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It is now possible to study experimentally the combined effect of disorder and interactions in cold atom physics.
Motivated by these developments we investigate the dynamics around the metal-insulator transition (MIT) in
a one-dimensional Fermi gas with short-range interactions in a quasiperiodic potential by the time-dependent
density-matrix renormalization group technique. By tuning disorder and interactions we study the MIT from
the weakly to the strongly interacting limit. The MIT is not universal as time evolution, well described by a
process of anomalous diffusion, depends qualitatively on the interaction strength. By using scaling ideas we
relate the parameter that controls the diffusion process with the critical exponent that describes the divergence
of the localization length. In the limit of strong interactions theoretical arguments suggest that the motion at the
MIT tends to ballistic and critical exponents approach mean-field predictions.
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Studies of the interplay of interactions and disorder have
flourished in recent years [1–5]. The reasons for this renewed
interest include cold atom experiments [1], more quantitative
numerical simulations [2], and novel theoretical techniques
[3,4]. Adding further appeal to this problem, numerical results
for interacting one-dimensional (1D) bosons [2] in a disordered
potential contradicts rigorous mathematical predictions [4].
The reasons for these discrepancies are not yet well under-
stood [5].

Here we address a related problem: the time evolution of
1D fermions with short-range attractive interactions by time-
dependent density-matrix renormalization group (tDMRG)
techniques. We choose tDMRG over other techniques because
the range of sizes that can be accessed is much larger. This
is key to minimize finite-size effects that might obscure the
occurrence of localization. We focus on dynamical properties
as the time dependence of the atom distribution is a natural
observable in cold atom experiments. Disorder is modeled
by a quasiperiodic potential [6] that can be implemented
experimentally [1],

V (n) = λ cos(2πωn + θ ), (1)

with ω irrational, θ ∈ [0,2π ), and λ > 0. In the noninteracting
limit a 1D tight-binding model with this potential and a hop-
ping parameter J ≡ 1 undergoes a metal-insulator transition
(MIT) at λc = 2 [7]. As attractive interactions are turned on, λc

decreases [8]. It is thus possible to study the role of interactions
at the MIT from the weak- to the strong-coupling limit. We
employ the term MIT instead of superconducting-insulator
transition because according to Ref. [8] quasi-long-range order
is already broken when the insulator transition occurs.
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The model. We employ tDMRG [9] to study the dynamics
of the L-site spin-1/2 Hubbard model,

H = −J

L−1∑
i=1,σ

(ĉ†i−1,σ ĉi,σ + H.c.) + U

L−1∑
i=0

n̂i,↑n̂i,↓

+
L−1∑
i=0

V (i)n̂i , (2)

in which ĉi,σ annihilates an atom at site i in spin state
σ (=↑ , ↓), n̂i,σ ≡ ĉ

†
i,σ ĉi,σ , n̂i ≡ n̂i,↑ + n̂i,↓, U < 0 is the on-

site interaction, and V (i) is given by (1) with ω = (
√

5 − 1)/2.
The angle θ is chosen so that V (i) is symmetric relative to the
center of the system.

The tDMRG provides an efficient way to simulate the time
evolution of a wave function obtained with DMRG. Our initial
configuration (t = 0) is the ground state of the Hamiltonian
where the disordered potential (1) is replaced by a simple
potential well of width � = 64 and depth D = 10 centered at
the origin,

Vt<0(i) = D�(|xi | − �/2), (3)

where � is the Heaviside function and xi ≡ i − (L − 1)/2 is
the location of the site relative to the center of the system.
For t > 0 we compute the real-time evolution (t > 0) of this
ground state under the Hamiltonian H for L = 256 after the
potential well is replaced by the quasiperiodic potential (1).
H is broken into terms affecting only two neighboring lattice
sites. The time evolution operator e−iH	t , decomposed using
the second-order Suzuki-Trotter breakup, is iteratively applied
on the ground state obtained by finite system DMRG. The time
step 	t , measured in units of h̄/J , satisfies 0.01 � 	t � 0.05
and m = 200 states have been kept in the DMRG simulation
unless noted otherwise.

Before we proceed with the calculation we provide a
brief overview of previous research on this model. In the
noninteracting limit, U = 0, the MIT is described by a process
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of anomalous diffusion [10] controlled by the multifractal
dimensions of the spectrum [7]. The localization length ξ ∝
|λ − λc|−ν diverges at the transition with ν ≈ 1 [11]. For λ = 0
the model is exactly solvable [12] for all U ’s. For |U | 	 1 it is
mapped onto a weakly interacting hard-core Bose gas with a
rescaled hopping parameter J ′ ≈ J 2/|U | [13]. This suggests
that the MIT will occur at λc ∼ J 2/|U |.

For finite disorder and interactions there are already several
studies about the static properties of Eq. (2) [8,14,15] and
related models [16–20]. The dynamics of an interacting 1D
Bose gas in a quasiperiodic potential was first investigated
numerically in Ref. [16]. For a more recent study in which
interactions are treated in a mean-field fashion we refer to
Ref. [17]. In Refs. [8,15] it was found that, in a 1D Fermi
gas with attractive interactions, λc = λc(U ) depends on the
interaction and that weak disorder can enhance superfluidity.
Renormalization group techniques were employed in Ref. [20]
to study the weak disorder limit of spinless fermions in the
Fibonacci chain, a quasiperiodic potential that is critical for
each value of the coupling constant. For sufficiently weak
interactions it was found in Ref. [14] that the spectrum of the
Fibonacci chain is still multifractal. However, in the case of
the potential (1) the system is already an insulator for U < 0
and λ = 2.

Results. In order to investigate the dynamics of (2) we first
compute the nth order moment defined as

〈xn(t)〉 ≡
[∑

i |xi |n〈�(t)|n̂i |�(t)〉∑
i〈�(t)|n̂i |�(t)〉

]
, (4)

in which |�(t)〉 is the many-body wave function at time t .
Here, i = 0,1, . . . ,L − 1 runs over the site index and n̂i =∑

σ ĉ
†
i,σ ĉi,σ is the number operator at site i. We set J ≡ 1, the

number of fermions per spin to N = 12 and L = 256. Initially
fermions are confined to sites 96–159 by the potential well
Vt<0(i) (3). Then we study the time evolution after the potential
well is removed and the quasipotential V (i) is switched on at
t = 0.

The results for 〈x2(t)〉 and different λ’s are depicted in
Fig. 1. The values U = −6,−10 correspond to the regime of
strong coupling where the interaction energy is larger than the
kinetic and potential energy due to the quasiperiodic potential.
We clearly observe in Fig. 1 arrest of diffusion for sufficiently
large λ. The critical disorder λc < 2 for which the MIT occurs
decreases as |U | increases. We have estimated λc directly from
〈x2(t)〉 by identifying a narrow region of λ’s for which the
dynamics becomes substantially slower than in the metallic
region and also by an explicit calculation of the participation
ratio [8]. In the latter the critical λc at which MIT occurs, for
a fixed (L,U ), is identified as a maximum of the participation
ratio as a function of λ. We have also found that λc does not
strongly depend on the filling factor provided that the chemical
potential is far from the band edge.

In order to fit the numerical data we employ the ansatz,

〈x2(t)〉 = x2
0 [1 + (t/t0)α], (5)

where x0, t0, and α are fitting parameters. We note that
this fitting function is only an educated guess. We choose
it because, despite its simplicity, it led to a good description
of the data. Other functions recently used in the literature [1]
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FIG. 1. (Color online) U = −10: tDMRG calculation of 〈x2(t)〉
Eq. (4) for, from top to bottom, λ = 0.1, 0.15, 0.28. Diffusion is
clearly suppressed at λ = 0.28. The dashed line is the best, α ≈ 1.54,
fitting function (5) around the MIT λ = λc ≈ 0.15. U = −6: tDMRG
calculation of 〈x2(t)〉 (4) for, from top to bottom, λ = 0.15, 0.25, 0.40.
The dashed line is the best, α ≈ 1.48, fitting function (5) around
the MIT λ = λc ≈ 0.25. In both figures L = 256 and N = 12. The
maximum time tmax that we can explore is dictated either by the
stability of the tDMRG simulation (U,λ) = (−10,0.28),(−6,0.40)
or by the growing importance of finite size effects for t > tmax in the
rest of the cases.

were also tried but the fitting was qualitative worse. Results
of the best fit (see Fig. 1) are presented in Fig. 2 for different
values of U at λ ≈ λc. It is observed that α depends on U and
it is different from the one for U = 0, α ≈ 1 ≈ 2dH, where
dH is the Hausdorff dimension of the spectrum [7]. Therefore
strong interactions modify substantially the dynamics at the
MIT.

This is an important result. According to the one-parameter
scaling theory [21] the parameter α is related to the critical
exponent ν that labels the universality class of the MIT.
Therefore different α(U ) at the MIT correspond to different
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FIG. 2. (Color online) α [see text around (5) for details] vs
the critical exponent ν. The latter is obtained by fitting (7)
to 	E = aebL|λ−λc|ν with a,b,ν fitting parameters, L = 13, and
ω = 5/13 in (1). Fitting is restricted to a small region λ > λc

such that ξ < L. Error bars were obtained by considering the
stability of the results under small changes in λc and the fitting
interval. From left to right, the points correspond to (U,λc) =
(−10,0.15),(−6,0.25),(−3,0.47),(−2,0.70),(−1,1.01),(0,2). Qual-
itative agreement with the expression ν = 1

α
(solid line) is observed.
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universality classes. An important concept of this theory is
the dimensionless conductance g = ET/δ, where ET , the
Thouless energy, is the energy related to the typical time
for a particle to cross a sample of size L and δ is the
mean level spacing. For a disordered metal (normal diffusion)
g(L) ∝ LD−2 → ∞ for L → ∞ since ET ∝ 1/L2 and δ ∝
1/LD . Analogously for an insulator g(L) ∝ e−L/ξ decays
exponentially. A MIT is characterized by a scale independent
g(L) ≡ gc. Two mechanisms can lead to this scale invariance:
localization effects that slow down the motion 〈x2(t)〉 ∝
tα at the MIT and a multifractal spectrum [7], with the
Hausdorff dimension dH, that induces an anomalous scaling
of δ ∝ 1/LD/dH . Based on these arguments it was predicted
in Ref. [21] that in D = 1 a MIT will occur provided that
2dH = α. In the noninteracting limit this relation was verified
in Refs. [7,10].

In the presence of repulsive interactions it has been
suggested [22] that the scaling theory must include two
parameters, g and the ratio between an energy related to inter-
actions and the mean level spacing. For attractive interactions,
especially in a quasiperiodic potential, the situation is less
clear. In any case the above arguments, together with the
numerical results above, provide a rather compelling albeit
qualitative picture of the role of interactions: As |U | increases,
α > 1 increases and the motion becomes superdiffusive.
According to the scaling theory, the MIT can occur only if dH

also increases. Physically that means that interactions smooth
out the fractal properties of the spectrum at the MIT. The
smoothing will be substantial when the interacting energy is
much larger than the typical size of the subbands induced by the
quasiperiodic potential around the Fermi energy. In this large
|U | limit, corresponding to hard-core bosons, the spectrum
is no longer fractal (dH ≈ 1) and therefore the dynamics
at the MIT α = 2dH ≈ 2 approaches the ballistic limit. The
numerical findings of Ref. [14] and the semianalytical results
of Ref. [20] for spinless fermions fully support this picture. We
note that [3] many features of the many-body MIT are similar
to those of a single particle in a Cayley tree [23]. For this
model α = 2 and ν = 1/2 around the MIT. It is thus tempting
to speculate that these results also applies to the Hamiltonian
(2) in the limit |U | → ∞.

Before we turn to the next observable a few comments are
in order: (a) The fitting interval is long enough for disorder and
interactions to strongly influence the motion. (b) The motion
is slower as |U | increases. The length of the fitting interval
(see below) increases accordingly. As a result, for |U | 	 1
the value of α is more dependent on the interval. It is thus
likely that additional transient terms are present in (5). We
stick to (5) because the addition of more terms without a clear
physical motivation would lead to ambiguous results. (c) The
maximum time that we represent in the figures, and that it is
used in the fittings, was chosen so that both the numerical error
accumulation (t � 1000) and finite-size effects that obscure
localization are negligible. For the latter the maximum time
strongly depends on U,λ. This maximum time tmax for which
finite-size effects are not important is chosen by imposing
that the occupation number of the last five sites remains less
than 0.01 and no sharp increases occur for smaller times. For
instance, around λ ≈ λc, tmax ≈ 650 for U = −10 but only
tmax ≈ 75 for U = −1.
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FIG. 3. (Color online) Participation number P (t) (6) for the same
parameters as Fig. 1. A nonincreasing P (t) for t → ∞ is a signature
of localization.

In order to obtain information of the time evolution of the
full many-body wave function we have also computed the
time-dependent participation number [24],

P (t) ≡ (
∑

i〈�(t)|n̂i |�(t)〉)2∑
i〈�(t)|n̂i |�(t)〉2

, (6)

which, up to normalization factors, gives an estimation of the
number of sites which, at a given time, are occupied (see
Ref. [25] for more information). In an insulator P (t) will be
constant for sufficiently long times but in a metal it will always
increase with time. Even a steady increase indicates that at
least some parts of the wave packet can escape localization.
Therefore P (t) is an indicator of localization of the full
wave packet. In Fig. 3 we plot P (t) for U = −10,−6 and
different λ’s. The results are fully consistent with the previous
calculation of moments. The transition is located around the
same λc and no increase in time is observed for λ 	 λc.

We note that it is feasible to study experimentally both
〈x2(t)〉 and P (t) in cold atom settings by single site-sensitive
measurements that extract the probability of each site being
occupied [26]. Therefore we expect that in the near future
our theoretical findings about the location and dynamics of
the MIT in strongly interacting 1D cold Fermi gases will
encourage experimental research in this problem.

We now turn to further substantiate the nonuniversality of
the MIT by an explicit calculation of the critical exponent ν.
For that purpose we study the sensitivity of the ground state to
a change of boundary conditions [18],

	E = EP − EA, (7)

where EP and EA stand for the ground state for periodic and
antiperiodic boundary conditions, respectively. As the MIT
is approached from the insulator side, 	E ∝ e−L/ξ with ξ ∝
|λ − λc|−ν . We exploit this relation to find ν, with L = 13.
In Fig. 2 we present results for ν(U ) for different α(U ) at
λ = λc. It is observed that, as U increases, ν decreases from
its noninteracting value ν ≈ 1. This is an additional indication
that the MIT in many-body systems is not universal. However,
the expected approach to the mean-field limit ν = 1/2 for U 	
1 seems to be slow. Theoretical arguments [21,27] suggest that
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the anomalous diffusion, through α(U ), at the MIT is directly
related to the critical exponent ν(U ) that labels the universality
class of the MIT. The simplest expression consistent with ideas
and techniques employed in the noninteracting limit [11,14,27]
is ν = 1

α
, which is in qualitative agreement (see Fig. 2) with the

numerical results. Finally we note that the calculation of ν,α

is rather crude and subjected to substantial uncertainties in the
fitting procedure. This is especially true for the U = −6,−10
for which the value of α is rather sensitive to both the fitting
interval and the details of the fitting function (5). For instance,
for smaller intervals and fitting functions including additional
transient terms, the values of α tend to be larger.

In conclusion, we have carried out a tDMRG study of
the MIT in an interacting 1D Fermi gas in a quasiperiodic
potential. The main results of the paper are as follows:
(a) The dynamics around the MIT is well described by a

process of superdiffusion. (b) The MIT is not universal—
critical exponents depend on the interaction strength and
slowly approach mean-field predictions for sufficiently strong
interactions. (c) Based on scaling arguments [21] we propose
that for strong interactions the dynamics tends to ballistic and
the localization length ξ diverges at the MIT as ξ ∝ |λ − λc|−ν

with ν ≈ 1/2. (d) Our results can be tested experimentally in
cold atom settings.
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