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Abstract

An even factor in a digraph is a vertex-disjoint collection of directed cycles of even length and
directed paths. An even factor is called independent if it satisfies a certain matroid constraint.
The problem of finding an independent even factor of maximum size is a common generalization
of the nonbipartite matching and matroid intersection problems.

In this paper, we present a primal-dual algorithm for the weighted independent even factor
problem in odd-cycle-symmetric weighted digraphs. Cunningham and Geelen have shown that
this problem is solvable via valuated matroid intersection. Their method yields a combinatorial
algorithm running in O(n3γ+n6m) time, where n and m are the number of vertices and edges,
respectively, and γ is the time for an independence test. In contrast, combining the weighted
even factor and independent even factor algorithms, our algorithm works more directly and
runs in O(n4γ + n5) time. The algorithm is fully combinatorial, and thus provides a new dual
integrality theorem which commonly extends the total dual integrality theorems for matching
and matroid intersection.

Keywords: Independent even factor, Combinatorial algorithm, Dual integrality, Nonbipartite
matching, Matroid intersection

Mathematics Subject Classification (2000): 90C27, 05C70, 52B40

1 Introduction

The nonbipartite matching and matroid intersection problems are two fundamental problems which
can be solved efficiently. Elegant results such as combinatorial algorithms [6, 8, 14] and totally dual
integral (TDI) description [4, 7] have been known for a long time. As a common generalization of
these two problems, Cunningham and Geelen [3] introduced the independent path-matching problem
and showed a min-max formula, a TDI description and a polynomial algorithm based on the ellipsoid
method. Then, combinatorial approaches to path-matchings followed [9, 22, 23].

In this context, Cunningham and Geelen introduced a further generalization, independent even
factors, in their unpublished manuscript in 2001 (see also Cunningham’s paper [2]). Let (G, c) be
a weighted digraph with G = (V,E) and c ∈ RE

+, and let M+ and M− be two matroids on V . An
edge set M ⊆ E is an even factor in G if M forms a vertex-disjoint collection of directed cycles of
even length and directed paths. (A path may have odd length.) An even factor M is independent
if the set of vertices which have a leaving edge in M is independent in M+ and the set of vertices
which have an entering edge in M is independent in M−. A related optimization problem is to find
an (independent) even factor maximizing |M |, or maximizing c(M) =

∑
e∈M c(e) in the weighted

version. That is, we have four versions: the even factor problem (EFP); the weighted even factor
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problem (WEFP); the independent even factor problem (IEFP); and the weighted independent
even factor problem (WIEFP).

In the manuscript, Cunningham and Geelen exhibited that the EFP is NP-hard in general
digraphs and polynomially solvable in weakly symmetric digraphs, in which every edge e in any
directed cycle has the reverse edge ē. As for the WEFP, they considered weakly symmetric weighted
digraphs. A weighted digraph (G, c) is weakly symmetric if G is weakly symmetric and c(e) = c(ē) if
e, ē ∈ E. They proposed a linear programming description of the even factors in weakly symmetric
weighted digraphs which has dual integrality. They also proposed a primal-dual method for solving
the WEFP which calls an algorithm for the EFP polynomially many times.

Cunningham and Geelen also showed a reduction of the IEFP in weakly symmetric digraphs to
matroid intersection, which calls an algorithm for the EFP polynomially many times. Also, they
reduced the WIEFP in weakly symmetric weighted digraphs to valuated matroid intersection [15,
16], which calls an algorithm for the WEFP polynomially many times.

We remark here that the class of weakly symmetric weighted digraphs is broad enough to include
the matching and matroid intersection problems. Further, Cunningham and Geelen’s approach
applies to a broader class of digraphs, called odd-cycle-symmetric. A digraph is odd-cycle-symmetric
if every directed cycle of odd length (odd cycle) C has the reverse directed cycle C̄. A weighted
digraph (G, c) is odd-cycle-symmetric if G is odd-cycle-symmetric and c(C) = c(C̄) for every odd
cycle C. Note that a weakly symmetric (weighted) digraph is odd-cycle-symmetric.

Several important theorems of nonbipartite matching are extended to even factors in odd-
cycle-symmetric digraphs. The Tutte-Berge formula and the Edmonds-Gallai decomposition are
extended by Cunningham and Geelen, and Pap and Szegő [21]. Király and Makai [12] presented
a linear description of even factors in odd-cycle-symmetric weighted digraphs and proved its dual
integrality, which corresponds to the TDI description for matching. Harvey’s algebraic matching
algorithm [10] applies to the IEFP in an odd-cycle-symmetric digraph with two matroids linearly
represented over the same field.

Properties of odd-cycle-symmetric digraphs are also studied. A characterization of odd-cycle-
symmetric digraphs is given by Z. Király (see [12]). Kobayashi and Takazawa [13] showed that the
odd-cycle-symmetry of a digraph is a necessary and sufficient condition for the degree sequences
of the even factors in the digraph to form a jump system [1], and the odd-cycle-symmetry of a
weighted digraph is also a necessary and sufficient condition for the weighted even factors to induce
an M-concave function on the jump system [17]. This implies that the odd-cycle-symmetry is a
natural assumption in considering optimization problems involving even factors.

A main interest for even factors had been whether we can design a combinatorial algorithm
for the EFP in odd-cycle-symmetric digraphs. This had been open for several years since the
introduction of even factors, and was solved by Pap [20]. He presented an augmenting path al-
gorithm similar to Edmonds’ matching algorithm [6]. Recently, Takazawa [24] extended Pap’s
algorithm to the WEFP by combining it with the weighted matching algorithm [5]. Also, Iwata
and Takazawa [11] extended Pap’s algorithm to the IEFP by combining it with the matroid inter-
section algorithms [8, 14].

The contribution of this paper is a combinatorial algorithm for the WIEFP in odd-cycle-
symmetric weighted digraphs. By calling the algorithm for the WEFP [24] in the valuated matroid
intersection algorithm [16], Cunningham and Geelen’s method also achieves a combinatorial algo-
rithm for the WIEFP running in O(n3γ+n6m) time, where n and m are the number of vertices and
edges, respectively, and γ is the time for an independence test. On the other hand, our algorithm
combines the algorithms for the WEFP [24] and IEFP [11]. In other words, the algorithm com-
monly extends classical algorithms for the weighted matching and weighted matroid intersection
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problems, and works directly on the WIEFP. The time complexity of our algorithm is O(n4γ+n5),
which is better if γ = O(n2m).

The algorithm finds an integer optimal solution for a linear program corresponding to the
WIEFP, and simultaneously finds an integer optimal solution for the dual program if the weight is
integer. Thus, it provides a new dual integrality theorem (Theorem 4) which commonly extends
those for matching, matroid intersection, independent path-matching and even factors [3, 4, 7, 12].

This paper is organized as follows. Section 2 provides a formal definition of the WIEFP. In
Section 3, we show a linear program that corresponds to the WIEFP and two matroid operations
used in our algorithm. Algorithm description appears in Section 4.

2 Definitions

2.1 Basic notations

Let G = (V,E) be a digraph with vertex set V and edge set E. We denote an edge e from u to
v by uv. The reverse edge of e is denoted by ē. The initial vertex and terminal vertex of e are
respectively denoted by ∂+e and ∂−e, i.e., ∂+e = u and ∂−e = v. Similarly, for F ⊆ E, define
∂+F = {∂+e | e ∈ F} and ∂−F = {∂−e | e ∈ F}. For U ⊆ V , let δ+U = {e | e ∈ E, ∂+e ∈ U} and
δ−U = {e | e ∈ E, ∂−e ∈ U}. Denote E[U ] = {e | e ∈ E, ∂+e, ∂−e ∈ U}. For x ∈ RE and F ⊆ E,
denote x(F ) =

∑
e∈F x(e). For two sets F1 and F2, their symmetric difference (F1 \ F2)∪ (F2 \ F1)

is denoted by F1△F2.
A subset of edges {e1, . . . , ek} is said to be a path if ∂+e1, ∂−e1 = ∂+e2, ∂−e2 = ∂+e3,

. . . , ∂−ek−1 = ∂+ek, and ∂−ek are distinct. A cycle is a subset of edges {e1, . . . , ek} such that
∂−e1 = ∂+e2, ∂−e2 = ∂+e3, . . . , ∂−ek−1 = ∂+ek and ∂−ek = ∂+e1 are distinct. For a cy-
cle C = {e1, . . . , ek}, the reverse cycle C̄ of C is {ē1, . . . , ēk}. A path or a cycle F = {e1, . . . , ek} is
said to be odd if k is odd, and even if k is even. For F , V (F ) denotes the set of incident vertices∪k

i=1{∂+ei, ∂
−ei}.

In this paper, we indicate a matroid by the pair of its ground set and independent set family,
say, M = (V, I). We expect the readers to be familiar with basic concepts in matroid theory [18],
such as the rank function ρ, the closure function cl and a fundamental circuit with respect to I ∈ I
and v ∈ cl(I) \ I, denoted by C(I | v).

Let M = (V, I) and M′ = (V ′, I ′) be matroids such that V ∩ V ′ = ∅. We denote the di-
rect sum of M and M′ by M ⊕ M′. For U ⊆ V , the restriction of M to U is denoted by
M | U , and the contraction of U from M is denoted by M/U . That is, the independent set
families of M ⊕ M′, M | U , and M/U are {I ∪ I ′ | I ∈ I, I ′ ∈ I ′}, {I | I ⊆ U , I ∈ I}, and
{I | I ⊆ V \ U , I ∪BU ∈ I for some base BU of (M | U)}, respectively.

2.2 Problem definition

Let (G, c) be a weighted digraph with G = (V,E) and c ∈ RE
+. Also, let M+ = (V, I+) and

M− = (V, I−) be matroids. The following is the definition of the central object in this paper.

Definition 1 (Independent even factors). A subset of edges M ⊆ E is an even factor in G if it
forms a vertex-disjoint collection of paths and even cycles. Moreover, M is said to be an independent
even factor in (G,M+,M−) if M is an even factor with ∂+M ∈ I+ and ∂−M ∈ I−.

The topic of this paper is the weighted independent even factor problem (WIEFP), defined as
follows.
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Problem 2 (WIEFP). For a weighted digraph (G, c) and matroids M+,M−, find an independent
even factor M in (G,M+,M−) that maximizes c(M).

The weighted nonbipartite matching problem and the weighted matroid intersection problem
are special cases of the WIEFP.

Weighted matching. Let (Ḡ, c̄) be a weighted undirected graph with Ḡ = (V, Ē) and c̄ ∈ RĒ
+

in which you are supposed to find a maximum-weight matching. Then, construct an instance
(G, c,M+,M−) of the WIEFP as follows: G = (V,E), where E = {uv, vu | u, v ∈ V are adjacent in Ḡ};
c(uv) = c̄({u, v}), where {u, v} ∈ Ē is an edge connecting u and v; and both M+ and M− are free.
Observe that in (G, c,M+,M−) there exists a maximum-weight independent even factor consisting
of even cycles. By alternately picking up edges along these cycles, we obtain a vertex-disjoint set
of edges, which corresponds to a maximum-weight matching in (Ḡ, c̄).

Weighted matroid intersection. Let M1 = (V, I1) and M2 = (V, I2) be matroids and let
c̄ ∈ RV

+ be a weight vector. Then, construct an instance (G, c,M+,M−) of the WIEFP as follows.
Let V + = {v+ | v ∈ V } and V − = {v− | v ∈ V } be copies of V . For each U ⊆ V , we denote the
corresponding copies in V + and V − by U+ and U−, respectively. Let G = (V + ∪ V −, E), where
E = {v+v− | v ∈ V }, and c(v+v−) = c̄(v). Attach two matroids M+ = (V + ∪ V −, I+) and M− =
(V + ∪ V −, I−), where I+ = {U+ | U ∈ I1} and I− = {U− | U ∈ I2}. If M = {v+v− | v ∈ U ⊆ V }
is an independent even factor in (G,M+,M−) maximizing c(M), then U is a common independent
set in M1 and M2 maximizing c̄(U).

The WIEFP is NP-hard even for the special case of the EFP, namely, c ∈ {0, 1}E and both M+

and M− are free. In order to make the problem tractable, we assume the following property for
the given weighted digraph.

Definition 3 (Odd-cycle-symmetric weighted digraphs). A digraph G is odd-cycle-symmetric if
every odd cycle C in G, the reverse cycle C̄ is in G. A weighted digraph (G, c) is odd-cycle-
symmetric if G is odd-cycle-symmetric and c(C) = c(C̄) for every odd cycle C.

In the following sections, we deal with the WIEFP in odd-cycle-symmetric weighted digraphs
with general matroids. Note that, by the above reductions, the class of odd-cycle-symmetric
weighted digraphs is broad enough to include the weighted matching and weighted matroid in-
tersection problems.

3 Preliminaries for the algorithm

3.1 Linear programming formulation

Let (G, c,M+,M−) be an instance of the WIEFP, where G = (V,E), c ∈ RE
+, M

+ = (V, I+)
and M− = (V, I−). Assume that (G, c) is odd-cycle-symmetric. The rank function of M+ and
M− is denoted by ρ+ and ρ−, respectively. Similarly, objects of M+ and M− are denoted with
superscript + and −, respectively, e.g. cl+(I), C+(I | v), cl−(I) and C−(I | v).

As an extension of the linear description of the related problems, we consider the following
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linear program, where U = {U | U ⊆ V , |U | ≥ 3 is odd}:

(P) maximize
∑
e∈E

c(e)x(e)

subject to x
(
δ+U

)
≤ ρ+(U) (U ⊆ V ),

x
(
δ−U

)
≤ ρ−(U) (U ⊆ V ),

x (E[U ]) ≤ |U | − 1 (U ∈ U),
x(e) ≥ 0 (e ∈ E).

Note that a characteristic vector of an independent even factor in (G,M+,M−) is an integer feasible
solution for (P), and vice versa. The dual program of (P) is given by

(D) minimize
∑
U⊆V

(ρ+(U)y+(U) + ρ−(U)y−(U)) +
∑
U∈U

(|U | − 1)z(U)

subject to
∑
U⊆V,
U∋∂+e

y+(U) +
∑
U⊆V,
U∋∂−e

y−(U) +
∑
U∈U ,
e∈E[U ]

z(U) ≥ c(e) (e ∈ E), (1)

y+(U) ≥ 0 (U ⊆ V ), (2)

y−(U) ≥ 0 (U ⊆ V ), (3)

z(U) ≥ 0 (U ∈ U). (4)

Denote
c′(e) =

∑
U∋∂+e

y+(U) +
∑

U∋∂−e

y−(U) +
∑

U∈U : e∈E[U ]

z(U)− c(e).

The constraint (1) is rewritten as

c′(e) ≥ 0 (e ∈ E), (5)

and the complementary slackness (CS) conditions are

x(e) > 0 =⇒ c′(e) = 0, (6)

y+(U) > 0 =⇒ x
(
δ+U

)
= ρ+(U), (7)

y−(U) > 0 =⇒ x
(
δ−U

)
= ρ−(U), (8)

z(U) > 0 =⇒ x(E[U ]) = |U | − 1. (9)

In Section 4, we will present an algorithm for finding optimal solutions for (P) and (D), in
other words, feasible solutions for (P) and (D) satisfying (6)–(9). In particular, the algorithm
finds an integer optimal solution for (P), which is the characteristic vector of a maximum-weight
independent even factor. Also, the algorithm finds an optimal solution for (D) when c is integer.
Thus, the algorithm constructively proves the following integrality theorem, which corresponds to
the TDI theorems for matching [4] and matroid intersection [8]. We say that a set family F is
laminar if U1 ⊆ U2, U2 ⊆ U1 or U1 ∩ U2 = ∅ for all U1, U2 ∈ F . Also, we say that F is nested if
U1 ⊆ U2 or U2 ⊆ U1 for all U1, U2 ∈ F .

Theorem 4. For an instance (G, c,M+,M−) of the WIEFP, (P) has an integer optimal solution
if (G, c) is odd-cycle-symmetric. Moreover, if (G, c) is odd-cycle-symmetric and c is integer, (D)
also has an integral optimal solution (y+, y−, z) such that {U | y+(U) > 0} and {U | y−(U) > 0}
are nested and {U | z(U) > 0} is laminar.
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3.2 Operations on matroids

This subsection presents two operations on matroids, which play a key role in the algorithm de-
scribed in Section 4.

3.2.1 Shrinking of an independent set

Let M = (V, I) be a matroid. For an independent set U ∈ I, construct another matroid as follows.
Let Ṽ = (V \ U) ∪ {w}, where w is a new element, and define a subset family Ĩ of Ṽ by

Ĩ = {I | I ⊆ V \ U , ∃J ⊆ U , |J | = |U | − 1, I ∪ J ∈ I} ∪ {I ∪ {w} | I ⊆ V \ U , I ∪ U ∈ I}.

Then, (Ṽ , Ĩ) is a matroid, which is referred to as the shrinking of U .

Proposition 5 ([11]; see also [19]). The tuple (Ṽ , Ĩ) forms a matroid.

This operation corresponds to shrinking an odd vertex set in Edmonds’ matching algorithm [6]
and Pap’s even factor algorithm [20]. In the independent even factor algorithm [11], we apply
shrinking of V (C) to M+ and M− when we shrink an odd cycle C, in order to define matroids in
the resulting digraph.

3.2.2 p-minor

Let M = (V, I) be a matroid and let p ∈ RV
+. Then, partition V into V1, V2, . . . , Vk so that

Vi = {v | p(v) = πi} for i = 1, 2, . . . , k, where π1 > π2 > · · · > πk, (10)

and let Ui =
∪i

j=1 Vj for i = 1, 2, . . . , k. Here, define a matroid Mp, the p-minor of M, by

Mp = (M | V1)⊕ ((M/U1) | V2)⊕ · · · ⊕ ((M/Uk−2) | Vk−1)⊕ (M/Uk−1).

The independent set family, the closure function, and a fundamental circuit of Mp are denoted by
Ip, clp, and Cp(· | ·), respectively.

Note that the base family of Mp is exactly a family of bases of M maximizing p(·). In other
words, if I is independent in Mp, then there exists a base BI of M which contains I and maximizes
p(·) among all bases of M. Also, the CS conditions (7) and (8) can be restated in terms of p-minor
of M+ and M−, respectively. Given p, set

y(U) =


πi − πi+1 (U = Ui (i = 1, . . . , k − 1)),

πk (U = V ),

0 (otherwise).

(11)

Then, we have the following proposition.

Proposition 6. For an independent even factor M in (G,M+,M−), the following (i) and (ii) hold:

(i) If ∂+M ∈ I+
p and p(v) = 0 for v ∈ V \ cl+p (∂+M), then (7) holds for y+ = y defined by (10)

and (11).

(ii) If ∂−M ∈ I−
p and p(v) = 0 for v ∈ V \ cl−p (∂−M), then (8) holds for y− = y defined by (10)

and (11).
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Proof. We show a proof for (i). Assume the integer k in (10) is at least two, since the case k = 1
is trivial.

If ∂+M is a base of M+
p , then (7) directly follows from the definition of M+

p . Suppose ∂+M is
not a base of M+

p . Since p(v) = 0 for v ∈ V \cl+p (∂+M), it holds that πk = 0 and Uk−1 ⊆ cl+p (∂
+M).

By the definition of M+
p and the fact that ∂+M is independent, we have that ∂+M ∩ Ui is a base

of M | Ui for each i = 1, . . . , k − 1. Thus, x(δ+Ui) = ρ+(Ui) for i = 1, . . . , k − 1, and (7) follows.
The same argument proves (ii).

4 Algorithm description

Let (Ĝ, c) be an odd-cycle-symmetric weighted digraph with Ĝ = (V̂ , Ê) and c ∈ RÊ
+, and let

M̂+ = (V̂ , Î+) and M̂− = (V̂ , Î−) be matroids. The objective of this section is to present an
algorithm for finding an independent even factor M̂ in (Ĝ, M̂+, M̂−) maximizing c(M̂). In what
follows, M̂+, M̂− and M̂ represent the objects in the input digraph Ĝ, while M+, M− and M
correspond to the digraph G = (V,E) in process, obtained by applying the procedures of shrinking
and expanding of odd cycles repeatedly.

In the algorithm, we have M̂ ⊆ Ê, p+, p− ∈ RV̂
+ and z ∈ RU in hand. We maintain that the

characteristic vector of M̂ is a feasible solution for (P), and (p+, p−, z) corresponds to a feasible
solution (y+, y−, z) for (D), where y+ and y− are constructed by (10) and (11) from p+ and p−,
respectively. The goal of the algorithm is to achieve (6)–(9). Note that c′(e) = p+(∂+e)+p−(∂−e)+∑

U∈U ,e∈E[U ] z(U)− c(e).
Here is a description of the algorithm, followed by detailed expositions of each procedure. In

what follows, a pseudo-vertex into which U ⊆ V̂ is shrunk is denoted by vU . The p+-minor of M̂+

and p−-minor of M̂− are simply denoted by M̂+
p = (V̂ , Î+

p ) and M̂−
p = (V̂ , Î−

p ), respectively. Sim-
ilarly, M+

p = (V, I+
p ) and M−

p = (V, I−
p ) denote the matroids obtained by applying the procedures

of shrinking of corresponding vertex subsets to M̂+
p and M̂−

p , respectively.

Algorithm WIEF

Input. An odd-cycle-symmetric weighted digraph (Ĝ, c) and matroids M̂+, M̂−.

Output. An independent even factor M̂ in (Ĝ, M̂+, M̂−) maximizing c(·), and (p+, p−, z) corre-
sponding to a dual optimal solution.

Step 1. Set G = Ĝ, M+ = M̂+, M− = M̂−, M̂ = M = ∅, p+(v) = max{c(e) | e ∈ δ+v},
p−(v) = 0 and z(U) = 0.

Step 2. Construct an auxiliary digraph G∗ = (V ∗, E∗;S+, S−) as follows:

V ∗ = V + ∪ V −, E∗ = E◦ ∪ M̄ ∪ J+ ∪ J−,
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where

V + = {v+ | v ∈ V }, V − = {v− | v ∈ V },
E◦ = {u+v− | uv ∈ E \M , c′(e) = 0},
M̄ = {v−u+ | uv ∈ M},
J+ = {u+v+ | u ∈ ∂+M , v ∈ cl+p (∂

+M) \ ∂+M , u ∈ C+
p (∂+M | v)},

J− = {u−v− | u ∈ cl−p (∂
−M) \ ∂−M , v ∈ ∂−M , v ∈ C−

p (∂−M | u)},
S+ = {u+ | u ∈ V \ cl+p (∂+M), p+(u) > 0}

∪ {v+U | U ∈ U , vU ∈ V \ cl+p (∂+M), p+(u) > 0 for u ∈ U \ ∂+M̂},
S− = {v− | v ∈ V \ cl−p (∂−M)} ∪ {u+ | u ∈ ∂+M , p+(u) = 0}

∪ {v+U | U ∈ U , vU ∈ ∂+M , ∃v ∈ U , p+(v) = 0}.

If S+ = ∅, then return M̂ and (p+, p−, z), and halt.

Step 3. Let R+ ⊆ V + and R− ⊆ V − be the sets of the reachable vertices from S+. If (R+ ∪
R−) ∩ S− = ∅, then go to Step 7.

Step 4. Let P ∗ be a path from S+ to S− with minimum number of edges. Let P ⊆ E be the
edge set in G which corresponds to P ∗ ∩ (E◦ ∪ M̄). If M△P does not contain odd cycles, then
apply Augment(M,P ), expand every pseudo-vertex vU with z(U) = 0, and go to Step 2.

Step 5. Let C be an odd cycle which is to be shrunk if Shrink(M,P ) is applied. If there exists
v ∈ V (C) such that v+ ∈ S−, then apply Modify(M,P ), expand every pseudo-vertex vU with
z(U) = 0, and go to Step 2.

Step 6. Apply Shrink(M,P ), and then go to Step 2.

Step 7. Apply Dual Update, expand every pseudo-vertex vU such that z(U) = 0, v+U ̸∈ R+ and
v−U ∈ R−, and then go to Step 2.

4.1 Step 2: auxiliary graph construction

This subsection describes how to construct the auxiliary graph G∗ efficiently. The difficulty arises
in testing independence in M+ and M− using the independence oracle of M̂+ and M̂−. The main
idea is explained in [11], which is included below for completeness.

Consider how to determine S+ and J+. We have ∂+M ∈ I+
p and ∂+M̂ ∈ Î+

p . Denote the

set of pseudo-vertices W = {vU1 , . . . , vUk
}. Now, construct another auxiliary graph H+

p = (V̂ , F+
p )

defined by

F+
p =

(
k∪

i=1

{uv | vUi ̸∈ ∂+M , u ∈ Ui ∩ ∂+M̂ , v ∈ Ui \ ∂+M̂}

)
∪ {uv | u ∈ ĉl

+

p (∂
+M̂) \ ∂+M̂ , v ∈ ∂+M̂ , v ∈ Ĉ+

p (∂+M̂ | u)}.

Also, denote T+ = V̂ \ ĉl+p (∂+M̂).
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For v ∈ V \ ∂+M , we have to determine whether v+ ∈ S+, and if not, enumerate edges in J+

whose head is v+. This can be done by a single search in H+
p .

Assume that v is not a pseudo-vertex. Then, v+ ∈ S+ if and only if there exists a path from
v to T+ in H+

p . If such a path does not exist, then the edges in J+ whose head is v are found as
follows. For u ∈ ∂+M \W , u+v+ ∈ J+ if and only if H+

p has a path from v to u. For vUi ∈ ∂+M ,

v+Ui
v+ ∈ J+ if and only if H+

p has a path from v to some vertex in Ui.

If v is a pseudo-vertex wj , in the above argument replace v with the unique vertex in Uj \∂+M̂ .
All of these determinations can be done by decomposing H+

p into strongly connected components.
Of course, the above argument applies to computing S− and J−.

4.2 Steps 4–6: Augment(M,P ), Modify(M,P ) and Shrink(M,P )

Let P ∗ be a shortest path from S+ to S−. Define P ⊆ E by P = {uv | u+v− ∈ E◦ ∩ P ∗} ∪ {uv |
v−u+ ∈ M̄ ∩ P ∗} and consider the edge set M ′ = M△P . Observe that |δ+v ∩ M ′| ≤ 1 and
|δ−v ∩M ′| ≤ 1 for every v ∈ V . Also, by the classical matroid intersection argument, it holds that
∂+M ′ ∈ I+

p and ∂−M ′ ∈ I−
p . Therefore, M ′ is a new independent even factor if M ′ contains no

odd cycles, and an advantage is that |S+| decreases. This procedure of obtaining M ′ is referred to
as Augment(M,P ).

Now, suppose M ′ contains odd cycles. Denote P = {e1,m1, e2, . . . , el−1,ml−1, el}, where ei ∈
E \M , mi ∈ M and the suffixes indicate the order of appearance in P ∗. For i = 0, 1, . . . , l, define
a subset Pi of P by

Pi =


∅ (i = 0),

{e1,m1, e2,m2, . . . , ei,mi} (i = 1, . . . , l − 1),

P (i = l),

and let i∗ be the minimum integer j such that M△Pj contains odd cycles. Note that M△Pi∗

contains a unique odd cycle, denoted by C. Here, update M by M := M△Pi∗−1. Note that this
operation maintains |M | and that M is an independent even factor in (G,M+

p ,M
−
p ). Also, observe

that |E[V (C)] ∩ M | = |C| − 1, that is, (9) holds for U = V (C). Then, update G by contracting
V (C) into a single vertex: identify all vertices in V (C) to obtain a pseudo-vertex w = vV (C); and
delete all edges in E[V (C)]. Namely, G = (V,E) and M ⊆ E are updated by

V := (V \ V (C)) ∪ {w},
E := {uv | u, v ∈ V \ V (C), uv ∈ E}

∪ {wv | v ∈ V \ V (C), ∃u ∈ V (C) such that uv ∈ E}
∪ {uw | u ∈ V \ V (C), ∃v ∈ V (C) such that uv ∈ E},

M := {uv | u, v ∈ V \ V (C), uv ∈ M}
∪ {wv | v ∈ V \ V (C), ∃u ∈ V (C) such that uv ∈ M}
∪ {uw | u ∈ V \ V (C), ∃v ∈ V (C) such that uv ∈ M}.

Finally, update M+
p and M−

p by applying the operation of shrinking of V (C). This procedure of
updating G, M , M+

p , and M−
p is referred to as Shrink(M,P ). Note that parallel edges may appear

after this procedure.
However, if v+ ∈ S− for some v ∈ V (C), we do not execute Shrink(M,P ). Instead, after

replacing M with M△Pi∗−1, we modify the edges of MC = M∩C. By odd-cycle-symmetry, G∗ also
has C̄, and there exists an edge setM ′

C ⊆ C∪C̄ such that ∂+M ′
C = V (C)\{v} and ∂−M ′

C = ∂−MC .
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Here, we update M by (M \MC)∪M ′
C . This procedure is referred to as Modify(M,P ). Note that

Modify(M,P ) does not increase |M |, but decreases |S+| as well as Augment(M,P ) does. Hence,
in convenience we call Augment(M,P ) and Modify(M,P ) collectively as an augmentation. Also,
Augment(M,P ), Modify(M,P ) and Shrink(M,P ) are collectively referred to as a primal change.

Proposition 7. In primal changes, it is maintained that M is an independent even factor in
(G,M+

p ,M
−
p ).

Finally, let us explain how to expand pseudo-vertices. Let w ∈ V be a pseudo-vertex which is
to be expanded to a vertex set U . Denote the corresponding odd cycle by C. Expanding of w is the
reverse operation of shrinking U : replace w with U ; reconstruct the edges in E[U ]; reconnect the
edges in δ+w and δ−w to a vertex in U to which it was incident before shrinking U . The problem
is to decide which of the |U | − 1 edges in C ∪ C̄ to put into M . If M has two edges uw+ and w−v
such that w+, w− ∈ U and u, v ̸∈ U , then choose the edges in C ∪ C̄ that form an even path PU

from w+ to w− and vertex-disjoint cycles of length two that cover the vertices in U \ V (PU ). If
uw+ and w−v does not exist, we know which vertex should not be in ∂+M or ∂−M by ∂+M̂ and
∂−M̂ . Then, consider such a vertex as w+ or w−, and apply the above procedure.

Remark 8. In primal changes, we also update M̂ , which can be done by tracing the paths in H+
p

or H−
p corresponding to the edges in P ∗ ∩ (J+ ∪ J−).

Remark 9. By Shrink(M,P ), the initial vertex of P leaves S+, and the newly created pseudo-
vertex w belongs to S+. Thus, in contrast to classical weighted matching and matroid intersection
algorithms, ∂+M̂ does not maximize p+(∂+M̂) among the independent sets with the same size as
∂+M̂ . Instead of keeping ∂+M̂ to maximize p+(∂+M̂), we have that there exists an independent
set I ∈ Î+ maximizing p+(I) such that contains ∂+M̂ , i.e., ∂+M̂ ∈ Î+

p . This is also the reason
why we have S− in the V +-side.

We have another reason why we introduced the notion of p-minor. In auxiliary graphs in classical
weighted matroid intersection algorithms, we have sets of edges connecting exchangeable vertices
in M+ (resp., M−) with the same value of p+ (resp., p−). In our algorithm, p+ and p− are not
defined on the pseudo-vertices, and so it is difficult to define J+ (resp., J−) by the exchangeability
in M+ (resp., M−) and the value of p+ (resp., p−). Instead, we define J+ (resp., J−) by the
exchangeability in M+

p (resp., M−
p ).

Remark 10. In the procedures of Modify(M,P ) and expanding a pseudo-vertex, we require that
the odd cycle C has a reverse cycle C̄ and c′(e) = 0 for every edge in C̄, which is certified by the
following propositions.

Proposition 11 (Pap [20]). The procedure Shrink(M,P ) preserves the odd-cycle-symmetry of G.

Proposition 12 (Takazawa [24]). If c′(e) = 0 for every edge e in an odd cycle C, then c′(e) = 0
for every edge e in C̄.

4.3 Step 7: Dual Update

Associated with R+ and R−, define R̂+, R̂− ⊆ V̂ by

R̂+ = {v ∈ V̂ | v+ ∈ R+ or v ∈ U for some pseudo-vertex vU s.t. v+U ∈ R+},
R̂− = {v ∈ V̂ | v− ∈ R− or v ∈ U for some pseudo-vertex vU s.t. v−U ∈ R−}.
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In Dual Update, we update the dual variables by

p+(v) :=

{
p+(v)− ϵ (v ∈ R̂+),

p+(v) (otherwise),

p−(v) :=

{
p−(v) + ϵ (v ∈ R̂−),

p−(v) (otherwise),

z(U) :=


z(U) + ϵ (U ∈ U , v+U ∈ R+, v−U ̸∈ R−),

z(U)− ϵ (U ∈ U , v+U ̸∈ R+, v−U ∈ R−),

z(U) (otherwise),

where

ϵ = min{ϵ1, ϵ2, ϵ3, ϵ4, ϵ5},
ϵ1 = min{p+(v) | v ∈ R̂+},
ϵ2 = min{z(U) | U ∈ U , v+U ̸∈ R+, v−U ∈ R−},
ϵ3 = min{c′(e) | e ∈ Ê, ∂+e ∈ R̂+, ∂+e ̸∈ R̂−},
ϵ4 = {p+(u)− p+(v) | u ∈ R̂+, v ̸∈ R̂+, u ∈ C+(B̂+

p | v)},
ϵ5 = {p−(v)− p−(u) | u ∈ R̂−, v ̸∈ R̂−, v ∈ C−(B̂−

p | u)}.

Here, B̂+
p is a base of M̂+

p containing ∂+M̂ , and B̂−
p is a base of M̂−

p containing ∂−M̂ .
Let us see that Dual Update maintains the feasibility of the dual solution.

Proposition 13. In Algorithm WIEF, the dual variables are feasible for (D).

Proof. Note that the dual variables are feasible for (D) in the beginning of the algorithm.
Consider (5). For an edge e ∈ Ê, observe that c′(e) changes in Dual Update only if e is not

shrunk, ∂+e ∈ R̂+ and ∂−e ̸∈ R̂−. In this case c′(e) decreases by ϵ, and is still nonnegative because
ϵ ≤ ϵ3.

For (2) and (3), y+ ≥ 0 holds if p+ ≥ 0, and y− ≥ 0 if p− ≥ 0 by (10) and (11). The
nonnegativity of p+ follows from ϵ ≤ ϵ1, and that of p− is easy because p− is monotonically
nondecreasing.

Finally, (4) follows from ϵ ≤ ϵ2.

Moreover, by the following proposition, we also claim that M is still an independent even factor
in (G,M+

p ,M
−
p ) after Dual Update.

Proposition 14. After Dual Update, M is an independent even factor in (G,M+
p ,M

−
p ).

Proof. It suffices to prove that B̂+
p ∈ Î+

p and B̂−
p ∈ Î−

p are maintained. For B̂+
p , it holds that

p+(u) ≥ p+(v) for every pair of u and v such that u ∈ C+(B̂+
p | v), which is maintained in

Dual Update since ϵ ≥ ϵ4. The same argument applies to B̂−
p .

4.4 Complexity analysis

So far, we have seen that Algorithm WIEF maintains primal and dual feasible solutions. What is
left to show is that they become optimal in polynomial time. Recall that |V̂ | = n, |Ê| = m, and γ
is the time for an independence test.

First, let us see that CS conditions (6), (8) and (9) are maintained. Observe that these three
conditions hold in the beginning of the algorithm.
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Condition (6). Suppose e comes to be inM in a primal change. Since a primal change is executed
in G∗, we have e ∈ E◦, that is, c′(e) = 0 holds. Afterwards, in a subsequent Dual Update, it holds
that both of (∂+e)+ and (∂−e)− are reachable from S+, or both of them are not. Hence, c′(e) does
not change in Dual Update.

Consider expanding of an odd cycle C. We have that c′(e) = 0 for an edge e in C when C was
shrunk, and the same holds for C̄ by odd-cycle-symmetry. Moreover, observe that c′(e) does not
change in Dual Update for a shrunk edge e. Therefore, in expanding C, it holds that c′(e) = 0 for
every edge e ∈ C ∪ C̄.

Condition (8). By Proposition 6, it suffices to show that p−(v) = 0 for v ∈ V̂ \ ĉl−p (∂−M̂). This

can be proved through the fact that p−(v) is changed only if v ∈ R̂− ⊆ ĉl
−
p (∂

−M̂) and ĉl
−
p (∂

−M̂)
is monotonically nondecreasing.

Condition (9). We have that z(U) > 0 only if U is shrunk. For such U , the procedure of
expanding suggests that x(E[U ]) = |U | − 1.

Next, consider how many times each procedure is executed until (7) holds.

Proposition 15. The procedures of Augment(M,P ) and Modify(M,P ) respectively happen at most
n times throughout Algorithm WIEF.

Proof. The procedure Augment(M,P ) increases |M̂ | by one, and |M̂ | never decreases in Algorithm
WIEF.

In Modify(M,P ), a vertex v ∈ V̂ comes to satisfy v ̸∈ ∂+M̂ and p+(v) = 0. Once these two
conditions are satisfied at a vertex, they remain satisfied, and Algorithm WIEF terminates if they
are satisfied at every vertex.

Proposition 16. The procedure Shrink(M,P ) happen O(n) times between augmentations.

Proof. In Shrink(M,P ), |V | decreases by at least two. Hence, in order to prove this proposition,
it suffice to show that a pseudo-vertex w created after an augmentation is not expanded until the
next augmentation.

When w is created, w+ ∈ S+ holds, and hence w+ ∈ R+. This is maintained in the subsequent
procedures of Shrink(M,P ) and Dual Update until the next augmentation. Since a pseudo-vertex
w is expanded after Dual Update only if w+ ̸∈ R+ and w− ∈ R−, w is not expanded until the next
augmentation.

Proposition 17. It holds that ϵ > 0 in Dual Update, and Dual Update happen O(n) times between
primal changes.

Proof. Suppose ϵ = ϵ1 = p+(v) for v ∈ R̂+. If p+(v) = 0, then, it implies that a path from S+ to
S− exists, and thus a primal change is executed instead of Dual Update. Thus, ϵ1 > 0 and a primal
change follows a Dual Update with ϵ = ϵ1.

Suppose ϵ = ϵ2 = z(U) for a pseudo-vertex vU with v+U ̸∈ R+ and v−U ∈ R−. Since a pseudo-
vertex w created after the latest augmentation satisfies that w+ ∈ R+, we have that vU was created
before the latest augmentation. As vU was not expanded after the augmentation, z(U) > 0 at
the augmentation. Moreover, by the rule of expanding of pseudo-vertices after Dual Update, we
conclude that z(U) > 0 at this Dual Update. Also, the number of times of ϵ = ϵ2 is bounded by n.

Suppose ϵ = ϵ3, ϵ4, or ϵ5. In such a case, an edge e comes to be in G∗ and ∂−e becomes reachable
from S+. Since R̂+ and R̂− are nondecreasing between augmentations, the number of times of ϵ
hits ϵ3, ϵ4 and ϵ5 is O(n) between primal changes.
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By the above propositions, we execute O(n2) times of primal changes and O(n3) times of
Dual Update until (7) holds. After a primal change, we reconstruct the auxiliary graph G∗, which
can be done in O(n2γ) time (see Section 4.1). On the other hand, a single iteration of Dual Update
takes O(n2) time. Therefore, the total time complexity of Algorithm WIEF is O(n4γ + n5).

Theorem 18. Algorithm WIEF runs in O(n4γ + n5) time.

For the special case where the given matroids are linear, reconstruction of G∗ takes O(n3) time.
Thus, the time complexity of Algorithm WIEF is O(n5), while that of Cunningham and Geelen’s
method for this case is O(n6m).

Theorem 19. If linear representations of the matroids are given, Algorithm WIEF runs in O(n5)
time.

4.5 Proof for Theorem 4

We have seen that Algorithm WIEF finds a pair of optimal solution x of (P) and (y+, y−, z) of
(D) for an odd-cycle-symmetric weighted digraph (G, c). Obviously x ∈ {0, 1}E . Moreover, since
Dual Update only consists of addition, subtraction and comparison, (y+, y−, z) is also integer if c is
integer. Therefore, Theorem 4 holds.
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[12] Király, T., Makai, M.: On polyhedra related to even factors. In: Bienstock, D., Nemhauser,
G.L. (eds.) Integer Programming and Combinatorial Optimization: Proceedings of the 10th
International IPCO Conference, Lecture Notes on Computer Science 3064, pp. 416–430,
Springer-Verlag, Heidelberg (2004)

[13] Kobayashi, Y., Takazawa, K.: Even factors, jump systems, and discrete convexity. J. Comb.
Theory Ser. B 99, 139–161 (2009)

[14] Lawler, E.L.: Matroid intersection algorithms. Math. Program. 9, 31–56 (1975)

[15] Murota, K.: Valuated matroid intersection I: optimality criteria. SIAM J. Discrete Math. 9,
545–561 (1996)

[16] Murota, K.: Valuated matroid intersection II: algorithms. SIAM J. Discrete Math. 9, 562–576
(1996)

[17] Murota, K.: M-convex functions on jump systems: a general framework for minsquare graph
factor problem. SIAM J. Discrete Math. 20, 231–226 (2006)

[18] Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

[19] Pap, G.: A Constructive Approach to Matching and Its Generalizations. Ph.D. thesis, Eötvös
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