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Clustering with Multiple Graphs
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Abstract—Mining patterns in graphs has become an important issue in real applications, such as bioinformatics and web mining.
We address a graph clustering problem where a cluster is a set of densely connected nodes, under a practical setting that 1)
the input is multiple graphs which share a set of nodes but have different edges and 2) a true cluster cannot be found in all
given graphs. For this problem, we propose a probabilistic generative model and a robust learning scheme based on variational
Bayesian estimation. A key feature of our probabilistic framework is that not only nodes but also given graphs can be clustered
at the same time, allowing our model to capture clusters found in only part of all given graphs. We empirically evaluated the
effectiveness of the proposed framework on not only a variety of synthetic graphs but also real gene networks, demonstrating
that our proposed approach can improve the clustering performance of competing methods in both synthetic and real data.

Index Terms—Clustering, graphs, statistical machine learning, variational Bayesian learning, localized clusters.
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1 INTRODUCTION

Mining patterns in graphs or networks has become an
important issue in a variety of applications, such as bi-
ology, chemistry, social sciences, web and text mining.
In this paper, we address a graph clustering problem,
i.e. nodes being clustered over a graph, where an edge
between two nodes indicates a similarity between the
two nodes [1], [2]. Here a cluster is a set of nodes,
which are densely connected with each other in one
graph. Our setting for this problem is that we have
multiple graphs which share the same set of nodes but
have different edges from each other, meaning that
clusters can be different between each pair of given
graphs. We then focus on a localized cluster, which is
commonly found in 1 to M − 1 graphs among given
M graphs but not in all M graphs. Fig. 1 (a) to (c)
show three graphs which share the same nodes but
have different edges from each other. Each of these
three graphs has an example of localized clusters. For
example, the upper-left part in (a) has nodes (colored
green) tightly connected with each other which form
a cluster. This cluster appears in only (a) but not in
both (b) and (c), meaning that it can be a localized
cluster. Similarly, red nodes form a localized cluster
in (b) and blue nodes are a localized cluster in (c).
Note that each of the three localized clusters cannot
be found in all (a)-(c).

We emphasize that our problem setting can be
found in real applications. For example, in molecu-
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lar biology, gene similarity can be represented in a
variety of manners, such as co-expression, sequence
similarity and protein-protein interaction [3]. They can
be networks which share the same set of nodes (or
genes), where each network is generated by a differ-
ent experimental measurement over genes. Clustering
genes is useful in many practical issues, such as gene
annotation. It is now recognized that clusters become
more consistent if they are generated with a larger
number of networks [4]. This is because experiments
in molecular biology are rather unstable, possibly
causing unreliable results because of measurement
errors. For example, a true cluster might be hidden by
noise, resulting in that a cluster cannot be necessarily
captured by all measurements, naturally bringing the
concept of localized clusters [5].

Fig. 1 (d) shows a graph which has all edges of
Fig. 1 (a)-(c). We call this graph an integrated graph
in which the weight of an edge is the sum over all
weights of the corresponding edges in given graphs.
A baseline method of the graph clustering problem
with multiple graphs would be to first generate an
integrated graph from multiple graphs and then run
a graph clustering algorithm, such as spectral cluster-
ing [6] over the integrated graph. However, summing
weights over graphs means dealing with given graphs
equally, resulting in that localized clusters may be
lost in the integrated graph. For example, in Fig. 1,
localized clusters in (a)-(c) can no longer be found in
(d). Thus we need a sophisticated clustering method
which can capture and keep localized clusters from
multiple graphs.

Our approach for this issue is based on a generative
model and a robust parameter estimation algorithm.
If only a single graph is given, our problem becomes a
standard setting of graph clustering, for which we can
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(a) Graph 1 (b) Graph 2 (c) Graph 3 (d) Integrated graph

Fig. 1. Examples of (a)-(c) localized clusters and (d) the integrated graph generated from (a)-(c) by simply
summing up their node weights.

consider a simple probabilistic model, which we call
PMSG (Probabilistic Model for a Single Graph), with
multinomial distributions for generating edges. This
model is equivalent to several existing probabilistic
models in the framework of statistical machine learn-
ing. For our problem setting, we extend PMSG to a
model, which we call PMMG (Probabilistic Model for
Multiple Graphs), in which a multinomial distribution
over graphs is added, allowing to consider localized
clusters. Our robust parameter learning algorithm of
PMMG, based upon variational Bayesian learning,
estimates the distribution of each parameter [7], [8].
We emphasize that to the best of our knowledge, there
have been no approaches from statistical machine
learning for our problem of clustering with multiple
graphs containing localized clusters. The variational
Bayesian learning is a standard learning process in
the current literature of probabilistic/statistical model
learning and is more robust against noise than point
estimation methods such as the EM (Expectation-
Maximization) algorithm, resulting in that overfitting
the given data can be avoided more easily [7], [9], [8].

We empirically evaluated our method, comparing
with other approaches. Our experiments started with
synthetic graphs, revealing two important findings:
First, the performance of PMMG was improved by
using a larger number of graphs for all cases, being
pronounced more when containing localized clus-
ters more. Second, PMMG significantly outperformed
other competing graph clustering methods for all
cases in our experiments. This performance advantage
was further clearly confirmed by the experiment of
using real gene networks. Finally we analyzed clus-
tering results on real gene networks and verified that
the performance advantage of PMMG was achieved
by the consideration on localized clusters.

This paper is organized as follows: In Section 2,
we review related work on graph clustering, with a
particular emphasis upon graph clustering by prob-
abilistic models. In Section 3, we describe the pro-
posed generative model and an efficient parameter
estimation algorithm based on variational Bayesian
learning, being followed by the explanation on re-
lated probabilistic models and the time and space
complexities of the proposed learning algorithm, com-
paring with those of related probabilistic models. In

Section 4, we extensively evaluated the performance
of the proposed approach by using both synthetic
and real datasets, comparing with other competing
methods, mainly described in Section 2. Finally, we
review the advantage of the proposed method once
again in Section 5

2 RELATED WORK

In general the input of graph clustering is one graph
only. Graph clustering methods, such as probabilistic
models (including PMSG) [10], [11] and spectral clus-
tering [6], can be applied to our problem after generat-
ing an integrated graph from given multiple graphs.
In the literature of graph clustering by probabilistic
models, PMSG is equivalent in model structure (and
complexity) to those in [12], while the most typical
probabilistic model in graph clustering is stochastic
block model (SBM) [13]. SBM can be trained by many
approaches, including an EM algorithm [14] and
Bayesian estimation by Gibbs sampling [14]. There
are two recent extensions of SBM: mixed-membership
SBM [15] and constrained SBM [11], which we call
MSBM (mixed Membership Stochastic Block Model)
and CSBM (Constrained Stochastic Block Model), re-
spectively. Their proposed training algorithms are
both based on variational Bayesian learning, and then
we will explain the model structures of MSBM and
CSBM in Section 3.4 and their time and space com-
plexities in Section 3.5.

To the best of our knowledge, there are no
probabilistic-model based methods for graph cluster-
ing over multiple graphs. However, Sinkkonen et al.
treated a similar situation, in which multiple node
sets are given and there can be edges both between
and within node sets [16]. In our problem setting,
however, their model has to be equivalent to the
integrated graph approach in which an integrated
graph is first generated from given graphs and then
PMSG (or [12]) is applied. In other words, under our
setting, [16] will have the same result as that of PMSG.

On the other hand, an extension of graph cut in
spectral clustering for multiple graphs exists [17]. This
was also used as a competing method in our experi-
ments, and we call this approach MSC, standing for
Multiple graphs in Spectral Clustering. The aim of MSC
is to find consensus clusters over multiple graphs in
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terms of multiview learning by using the degree of
each node over graphs.

3 METHODOLOGY

3.1 Notation and Preliminaries
Let G = (V,E) be a graph, where V is a set of nodes
and E is a set of edges. Let e be an edge and v a node.
We here assume that G is an undirected graph (Note
that it is easy to extend our work to directed graphs).
Let D be input data, i.e. multiple graphs G1, . . . , GM ,
which share N (= |V|) nodes1, satisfying that Gm =
(V,Em). Let E (= |E|) be the number of edges of a
single graph, and E = maxm |Em| for m graphs. We
note that a graph is equivalent to a weight matrix
in which each element indicates a weight assigned
to an edge, which connects corresponding two nodes
in a given graph. Thus input data D can be given
by weight matrices {W (1), . . . ,W (M)}, where W (m)

is a symmetric matrix. Let W
(m)
ij (∈ N) be the (i, j)-

element of W (m), and W
(m)
ij > 0 if there is an edge for

nodes vi and vj ; otherwise W
(m)
ij = 0. In fact, in the

following sections, we will use weight matrices more
than graphs. If only one graph is given, we just write
it by W . Let K be the number of clusters. Let z (or z)
be hidden variables, corresponding to cluster labels.
Let Ci (i = 1, . . . , N) be a cluster taken by each node.

3.2 PMSG: Probabilistic Model for a Single Graph
3.2.1 Probabilistic Structure
The input of PMSG is one graph only, i.e. M = 1.
PMSG assumes that generating an edge is the same
event as that two nodes are co-occurring from a
multinomial distribution with a cluster label. The
probability that two nodes of an edge e are vi and
vj can be then modeled in a manner of finite mixture
models as follows:

p(e = (i, j))

=
K∑

k=1

p(z = k)p(e = (i, j)|z = k)

=
K∑

k=1

p(z = k)p(v = i|z = k)p(v = j|z = k)

=

K∑
k=1

πkrikrjk,

where πk = p(z = k) and rik = p(v = i|z = k),
and

∑K
k=1 πk = 1 and

∑N
i=1 rik = 1. For simplicity

we hereafter write π = {π1, . . . , πK} and r·k =
{r1k, . . . , rNk}. Let θ = {π, r} for PMSG. We note
that our modeling of probability p(e = (i, j)) is not

1. If given graphs do not share a node set, we can first take a
union of nodes in given graphs to use the union as the shared
node set.
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Fig. 2. Graphical model representation of (a) PMSG
and (b) PMMG.

Bernoulli trials. For latent variable z, we hereafter
write zij , which is assigned to edge eij between nodes
vi and vj .

We assume the Dirichlet distribution for the prior
of θ as follows:

p(π|α0) =
Γ(Kα0)

Γ(α0)K

K∏
k=1

πα0−1
k

p(r·k|β0) =
Γ(Nβ0)

Γ(β0)N

N∏
i=1

rβ0−1
ik (k = 1, . . . ,K),

where α0 and β0 are hyperparameters and Gamma
function Γ(·) can be defined by Γ(x) =

∫∞
0

tx−1e−tdt.
The joint probability of W and z can be given by:

p(W ,z|θ) =
K∏

k=1

∏
(i,j)∈E

(πkrikrjk)
δ(zij ,k)Wij ,

where δ(zij , k) is one if edge eij is in cluster k;
otherwise zero. Thus we can write the joint probability
of W , z and θ, defined by PMSG as follows:

p(W ,z,θ) = p(W , z|θ)p(θ)

= p(W , z|θ)p(π|α0)
K∏

k=1

p(r·k|β0).

Here we can explain the graph generation by PMSG
in the following manner:
————————————————————————

1) Draw K-dimensional vector π from the Dirichlet
distribution with hyperparameter α0.

2) For k = 1, . . . ,K

a) Draw N -dimensional vector r·k from the
Dirichlet distribution with hyperparameter
β0.

3) Iterate the following two steps E times
a) Draw cluster label k from the multinomial

distribution with parameter π.
b) Draw two nodes from the multinomial dis-

tribution with parameter r·,k

————————————————————————
Fig. 2 (a) shows a graphical model representation

of PMSG.
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3.2.2 Learning Algorithm
We apply variational Bayesian (VB) estimation to
PMSG, making us assuming that posterior probability
distributions are independent of each other as follows:

q(θ, z) = q(π)

K∏
k=1

q(r·k)
∏

(i,j)∈E

q(zij),

where q(·) means a VB posterior distribution, for
which we show the derivation below.

The VB posterior distribution is optimized by max-
imizing the lower bound of the marginalized likeli-
hood L[q] as follows2:

L[q] =
∑
z

∫
q(θ, z) log

p(W ,θ, z)

q(θ, z)
dθ (1)

≤ log
∑
z

∫
p(W ,θ, z)dθ.

Here we write expectations to be computed, as
follows for simplicity:

z̄ijk = q(zij = k),

N̄k =
∑

(i,j)∈E

z̄ijkWij , (2)

N̄ik =
∑

j|Wij>0

z̄ijkWij . (3)

By the variation of L[q] with respect to q(π), we
can obtain the VB posterior distribution of π into the
following:

q(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k , where

αk = N̄k + α0. (4)

Similarly, we can obtain the VB posterior distribution
of r·k as follows:

q(r·k) =
Γ(
∑N

i=1 βik)∏N
i=1 Γ(βik)

N∏
i=1

rβik−1
ik , where

βik = 2N̄ik + β0. (5)

On the other hand, the VB posterior distribution of
zij can be given by:

q(zij = k) =
exp(γijk)∑K
k=1 exp(γijk)

, (6)

where

γijk = Ψ
(
αk

)
−Ψ

( K∑
k=1

αk

)

+Ψ
(
βik

)
+Ψ

(
βjk

)
− 2Ψ

( N∑
i=1

βik

)
(7)

2. Maximizing L[q] is equivalent to minimizing the KL (Kullback-
Leibler) divergence between the true posterior distribution and the
variational posterior distribution [8].

——————————————————————–
Input : W , K, α0, β0

Output : q(π), q(r·k), q(z|vi)

1: Initialize N̄k and N̄ik by random numbers.
2: repeat
3: VB E-step: Compute the posterior distribution

of latent variables, q(zij = k).
4: VB M-step: Compute αk and βik.
5: until Some convergence criterion is satisfied.
6: Compute L[q] and q(z|vi).

——————————————————————–

Fig. 3. Pseudocode of variational Bayesian estimation
of PMSG.

and the digamma function Ψ(x) = d log(Γ(x))
dx .

Fig. 3 shows a pseudocode of the VB learning
algorithm of PMSG. This algorithm repeats the VB E-
and VB M-steps alternately, where the VB posterior
distribution q(zij = k) is computed by Eq. (6) in the
VB E-step, and αk and βik are computed by Eqs. (2)-
(5) in the VB M-step. After the convergence of the
alternate iterations of these two steps, we compute the
lower bound of marginalized likelihood L[q], which is
given by:

L[q] = log Γ(Kα0)−K log Γ(α0) +K log Γ(Nβ0)

−KN log Γ(β0)−
K∑

k=1

∑
(i,j)∈E

z̄ijk log z̄ijk

− log Γ

(
K∑

k=1

αk

)
+

K∑
k=1

log Γ(αk)

−
K∑

k=1

log Γ

(
N∑
i=1

βik

)
+

K∑
k=1

N∑
i=1

log Γ(βik)

We note that Fig. 3 shows a single run of the algo-
rithm, in the sense that practically this algorithm is
run a large number of times with random different
initial values and the final output is given by the run
which can give the maximum L[q]. Finally, to assign a
cluster to each node, the posterior distribution of the
cluster label of a node can be computed as follows:

q(z = k|v = i) =
⟨p(z = k)⟩q(π)⟨q(v = i|z = k)⟩q(r)∑K

k′=1⟨p(z = k′)⟩q(π)⟨q(v = i|z = k′)⟩q(r)

=
π̄kr̄ik∑K

k′=1 π̄k′ r̄ik′
, (8)

where,

π̄k =
αk∑K

k′=1 αk′
,

r̄ik =
βik∑N

i′=1 βi′k

.

We can then assign a cluster label Ci to node vi in the
following:

Ci = arg max
{1,...,K}

q(z = k|v = i). (9)
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3.3 PMMG: Probabilistic Model for Multiple
Graphs
3.3.1 Probabilistic Structure
Suppose that we have M graphs, we assume that two
nodes and a graph are co-occurring from a multino-
mial distribution with a cluster label. The probability
that two nodes of edge e are vi and vj of graph Gm

can be then modeled in a manner of finite mixture
models, given in the following:

p(g = m, e = (i, j))

=
K∑

k=1

p(z = k)p(g = m|z = k)p(e = (i, j)|z = k)

=
K∑

k=1

p(z = k)p(g = m|z = k)p(v = i|z = k)p(v = j|z = k)

=

K∑
k=1

πkηmkrikrjk,

where ηmk = p(g = m|z = k) and hereafter we write
η·k = {η1k . . . ηMk}. θ = {π, r,η} for PMMG. We
again note that our modeling of probability p(g =
m, e = (i, j)) is not Bernoulli trials. We hereafter
write cluster label z(m)

ij , which is assigned to edge eij
between nodes vi and vj in graph Gm.

The joint probability of D and z can be then given
by:

p(D, z|θ) =
K∏

k=1

M∏
m=1

∏
(i,j)∈Em

{πkηmkrikrjk}δ(z
(m)
ij ,k)

where δ(z
(m)
ij , k) is one if edge eij of the m-th graph

is in the k-th cluster; otherwise zero.
These equations show that PMMG has parameter

η·k, which was not in PMSG and allows PMMG to
capture localized clusters in multiple graphs. We can
then assume the Dirichlet distribution for the prior of
η·k as follows:

p(η·k|ζ0) =
Γ(Mζ0)

Γ(ζ0)M

M∏
m=1

ηζ0−1
mk ,

where ζ0 is a hyperparameter.
Finally PMMG defines the joint probability of D, z

and θ in the following:

p(D, z,θ) = p(D, z|θ)p(θ)

= p(D, z|θ)p(π|α0)
K∏

k=1

p(r·k|β0)p(η·k|ζ0)

We can here explain that the generation of multiple
graphs by PMMG in the following way:
————————————————————————

1) Draw K-dimensional vector π from the Dirichlet
distribution with hyperparameter α0.

2) For k = 1, . . . ,K

a) Draw N -dimensional vector r·k from the
Dirichlet distribution with hyperparameter
β0.

b) Draw M -dimensional vector η·k from the
Dirichlet distribution with hyperparameter
ζ0.

3) Iterate the following three steps
∑

m |Em| times
a) Draw cluster label k from the multinomial

distribution with parameter π
b) Draw a graph from the multinomial distri-

bution with parameter η·,k
c) Draw two nodes from the multinomial dis-

tribution with parameter r·,k

————————————————————————
Fig. 2 (b) shows a graphical model representation

of PMMG.

3.3.2 Learning Algorithm

Similar to the derivation for PMSG, we use VB esti-
mation by which VB posterior distributions q(·) are
given, being independent of each other, as follows:

q(θ, z) = q(π)

K∏
k=1

q(η·k)q(r·k)

M∏
m=1

∏
(i,j)∈Em

q(z
(m)
ij ). (10)

Again the VB posterior distributions can be obtained
by maximizing the lower bound of the marginalized
likelihood L[q] of Eq.(1), after substituting Eq.(10) into
Eq.(1).

Now we can write expectations to be computed for
PMMG, in the following:

z̄
(m)
ijk = q(z

(m)
ij = k),

N̄k =
M∑

m=1

∑
(i,j)∈Em

z̄
(m)
ijk W

(m)
ij , (11)

N̄
(m)
k =

∑
(i,j)∈Em

z̄
(m)
ijk W

(m)
ij , (12)

N̄ik =

M∑
m=1

∑
j|W (m)

ij >0

z̄
(m)
ijk W

(m)
ij . (13)

By the variation with respect to each VB posterior
distribution, we can first obtain the VB posterior
distribution of π as follows:

q(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k , where

αk = N̄k + α0. (14)

Next the VB posterior distribution of η·k can be given
as follows:

q(η·k) =
Γ(
∑M

m=1 ζmk)∏M
m=1 Γ(ζmk)

M∏
m=1

ηζmk−1
mk , where

ζmk = N̄
(m)
k + ζ0. (15)
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The VB posterior distribution of r·k can be given as
follows:

q(r·k) =
Γ(
∑N

i=1 βik)∏N
i=1 Γ(βik)

N∏
i=1

rβik−1
ik , where

βik = 2N̄ik + β0. (16)

In contrast, the VB posterior distribution of z(m)
ij can

be given as follows:

q(z
(m)
ij = k) =

exp(γ
(m)
ijk )∑K

k=1 exp(γ
(m)
ijk )

, (17)

where

γ
(m)
ijk = Ψ

(
αk

)
−Ψ

( K∑
k=1

αk

)

+Ψ
(
ζmk

)
−Ψ

( M∑
m=1

ζmk

)

+Ψ
(
βik

)
+Ψ

(
βjk

)
− 2Ψ

( N∑
i=1

βik

)
.

Fig. 4 shows a pseudocode of the VB learning
algorithm of PMMG. Similar to the learning algorithm
of PMSG, this algorithm iterates the VB E- and VB
M-steps alternately until the convergence. That is,
q(z

(m)
ij = k) is computed according to Eq. (17) in the

VB E-step and αk, ηmk and βik are computed by using
Eqs. (11)-(16) in the VB M-step. After the convergence
of the iterative process, we then need compute L[q],
which is given as follows:

L[q] = log Γ(Kα0)−K log Γ(α0) +K log Γ(Nβ0)

−KN log Γ(β0) +K log Γ(Mζ0)

−KM log Γ(ζ0)−
K∑

k=1

∑
(i,j)∈Em

z̄
(m)
ij,k log z̄

(m)
ij,k

− log Γ

(
K∑

k=1

αk

)
+

K∑
k=1

log Γ(αk)

−
K∑

k=1

log Γ

(
N∑
i=1

βik

)
+

K∑
k=1

N∑
i=1

log Γ(βik)

−
K∑

k=1

log Γ

(
M∑

m=1

ζmk

)
+

K∑
k=1

M∑
m=1

log Γ(ζmk)

In practice, we repeat running the algorithm in Fig. 4
many times with random different initial values and
keep the output which gives the maximum L[q]. This
final output is used to obtain q(z = k|vi) and cluster
assignment Ci in the same manner as Eqs. (8)-(9) of
PMSG.

3.4 Related Probabilistic Models
We here explain two probabilistic models for
graph clustering: CSBM and MSBM, which are
both extended from the so-called stochastic block

——————————————————————–
Input : D, K, α0, β0, ζ0
Output : q(π), q(η·k), q(r·k), q(z|vi)

1: Initialize N̄k, N̄ (m)
k and N̄ik by random numbers.

2: repeat
3: VB E-step: Compute the posterior distribution

of latent variables, q(z(m)
ij = k).

4: VB M-step: Compute αk, ηmk and βik.
5: until Some convergence criterion is satisfied.
6: Compute L[q] and q(z|vi).

——————————————————————-

Fig. 4. Pseudocode of variational Bayesian estimation
of the parameters of PMMG.

model (SBM) [13]. These two models are related with
PMSG, since the input is only one graph and their
parameters can be estimated by variational Bayes
learning. On the other hand, CSBM and MSBM are
different from PMSG, since binomial distributions (or
Bernoulli trials) are assumed for generating all node
pairs, while multinomial distributions are assumed
for generating (nodes of) edges in PMSG, by which
PMSG can focus on connected nodes only.

3.4.1 Constrained Stochastic Block Model [11]
CSBM assumes a multinomial distribution for assign-
ing a cluster to each node, meaning that we write
zi for the cluster label of a node vi. This model fur-
ther assumes binomial distributions over node pairs
with two different weights for “intra-cluster edges”
and “inter-cluster edges”, which are θin and θbetween,
respectively. The graph generation by CSBM can be
written in the following manner:
————————————————————————

1) Draw θin and θbetween from a beta distribution.
2) Draw K-dimensional vector π from a Dirichlet

distribution.
3) For each node vn (n = 1, . . . , N)

a) Draw cluster label k (= zn) from the multi-
nomial distribution with parameter π.

4) Repeat the following step over all possible node
pairs vi and vj (i = 1, . . . , N ; j > i).

a) If zi = zj , draw a value from the binomial
distribution with parameter θin, and con-
nect nodes vi and vj with an edge if the
value is one.

b) Otherwise, draw a value from the binomial
distribution with parameter θbetween, and
connect nodes vi and vj with an edge if the
value is one.

————————————————————————

3.4.2 Mixed Membership Stochastic Block Model [15]
MSBM assumes multinomial distributions for cluster
labels over nodes of all possible node pairs. We then
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TABLE 1
Space and time complexities of PMSG, PMMG,

CSBM and MSBM for each update
Space complexity Time complexity

PMSG O(E ·K) O(E ·K)
PMMG O(E ·K) O(E ·K)
CSBM O(N ·K) O(E ·K)
MSBM O(N2 ·K) O(N2 ·K2)

write zij for node vi of node pair, vi and vj . This
model further assumes the binomial distribution with
parameter θk1,k2 for a pair of nodes with cluster labels
k1 and k2. We can explain the graph generation by
MSBM in the following manner:
————————————————————————

1) For each node vn (n = 1, . . . , N)

a) Draw K-dimensional vector πn from a
Dirichlet distribution.

2) Repeat the following step over all possible clus-
ter pairs k1 and k2 (k1 = 1, . . . ,K; k2 = 1, . . .K).

a) Draw θk1,k2 from a beta distribution.
3) Repeat the following three steps over all possible

node pairs vi and vj (i = 1, . . . , N ; j > i).
a) Draw cluster label k1 (= zij) from the

multinomial distribution with πi.
b) Draw cluster label k2 (= zji) from the

multinomial distribution with πj .
c) Draw a value from the binomial distribu-

tion with θk1,k2 and connect an edge be-
tween nodes vi and vj if the value is one;
otherwise do not connect any edge between
them.

————————————————————————

3.5 Computational Complexities

We first summarize the difference among PMSG,
CSBM and MSBM. PMSG assumes multinomial dis-
tributions for (nodes of) edges, by which PMSG
considers connected node pairs only, while CSBM
and MSBM assume binomial distributions for node
pairs, by which CSBM and MSBM must consider all
node pairs. This difference is pronounced by hidden
variables, since PMSG assign cluster labels to edges
and CSBM assign labels to nodes while MSBM assign
labels to nodes of all possible node pairs. This means
that the number of hidden variables is linear to the
number of nodes in CSBM and the number of edges
(or connected two nodes) in PMSG which are both
light in complexity, while it is linear to the square of
the number of nodes in MSBM which is very heavy.

Table 1 shows the space and time complexities of
PMSG, PMMG, CSBM and MSBM for each iteration of
updating parameters. We note that PMMG keeps the
same space and time complexities as those of PMSG,
which are both O(E · K). Practically given graphs
are sparse, which means that PMSG and PMMG

are almost equivalent in complexity to CSBM where
the space and time complexities are O(N · K) and
O(E · K). On the other hand, the complexities of
MSBM are remarkably high. The time complexity of
MSBM reaches O(N2 ·K2), which for a sparse graph,
might reach the square of O(E · K), i.e. the time
complexity of PMSG, PMMG and CSBM. The space
complexity of MSBM is O(N2 ·K), corresponding to
the number of hidden variables, which is very huge.
For example, the number of hidden variables reaches
107 for a graph with 1,000 nodes (|N | = 1, 000) and
ten clusters. This makes the complexity of MSBM
very high, resulting in that MSBM needs a very large
number of trials to find good initial parameter values
even for a graph of |N | = 1, 000. Thus we can see that
this high model complexity makes it hard to apply
MSBM to practical graphs.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setting
4.1.1 Synthetic Data
We generated synthetic graphs containing localized
clusters by using the probabilistic structure of PMMG,
since PMMG already allows to represent localized
clusters. This means that we used two probabilistic
parameters of PMMG, rik and ηmk in the first part
of Section 3.4.1., to generate each synthetic graph.
More concretely, to generate a synthetic graph, we
randomly generated nodes vi and vj (edge eij) ac-
cording to rik and ηmk and let the value of the
corresponding weight in a matrix (or a graph) one,
i.e. Wij = Wji = 1.

We fixed the number of nodes in each cluster at 50,
by simply assigning the same cluster label to every
fifty examples (nodes). That is, for each cluster k, we
set zi = k (50(k − 1) + 1 ≤ i ≤ 50k). Note that the
input is graphs only and does not contain true cluster
labels, which were just used for generating synthetic
data and evaluating clustering results.

We generated multiple graphs in the following
manner: 1) We first randomly generated M ′ graphs
with totally (50 × K)2 × 0.1 edges, i.e. 10% of all
possible node pairs (because 50 ×K is the number
of all nodes). 2) We then chose M out of M ′ as input.

We then parameterized rik and ηmk by adding two
types of perturbations in generating graphs, consid-
ering noise (corresponding to inter-cluster edges) and
unbalanceness over multiple graphs.

For rik, we used real-valued parameter Rout (∈
[0, 1

2 ]), corresponding to the ratio of inter-cluster edges
to all edges. We have 50 × K examples (nodes). For
cluster k, the number of nodes can be the sum of
50 × (1 − Rout) (i.e. the number of nodes for intra-
cluster edges) and 50× (K−1)×Rout (i.e. the number
of nodes for inter-cluster edges). Then rik is set by:

rik =

{
1
C (1−Rout) if zi = k

1
CRout otherwise,
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where C = 50× (1−Rout) + 50× (K − 1)×Rout. We
note that

∑N
i=1 rik = 1 for all k.

For ηmk, we used real-valued parameter λ (∈ [0, 1]),
which controls the distribution of edges (of each
cluster) over graphs. In other words, parameter λ
controls the cluster bias over graphs. That is, under
some setting of λ, edges of a cluster can be set to
generate from only one graph, resulting in that this
cluster becomes a localized cluster. In reality, we first
let the number of graphs be the number of clusters,
i.e. M ′ = K, and then formulated ηmk so that when λ
is one, edges of the k-th cluster are all generated from
the k-th graph:

ηmk =

{
λ if m = k

1
K−1 (1− λ) otherwise.

In this setting, we note that
∑K

m=1 ηmk = 1 for each
k. If λ = 1, all edges of a cluster appear only in one
graph, while if λ = 1

K , edges are generated with an
equal probability 1

K for all graphs at each cluster.
In summary we have two parameters on gener-

ating synthetic data, i.e. Rout and λ. Rout controls
the number of inter-cluster edges, i.e. the amount of
noise, which is larger for a larger Rout. λ controls
the generation of localized clusters, which are more
likely to be generated for a larger λ. We expect that
comparing to other methods, PMMG will work even
for a larger Rout and a larger λ.

Fig. 5 shows some examples of synthetic
graphs (weight matrices) for M ′ = K = 3, being
shown as W (1), W (2) and W (3). In this figure, a
white pixel shows that the corresponding weight is
larger than zero, meaning that there is an edge at the
corresponding pixel. For all (a)-(d), W (int) is a matrix
in which all corresponding weights of W (1), W (2)

and W (3) are simply summed at each pixel. Fig. 5
(a) shows three weight matrices, which are generated
under λ = 1

3 and Rout = 0.1, where all W (1), W (2)

and W (3) are the same. Fig. 5 (b) shows the case
of λ = 0.9 and Rout = 0.1. We note that (a) and (b)
are totally different but two typical, extreme cases
of λ, i.e. (a): clusters are equally distributed and (b)
clusters are biased (or localized clusters). However
regarding W (int), (a) and (b) are almost similar and
three clusters are clearly shown in W (int). We can
thus expect that existing clustering methods (as well
as PMMG) will work well for both (a) and (b).

On the other hand, Fig. 5 (c) is by λ = 1
3 and Rout =

0.5 and Fig. 5 (d) is by λ = 0.9 and Rout = 0.5, both
of which have abundant inter-cluster edges, meaning
that both are very noisy. You can easily see that in both
(c) and (d), W (int) shows very vague, unclear three
clusters, for which a standard clustering method will
not work well. However, we can expect that in (d),
a localized cluster can be seen in each of W (1),W (2)

and W (3), implying that our approach will work for
(d) better than other competing clustering methods.

TABLE 2
Five gene networks (PI:Physical interaction, GI:
Genetic interaction, PPI: Protein interaction, SS:

Sequence similarity and CC: ChIP on Chip)

Name #edges References

W (PI) 569 [18]
W (GI) 548 [19]
W (PPI) 1,763 [20]
W (SS) 1,315 [21]
W (CC) 777 [22]

TABLE 3
Standard gene clusters from MIPS FunCat

ID Name #genes
01.01 Amino acid 202
01.03 Nucleotide 195
01.04 Phosphate 351
01.05 Carbohydrate 422
01.06 Lipid, fatty acid and isoprenoid 176
01.07 Vitamins, cofactors, etc. 138

4.1.2 Real Genomic Data

Table 2 shows five gene networks we used in our
experiment. We adjusted cut-off values for W (SS)

and W (CC) to make the number of edges in these
two graphs almost equal to those of the other three
networks (for which we could not control the number
of edges). We focused on 1,207 metabolism-related
genes, which were found in the maximal connected
component (MCC) of the union of the five networks.
To evaluate the clustering results, as gold standard
clusters, we used six major categories in metabolism,
which can be provided by FunCat in MIPS [23].
Table 3 shows the detail of the six categories.

4.1.3 Competing Methods

We compared the performance of PMMG with those
of other five approaches. The first comparison method
was PMSG, and the second one was MSC, which
is a method for graph clustering with multiple
graphs [17]. The third one was CSBM [11], for which
the model generation process was described in Sec-
tion 3.4. The fourth one was spectral clustering with
ratio cut (SC), a standard graph clustering approach.
We skip the detail of SC in this paper, and interested
readers should refer [6]. The fifth one is MSBM, for
which also the model generation process was already
explained in Section 3.4. As shown in Section 3.5,
MSBM has a high complexity which makes it hard
to apply to the real data including that we used in
this paper. Thus we used MSBM for synthetic data
only. We note that CSBM, SC and MSBM were run
on W (int) and in particular, an only binary matrix,
i.e. W (int)

i,j ∈ {0, 1}, was used for CSBM and MSBM.
For real genomic data, we further used a simple
random cluster assignment method (RA), to confirm
the performance advantage of each method over RA.
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(a) W (1) W (2) W (3) W (int)

(b) W (1) W (2) W (3) W (int)

(c) W (1) W (2) W (3) W (int)

(d) W (1) W (2) W (3) W (int)

Fig. 5. Example synthetic data under (a) λ = 1
3 , Rout = 0.1, (b) λ = 0.9, Rout = 0.1, (c) λ = 0.9, Rout = 0.5 and

(d) λ = 1
3 , Rout = 0.5.

4.1.4 Evaluation Measure

We used normalized mutual information (NMI),
which is a standard measure for evaluating clustering
results [24]. NMI assumes that we can have true
clusters as input. For the distribution of resultant
(empirical) clusters P (X) and true cluster distribution
P (Y ), NMI is given by:

NMI :=
MI(X,Y )√
H(X)

√
H(Y )

,

where MI(X,Y ) := H(X) + H(Y ) − H(X,Y ),
H(X) := −

∑
X P (X) logP (X) and H(X,Y ) :=

−
∑

X P (X,Y ) logP (X,Y ). NMI shows the overlap
between predicted clusters and true clusters, meaning
that the performance is better as NMI is larger.

4.2 Results on Synthetic Data

We generated five synthetic graphs, i.e. M ′ = 5. For
PMSG and PMMG, we used α0 = β0 = ζ0 = 1.0, by
which uniform distributions are generated to avoid
any bias. Under each values of Rout and λ, we gen-
erated twenty graphs randomly, and then for each
graph, we run each competing method ten times with
different random initial values and obtained the best.
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Fig. 6. NMI by PMMG for M=1, 3 and 5, when λ was (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8 and (e) 1.0.

Finally we averaged over the results of twenty best
trials.

4.2.1 Effect by Increasing Graphs
We chose one, three and five graphs out of five graphs
generated, meaning that M is set at one, three and
five. We then checked the performance of PMMG
under these three values of M . Fig. 6 shows the NMI
of PMMG for M of the three values, when we changed
Rout and λ. This figure reveals that NMI by PMMG
reduced as Rout increased for all cases. However, for
all λ, NMI reduced more slowly for a larger M . For
example, in Fig. 6 (a) where λ = 0.2, at Rout = 0.1,
NMI was almost 1.0 for M = 5 and around 0.9 for
M = 3 while that was less than 0.3 for M = 1. This
difference was more significant for a larger λ. For
example, in Fig. 6 (e) where λ = 1.0, at Rout = 0.1,
NMI was almost 1.0 for M = 5, while that was around
0.5 for M = 3 and almost 0 for M = 1. From this
result, we can easily see that NMI of PMMG was kept
higher for the case that more graphs are given. This
was pronounced more for a larger Rout as well as a
larger λ. This result indicates that PMMG captured
localized clusters better by using more graphs.

4.2.2 Performance Comparison with Competing
Methods
We then checked the performance advantage of
PMMG over other five competing methods, i.e. PMSG,
MSC, CSBM, SC and MSBM. We note that among
the five competing methods, PMSG, CSBM, SC and
MSBM were run on W (int), while MSC was run over
multiple graphs directly. Fig. 7 shows the NMI of

these six methods when Rout and λ changed. We here
focus on five methods: PMMG, PMSG, CSBM, MSC
and SC only, since MSBM clearly underperformed
other five methods because of its high model com-
plexity which makes MSBM hard to estimate good
parameter values for any Rout. As in Fig. 6, the NMI
reduced as Rout increased for all five methods. We
emphasize that the NMI of PMMG reduced most
slowly among the five methods. Interestingly, this fea-
ture was pronounced more for a larger λ clearly. For
example, in Fig. 7 (a) where λ = 0.2, the five curves
of NMI were similar to each other, while in Fig. 7 (e)
where λ = 1.0, at Rout of 0.2, the NMI of PMMG
was still 1.0 but those of the other four were less than
0.1. Thus from this result, we can clearly say that
PMMG significantly outperformed other clustering
approaches: PMSG, MSC, CSBM, SC and MSBM. We
emphasize that the performance advantage of PMMG
was achieved by the feature of capturing localized
clusters which are embedded in multiple graphs. We
note again that the performance of MSBM was lowest,
because of its high model complexity which made
hard to find good initial values even for the size of
synthetic data we used.

4.2.3 Model Selection by Using L[q]

We run each of PMMG, PMSG and CSBM with chang-
ing K from two to seven and computed L[q] for each
setting3. The number of true clusters is five, meaning
that the true number of clusters (model) was found if

3. We were unable to run MSBM, because of its high computa-
tional burden for each K.
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Fig. 7. NMI by six competing methods when λ was (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8 and (e) 1.0.

L[q] was maximized at K = 5. As a parameter to be
used in this subsection, we first selected Rout = 0.1
where NMI was high for all three methods in Fig. 7.
We further selected Rout = 0.2 and two λ values, i.e.
λ = 0.2 and 0.6, since NMI was very low for all cases
under λ = 0.2 while NMI of PMMG was improved
under λ = 0.6. Fig. 8 shows L[q] with changing K un-
der these three cases. The results showed that L[q] was
maximized at K = 5 for all methods under Rout = 0.1.
On the other hand, under Rout = 0.2, L[q] was not
maximized under λ=0.2 for all methods, while L[q]
was maximized at K = 5 only for PMMG under λ=0.6.
This result was consistent with the results of NMI,
showing that PMMG selected the best model correctly
the most among the three methods.

4.3 Results on Real Genomic Data
We first run PMMG, PMSG and CSBM with changing
K and computed L[q] to find the number of clusters
which maximizes L[q]4. Fig. 9 shows the optimized
L[q] with changing K of the three methods, showing
that the optimized number of clusters was six, four
and 27 for PMMG, PMSG and CSBM, respectively. In
fact, the true number of clusters given by MIPS for
this dataset was six, meaning that the true number of
clusters was selected by PMMG only. We then focused
on the case of K = 6 and run all competing methods
under this setting. Table 4 shows the resultant NMI

4. At each K, we run each method one hundred times with differ-
ent random initial values and chose the best case, which maximizes
L[q]. For PMMG (and PMSG), we kept α0 = β0 = ζ0 = 1.0.

TABLE 4
NMI of six competing methods with Z-scores (in

parentheses) against RA.
K PMMG PMSG MSC CSBM SC RA
6 0.1015 0.0815 0.0767 0.0870 0.0622 0.0073

(41.56) (32.70) (30.56) (35.12) (24.13) -

TABLE 5
#edges in MIPS FunCat ID of 01.04 (PI:Physical

interaction

Name #edges in 01.04

W (PI) 90
W (GI) 110
W (PPI) 166
W (SS) 906
W (CC) 40

of competing methods, where RA is a random assign-
ment and the NMI of RA was averaged over 10,000
trials of RA. Each NMI value was relatively low, i.e.
0.05 - 0.1, mainly because gold standard clusters were
overlapped with each other, while hard assignment
was done in each clustering method. However these
values of NMI were significant, since their Z-scores
against RA were 24.13 to 41.56. More importantly,
this table shows that PMMG clearly outperformed
other competing methods in both NMI and Z-scores.
In addition, Z-scores of PMSG and CSBM under
K=4 and 27 were 35.28 and 38.12, respectively, being
significantly large but lower than 41.56 which was
obtained by PMMG under K = 6.
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Fig. 8. Optimized values of L[q] for PMMG, PMSG and CSBM under different K (# clusters) and (a) Rout = 0.1,
λ = 0.2, (b) Rout = 0.2, λ = 0.2, (c) Rout = 0.2, λ = 0.6.

We went into the detail of clustering results by
PMMG. We first checked the distribution of edges
generated by gold standard clusters over five gene
networks and then found that edges by genes in Fun-
CatID:01.04 (i.e. phosphate metabolism) were mainly
found in W (SS). In fact, Table 5 shows the number of
edges in 01.04 for five gene networks, and this table
shows that W (SS) had 906 edges in 01.04, while each
of other networks had only around 200 or less edges.
This means that there is a localized cluster in W (SS),
corresponding to 01.04. Fig. 10 (a), (b) and (c) are
W (SS), W (GI) and W (int), respectively, where W (int)

is the integrated graph over five gene networks and
in each of the three graphs, genes (nodes) are sorted
according to the gold standard clusters (01.01: green,
01.03: blue, 01.04:light blue, 01.05:pink, 01.06:yellow
and 01.07: white). We can see that many edges fall
into the third rectangle, i.e. 01.04, in (a), while this
feature cannot be seen in (b). Fig. 10 (c) shows that
the density of dots in the third rectangle is not so
much higher than the rest of all areas, implying that
this rectangle might not be captured as a cluster by
using only (c). We then checked clustering results of
PMMG and PMSG. Fig. 11 (a) and (b) show weight

matrices with resultant clusters by PMSG and PMMG,
respectively, where genes (nodes) are first sorted ac-
cording to the clustering results of each method and
then gold standard clusters. The dotted lines show
the clustering results and colored lines show the gold
standard clusters where colors are consistent with
those specified by Fig. 10. From the comparison of
W (SS) between PMMG and PMSG, we can first see
that dots were well gathered in a light blued rectangle
for PMMG but not for PMSG, meaning that PMMG
captured the localized cluster well while PMSG not.
Furthermore this light blued rectangle occupies the
fourth rectangle (from the left) of W (SS) by PMMG
(Fig. 11 (b)), meaning that this cluster corresponds to
01.04. Similarly, the sixth rectangle (from the left) of
W (GI) by PMMG contained a pink colored rectangle
with many dots, which however was not shown in
W (GI) by PMSG. This also shows a result that a pink
colored localized cluster in W (GI) (See Fig. 10 (b)) was
(partly) captured by PMMG but not by PMSG. Finally
these results also confirm the effectiveness of PMMG
on real applications including localized clusters.
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Fig. 9. Optimized L[q] with changing K for (a) PMMG, (b) PMSG and (c) CSBM

(a) (b) (c)

Fig. 10. Three weight matrices, (a) W (SS), (b) W (GI), and (c) W (int), where genes are ordered, according to
the MIPS (gold standard) clusters. Edges in FunCatID of 01.04 (phosphate metabolism) are in the third rectangle
from the left.

5 CONCLUDING REMARKS

We have proposed a probabilistic model-based ap-
proach, PMMG (Probabilistic Model for Multiple
Graphs), for clustering with multiple graphs. The
emphasis of our approach is placed upon localized
clusters, which are not found in all given graphs
and well-accepted in real applications. The complexity
analysis of PMMG and related probabilistic models
shows that the space and time complexities of PMMG
are kept the same as those of the most efficient proba-
bilistic models including PMSG. Experimental results
showed that PMMG clearly outperformed competing
graph clustering approaches in both synthetic and
real data, showing the effectiveness of PMMG for the
problem of graph clustering with multiple graphs.
Furthermore the results from real genomic data of us-
ing five gene networks showed that PMMG captured
localized clusters, which were uniquely found in the
network on sequence similarity.

Frequent pattern mining is the most major approach
in knowledge discovery and data mining [25], and
there already exist efficient methods for mining from

graphs, e.g. [26]. Frequent patterns (subgraphs) do not
have to appear in all given graphs, and instead they
need to appear a larger number of times than the user-
specified value, called support. Frequent patterns can
be localized patterns, meaning that our problem shares
some concept with frequent pattern mining over
graphs. However, a clear difference between these two
is that we focus on ‘clusters’ but not patterns. In fact,
clusters are more flexible and concise than frequent
patterns, which are rigid but usually redundant. This
point indicates that our approach based on statistical
machine learning would be a right direction to solve
our issue of clustering under multiple graphs with
localized clusters.
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