in food
465	availability can affect the physical condition of animals, in terms of energy intake
466	(Knott 1998, Curran and Leighton 2000), body weight (Feldhamer et al. 1989), oestrus
467	patterns (Takahashi 2002) and birth rate/infant mortality (Eiler et al. 1989). The present
468	study tested the hypothesis that inter-annual variation in the food environment indirectly
469	influences primate nutritional conditions through modification of their foraging
470	behaviour. We also demonstrated that such variation in food supply differentially
471	affected animals according to dominance rank; subordinate females faced serious food
472	shortages during a year of low nut availability. In addition, the behavioural variation
473	was reflected in survival and reproduction, although these results should be treated with
474	caution due to small sample size and short-term measures of reproduction.Because
475	yearly changes in food availability, especially nut fruiting, are common in temperate
476	regions (Suzuki et al. 2005), yearly changes in staple food production may thereby
477	ultimately affect the population dynamics of animals.

478

479	Acknowledgements
-----	------------------

480	We would particularly li	te to thank K. Izawa, N.	. Nakagawa, H.	Sugiura, S. Fujita
-----	--------------------------	--------------------------	----------------	--------------------

- 481 and the staff at Kinkazan Koganeyama Shrine for the use of their facilities, J. Setchell, P.
- 482 A. Pebsworth and two anonymous reviewers for their constructive comments. This
- 483 study was partly supported by the Cooperative Research Fund of the Primate Research
- 484 Institute, Kyoto University.
- 485
- 486 References
- 487 Barton, R. A. (1993). Sociospatial mechanisms of feeding competition in female olive

488 baboons, *Papio anubis*. *Animal Behaviour*, *46*, 791–802.

- 489 Barton, R. A., & Whiten, A. (1993). Feeding competition among female olive baboons,
- 490 Papio anubis. Animal Behaviour, 46, 777–789.
- 491 Bercovitch, F. B., & Strum, S. C. (1993). Dominance rank, resource availability, and
- 492 reproductive maturation in female savanna baboons. *Behavioral Ecology and*
- 493 *Sociobiology*, *33*, 313–318.
- Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H.
- 495 H. & White, J. S (2008). Generalized linear mixed models: a practical guide for

496	ecology and evolution. Trends in Ecology and Evolution, 24, 127–135.
497	Borries, C., Sommer, V., & Srivastava, A. (1991). Dominance, age, and reproductive
498	success in free-ranging female Hanuman langurs (Presbytis entellus). International
499	Journal of Primatology, 12, 231–257.
500	Bulger, J. & Hamilton, W. J. (1987). Rank and density correlates of inclusive fitness
501	measures in a natural chacma baboon (Papio ursinus) troop. International Journal
502	of Primatology, 8, 635-650.
503	Cheney, D. L., Seyfarth, R. M., Andelman, S. J., & Lee, P. C. (1988). Reproductive
504	success in vervet monkeys. In T. H. Clutton-Block (Ed.), Reproductive success (pp.
505	384-402). University of Chicago Press, Chicago.
506	Curran, L. M., & Leighton, M. (2000). Vertebrate responses to spatiotemporal variation
507	in seed production of mast-fruiting Dipterocarpaceae. Ecology, 70, 101–128.
508	Eiler, J. H., Wathen, W. G., & Pelton, M. R. (1989). Reproduction in black bears in the
509	southern Appalachian Mountains. Journal of Wildlife Management, 53, 353–360.
510	Feldhamer, G. A., Kilbane, T. P., & Sharp, D. W. (1989). Cumulative effect of winter
511	on acorn yield and deer body weight. Journal of Wildlife Management, 53,
512	292–295.

513 Foerster, S., Cords, M., & Monfort, S.L. (2011). Social behaviour, foraging strategies,

514	and fecal glucocorticoids in female blue monkeys (Cercopithecus mitis): potential
515	fitness benefits of high rank in a forest guenon. American Journal of Primatology,
516	73, 870-882.
517	Frank, L. G. (1986). Social organization of the spotted hyena Crocuta crocuta. II.
518	dominance and reproduction. Animal Behaviour, 34, 1510-1527.
519	Fujita, S., Sugiura, H., Mitsunaga, F., & Shimizu, K. (2004). Hormone profile and
520	reproductive characteristics in wild female Japanese macaques (Macaca fuscata).
521	American Journal of Primatology, 64, 367–375.
522	Holand, O., Weladji, R. B., Gjostein, H., Kumpula, J., Smith, M. E., Nieminen, M., &
523	Roed, K. H. (2004). Reproductive effort in relation to maternal social rank in
524	reindeer (Rangifer tarandus). Behavioral Ecology and Sociobiology, 57, 69–76.
525	Holekamp, K. E., Smale, L., & Szykman, M. (1996). Rank and reproduction in the
526	female spotted hyena. Journal of Reproduction and Fertility, 108, 229-237.
527	Iwamoto, T. (1982). Food and nutritional condition of free ranging Japanese monkeys
528	on Koshima Islet during winter. Primates, 23, 153-170.
529	Iwamoto, T. (1987). Feeding strategies of primates in relation to social status. In Y. Ito,
530	J. L. Brown & J. Kikkawa (Eds.), Animal societies: theories and facts (pp.
531	243–252). Tokyo: Japan Scientific Societies Press.

- 532 Izawa, K. (2009). *Research on wild Japanese macaques*. Tokyo: Dobutsusha (in
 533 Japanese).
- Janson, C. (1985). Aggressive competition and individual food-consumption in wild
- brown capuchin monkeys (*Cebus apella*). *Behavioral Ecology and Sociobiology*, *18*, 125–138.
- 537 Kawamura, S. (1958). The matriarchal social order in the Minoo-B group: a study on
- the rank system of Japanese macaque. *Primates*, *1*, 149–156.
- 539 Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones
- 540 in response to fluctuating fruit availability. *International Journal of Primatology*,
- 541 *19*, 1061–1079.
- 542 Koenig, A. (2000). Competitive regimes in forest-dwelling Hanuman langur females
- 543 (Semnopithecus entellus). Behavioral Ecology and Sociobiology, 48, 93–109.
- 544 Koike, S. (2010). Long-term trends in food habits of Asiatic black bears in the Misaka
- 545 Mountains on the Pacific coast of central Japan. *Mammalian Biology*, 75, 17–28.
- Lehner, P. N. (1979) Handbook of ethological methods. New York: Garland STPM.
- 547 Matsubara, M., & Sprague, D. S. (2004). Mating tactics in response to costs incurred by
- 548 mating with multiple males in wild female Japanese macaques. *International*
- 549 *Journal of Primatology*, 25, 901–917.

550	Maynard, L. A.	, Loosli, J. K.	, Hintz, H. F.,	& Warner, R. G.	(1979). Animal nutrition
	J /	/ /	, , , ,	/	\	/

- 551 New York, McGraw-Hill.
- 552 Muroyama, Y., Kanamori, H., & Kitahara, E. (2006). Seasonal variation and sex
- differences in the nutritional status in two populations of wild Japanese macaques. *Primates*, 47, 355–364.
- 555 Nagy, K. A., & Milton, K. (1979). Energy metabolism and food consumption by wild

bowler monkeys (*Alouatta palliata*). *Ecology*, 60, 475–480.

- 557 Nakagawa, N. (1989). Bioenergetics of Japanese monkeys (Macaca fuscata) on
- 558 Kinkazan Island during winter. *Primates*, *30*, 441–460.
- 559 Pavelka, M. S. M., Brusselers, O. T., Nowak, D., & Behie, A. M. (2003). Population
- 560 reduction and social disorganization in *Alouatta pigra* following a hurricane.
- 561 *International Journal of Primatology*, 24, 1037–1055.
- 562 Robichald, D., Lefebvre, L., & Robidoux, L. (1996). Dominance affects resource
- 563 partitioning in pigeons, but pair bonds do not. *Canadian Journal of Zoology*, 74,
- 564 **833–840**.
- 565 Saito, C. (1996). Dominance and feeding success in female Japanese macaques,
- 566 *Macaca fuscata*: effects of food patch size and inter-patch distance. *Animal*
- 567 *Behaviour, 51, 967–980.*

568	Saito, C., Sato, S., Suzuki, S., Sugiura, H., Agetsuma, N., Takahata, Y., Sasaki, C.,
569	Takahashi, H., Tanaka, T., & Yamagiwa, J. (1998). Aggressive intergroup
570	encounters in two populations of Japanese macaques (Macaca fuscata). Primates,
571	<i>39</i> , 303–312.
572	Sutherland, W. J. (1996). From individual behaviour to population ecology, Oxford:
573	Oxford University Press.
574	Suzuki, W., Osumi, K., & Masaki, T. (2005). Mast seeding and its spatial scale in
575	Fagus crenata in northern Japan. Forest Ecology and Management, 205, 105–116.
576	Takahashi, H. (2002). Female reproductive parameters and fruit availability: factors
577	determining onset of estrus in Japanese macaques. American Journal of
578	Primatology, 57, 141–153.
579	Tilson, R. L., & Hamilton, W. J. (1984). Social dominance and feeding patterns of
580	spotted hyenas. Animal Behaviour, 32, 715-724.
581	Tsuji, Y. (2007). Effect of annual difference in fruiting on population parameters of wild
582	Japanese macaques through competition. Ph D. thesis, University of Tokyo, Tokyo
583	(in Japanese with English summary).
584	Tsuji, Y. (2010). Regional, temporal, and interindividual variation in the feeding
585	ecology of Japanese macaques (pp. 95–123). In: N. Nakagawa, M. Nakamichi & H.

586	Sugiura (Eds.), T	he Japanese	macaques.	Tokyo, Springer.
-----	-------------------	-------------	-----------	------------------

- 587 Tsuji, Y., Fujita, S., Sugiura, H., Saito, C., & Takatsuki, S. (2006). Long-term variation
- in fruiting and the food habits of wild Japanese macaques on Kinkazan Island,
- northern Japan. *American Journal of Primatology*, 68, 1068–1080.
- 590 Tsuji, Y., Kazahari, N., Kitahara, K., & Takatsuki, S. (2008). A more detailed seasonal
- 591 division of the energy balance and the protein balance of Japanese macaques
- 592 (Macaca fuscata) on Kinkazan Island, northern Japan. Primates, 49, 157–160.
- 593 Tsuji, Y., Shimoda-Ishiguro, M., Ohnishi, N., & Takatsuki, S. (2007). A friend in need is
- a friend indeed: feeding association between Japanese macaques and sika deer.
- 595 *Acta Theriologica*, *52*, 427–434.
- 596 Tsuji, Y., & Takatsuki, S. (2009). Effects of yearly change in nut fruiting on autumn
- 597 home range use by *Macaca fuscata* on Kinkazan Island, northern Japan.
- 598 International Journal of Primatology, 30, 169–181.
- van Noordwijk, M. A., & van Schaik, C. P. (1987). Competition among female
- 600 long-tailed macaques, *Macaca fascicularis*. *Animal Behaviour*, *35*, 577–589.
- van Schaik, C. P., & van Noordwijk, M. A. (1985). Inter annual variability in fruit
- abundance and the reproductive seasonality in Sumatran long-tailed macaques
- 603 (Macaca fascicularis). Journal of Zoology (London), 206, 553–549.

- Vogel, E. R., Munch, S. B., & Janson, C. H. (2007). Understanding escalated
- aggression over food resources in white-faced capuchin monkeys. *Animal*
- 606 Behaviour, 74, 71–80.
- 607 Wrangham, R. W. (1981). Drinking competition in vervet monkeys. *Animal Behaviour*,
- 608 29, 904-910.

609

610 Figure legends

- Figure 1. Mean daily rainfall a) and temperature b) from September to November
- 612 (mating season, left) and from December to February (food-scarce season, right) in
- 613 2004 and 2005. Data source: Ishinomaki Weather Station.
- 614 (http://:www.data.kishou.go.jp). *p*-values were obtained from paired *t*-tests for
- 615 yearly comparisons (see text).
- Figure 2. Metabolizable energy intake (MEI, kcal) from a) nuts, b) other food items and
- c) all foods during the study periods, 2004 (left) and 2005 (right). •: high-ranking
- 618 (*H*); •: middle-ranking (*M*); and \circ : low-ranking (*L*). Energy shortage is
- 619 highlighted in grey (for details, see Methods).

Fig. 1

a) Rainfall

Table 1	I. Details	of the	study	subj	ects
---------	------------	--------	-------	------	------

				Year							
ID	Rank ^{a)}	Class	Age ^{b)}		2004						
				# Focal sample	Time (min)	Infant < 1y	Death / reproduced	# Focal sample	Time (min)	Infant < 1y	Death / reproduced
At	1	Н	18	4 (2, 2)	952 (567, 385)	Ν	_	6 (3, 3)	1394 (744, 650)	Ν	R
Ar	2	Н	6	4 (2, 2)	987 (505, 482)	Y	R	5 (1, 4)	1006 (233, 773)	Y	R
Kr	3	Н	16	5 (2, 3)	1275 (478, 797)	Ν	_	7 (4, 3)	1426 (789, 637)	Ν	R
								1	97		
Rr	4	Н	6	4 (2, 2)	1095 (565, 530)	Y		6 (1, 5)	1485 (298, 1187)	Ν	R
Be	5	М	19	4 (1, 3)	1081 (300, 781)	Y	_	4 (1, 3)	896 (247, 649)	Ν	R
								1	110		
Sf	6	М	17	5 (2, 3)	1260 (476, 784)	Ν	D	_		—	—
Ib	7	М	10	4 (2, 2)	1058 (541, 517)	Ν	_	6 (3, 3)	1088 (814, 274)	Ν	R
								2	100		
Kk	8	М	14	4 (2, 2)	1069 (454, 615)	Ν	_	6 (5, 1)	1434 (1157, 277)	Ν	_
Ки	9	М	11	4 (2, 2)	1038 (498, 540)	Y	_	5 (2, 3)	1115 (485, 630)	Ν	R
Hn	10	М	19	2 (1, 1)	245 (93, 152)	Y	D	_	_	_	_
				1	93						
Fr	11	L	17	5 (2, 3)	1342 (501, 841)	Y	_	5 (2, 3)	967 (315, 652)	Ν	R
								1	32		
Fp	12	L	8	6 (4, 2)	981(612, 369)	Y	_	6 (4, 2)	1453 (910, 543)	Ν	R
				3	143						
Fk	13	L	6	5 (3, 2)	1152 (618, 363)	Ν	_	6 (3, 3)	999 (530, 469)	Ν	R
				1	35			2	81		
Ор	14	L	8	4 (2, 2)	1113 (575, 538)	Ν		5 (4, 1)	1208 (935, 273)	Ν	R
Hr	15	L	13	3 (1, 2)	902 (247, 655)	Ν	_	3 (1, 2)	703 (237, 466)	Ν	—
Mr	16	L	20	4 (2, 2)	1128 (508, 620)	Ν	D				_
Ml	17	L	11	5 (2, 3)	1334 (511, 823)	Y	_	5 (1, 4)	1224 (228, 996)	Ν	R

Ar is At's daughter. Rr is Kr's daughter. Be, Sf, and Ib are sisters. Fk and Fp are Fr's daughters. Mr and Ml are sisters.

D: died during the winter (December to May in the next year), R: reproduced the following spring (April to June in the next year). H: high-ranking, M: middle-ranking, and L: low-ranking. ^{a)} from Tsuji (2007), ^{b)} Age at April in 2004.

Numbers and times of focal samples within parentheses indicate those collected in morning (left) and afternoon (right).

Numbers and times of focal samples within italics indicate those excluded from the analyses.

Prediction	Dependent variables	Independent variables	Offset	Error distribution	Link function
1	# agonistic interaction	Year, Rank, Year × Rank	log(time of focal sample)	Poisson	log
2	# instantaneous sampling points	Year, Rank, Year × Rank	log(time of focal sample)	Negative binomial	log
2	# neighbouring macaques	Year, Rank, Year × Rank	log(# scan sampling)	Negative binomial	log
2	Length of nut feeding bouts (sec)	Year, Rank, Year × Rank	_	Gaussian	identity
3	Energy intake during the focal sample (kcal)	Year, Rank, Year × Rank	log(time of focal sample)	Gaussian	identity

Table II. Dependent variables, independent variables, offset, error distributions and link functions used in the GLMM analysis.

		Type of activity							
Dependent variables.	Independent variables	Feeding (nuts)	Feeding (other than nuts)	Feeding (all)	Moving	Resting	Grooming		
		Estimate ± SE							
a) # agonistic interactions	Intercept	$0.296 \pm 0.824 \ (z = 0.36, p = 0.720)$	$1.912 \pm 1.437 \ (z = 1.33, p = 0.183)$	$0.746 \pm 0.551 \ (z = 1.35, p = 0.176)$	$-0.847 \pm 0.668 \ (z = -1.27, p = 0.205)$	-7.352 ± 1.182 (z = -6.22, p < 0.001)	$-3.766 \pm 0.755 \ (z = -4.99, p < 0.001)$		
	Year	$-1.883 \pm 0.383 \ (z = -4.92, p < 0.001)$	$-2.081 \pm 0.960 \ (z = -2.17, p = 0.030)$	-2.033 ± 0.253 (z = -8.04, p < 0.001)	$-1.384 \pm 0.246 \ (z = -5.64, p < 0.001)$	$0.385 \pm 0.646 \ (z = 0.60, p = 0.551)$	$-1.113 \pm 0.416 \ (z = -2.68, p = 0.007)$		
		(2004 > 2005)	(2004 > 2005)	(2004 > 2005)	(2004 > 2005)	(2004 < 2005)	(2004 > 2005)		
	Rank	$-1.319 \pm 0.345 \ (z = -3.82, p < 0.001)$	-1.780 ± 0.913 (z = -1.95, p = 0.051)	-1.507 ± 0.245 (z = -6.16, p < 0.001)	$-1.107 \pm 0.292 \ (z = -3.79, p < 0.001)$	_	_		
	Year \times Rank	_	$-0.254 \pm 0.722 \ (z = -0.35, p = 0.724)$	—	_	_	_		
		(2004: H > M > L)	(2004: H = M = L)	(2004: H = M = L)					
		(2005: H > M > L)	(2005: H = M = L)	(2005: H > M > L)	(2005: H > M > L)	(2005: H = M = L)	(2005: H = M = L)		
b) # instantaneous scan samples	Intercept	$-1.720 \pm 0.249 \ (z = -6.91, p < 0.001)$	$0.795 \pm 0.193 \ (z = 4.12, p < 0.001)$	$0.064 \pm 0.159 \ (z = 0.41, p = 0.685)$	$-0.370 \pm 0.128 \ (z = -2.88, p = 0.004)$	$-6.012 \pm 0.495 \ (z = -1.22, p = 1.000)$	$-2.655 \pm 0.331 \ (z = -8.01, p < 0.001)$		
	Year	_	$-1.784 \pm 0.126 (z = -1.42, p = 1.000)$	$-0.599 \pm 0.080 \ (z = -7.44, p < 0.001)$	$-0.654 \pm 0.103 \ (z = -6.34, p < 0.001)$	$2.431 \pm 0.315 \ (z = 7.72, p < 0.001)$	$0.616 \pm 0.185 \ (z = 3.32, p < 0.001)$		
		(2004 = 2005)	(2004 > 2005)	(2004 > 2005)	(2004 > 2005)	(2004 < 2005)	(2004 < 2005)		
	Rank	$-0.779 \pm 0.169 \ (z = -4.60, p < 0.001)$	_	-0.131 ± 0.047 (z = -2.77, p = 0.006)	_	$0.792 \pm 0.201 \ (z = 3.94, p < 0.001)$	_		
	Year imes Rank	$0.398 \pm 0.087 \ (z = 4.59, p < 0.001)$	_	_	$0.028 \pm 0.030 \ (z = 0.91, p = 0.361)$	$-0.416 \pm 0.126 (z = -3.31, p < 0.001)$	_		
		(2004: H > M > L)	(2004: H = M = L)	(2004: H > M > L)	(2004: H < M < L)	(2004: H < M < L)	(2004: H = M = L)		
		(2005: H > M = L)	(2005: H = M = L)	(2005: H > M > L)	(2005: H = M = L)	(2005: H = M = L)	(2005: H = M = L)		
c) # neighbouring macaques	Intercept	$0.134 \pm 0.209 \ (z = 0.64, p = 0.523)$	$0.102 \pm 0.191 \ (z = 0.53, p = 0.593)$	$-0.002 \pm 0.101 \ (z = -0.02, p = 0.985)$	$-0.782 \pm 0.251 \ (z = -3.12, p = 0.002)$	$-1.278 \pm 0.326 (z = -3.92, p < 0.001)$	$0.675 \pm NA (z = NA, p = NA)$		
	Year	_	_	_	$0.405 \pm 0.108 \ (z = 3.74, p < 0.001)$	$0.678 \pm 0.178 \ (z = 3.81, p < 0.001)$	_		
		(2004 = 2005)	(2004 = 2005)	(2004 = 2005)	(2004 < 2005)	(2004 < 2005)	(2004 = 2005)		
	Rank	$-1.190 \pm 0.181 \ (z = -6.56, p < 0.001)$	$-0.387 \pm 0.170 \ (z = -2.28, p = 0.023)$	$-0.627 \pm 0.073 \ (z = -8.63, p = 1.000)$	$-0.259 \pm 0.070 \ (z = -3.72, p < 0.001)$	_	$-0.272 \pm NA \ (z = NA, p = NA)$		
	Year imes Rank	$0.548 \pm 0.087 \ (z = 6.30, p < 0.001)$	$0.003 \pm 0.067 \ (z = 0.05, p = 0.964)$	$0.284 \pm 0.042 \ (z = 6.74, p < 0.001)$	_	_	$0.117 \pm 0.033 \ (z = 3.61, p < 0.001)$		
		(2004: H > M > L)	(2004: H = M = L)	(2004: H > M > L)					
		(2005: H > M < L)	(2005: H > M < L)	(2005: H > M < L)	(2005: H > M > L)	(2005: H = M = L)	(2005: H = M < L)		

Table III. Factors affecting agonistic interactions, activity budgets and number of neighbouring macaques revealed by the GLMM analysis using year, rank

Comparison of results among year / ranks are shown in parenthesis.

	I anoth of put feeding bouts $(N - 594)$	Metabolizable energy intake						
Independent variables	Length of hut recalling bouts $(N = 364)$	Nuts	Other than nuts	All foods Estimate ± SE				
	Estimate \pm SE	Estimate ± SE	Estimate \pm SE					
Intercept	978.63 \pm 203.56 (t = 4.81, p < 0.001)	$492.83 \pm 102.85 \ (t = 4.79, p < 0.001)$	$248.50 \pm 97.24 \ (t = 2.56, p = 0.012)$	747.45 \pm 125.53 (t = 5.95, $p < 0.001$)				
Year	$-236.03 \pm 115.36 \ (t = -2.05, p = 0.041)$	$-179.76 \pm 44.83 \ (t = -2.64, p < 0.001)$	$-93.51 \pm 58.58 \ (t = -1.60, p = 0.112)$	$-260.90 \pm 77.00 (t = -3.39, p = 0.001)$				
(2004 > 2005)		(2004 > 2005)	(2004 > 2005)	(2004 > 2005)				
Rank	$-252.73 \pm 89.93 (t = -2.81, p = 0.005)$	$-166.68 \pm 63.09 (t = -4.01, p = 0.009)$	$34.37 \pm 42.43 \ (t = 0.81, p = 0.419)$	$-147.37 \pm 54.71 \ (t = -2.69, p = 0.009)$				
Year \times Rank	$110.86 \pm 51.16 (t = 2.17, p = 0.030)$	88.15 \pm 27.77 (t = 3.17, p = 0.002)	$-21.28 \pm 25.85 \ (t = -0.82, p = 0.412)$	$68.58 \pm 33.89 \ (t = 2.02, p = 0.045)$				
	(2004: H > M > L)	(2004: H > M > L)	(2004: H < M > L)	(2004: H > M > L)				
	(2005: H = M = L)	(2005: H = M = L)	(2005: H = M = L)	(2005: H = M = L)				

Table IV. Factors affecting length of nut-feeding bouts and metabolizable energy intake revealed by GLMM analysis using year, rank, and their interaction as independent variables.

Comparison of results among year/ranks are shown in parenthesis. *H* : high-ranking females; *M* : middle-ranking females; and *L* : low-ranking females.

				Feeding time percentage			Nutritional compositions (% dry matter) (mean \pm SD)					
No	Food items	Family	Part eaten	2004 (<i>N</i> = 13859)	2005 (<i>N</i> = 5958)	FUW (g)	%NDF	%CP	%CL	%CA	GE (kcal·g ⁻¹)	Refference ^a
Woody plants												
1	Akebia trifoliata	Lardizabalaceae	leaf	_	0.02	0.048 ± 0.015	38.21 ± 1.17	12.70 ± 1.13	2.99 ± 0.75	5.62 ± 0.63	4.51	А
2	Aralia elata	Araliaceae	sap	_	0.03							
3	Benthamidia japonica	Cornaceae	fruit	_	2.79	1.011 ± 0.419	43.36 ± 1.32	3.77 ± 0.44	4.01 ± 0.13	0.79 ± 0.33	4.39	А
4	Benthamidia japonica	Cornaceae	leaf	0.01	_	0.083 ± 0.064	36.63 ± 1.62	17.94 ± 0.42	3.87 ± 0.61	5.52 ±1.36	4.39	А
5	Benthamidia japonica	Cornaceae	bud	0.35	_	0.013 ± 0.003	42.16 ± 1.03	9.41 ± 0.28	0.68 ± 0.96	2.74 ± 0.52	4.21	А
6	Berberis thumbergii	Berberidaceae	fruit	0.12	0.02	0.016 ± 0.007	37.70 ± 0.54	11.69 ± 1.04	2.87 ± 0.13	0.66 ± 0.03	4.45	А
7	Berberis thumbergii	Berberidaceae	leaf	0.48	1.34	0.007 ± 0.004	58.08 ± 2.79	$9.56 \hspace{0.1in} \pm \hspace{0.1in} 0.00 \hspace{0.1in}$	$0.43 \hspace{0.2cm} \pm \hspace{0.2cm} 0.85$	2.34 ± 0.35	4.22	С
8	Berchemia racemosa	Rhamnaceae	fruit	_	0.32	0.005 ± 0.003	57.50 ± 0.23	18.94 ± 0.09	$3.28 \hspace{0.1in} \pm \hspace{0.1in} 0.49$	1.54 ± 0.37	4.54	А
9	Callicarpa japonica	Vervenaceae	leaf	0.01	_	0.045 ± 0.017	80.52 ± 1.53	$12.36 \pm 0.46 $	$2.92 \hspace{0.1in} \pm \hspace{0.1in} 0.38$	3.18 ± 0.03	4.36	С
10	Carpinus spp.	Betulaceae	nut	_	0.97	0.012 ± 0.004	57.47 ± 2.16	16.23 ± 0.03	12.39 ± 1.42	2.95 ± 0.31	4.92	А
11	Castanea crenata	Fagaceae	nut	0.24	1.76	1.683 ± 0.430	25.46 ± 9.12	$8.76 \hspace{0.1in} \pm \hspace{0.1in} 0.34$	$5.29 \hspace{0.2cm} \pm 1.57$	0.66 ± 0.11	4.53	С
12	Celtis sinensis	Ulmaceae	leaf	0.02	_	0.165 ± 0.079	40.63 ± 0.11	11.95 ± 0.93	$2.82 \hspace{0.1in} \pm \hspace{0.1in} 0.43$	6.10 ± 0.12	4.22	А
13	Diospyros kaki	Ebenaceae	fruit		0.07	2.769 ± 3.747	23.93 ± 0.38	2.11 ± 0.14	2.77 ± 3.75	1.51 ± 0.11	4.26	В
14	Eunymus fortunei	Celastraceae	leaf	0.01	_	0.017 ± 0.003	49.21 ± 0.53	8.56 ± 0.39	2.00 ± 0.03	12.27 ± 0.20	3.87	А
15	Fagus crenata	Fagaceae	nut		48.20	0.123 ± 0.021	31.70 ± 1.45	18.66 ± 2.15	49.66 ± 3.08	1.32 ± 0.02	7.04	А
16	Fraxinus lanuginosa	Oleaceae	seed		0.25	0.017 ± 0.004	48.88 ± 1.23	7.60 ± 0.53	17.01 ± 0.34	0.39 ± 0.08	5.14	А
17	Ilex macropoda	Aquifoliaceae	fruit		0.02	0.037 ± 0.008	24.63 ± 0.19	2.71 ± 0.02	3.09 ± 0.60	0.00 ± 0.00	4.35	А
18	Leucothoe grayana var.	Ericaceae	flower bud	0.01	_							
19	venosa Leucothoe grayana var.	Ericaceae	fruit		0.03	0.007 ± 0.002	68.75 ± 4.15	$5.99 \hspace{0.2cm} \pm \hspace{0.2cm} 1.29$	3.06 ± 0.05	7.27 ± 0.47	4.49	С
20	venosa Lonicera japonica	Caprifoliaceae	fruit	0.06	_	0.030 ± 0.008	33.44 ± 0.19	5.87 ± 0.10	2.44 ± 0.04	1.22 ± 0.21	4.32	А
21	Lonicera japonica	Caprifoliaceae	leaf	1.54	_	0.036 0.030	48.06 0.22	11.21 0.19	2.27 0.11	4.42 0.62	4.25	А
22	Magnolia obovata	Magnoliaceae	fruit, seed	0.04	0.12	0.118 ± 0.030	65.87 ± 1.54	6.59 ± 0.18	23.03 ± 0.40	0.37 ± 0.21	5.44	С
23	Malus tchonoskii	Rosaceae	fruit	0.06	0.35	3.290 ± 0.057	49.61 ± 0.17	1.37 ± 0.10	3.29 ± 0.06	1.35 ± 0.15	4.29	В
24	Pourthiaea villosa	Rosaceae	fruit		0.94	0.050 ± 0.015	56.04 ± 0.11	8.54 ± 0.60	2.54 ± 0.28	$1.16 \hspace{0.1in} \pm \hspace{0.1in} 0.11$	4.36	А
25	Prunus ×yedoensis	Rosaceae	gum		0.07							
26	Quercus acuta	Fagaceae	nut	0.02	_	3.800 ± 1.047	33.31 ± 1.08	3.90 ± 0.08	3.80 ± 1.05	1.32 ± 0.03	4.35	В
27	Quercus crispula	Fagaceae	nut	0.03	_	1.901 ± 0.001	$34.33 \hspace{0.1in} \pm 1.68$	6.19 ± 0.17	3.65 ± 0.44	$0.87 \hspace{0.2cm} \pm 1.02$	4.40	А
28	Quercus myrsinaefolia	Fagaceae	nut	0.09	_							
29	Quercus serrata	Fagaceae	nut	4.05	3.16	0.727 ± 0.211	45.97 ± 4.47	4.51 ± 0.20	1.46 ± 0.50	1.59 ± 0.22	4.23	С
30	Rosa multiflora	Rosaceae	leaf	0.25	_	0.014 ± 0.008	65.51 ± 2.37	$22.50 \pm 0.66 $	2.33 ± 0.12	0.50 ± 0.18	4.42	А
31	Rosa multiflora	Rosaceae	fruit	6.11	1.64	0.031 ± 0.008	47.81 ± 0.01	9.41 ± 0.51	5.17 ± 0.23	1.14 ± 0.21	4.52	С
32	Rubus microphyllus	Rosaceae	leaf	2.56	2.72	0.014 ± 0.006	54.14 ± 0.12	14.62 ± 0.41	$2.30 \hspace{0.1in} \pm \hspace{0.1in} 0.25$	2.79 ± 0.11	4.37	А
33	Rubus palmatus	Rosaceae	leaf	0.01	_	0.049 ± 0.020	57.98 ± 2.20	11.93 ± 1.05	$5.34 \pm 0.20 $	5.63 ± 1.10	4.38	С
34	Schisandra nigra	Schisandraceae	fruit	0.01	1.24	0.127 ± 0.038	30.31 ± 1.66	7.54 ± 0.20	14.65 ± 0.16	0.53 ± 0.60	5.01	С
35	Sorbus japonica	Rosaceae	fruit	0.04	0.10	2.567 ± 0.152	68.94 ± 0.27	$3.46 \hspace{0.1in} \pm \hspace{0.1in} 0.27$	$2.90 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.09$	1.15 ± 0.13	4.31	В
36	Stephanandra incisa	Rosaceae	leaf	_	0.05	0.011 ± 0.003	63.41 ± 0.18	15.06 ± 0.00	$2.48 \hspace{0.2cm} \pm \hspace{0.2cm} 0.45$	3.53 ± 0.52	4.36	А
37	Swida macrophylla	Cornaceae	fruit	1.10	1.53	0.036 ± 0.008	68.37 ± 3.32	$6.52 \hspace{0.2cm} \pm \hspace{0.2cm} 1.54$	12.62 ± 2.17	1.63 ± 0.27	4.84	С
38	Symplocos chinensis	Symplocaceae	leaf	0.03	_	0.064 ± 0.016	45.11 ± 2.16	12.56 ± 0.09	1.98 ± 0.29	2.76 ± 1.96	4.33	А
39	Taxas euspidata	Taxaceae	fruit	_	0.20	0.074 ± 0.013	46.99 ± 0.43	6.87 ± 1.11	23.58 ± 1.41	$2.26 \hspace{0.1in} \pm \hspace{0.1in} 0.08$	5.40	А
40	Torreya nucifera	Taxaceae	nut	7.95	3.64	0.627 ± 0.181	46.89 ± 0.70	13.25 ± 0.52	$43.02 \hspace{0.2cm} \pm \hspace{0.2cm} 0.08$	0.72 ± 0.09	6.74	С
41	Viburnum dilatatum	Caprifoliaceae	fruit	2.63	5.34	0.005 ± 0.005	49.81 ± 2.98	$4.85 \hspace{0.2cm} \pm \hspace{0.2cm} 0.74$	9.60 ± 0.33	1.77 ± 0.10	4.65	С
42	Viscum album	Loranthaceae	fruit	1.15	_	0.041 ± 0.005	20.82 ± 1.18	$8.56 \hspace{0.1in} \pm \hspace{0.1in} 0.89$	6.58 ± 0.02	0.63 ± 0.89	4.60	А
43	Vitis flexuosa	Vitaceae	fruit	0.01	1.31	0.034 ± 0.009	47.09 ± 2.43	8.75 ± 0.23	$8.56 \hspace{0.2cm} \pm \hspace{0.2cm} 0.16$	0.55 ± 0.03	4.71	А
44	Zanthoxylum piperitum	Rutaceae	bark		0.02	0.023 ± 0.011	75.98 ± 0.88	14.39 ± 2.27	0.42 ± 0.59	$1.85 \hspace{0.1in} \pm 0.33$	4.31	А
45	Zanthoxylum piperitum	Rutaceae	fruit, seed	0.06	1.21	0.020 ± 0.008	72.88 ± 3.47	5.77 ± 0.31	7.81 ± 0.04	14.56 ± 3.14	4.09	С
46	Zanthoxylum piperitum	Rutaceae	leaf	0.04	0.20	0.020 ± 0.008	62.77 ± 1.39	14.14 ± 0.16	2.20 ± 0.07	3.80 ± 0.09	4.32	С
47	Zanthoxylum	Rutaceae	leaf	0.02	_							
48	scninitolium Zelkova serrata	Ulmaceae	nut	_	2.52	0.013 ± 0.004	59.91 ± 0.78	13.44 ± 0.05	19.02 ± 0.53	8.19 ± 0.20	5.03	А
49	Sasa sp.	Gramineae	leaf	_	0.02	0.025 ± 0.009	60.33 ± 0.38	15.59 ± 0.04	2.37 ± 0.81	5.41 ± 0.46	4.28	А
H	Herbaceous plants											
50	Boehmeria biloba	Urticaceae	seed	0.06	_	0.361 ± 0.107	45.18 ± 2.28	10.34 ± 0.22	14.46 ± 0.01	5.40 ± 1.59	4.84	А
51	Boehmeria longispica	Urticaceae	seed	0.05	_	0.668 ± 0.195	45.35 ± 2.04	14.83 ± 0.76	14.28 ± 1.85	2.51 ± 0.12	5.02	А
52	Boehmeria spicata	Urticaceae	seed	0.08	0.02							
53	Clematis apiifolia	Ranunculaceae	seed	0.53	_	0.005 ± 0.001	66.26 ± 0.72	16.29 ± 0.51	$5.47 \pm 0.26 $	1.07 ± 0.52	4.64	А
54	Dioscorea japonica	Dioscoreaceae	leaf	0.09	_	0.088 ± 0.066	38.50 ± 2.88	15.91 ± 0.04	5.28 ± 0.40	3.45 ± 1.88	4.52	С
55	Eragrostis curvula	Gramineae	leaf	3.33	_	0.032 ± 0.017	65.88 ± 2.84	10.76 ± 0.32	1.50 ± 0.02	3.37 ± 1.68	4.25	А

Appendix 1. Time spent feeding, and nutritional compositions (mean ± SD) of the foods eaten by Japanese macaques in Kinkazan during the study period

56	Miscanthus sinensis	Gramineae	seed	0.01	_	$0.014 \ \pm 0.006 \ \ 73.71 \ \pm 0.50$	8.12 ± 1.63	2.45 ± 0.06	1.73 ± 0.16	4.33	А
57	Paederia scandens	Rubiaceae	leaf	_	0.03						
58	Perilla frutescens	Labiatae	seed	30.67	1.56	$0.004 \pm 0.003 \ 74.60 \pm 1.31$	17.18 ± 1.63	$13.75 \hspace{0.1 in} \pm 0.06$	$1.66 \pm 0.06 $	5.36	С
59	Smilax china	Liliaceae	fruit	0.38	0.15	$0.060 \pm 0.048 \ 66.94 \pm 0.87$	10.59 ± 4.51	$3.45 \hspace{0.2cm} \pm \hspace{0.2cm} 0.26$	0.29 ± 0.41	4.47	А
60	Trifolium reoens	Leguminosae	leaf	0.10	—	$0.016 \ \pm 0.017 \ 59.84 \ \pm 0.52$	$2 28.59 \pm 0.30$	0.12 ± 0.17	2.18 ± 0.03	4.50	А
61	Tubocapsicum anomalum	Solanaceae	fruit	0.02	0.02	$0.056 \pm 0.028 39.84 \pm 2.51$	13.40 ± 0.35	10.15 ± 0.90	$0.16 \hspace{0.1in} \pm 0.10$	4.88	С
62	unidentified herbs		leaf	25.80	9.32	$0.019 \ \pm 0.022 \ \ 41.23 \ \ \pm 4.84$	9.50 ± 1.06	$0.07 \hspace{0.1in} \pm 0.33$	$37.47 \hspace{0.2cm} \pm 3.70$	2.74	С
I	Fungi										
63	Agaricales		-	0.69	1.54	$1.318 \pm 1.619 \ 65.46 \pm 3.56$	$5 7.82 \ \pm 0.30$	1.31 ± 0.19	1.24 ± 0.18	4.45	С
64	Polyporales		-	3.20	0.50	$0.359 \ \pm 0.143 \ \ 47.78 \ \pm 0.14$	19.30 ± 0.02	5.60 ± 0.33	6.80 ± 0.10	4.28	С
1	Animal materials										
65	Acrididae spp.		adult	1.09	1.64	$0.138 \ \pm 0.116 \ \ 76.74 \ \pm 0.86$	65.19 ± 0.82	1.81 ± 0.23	1.43 ± 0.34	5.16	С
66	Araneae		-	0.06		$0.062 \pm 0.028 \ 40.50 \pm 3.23$	71.25 ± 0.09	7.81 ± 0.50	1.83 ± 1.94	5.55	С
67	Dorcus rubrofemoratus		adult	0.01		$0.062 \pm 0.028 \ 40.50 \pm 3.23$	71.25 ± 0.09	7.81 ± 0.50	1.83 ± 1.94	5.55	С
68	gall on Fagus crenata leaves			2.69	_	$0.012 \pm 0.005 85.96 \pm 0.03$	3.08 ± 0.15	2.04 ± 0.09	2.69 ± 0.01	4.19	А
69	Gastropoda (periwinkle)			0.06	—	$0.459 \pm 0.592 32.00 \pm 0.85$	55.12 ± 3.98	$7.15 \hspace{0.1in} \pm 0.13$	$8.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.20$	6.31	А
70	Gastropoda (slug)		-	0.03	_	$0.742 \pm 0.812 \ 27.93 \pm 0.74$	37.14 ± 5.70	6.31 ± 0.07	$4.57 \hspace{0.1in} \pm 0.00$	4.85	С
71	Gastropoda (snail)		-	0.01	—	$0.742 \pm 0.812 \ 27.93 \pm 0.74$	37.14 ± 5.70	6.31 ± 0.07	$4.57 \hspace{0.1in} \pm 0.00$	4.85	С
72	Gryllidae spp.		adult	0.37	0.36	$0.068 \pm 0.055 \ 74.22 \pm 0.15$	69.45 ± 1.92	2.07 ± 0.04	2.19 ± 0.17	5.21	С
73	Lepidoptera sp.		adult	0.01	—	$0.062 \pm 0.028 \ 40.50 \pm 3.23$	71.25 ± 0.09	7.81 ± 0.50	$1.83 \hspace{0.2cm} \pm 1.94$	5.55	С
74	Mantodea spp.		egg	0.08	0.12	$0.309 \pm 0.114 \ 80.84 \pm 1.11$	85.08 ± 0.87	6.29 ± 0.63	1.89 ± 1.13	5.68	С
75	Pyralidae spp. in <i>Cirsium amplexifolium</i> stem		larva	0.53	0.40	$0.034 \pm 0.010 19.43 \pm 0.27$	24.01 ± 1.75	$50.66 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.00 \hspace{0.1 cm}$	$0.43 \hspace{0.1in} \pm 0.29$	7.15	С
76	Pyralidae spp. in <i>Senecio</i> cannabifolius stem		larva	0.07	0.08	$0.034 \pm 0.010 19.43 \pm 0.27$	24.01 ± 1.75	$50.66 \hspace{0.1in} \pm 0.00$	$0.43 \hspace{0.1in} \pm 0.29$	7.15	С
77	Rana tagoi		adult	0.00	—	$1.900 \pm 0.969 32.78 \pm 0.98$	58.47 ± 0.76	$7.34 \hspace{0.1in} \pm 5.45$	9.87 ± 0.16	5.00	С
78	Tettigoniidae spp.		adult	0.06	0.15	$0.138 \pm 0.116 \ 76.74 \pm 0.86$	65.19 ± 0.82	1.81 ± 0.23	$1.43 \hspace{0.1in} \pm 0.34$	5.16	С
79	unidentified insects		-	0.40	0.40	$0.062 \pm 0.028 \ 40.50 \pm 3.23$	71.25 ± 0.09	7.81 ± 0.50	$1.83 \hspace{0.2cm} \pm \hspace{0.2cm} 1.94$	5.55	С

0.37

%NDF: neutral detergent fibre content; %CP: crude protein content; %CA: crude ash content; %CL: crude lipid content; GE: gross energy. These were analysed at least twice and averaged.analysed at least twice and averaged.

FUW: feeding unit weight. N: total number of 1-min instantaneous scan samples for feeding.

a) A: this study, B: from Tsuji et al. (2007), and C: from Tsuji and Takatsuki (2008).