Trajectories of fluid particles in a periodic water-wave

Hisashi Okamoto* and Mayumi Shojif

Abstract
We compute trajectories of fluid particles in a water-wave which propagates with a
constant shape in a constant speed. The Stokes drift, which asserts that fluid particles
are pushed forward by a wave, is proved in a new method. Numerical examples with
various gravity and surface tension coefficients are presented.

1 Introduction

We consider two-dimensional progressive water-waves, which propagate with a constant
shape in a constant speed. Fluid motion is assumed to be irrotational. We are interested in
the study of trajectories of fluid particles in the stationary coordinate system. Trajectories
in a coordinate system attached to the wave are easily computed by drawing contours (level
curves) of the stream function. Examples are abundant, see, e.g., [22]. On the other hand,
we need some care to compute trajectories in the stationary coordinate system. [20] gives
some examples for gravity waves, but we do not know examples of capillary-gravity waves.
The first objective of the present paper is to give some new examples. We draw trajectories
of gravity, capillary-gravity, and pure capillary waves.

It is well-known (see [19] or [21]) that fluid particles in a linearized water waves of small
amplitude move on a circle or an ellipse, depending on whether the depth of water is infinite
or finite, respectively. Therefore, the fluid particle does not move on average, while the wave
itself propagates with a non-zero speed. This is, however, a proposition which is valid only
approximately. In fact, Stokes [25] discovered that a particle trajectory is not closed.

Recently A. Constantin mathematically proved in [4] that none of the trajectories in
the gravity waves are closed. It is also proved even that trajectories in some linearized
water-waves are not closed, either. See [7] and [8] for the case of finite and infinite depth,
respectively. The second objective of the present paper is to prove non-closedness of trajec-
tories by a method different from those in [4, 7]. Our proof may be of some use because of
its simplicity.

The present paper is organized as follows. In section 2 we give an account for the back-
ground of the present problem. Following this, we prepare some notations and a mathemat-
ical framework in section 3. In section 4, we study Crapper’s pure capillary waves. Gravity
and capillary-gravity waves are computed in section 5. Constantin’s theorem is proved in
section 6. Finally in section 7, concluding remarks are presented.
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2 Background

For historical materials on water waves, we recommend Craik [11]. Here we summarize what
is necessary in the present paper.

Fluid particles in a linearized gravity waves of small amplitude move on a circle or an
ellipse. This was first recognized by Green (see [15], page 280). Stokes [25] then considered
higher order approximation. In the second order approximation, he found a term which
is proportional to time variable, hence the particle trajectory does not close, but the fluid
particle moves, on average, in the same direction as the wave. This phenomenon is now
called the Stokes drift. If the reader look at photos in page 110 of [28] carefully, then he/she
will find some trajectories which are not closed.

Longuett-Higgins [20] considered gravity waves of any amplitude and computed approx-
imately the trajectories of particles. The paper also presents some laboratory experiments,
which seems to agree with his theory.

From the viewpoint of modern mathematicians, Stokes’s argument is not a rigorous proof
of non-closedness of particle trajectories. It is Constantin [4] that first presented a rigorous
proof of the Stokes drift. His result has many variants [5, 7, 8, 9, 16], which we will comment
in the following sections of the present paper.

Recently the paper [1] came upon our attention. The authors of this paper computed
approximate solutions of fifth order and compared them with their laboratory experiments.
The agreement seem to be very good. See also [27].

These studies are concerned with irrotational waves. Particles in rotational waves behave
quite differently. In fact, all the trajectories in Gerstner’s wave (discovered by [14] and later
independently by [23]) are circles, no matter how large the wave amplitude may be, see
(19, 21, 2, 17].

3 Preliminaries

In what follows, we restrict ourselves to particles in irrotational waves. In the moving frame,
where the wave profile looks stationary, we take (z,y) as the coordinates. We set z = x + iy
and identify the complex plane with the (z,y)-plane. In the stationary coordinate system,
we take (X,Y). They are related as X = x + ¢, Y = y, where v is the propagating speed
of the wave profile. Since we do not lose generality by normalizing v = —1 and setting the
wave length as 27, we do so henceforth. Accordingly, we have X +1+1Y = x +iy. Hereafter
we use the notation of [22]. The reason that we use v = —1 rather than v = 1 is that we
need many formulas in [22], where v = —1 was employed, and we prefer compatibility with
[22] to that with [1]-[9]. [1]-]9] employs v = 1.

The fluid is assumed to be incompressible and inviscid. The motion of fluid is assumed to
be irrotational. Throughout this paper, except in subsection 6.1, we consider only progressive
waves on water of infinite depth. Using the complex potential f = U + iV, where U is the
velocity potential and V' is the stream function, we define ( as

¢ = exp(—if). (1)

Our normalization implies that U and V' are so normalized that |U| < 7, —00 < V < 0.
Accordingly, ¢ runs in and on the unit disk of the complex plane. Namely, || < 1. We



define z = = + iy which is conformally in one-to-one correspondence with ¢ and f. For later
use, we define p and o by ¢ = pel?. We now set

d
ilogd—ﬁzw:9+i7, (2)

which is regarded as an analytic function of (. Here w is defined by the equality on the left
hand side. The equality on the right hand side implies just that the real and imaginary parts
of w is denoted by 6 and 7, respectively. w satisfies that w(0) = 0, which simply implies that
the velocity tends to unity as ¢ — 0, i.e., as y — —o0.

It is shown in [22] that two-dimensional progressive waves are characterized by the fol-
lowing Levi-Civita equation:

6273—; —pe Tsinf + q% <er—§) = (0 <o <2nm). (3)
Note that # and 7 in (2) are regarded as a function of { defined in the unit disk of the
complex plane. # and 7 in (3) denote #(1,0) and 7(1,0), respectively. Since an analytic
function is uniquely determined by its boundary values, 6(p,0) and 7(p,o) are uniquely
determined once 0(1,0) and 7(1,0) are given. Since 7 is an imaginary part of the analytic
function @ + iT, 7 can be written as the Hilbert transform of 6. Accordingly, we have

[ o—s
(o) = Py /7r 6(s) cot 5 ds,
where 7(0) = 7(1,0) and 0(c) = 60(1,0). p and ¢ in (3) are parameters:
gL 27T
b 27ry2 7= my2L’

Here L is the wave length and + is the propagation speed, g is the gravity acceleration, 71" is
the surface tension, and m is the density of the fluid. Since we have normalized with v = —1
and L = 27, p is nothing but the gravity acceleration.

The issue of existence of the solutions is discussed in [26, 22].

4 Crapper’s waves

Crapper’s pure capillary wave, discovered by [12], is an exact solution when gravity is ne-
glected (p = 0) and the surface tension is the only force acting on the fluid surface. It is
given as

df 1+ AC\?
7 — <
T-(1E)  cecusy, (@)
where —1 < A < 1 is a real parameter, which is related to ¢ in the following way:
14+ A2
=1z
See [22]. Since (1) gives us
d¢
> 5
T =i @
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(4) implies that

dz i [/1-AC\* (1 4A ’
d_<_2<1+A<> _1<Z_(1+A<)2>' ®)

Integrating this, we obtain

_ 4

z-1<log(—i—1+AC 4). (7)
Here the integral constant is chosen so that the free surface of the trivial solution (the one
with A = 0) becomes the line segment y = 0, —7 < x < m. The free surface in the moving
frame is obtained if we set ¢ = €' in (7). If 0 < p < 1 is fixed and o runs in 0 < ¢ < 2,
then a particle trajectory below the free surface in the moving frame is obtained. We draw in
Figure 1 some wave profiles (p = |(| = 1) and particle trajectories in the water (0 < p < 1).
If |A| > 0.45467---, the wave profile has self-intersection points, and it is an unphysical
solution. We must therefore consider only those solutions with |A| < 0.45467---. See [22].

A=0.1 A=0.25

A=044 A=047

Figure 1: Crapper’s waves in the moving coordinates. A = 0.1,0.25,0.44,0.47. p =
0.1,0.2,0.4,0.6,0.8,1. The broken line shows the level y = 0. The arrows indicate the
directions of the particles. They move from left to right.

Once the trajectory z = z(t) in the moving frame is given, we can obtain the correspond-
ing ¢ = ((t) by applying the inverse mapping of (7). But the concrete expression of the
inverse mapping does not seem to be available, and we proceed as follows. By (6) we have

dz i [(1—A¢C\*d¢
<1+Ac> dt (8)

at ¢

On the other hand, we can obtain the complex velocity by (4). The velocity in the complex



number notation is:

<1+Az>2
1—AC

where the bar denotes the complex conjugate. This must be equal to . Hence,

(1 +AZ>2 (- AQ)” d¢

1—AC)  C(1+AQ)%dt’

We therefore obtain
d¢ _ ¢J1+ A¢ ©)
dt il — AC|*

If we represent ((¢) in the polar coordinate as ((t) = p(t)e'?®, (9) becomes

dp
- =0. 10
i (10)

do  (1+2Apcosa + A%p? 2
dt 1 —2Apcoso + A?p?

We can solve this as

—4b  sino 8? . 1—b o
_t_1—b21+bcosa+(1—b2)3/2tan ( " tan<§>>+a (—m<o<m), (11)

where b is a parameter defined by
2Ap

1+ A2p2 :
(Since p is independent of ¢ and is a constant for a given particle, we regard it as a parameter.)

We have chosen the integral constant so that ¢ = 0 corresponds to 0 = 0. Or, instead, we
may choose o' = m — o to have

4b ino’ b 1+ ’
. sin o n 8 tan- ( + - an (Z>)+g’ (0 <o’ <2m). (12)

b=

1—-021—bcosa’ (1—02)3/2 1-b 2

Here the integral constant is adjusted so that t =0 at 0’ = 0. When we derive (12), we
should note an identity tan=!z + tan_1 L — T Tt is easily seen that we can choose a branch
of tan™! so that the right hand side of (12) becomes smooth at o' = 7.

We are now ready to draw trajectories in the stationary frame. By (7) and X +1iY =

x —t + iy, we have

2 — 2 .
¥ 8b tan1< 1 btan(g>>_1+b 2bsino (13)

(1 — b2)3/2 140 2 1—0b>1+bcoso’
21 —b?
:71+bcosa—2+logp. (14)
or
8? 1+0 o' 1+b* 2bsino’
X=— P  tan™! tan [ Z) ) - 15
1 — )z ™ ( 1—b an<2>> 1—021—beoso’’ (15)



Figure 2: Particle trajectories in the stationary coordinates in 0 < o' < 27w, A = 0.44.

p=0.1,0.2,0.4,0.6,0.8, 1. Particles move from the right to the left.
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Figure 3: The same as in Figure 2, but A = 0.25(left). A = 0.1(right).

A=0.44 p=04,02

Figure 4: Particle trajectories A = 0.44.



Either will do, but we mostly use (15) and (14) in what follows.

We now compute some trajectories. We suppose that one of the crests of the wave starts
from y-axis at £ = 0. We then consider the motion of several particles which lie on the
y-axis at ¢ = 0. We computed trajectories for 0 < ¢’ < 27. This implies that we draw
trajectories until the particle comes to the same height as the initial position. Figure 2
shows the trajectories in the case of A = 0.44. We see that the particle on the free surface
takes a long journey. Figure 3 shows some trajectories when A = 0.25 and A = 0.1. No
trajectory in these figures is closed, and the particles are drifted leftward. Since the wave is
periodic, the trajectories actually look like Figure 4.

When A = 0.44, we plotted in Figure 5 a trajectory which lies somewhat deep, p = 0.02.
It is not closed, but is very much like a circular curve. Note that decreasing p implies
increasing the depth and reducing the nonlinear effect. Therefore Figure 5 complies with
the linear theory.

2389

39 ¢

2392

Figure 5: The particle trajectory in 0 < ¢’ <2w. A =0.44, p = 0.02.

We now define the drift distance as
D(p)=X(o' =27) - X (o' =0).

This is the distance between two consecutive crests in the stationary frame. As is seen from
(15), it is expressed as

87b? 1+ A%p?
(1— b2)3/2 (1— A2p2)3°
Note that Y (¢’ = 0) = Y (o' = 27), whence the trajectory is closed if and only if D(p) = 0.

Actually D(p) < 0 for all p € (0, 1], which implies that the fluid particle is drifted toward
left—the same direction as the wave. A parameter defined by

1 Vs
§=§;/;M®d0=k%p
7

= —32mA?p?

D(p) = - (16)



may be more intuitive than p, and let us employ this as the parameter representing the
depth. By this, we can regard D = D(y) as defined in § € (—o0,0]. Its graph is drawn in
Figure 6. Since D(7) decreases exponentially as § — —oo, the drift is very small in deep
water.

05 F
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3 1 1 1
-45 -40 -35 -30

-15 -10 -5 0

-25 _-20
D(y)
Figure 6: The drift distances for A = 0.1,0.25, 0.44.

We next verify that the trajectories are almost circular in deep water. We expand (15)
and (14) in small b to have

X = —2bsino’ — 4b*0’ — b*sin 20" + O (%), Y = 2bcos o’ +2b? cos? o’ +1og p— b* + O(b*)

(17)
If we take only O(b) terms, we have a circle. The term —4b%c” is responsible for the Stokes
drift.

So far we have considered trajectories from a crest to the next crest. But the time which
elapsed during this motion is different from a trajectory to a trajectory. For instance, the
particle on the free surface in Figure 2 travels long distance and takes a lot of time. The
travel time is considerably larger than 27. On the other hand, the particle lying in deep
water comes to the next crest in time which is close to 27. Therefore it would be interesting
to consider trajectories for a fixed time interval, say, 0 < ¢ < 27. Figure 7(left) shows
those parts of trajectories for 0 < ¢ < 27. Figure 7(right) shows positions of particles at
t =2wk/10 (k = 0,1,---,10), which started the y-axis at t = 0. Figure 8 shows the same
data for a different A.

5 Gravity and capillary-gravity waves

We now study trajectories in the case of general (p,q). We consider only symmetric waves.
Accordingly, 6 is assumed to be odd in 0 € (—m, 7). We start with (3). By the Fourier-
spectral method, we obtain its approximate solution

N

0(1,0) = Zan sin no. (18)

n=1

8



Figure 7: Particle trajectories in 0 < ¢t < 27. A = 0.25,p = 1,0.8,0.6,0,4,0.2,0.1 and
(X |t=2x, Y=o, ) with various p are plotted together. The Y-axis is mapped, at t = 27, onto
the gray line. (left). (X,Y) with ¢t = 27k/10(k =1,2,---,10) with 0.05 < p <1 (right).
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Figure 8: The same as in Figure 7, but A = 0.44.



For some solutions, N = 128 is enough, but some gravity waves requires a large N such as
N = 1024, see [22]. With these coefficients a,, in hand, we compute

N
w(p,0) =0(p,0) +ir(p,o Zanp sinno — 1Zanp cosno = Z(—i)an (pei”)n
=1
N n
= —iZanC".
n=1

and

N
% = exp (—iw) = exp (— Zan("> :

n=1

As in the case of Crapper’s wave, we have

d¢ al dz i al
. = ~iCexp (_ Z%C”) o TP (; anCn) : (19)

The velocity is represented as

S0 ) = e (S ) &
exp 2 A = Cexp 2 A T
Consequently,
d¢ Al -
Fri —iC exp (— Z n <Zn + (”)) = —iC exp (—2 Z a,p" cos na)
n=1 n=1
= —iCexp (—i(w —w)).
This gives us
N
dp do
& =0, " exp ( nz::I anp" COS na)

Therefore p is constant along an individual trajectory of a fluid particle. Further,

- N
—t = / exp (Z 2a,p" cos ns) ds (—m <o <m). (20)
0 n=1

Instead of o we may use o' =7 — o and (19) to obtain

d N N

g —(z +1y) = exp (Z an(—p)" cosno’ — iz an(—p)" sin na') = exp(iw(p,m — ")) (21)

n=1 n=1

N
dt . .
7 = XD (2 E an(—p)" cos na') = exp (iw — iw) . (22)

n=1
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If the amplitude of the wave is not very large, we may integrate (22) by a simple quadrature
rule. Once we have xz,y,t as a function of ¢’, then we can draw

X +iY = ~t+ 2z +1iy.

For a fixed p, we compute Y (p,0) by

Y(p,0) = —/ éexp (Z an(—s)”> ds.

With these formulas we can easily compute trajectories. Figures 9-13 are examples.
Longuett-Higgins [20] computes some gravity waves, but it seems to us that trajectories of
capillary-gravity waves have not been computed before.

0.5

0
051 \/ I
1 F Q\//’ .
15 o - - .
2 F B

(<]
-25 :
-1 0 1 2 3 4 5 6

Figure 9: Particle trajectories on and in a gravity wave. (p,q) = (0.842,0). p = 0.2 x k
(k=1,2,---,5).

Figure 9 shows trajectories of fluid particles when (p,q) = (0.842,0). Numerical data
in (18) is borrowed from [22]. Trajectories of five particles p = 0.2 x k (k = 1,2,---,5)
are plotted. Those on the left hand side are trajectories in stationary coordinates. They
start from the y-axis and move leftward. Those on the right hand side (thinner ones) are
trajectories in moving coordinates. They start from the y-axis and move rightward until
they come to v = 2. Figure 10 is a blow-up of the trajectory of p = 0.2.

In the same fashion, we drew Figures 11-13, where solutions with different (p,q) are
chosen, but we took the same p, i.e., p=0.2,--- 1.

6 Trajectory is not closed.

This section is devoted to a mathematical proof of Constantin’s theorem that a particle
trajectory is not closed.

6.1 The case of infinite depth
We prove

11
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Figure 10: A particle trajectory deep in a gravity wave. (p,q) = (0.842,0). p =0.2.
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Figure 11: Particle trajectories on and in a capillary-gravity wave. (p,q) = (0.73,0.28). The
trajectory of p = 0.6 is plotted on the right.
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Figure 12: Particle trajectories on and in a capillary-gravity wave. (p,q) = (0.79,0.5).
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Figure 13: Particle trajectories on and in a capillary-gravity wave. (p,q) = (0.76,0.31).

Theorem 1 Suppose that the depth is infinite. Then for any p and q, we have X
Xy Also, X| ,_ —X

o' =21

o—on S monotonically increasing in p.

Proof. What we have to prove is

X|_ —-X > 0.

Note first that (21) implies that

—x‘(r:w + = /7r Re [exp(iw(p, 0))] do.

oO=—T
-7

(20) implies that
R :/ exp(iw(p, o)) do.

-

Since X = x — t, our goal is to prove

™

/7T Re [exp(iw(p, 0))] do < / lexp(iw(p, 0))|* do. (23)

-7 -7

The left hand side is computed as follows:

= 2.

| Relexpliston do = e | [ explic(p.o)) do] =R | [ el

—r -7 |:p IC

The rightmost equality follows from Cauchy’s integral formula and w(0) = 0. (Note that
w(0) = 0 is a consequence of the fact that % — 1 as y — —oo. See (2).)
Next, we expand the analytic function exp(iw(p, o)) into the Taylor expansion:

exp(iw(p,0)) =1+ a1 + ax*+ - .

Then,
/ lexp(iw(p, 0))* do = 2 (1 + |a1[*p” + |as*p" +--) .

—T
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Accordingly, unless a; = ap = --- = 0, the inequality (23) holds true. Monotonicity in p is
obvious.
|

Corollary 1 The absolute value of the drift distance is positive, and is the largest on the
free surface (p=1).

6.2 The case of finite depth

If we wish to prove that X‘U:W — X‘U:ﬂr > 0, in the case of finite depth, we need some
modification on the proof above. Let us recall some formulas in [22]. If the depth is specified,
we are given a parameter 1 € (0, 1) and a function w = 6+ ir which is defined in the annulus
n < |¢] < 1 and is analytic in n < || < 1. They satisfy the equation (3) on the outer
boundary p = 1, and # vanishes on the inner boundary p = n. Note that we do not lose
generality (see [22]) if we assume that

/ 7(p,0)do = 0.
With this formulas, we have to prove (23), which we can write as

/ e "cosfdo < / e " do. (24)

Theorem 2 Unless § =0, (24) holds true.

To prove (24) we first note that

/e‘TCOSHd0</ e "do

unless # = 0. Second, the Holder inequality gives us

T 2 T
</ e’ da) < 27r/ e~ do.

We finally use Jensen’s inequality with a convex function z — €* to obtain

1 (7 1 [
— e "do > exp ——/ Tdo ) =1.
2r ). 2 | .

Combining these inequalities, we can conclude that (24) is valid unless 6 = 0. |

We here present some remarks and comparisons. We remark first that in the present case
of finite depth, our proof says nothing about monotonicity in p. We leave this issue to a
future work. Constantin [4] proved the non-closedness of a trajectory in the case of gravity
waves of finite depth, although his method is valid in the case of infinite depth, too. See also
[16]. Their method is different from ours. Ours is valid in the presence of surface tension,
too. It seems to us that the proof in [4, 16] requires an assumption that the wave profile
has one and only one relative maximum. We do not need to assume this. Since numerical
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examples of gravity waves which possess more than one relative maxima in its profile are
known (see, [22]), our proof may be worth being recorded. (The capillary-gravity waves in
section 5 are also such examples.) A theorem in the case of solitary waves are considered in
[5].

Water waves with underlying uniform current is considered in [9]. We can also consider
them with underlying shear flow (see chapter 7 of [22]). These constitute further problems,
but we leave them to the reader.

7 Conclusion

None of the particle trajectories in the stationary coordinates are closed, although they are
very close to a closed circular curve if the fluid particle lies deeply. Fluid particles are pushed
out by the wave in the same direction as the wave. The drift distance is the largest on the
water surface and decreases exponentially and monotonically in the depth.

Since Gerstner’s wave has been the unique example of explicitly written trajectories, our
explicit formula for particle trajectory of Crapper’s waves may be worthy of notice. The
present analysis can be viewed as one of the particle dynamics considered in many situations
such as [18, 24].

We are naturally led to a question: if we consider a rotational wave, what is a necessary
and sufficient condition for a vorticity distribution to produce closed trajectories only? Our
method is restricted to irrotational waves, and does not seem to work in the case of rotational
waves. For rotational waves, see chapter 7 of [22] and recent papers [2, 6, 10, 13, 17, 29].
Waves on a sloping beach [3], too, may well give us an interesting problem. We would like
to pose this problem to the reader.
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