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ABSTRACT 

Hierarchically porous carbon monoliths with high specific surface area have been prepared via a nano-

phase extraction technique from carbon/silica composites which had been prepared from arylene-

bridged polysilsesquioxanes.  The nano-sized silica phase developed in the composite has been removed 

to increase micropores, resulting in a similar effect to thermal activation of carbons.  The resultant 
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carbons are expected to possess homogeneously distributed micropores.  Here we report the changes of 

the pore characteristics through the synthesis process by the nitrogen adsorption-desorption method and 

mercury porosimetry.  In particular, the growth of silica phase in carbon/silica composites at different 

temperatures has been characterized by the micropore analysis using the Horváth-Kawazoe method.  
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1. Introduction 

Various porous structures with different size levels including micropores, mesopores, and macropores 

are tailored using the sacrificial templating method called as nanocasting in various materials from 

organics to inorganics [1-8].  A number of carbon materials with controlled pore properties have been 

reported utilizing inorganic hard templates, such as mesoporous silica and zeolite [9-13].  Whereas this 

approach allows fabrication of highly-ordered porous structures when a suitable template can be 

prepared, the synthesis process requires multiple steps and tends to be laborious.  Recently, simpler 

pathways for tailoring porous structures, especially microporous structure, in carbon materials were 

reported, in which nano-scaled carbon/silica composites are fabricated by the calcination of silica- or 

siloxane-based organic-inorganic hybrid materials prepared via the sol-gel route [14,15].  One of the 

phases is removed by chemical or thermal treatment to obtain microporosity, which we term nano-phase 

extraction.  Liu et al. [14] successfully prepared mesoporous polymer-silica and carbon-silica 

nanocomposites by polymerizing phenolic resin and silica in parallel in a controlled sol-gel process.  

The resultant nanocomposites can be converted to pure carbon or to pure silica by the post treatments 

(etching or pyrolysis).  Pang et al. [15] used phenylene-bridged alkoxysilane to prepare mesoporous 

hybrid followed by carbonization to obtain carbon/silica nanocomposites.  The nanocomposite can be 
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converted into micro- and mesoporous carbons after removing the silica phase.  Although these 

techniques offer versatility in obtaining porous carbons, silicas or their composites, and enable to 

shorten the synthesis process, the synthesis condition of the composites should be strictly controlled 

particularly in the Liu’s method.  Therefore, there have been only a few reports about the preparation of 

carbon particles with ordered porous structures and high surface areas [14,15].  When carbon/silica 

composites in other material shapes such as monolith are successfully fabricated, the possible 

applications of porous materials based on carbon/silica compositions will be largely extended. 

So far, porous carbon monoliths have been synthesized by two processes.  One process employs 

activated carbon powders and shapes into monoliths by using binders [16,17] or hot-pressing [18-20].  

This method for preparing carbon monoliths with a macroporous structure is simple but is difficult to 

finely tune the pore properties.  From the viewpoint of the application to catalyst supports and 

electrochemical devices, the hierarchical pore structures are required in order to make all the micropores 

throughout the whole monolith accessible.  Mesopores and macropores enable an efficient materials 

transport in the porous media and increase available surface area.  Another process employs the 

activation of porous carbon monoliths, which are mainly prepared from porous polymer monoliths with 

controlled pores [21-25].  The heat-treatment of the carbons in a mildly oxidative atmosphere such as in 

an N2/CO2 mixed gas flow or a steam flow increases the number of micropores resulting in carbon 

monoliths with high specific surface area.  By this method, carbon monoliths with not only large 

amount of micropores but also controlled meso- and/or macropores can be fabricated.  The pore 

properties of the resultant carbon monoliths, however, include inhomogeneity between inside and 

outside of the monoliths because the degree of exposure to the oxidative gas is significantly different; 

the inner parts of the monoliths are less-activated than the outer parts.  For effective applications such as 

to monolithic electrodes for supercapacitors, the activation of precursor monoliths should therefore be 

performed on sufficiently small-sized pieces like a thin plate in order to allow an even gas exposure and 

enhance the homogeneity of pores in the whole monoliths [22,25]. 
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Recently, we have reported that hierarchically porous carbon monoliths with high surface area are 

successfully prepared from the porous carbon/silica composites which were obtained from biphenylene-

bridged polysilsesquioxane monoliths [26].  Well-defined macropores were tailored with the 

polysilsesquioxane networks by utilizing sol–gel method accompanied by spinodal decomposition 

[27,28].  Besides, mesopores were also introduced by the hydrothermal treatment of the 

polysilsesquioxanes in a weakly basic condition, resulting in the hierarchically porous structure [26,28].  

After the carbonization of the polysilsesquioxane monoliths, the enhancement of microporosity can be 

achieved by removing the nano-scaled silica phase from the resultant carbon/silica composites (nano-

phase extraction).  The resultant carbon monoliths are expected to possess homogeneous pore properties 

in the whole monoliths no matter how large and thick the carbon monoliths are.  In this study, we have 

prepared carbon monoliths with high surface area from biphenylene- and phenylene-bridged 

polysilsesquioxane monoliths, and  changes of pore properties in the materials through the synthesis 

process has been investigated by mercury porosimetry and nitrogen physisorption measurements.  The 

sizes of the nano-scaled silica phase in the carbon/silica composites prepared from different precursors 

have also been discussed. 

 

2. Experimental 

2.1 Chemicals 

The precursor alkoxysilanes, 4,4’-bis(triethoxysilyl)-1,1’-biphenyl (BTEBP) and 1,4-

bis(triethoxysilyl)benzene (BTEB), were purchased from Sigma-Aldrich Co. (USA).  The solvent, N,N-

dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF), and sodium hydroxide (NaOH) were 

purchased from Kishida Chemical Co., Ltd. (Japan).  Aqueous solution of nitric acid (HNO3) in 65 wt % 

and urea were purchased from Hayashi Pure Chemical Industry Ltd. (Japan).  Pluronic F127 (PEO106-

PPO70-PEO106) was obtained from BASF Co. (Germany).  All reagents were used as received and 

distilled water was used in all experiments. 
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2.2 Synthesis 

The bridged polysilsesquioxane gels were synthesized according to the previous reports [28,29].  In 

the case of biphenylene-bridged gels, 1.5 g of Pluronic F127 was dissolved in 8 mL of DMAc, and 0.5 

mL of 1 M HNO3 aq. was added.  After the complete mixing, 2 mL BTEBP was added to the obtained 

homogeneous solution, followed by stiring for 3 min at room temperature for hydrolysis.  In the case of 

phenylene-bridged gels, 1.0 g of Pluronic F127 was dissolved in 8 mL of DMF, and 0.5 mL of 1 M 

HNO3 aq. was added.  After the complete mixing, 2 mL BTEB was added to the obtained homogeneous 

solution and the precursor sol was obtained.  The following synthesis processes were the same in both 

systems.  The resultant sol was then stood at 60 ºC for 24 h for gelation and aging.  The wet gels thus 

obtained were washed with ethanol (EtOH) followed by the stepwise solvent exchange from EtOH to 

H2O.  The resultant wet gels were subsequently subjected to the solvent exchange to 2-propanol 

followed by slow evaporative-drying at 40 ºC resulting in the xerogels.  Some of the wet gels were 

hydrothermally treated in 1 M urea aq. at 120 ºC or 200 ºC for 24 h before drying.  After washing with 

H2O, the samples were subjected to 2-propanol and dried at 40 ºC resulting in the hydrothermally 

treated xerogels.  The obtained xerogels were subsequently heat-treated at 800−1200 ºC for 2 h with a 

heating rate of 4 ºC min1 under an argon flow at 1.0 L min1.  The resultant carbon/silica composites 

were immersed in 1 M NaOH aq. at 60 ºC for 12 h exchanging with fresh solvent three times to remove 

silica.  The obtained carbon monoliths were washed with H2O at 60 ºC for 4 h for three times followed 

by drying at 60 ºC.  After washing with H2O, some carbon monoliths were subjected to the solvent 

exchange to 2-propanol followed by supercritical drying using supercritical carbon dioxide at 80 ºC and 

14.0 MPa in an autoclave (All-round Smart-operating Isostatic Pressing Chamber (ASIP), Mitsubishi 

Materials Corp., Japan). 

The carbon/silica composites prepared from BTEBP are denoted as BP-CS-x-y, while the carbon 

samples prepared from BTEBP which were obtained after the removal of silica are denoted as BP-C-x-y.  

Here, x and y represents the hydrothermal-treatment temperature (in the case of the sample without 

hydrothermal treatment, x is described as “wo”) and the calcination temperature, respectively.  The 
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carbon/silica composites and carbon monoliths prepared from BTEB are denoted as P-CS-x-y and P-C-

x-y.  When y is 300, BP-CS-x-300 and P-CS-x-300 represent the polysilsesquioxane monoliths, not 

carbon/silica composites, heat-treated at 300 ºC.  In addition, the carbon monoliths which were 

subjected to supercritical drying are denoted as (sample code)-SCD, such as BP-C-200-1200-SCD. 

 

2.3 Characterization 

Observation of the microstructures of the fractured surfaces of the samples was conducted by 

scanning electron microscopy (SEM) (JSM-6060S, JEOL, Japan) and FE-SEM (JSM-6700F, JEOL, 

Japan).  A mercury porosimeter (Pore Master 60-GT, Quantachrome Instruments, USA) was used to 

characterize the macropores and bulk densities of the samples.  Nitrogen adsorption-desorption 

(BELSORP-mini II, Bel Japan Inc., Japan) was employed to characterize the meso- and micropores of 

the samples.  Detailed features of micropores were investigated at the low relative pressure range using 

another nitrogen adsorption-desorption device (ASAP 2010, Micrometritics, USA) utilizing the 

Horváth-Kawazoe method.30  Before nitrogen adsorption-desorption measurements, the samples were 

degassed at 300 ºC under vacuum for more than 6 h.  Helium pycnometry (Accupyc 1330, 

Micromeritics, USA) was employed to determine true density of the samples.  Porosity (%) of each 

sample was calculated as (1b/s)  100, where b and s are bulk density and true density, 

respectively. 

 

3. Results and Discussions 

Figure 1 depicts the synthesis pathway of the samples.  Porous carbon monoliths with high specific 

surface area have previously been obtained via carbon/silica composite, which were prepared from 

polysilsesquixane monolithic gels [26].  In this study, we have prepared the macroporous 

polysilsesquioxane precursor gels from two bridged-alkoxysilanes; biphenylene- and phenylene-bridged 

alkoxysilanes shown in Figure 2.  As reported previously [28,29], both bridged-alkoxysilanes give rise 

to macroporous polysilsesquioxane monoliths via the sol–gel method accompanied by spinodal 
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decomposition.  Besides, the hydrothermal treatment in the weakly basic aqueous solution tailors the 

mesoporosity with decreasing the amount of micropores by the Ostwald ripening as shown in Figure 3 

[29].  After the hydrothermal treatment in the same condition, the phenylene-bridged polysilsesquioxane 

possessed the larger mesopores than the biphenylene-bridged one, which indicates that the 

polysilsesquioxane network with the larger organic groups shows the better resistivity against the 

alkaline solution.  This is presumably because the biphenylene-bridged polysilsesquioxane is more 

hydrophobic than the phenylene-bridged one and less soluble in aqueous alkaline solution.  In this study, 

we have used the polysilsesquioxane monoliths that have not undergone hydrothermal treatment 

(samples with micro- and macropores but without mesopores) as the precursors to investigate the 

changes in micropores.  The polysilsesquioxane monoliths that have undergone hydrothermal treatment 

(samples with micro-, meso-, and macropores) were used as precursors for the investigation of the 

whole pore properties. 

 

3.1 Biphenylene-bridged system 

Since the crystallization of SiC takes place when the calcination temperature is more than 1300 ºC 

[26,28,29], the calcination temperatures were decided as 800 ºC, 1000 ºC, and 1200 ºC.  Figure 4 a-c 

show the macroporous structure of the biphenylene-bridged polysilsesquioxane, the carbon/silica 

composite, and the carbon monolith, respectively.  It is found that well-defined interconnected porous 

structure was obtained in all the samples.  The resultant carbon material remained as the crack-free 

monolith even without supercritical drying as shown in Figure 4 d.  The weight losses of the samples 

through the removal of silica were about 40 %. 

The nitrogen physisorption isotherms of the carbon/silica composites and the carbon monoliths 

prepared with varied calcination temperatures are shown in Figure 5, and the pore characteristics of the 

samples are shown in Table 1.  It indicates that only micropores increased and no mesopores were 

generated by the removal of silica.  The increase in the micropores of BP-CS-wo-1000 was the largest 

among three BP-CS samples.  The micropore size distributions of the samples calculated by the HK 
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method before and after the removal of silica are shown in Figure 6 a,c and b,d, respectively.  From 800 

ºC to 1000 ºC, the amount of micropores in the composite decreased in the micropore size range as 

shown in Figure 6 c because of the densification upon sintering.  From 1000 ºC to 1200 ºC, the mean 

micropore size obviously shifted to the larger size, and the micropores of the width of 0.5−0.8 nm 

increased.  This is because of the activation of the carbon phase [31], which increases micropores by 

making through-pores to isolated pores and enlarging the pore size.  The activation usually takes place 

at above 800−950 ºC in the presence of an oxidative gas, such as CO2 and H2O [31,32].  In this case, a 

small amount of oxidative gases in argon gas as well as the oxygen involved in the carbon/silica 

composite enhances the activation.  After the removal of silica, the micropores have dramatically 

increased as shown in Figure 5 and 6.  The increase in micropores can be explained by two factors; one 

is the decrease in bulk density and the other is the removal of nano-phase silica.  Since shrinkage both 

upon the removal of silica and upon the following drying may resist the increase in micropores, the 

shrinkage during drying after the removal of silica has been investigated with the supercritically-dried 

samples as shown in Figure S1.  The isotherms suggest that only a little shrinkage took place during 

evaporative drying.  Unfortunately, it was difficult to inquire the shrinkage during the removal of silica 

in the aqueous basic solution.   Comparing Figure 6 a and b, it is found that micropores less than 1.5 nm 

increased in number.  Since no mesopores were generated by removing silica, it is deduced that nano-

sized silica (~1.5 nm) had been dispersed in the carbon/silica composites.  Although the micro- and 

mesopore volumes were almost the same between BP-C-wo-1000 and BP-C-wo-1200, the specific 

surface area of BP-C-wo-1000 was higher than BP-C-wo-1200 as shown in Table 1, due to the smaller 

micropore size in BP-C-wo-1000 as shown in Figure 6 d. 

The effect of the calcination temperature on the change of mesopores was investigated using the 

samples prepared with the hydrothermal treatment as shown in Figure 7.  The mesopores retained after 

the calcination in all the carbon/silica composites.  However, the mesopores retained after the removal 

of silica only when the sample was calcined at 1200 ºC.  The carbonization at higher temperature 

enhanced the mechanical rigidity of the carbon part in the carbon/silica composites, which suppressed 
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the shrinkage and kept the mesoporosity after the removal of silica.  The mean mesopore diameter of 

BP-C-200-1200 was calculated as 4.9 nm by the Barret-Joyner-Halenda (BJH) method.  The difference 

of mesopore region between the carbon monoliths without and with mesopores was observed by FE-

SEM as shown in Figure 8.  The carbon monolith without mesopores was composed of the densely-

packed smaller particles compared to that with mesopores.  The interstices of the particles with a 

diameter of several tens nanometers were detected as mesopores in BP-C-200-1200. 

 

3.2 Phenylene-bridged system 

When the phenylene-bridged polysilsesquioxanes were used as the precursor, the well-defined 

macroporous structure has retained both after the calcination and removal of silica like the biphenylene-

bridged system as shown in Figure 9.  We have already investigated the effect of the calcination 

temperature and found that the mesopores were obtained only when the calcination temperature is 1200 

ºC.  In the phenylene-bridged system, the calcination temperature was therefore fixed at 1200 ºC.  The 

change of the micro- and mesopore characteristics is summarized in Figure 10 and Table 2.  It is found 

that P-CS-wo-1200 possesses only a few micropores whereas P-CS-200-1200 possesses the larger 

amount of micropores.  In the biphenylene-bridged system, the carbon/silica composites prepared 

without hydrothermal treatment retained the microporosity (Figure 5).  This difference is derived from 

the different organic bridging groups.  The phenylene-bridged polysilsesquioxane without hydrothermal 

treatment largely shrinks during heat treatment, resulting in the collapse of micropores.  On the other 

hand, the bulky biphenylene groups may enhance the rigidity of the polysilsesquioxane network, which 

suppresses the large shrinkage as well as the reduction of micropores.  Also, the carbon/silica ratio of 

phenylene-bridged samples is smaller than that of biphenylene-bridged ones (the weight loss on the 

removal of silica were about 65 % for P-CS samples, compared to 40 % for BP-CS samples), which 

enhances the shrinkage during drying in P-CS samples.  For the P-CS-200-1200 sample prepared with 

the hydrothermal treatment, the mesopores as well as micropores retained after the calcination in 

contrast to P-CS-wo-1200 due to the higher siloxane crosslinking density.  The subsequent removal of 
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silica increased the amount of micropores in P-C-200-1200, while the mesopores are collapsed in 

contrast to BP-C samples shown in Figure 7.  Supercritical drying allows the resultant carbon monoliths 

to retain well-defined mesopores as well as micropores.  In particular, the micro-, meso- and 

macroporous hierarchical structure is obtained in P-C-200-1200-SCD.  The mean mesopore diameter of 

the sample was calculated as 10.7 nm by the BJH method.  The FE-SEM observation of P-C-200-1200 

and P-C-200-1200-SCD were performed as shown in Figure 11.  The cross section of the skeleton of P-

C-200-1200 is relatively smooth.  On the other hand, in P-C-200-1200-SCD, the interstices of the 

particles can be clearly observed, which correspond to the mesopores.  This result agrees with the 

nitrogen physisorption results shown in Figure 10 b. 

The changes of micropores in the samples calcined at 1200 ºC by removing silica are shown in Figure 

12.  In general, the micropore size of P-C-wo-1200 is obviously smaller than that of P-C-wo-1200-SCD 

due to the shrinkage during drying as described above.  The increase in micropores larger than 1.5 nm is 

more significant in the phenylene-bridged system than the biphenylene-bridged system.  In addition, the 

mesopore volume of P-C-wo-1200 is larger than that of BP-C-wo-1200.  This result indicates that the 

size of the silica phase in P-CS-wo-1200 was larger than that in BP-CS-wo-1200.  This is because of the 

enhanced growth of silica phase during calcination in the phenylene-bridged polysilsesquioxanes due to 

the larger silica content. 

 

3.3 Change of macropore characteristics 

The macropore properties and the porosities of the samples prepared with the hydrothermal treatment 

were summarized in Figure 13 and Table 3, respectively.  The skeletal densities decreased after the 

removal of silica due to the lower density of carbon than silica.  In both cases, the narrow macropore 

size distributions can be observed in all the samples.  As discussed above, in the case of the phenylene-

bridged samples, the larger shrinkage during drying after the removal of silica caused the larger 

decrease in porosity.  The supercritical drying inhibited the shrinkage leading to the higher porosity and 

the larger macropore volume in P-C-200-1200-SCD.  On the other hand, in the case of the samples 
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prepared from biphenylene-bridged polysilsesquioxanes, the relatively small shrinkage during drying 

resulted in the higher porosity (up to 90 %) of the carbon monoliths even without supercritical drying. 

 

4. Conclusions 

Hierarchically porous carbon monoliths with high specific surface area have been prepared by nano-

phase extraction from the carbon/silica composites.  The biphenylene- and phenylene-bridged 

polysilsesquioxane monoliths with well-defined macropores, which had been fabricated by the sol–gel 

method accompanied by phase separation, were calcined under inert atmosphere, resulting in the 

macroporous carbon/silica composites.  The biphenylene-bridged polysilsesquioxanes yields relatively 

carbon-rich carbon/silica composites, whereas the phenylene-bridged polysilsesquioxanes yields silica-

rich carbon/silica composites depending on the carbon contents of the precursor gels.  The micropore 

analysis by the HK method revealed that the size of the silica grains in carbon/silica composites 

prepared from biphenylene-bridged polysilsesquioxanes was ~1.5 nm.  In the case of phenylene-bridged 

ones, the size of silica grains was relatively larger because the enhanced growth of silica grains by 

sintering during the calcination. 

The hierarchically porous carbon monoliths with specific surface area of > 1500 m2 g1 can be 

obtained without supercritical drying when starting from biphenylene-bridged polysilsesquioxanes.  

Although the supercritical drying is necessary for retaining mesopores, the hierarchically porous carbon 

monoliths with relatively large mesopores (mean mesopores diameter was 10.7 nm) and specific surface 

area of > 1100 m2 g1 can be prepared when phenylene-bridged polysilsesquioxane is chosen as the 

precursor.  Since the micropores development by nano-phase extraction is advantageous in homogeneity 

compared to physical or chemical activation, extended applications of monolithic porous carbon 

materials such as to electrochemical devices, catalyst supports, and adsorbents are promising. 
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TABLES.  

Table 1.  Pore characteristics of the carbon/silica composites and the carbon monoliths based on 

biphenylene-bridged polysilsesquioxanes. 

 S (αs) 
a

 

/m2 g1 

S (t-plot) b

/m2 g1 

Vmicro 
c

/cm g1 

Vmeso 
d

/cm g1 

BP-CS-wo-800 670 640 0.209 0.030 

BP-CS-wo-1000 430 440 0.161 0.034 

BP-CS-wo-1200 830 780 0.191 0.066 

BP-CS-200-1200 1000 1060 0.392 0.611 

BP-C-wo-800 1610 1130 0.473 0.074 

BP-C-wo-1000 2140 1870 0.560 0.082 

BP-C-wo-1200 1630 1580 0.575 0.082 

BP-C-200-1200 1420 1550 0.606 0.841 

 a specific surface area calculated by αs method.  b specific surface area calculated by t-plot method.  c 
micropore volume calculated by the HK method.  d mesopore volume calculated by BJH method. 

 

Table 2.  Difference in the pore characteristics of the evaporative-dried and supercritically dried carbon 

monoliths based on phenylene-bridged polysilsesquioxanes. 

 S (αs) 
a

 

/m2 g1 

S (t-plot) b

/m2 g1 

Vmicro 
c

/cm g1 

Vmeso 
d

/cm g1 

P-C-wo-1200 1380 1480 0.549 0.128 

P-C-200-1200 930 1020 0.361 0.228 

P-C-wo-1200-SCD 1630 1620 0.579 0.183 

P-C-200-1200-SCD 1110 1170 0.480 1.143 

 a specific surface area calculated by αs method.  b specific surface area calculated by t-plot method.  c 
micropore volume calculated by the HK method.  d mesopore volume calculated by BJH method.   
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Table 3.  Densities and porosities of the carbon/silica composites and the carbon monoliths. 

 s 
a 

/g cm3 

b 
b 

/g cm3 

Porosity c 

/% 

P-CS-200-1200 2.27 0.422 81 

P-C-200-1200 1.83 0.432 76 

P-C-200-1200-SCD 1.85 0.275 85 

BP-CS-200-1200 2.48 0.314 87 

BP-C-200-1200 2.13 0.215 90 

a skeletal density measured by He pycnometry.  b bulk density measured by Hg porosimetry.  c 
calculated by (1b/s)  100. 

 



 

18

FIGURE CAPTIONS 

Figure 1.  Synthesis pathway of hierarchically porous carbon monoliths with high surface area. 

 

Figure 2.  Structural formula of the arylene-bridged alkoxysilanes used in this study. 

 

Figure 3.  Nitrogen adsorption-desorption isotherms of the bridged polysilsesquioxanes heat-treated at 

300 °C with and without hydrothermal treatment; (a) biphenylene-bridged polysilsesquioxane and (b) 

phenylene-bridged polysilsesquioxane. 

 

Figure 4.  SEM images of (a) BP-CS-200-300, (b) BP-CS-200-1200, and (c) BP-C-200-1200.  (d) 

Appearance of the resultant carbon monolith (BP-C-200-1200). 

 

Figure 5.  Nitrogen adsorption-desorption isotherms of the carbon/silica composites and the carbon 

monoliths based on biphenylene-bridged polysilsesquioxanes which were prepared without 

hydrothermal treatment and calcined at different temperatures.  (b) is semi-logarithmic chart of (a). 

 

Figure 6.  Micropore size distributions of the carbon/silica composites (a,c) and the carbon monoliths 

(b,d) based on biphenylene-bridged polysilsesquioxanes which were prepared without hydrothermal 

treatment and calcined at different temperatures; (c) and (d) are the magnified chart of (a) and (b). 
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Figure 7.  Nitrogen adsorption-desorption isotherms of the carbon/silica composites and the carbon 

monoliths based on biphenylene-bridged polysilsesquioxanes which were prepared with hydrothermal 

treatment and calcined at different temperatures. 

 

Figure 8.  FE-SEM images of the cross section of the sample skeleton; (a) BP-C-wo-1200 and (b) BP-

C-200-1200. 

 

Figure 9.  SEM images of (a) P-CS-200-300, (b) P-CS-200-1200, (c) P-C-200-1200, and (d) P-C-200-

1200-SCD. 

 

Figure 10.  Nitrogen adsorption-desorption isotherms of the samples based on phenylene-bridged 

polysilsesquioxanes; (a) samples without hydrothermal treatment and (b) samples with hydrothermal 

treatment. 

 

Figure 11.  FE-SEM images of the cross section of the sample skeleton; (a) P-C-200-1200 and (b) P-C-

200-1200-SCD. 

 

Figure 12.  Micropore size distributions of the carbon/silica composites and the carbon monoliths 

calcined at 1200 ºC; (a) samples based on phenylene-bridged polysilsesquioxanes (inset is magnified 

chart) and (b) samples based on biphenylene-bridged polysilsesquioxanes.   
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Figure 13.  Macropore size distributions of the carbon/silica composites and the carbon monoliths 

calcined at 1200 ºC; (a) samples based on phenylene-bridged polysilsesquioxanes and (b) samples based 

on biphenylene-bridged polysilsesquioxanes. 
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