Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir.

Author(s)
Ebina, Hirotaka; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

Citation

Issue Date
2012-05-25

URL
http://hdl.handle.net/2433/154921

Right
© 2012 Elsevier Inc.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir.

Hirotaka Ebina*, Yuka Kanemura, Yasutsugu Suzuki, Kozue Urata, Naoko Misawa and Yoshio Koyanagi

Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan

* Corresponding author

Phone: +81-75-751-4813

Fax: +81-75-751-4812

E-mail: hebina@virus.kyoto-u.ac.jp
Abstract

HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.
Keywords

HIV-1, integration, integrase inhibitor, provirus, HIV reservoir, DNA repair
Introduction

Retroelements, such as long terminal repeat (LTR)-retrotoransposons, non-LTR-retrotansposons, and retroviruses, insert their reverse transcribed cDNA into the host chromosome during viral replication. To carry out efficient replication, the retrovirus family has robust integration machinery consisting of the retrovirus integrase (IN), which executes the insertion of viral cDNA into the genome of host cells. The IN protein consists of three distinct domains (Craigie, 2001): the N-terminal domain contains an HHCC motif; the catalytic core domain in the center of INs possesses a DDE motif that mediates catalysis; and the C-terminal domain of IN has little sequence conservation yet possesses nonspecific DNA binding activity.

It has been reported that human immunodeficiency virus type 1 (HIV-1) cDNA is preferentially inserted into the gene coding region of the host genome (Schroder et al., 2002). The host lens epithelium-derived growth
factor/p75 (LEDGF/p75) protein directly binds IN (Llano et al., 2004; Maertens et al., 2003) and recruits a pre-integration complex consisting of viral cDNA, host proteins and viral proteins to the gene coding region (Cherepanov et al., 2005; Engelman and Cherepanov, 2008; Shun et al., 2007). The genome position of inserted HIV-1 provirus is thought to determine the magnitude of viral gene expression. In fact, transcription of provirus integrated into gene coding regions is extremely high and produces large amounts of viral particles (Wang et al., 2007). In contrast, the transcription of proviruses inserted outside of the gene coding region is relatively dormant and has a potential for persistent and latent infection (Brady et al., 2009; Skupsky et al., 2010).

INs dramatically increase the efficiency of viral nucleic acid insertion into the host DNA, however, other mechanisms for exogenous nucleic acid incorporation may also exist. Accumulating lines of evidence indicate that foreign nucleic acids, not related retroelements, can be inserted into the genome of host cells. For instance, transfected plasmid DNA (Suzuki
et al., 2010), a DNA virus genome (Dall et al., 2008), mitochondrial DNA fragments (Nitz et al., 2004) and borna virus cDNA (Horie et al., 2010) have been reported to integrate into host chromatin DNA despite the absence of an IN enzyme. The host DNA repair system which involves homologous recombination or non-homologous end joining appears to be involved in the insertion (Horie and Tomonaga, 2011).

In this study, we first tested the integration of HIV with a mutated IN lacking catalytic activity. We could detect a low but significant amount of integrated HIV cDNA. Because integration is essential for HIV-1 replication, IN inhibitors have been developed and used as an antiviral therapy for HIV (Summa et al., 2008). We tested the illegitimate integration of WT HIV in the presence of IN inhibitors. A low frequency of integration was observed in the presence of an IN inhibitor which capable of producing infectious virus particles, and the level of integration was clearly enhanced under DNA-damaged condition. Our results suggest that retroviral cDNA is inserted into the host chromosome through host DNA repair machinery via
an IN-independent pathway and serves as a virus reservoir.
Results

Generation of provirus and stable expression of HIV-1 in the absence of IN activity

We initially used a vesicular stomatitis virus (VSV)-G pseudotyped EGFP-expressing HIV vector packaged with a catalytically inactive HIV-1 IN, which contains a D64V mutation. Jurkat cells were infected with varying amounts of the D64V mutant virus corresponding to the amount of p24CA used at a multiplicity of infection (MOI) of 1, 5 and 10 of wt virus. Cells were also infected with IN-proficient WT virus at an MOI ranging from 1·10 in the absence or presence of IN inhibitors, Elvitegravir (Elv) or Raltegravir (Ral).

To ensure the removal of unintegrated HIV-1 DNA associated with cell division, the cells were further cultured for 2 weeks and the levels of unintegrated, 2LTR, and integrated HIV-1 DNA were assessed. As shown Fig.1A, the increased integrated but not unintegrated viral DNA was
detected with increasing MOI in WT+Elv- and D64V-infected cells. Based on this result, we calculated the efficiency of integration during an IN-deficient condition to be 0.1-0.2% of WT integration (Fig.1B). We further assessed green fluorescent protein (GFP) transduction efficiency by flow cytometry analysis and observed a dose dependent GFP transduction under IN-deficient conditions, in WT+Elv or WT+Ral, and D64V-infected cells (Fig.1C). Up to 2.3% GFP positive cells were detected in D64V mutant infected cells. The copy number of integrated viral DNA highly correlated with the transduction efficiency (R=0.9019 > 0.590; α=0.01) (Fig.1D). These results indicated that the transduction was from the integrated form of HIV-1 DNA. Therefore, we assumed that the level of GFP expression 2 weeks after infection using this HIV vector was representative of the level of integrated DNA.

It has been shown that the introduction of a DNA double-stranded break in a target gene can stimulate retrotransposition of LINE-1, gene targeting and genome rearrangement.
To test whether DNA damage augments integration activity of HIV-1 lacking IN activity, cells were exposed to various doses of gamma irradiation in order to induce DNA double-strand breaks (DSB) before virus infection and then flow cytometry analysis was performed two weeks post infection (Fig. 1E). The percentage of GFP positive cells was clearly augmented and correlated with increasing doses of gamma irradiation. Furthermore, we also examined the effect of chemical-induced DNA damage by hydrogen peroxide in IN-deficient HIV-1 integration. Significant enhancement of GFP transduction of IN-deficient HIV was observed in cells treated with hydrogen peroxide in a dose dependent manner (Fig. 1F). Finally, we directly analyzed the copy number of integrated HIV-1 DNA in the cells used in Fig. 1E and F (Fig. 1G and H, respectively). The efficiency of integration under IN-deficient conditions was augmented from 0.1% to 1.7% depending on the dose of DNA damage. These results suggested that the induction of DNA damage in target cells enhanced the efficiency of retroviral IN-independent integration.
Moreover these findings suggest that HIV uses a host DNA repair system for
the IN-independent integration.

\textit{Attenuation of HIV-1 gene expression from proviruses established through
an IN-independent pathway}

We showed that HIV-1 DNA was inserted into the host chromosome
without IN activity. To examine the LTR promoter activity and level of gene
expression from IN-independent proviruses, VSV-G pseudotyped LTIG
(LTR-Tat-IRES-GFP) vector was used. The HIV tat protein, an accessory
protein responsible for regulating HIV transcription, is expressed under the
regulation of an LTR promoter and the transcriptional level can be
monitored by GFP expression. As expected, a parallel transduction of Jurkat
cells with GFP-expressing WT virus in the presence of Elv and D64V mutant
virus in increasing doses was observed (Fig. 2A and B). However, the mean
fluorescence intensity (MFI) was significantly lower in cells infected with
LTIG virus in the presence of Elv and D64V mutant compared with that of WT virus without Elv (Fig. 2A and C). Furthermore, we isolated 17, 10 and 20 cell clones from WT virus infected cells without IN inhibitor, WT virus infected cells with inhibitor, and D64V virus infected cells, respectively. The level of GFP expression in each clone was analyzed by flow cytometry as shown in Fig.2D. The isolated cell clones were divided into two groups, IN-dependent (WT) and IN-independent (WT+Elv and D64V) transduction. Then, the frequency of distribution based on the MFI of GFP expression is shown in Fig. 2E. Chi-square distribution was assessed and statistically significant difference between IN-dependent and independent groups was observed (χ²=10.927>9.488; four-degree-of-freedom, P=0.05).

Given that the chromatin environment near the provirus is known to affect the level of viral gene expression, we attempted to address this possibility by analyzing the integration sites of proviruses (Table 1). In WT-infected cells, 84% of the integration sites were detected in gene coding regions as shown RefSeq, while only 68% of the events were detected in gene
coding regions under IN-deficient condition. Although, we could not find statistically significant differences \((P=0.098)\) under these parameters, if we analyzed the frequency of viral DNA insertion in respect to the presence of repeat sequences, then significant differences were observed (2\% vs. 19\%: \(P=0.0048\)). Furthermore, the deletion and insertion of nucleotides in the junction of LTR-genomic DNA was a frequent feature in the IN-deficient mutant as shown in a previous report (6\% vs. 27\%: \(P=0.0039\)) (Gaur and Leavitt, 1998). These results suggest that the HIV integration pattern is modified under IN-deficient conditions and it may cause reduced promoter activity.

Formation of an intact HIV-1 reservoir under IN-deficient conditions

Here, we showed a lower level of viral gene expression from the provirus generated through an IN-independent pathway. To test the ability of replication-competent HIV-1 to produce infectious virus under
IN-suppressed conditions, we performed the experiment depicted in Fig. 3A. Irradiated or untreated Jurkat cells were infected with replication competent HIV-1 NL4-3 in the presence of an IN inhibitor. Three days after infection, the IN inhibitor and free viral particles were removed with extensive washing, followed by the addition of fresh Jurkat cells (as indicated day 0). p24CA viral antigen in culture supernatant was monitored. Under nonirradiated culture conditions, the peak of p24CA was observed at days 9 and 11 after the removal of IN inhibitor. In contrast, faster viral replication was observed in the irradiated culture. The peak of viral replication was observed at 5 days post infection (dpi) (Fig. 3B). The amount of integrated and 2LTR proviral DNA at day 0 was performed by quantitative PCR and we found that the irradiated culture contained a fivefold higher amount of integrated provirus than the nonirradiated culture. On the other hand, there was no significant difference in the copy number of 2LTR cDNA between irradiated and non-irradiated cultures, suggesting that DNA damage before viral infection increased the HIV cDNA insertion under
IN-deficient condition and it promoted faster viral replication.
Previously, Gaur et al. reported that mutant HIV lacking IN activity due to mutations in a highly conserved DDE motif of IN is able to integrate into the host chromosome (Gaur and Leavitt, 1998). Here, we showed that not only an IN-deficient virus, but also WT virus in the presence of an IN inhibitor is integrated into the host chromosome. The efficiency of HIV integration when using an IN antagonist was only 0.1-0.2% of IN mediated integration, indicating that the IN-independent integration pathway may be only a minor pathway or accidental event in vivo. However, we showed that stress inducing DNA damage enhances IN-independent infection of cells by HIV and has the potential to serve as a virus reservoir, thus suggesting that it may play a role in disease progression. For instance, although combination antiretroviral therapy (cART) has reduced the pathogenesis of AIDS-related malignancies, there has been an increase of HIV-positive patients with non-AIDS-defining malignancies such as Hodgkin’s lymphoma, invasive anal
carcinoma, lung cancer, skin cancers, and hepatocellular carcinoma (Spano et al., 2008). Radiotherapy is a standard treatment procedure for many individuals with cancer and HIV, even though it may adversely affect HIV disease status and CD4 counts (Housri et al., 2010). Our results suggest that patients receiving simultaneous medical treatment for cancer in the form of radiation and anticancer drug therapy may be at a higher risk for DNA repair mediated integration of proviral cDNA. In addition, it is conceivable that even mental stress-induced radical oxidents may augment IN-independent infection (Adachi et al., 1993; Morimoto et al., 2008).

Another interesting point of our study is that the level of gene expression under IN-deficient conditions is reduced when compared with functional IN infection. Altogether, the IN-independent integration enhanced by the stress may lead to latent infection \textit{in vivo}.

The mechanism of IN-independent integration remains to be elucidated. Previously, Gaur \textit{et al.} sequenced the host-virus junction and showed that IN-independently integrated provirus do not have a duplicate
5-bp repeat of host cell DNA which is characteristically generated by the staggered cleavage of host DNA during the strand transfer reaction of HIV (Gaur and Leavitt, 1998). They also demonstrated that the integrated DNA of IN defective virus includes the deletion of host DNA, LTR, and the insertion of unknown sequences between the virus-host DNA junction. Based on these results, they suggested that the integration of HIV lacking IN activity may be catalyzed by the host DNA repair system (Gaur and Leavitt, 1998). In line with their findings, our results also demonstrate a significant increase in the deletion and insertion of nucleotides at virus-host DNA junctions in cells infected with an IN-deficient virus (WT: 6% vs. IN-deficient: 27%, \(P=0.0039 \)). Furthermore, induced DNA damage in target cells before virus infection increased the level of integration (Fig. 1G and H). These findings support the idea that HIV DNA is inserted into a DNA break point by the host DNA repair system, possibly by non-homologous end joining and/or homologous recombination.

It has been reported that the provirus integration site determines
the level of viral gene expression (Wang et al., 2007). The host protein LEDGF/p75 promotes HIV integration into active gene coding regions (Shun et al., 2007). However, silencing of the active provirus integrated at gene coding regions is challenging, making it unclear how latently infected cells are established. In this paper, we demonstrated that the level of gene expression is reduced depending on distinct integration pathways. To understand the mechanism of gene silencing, we analyzed integration sites of HIV-1 proviruses. Unexpectedly, the integration site analysis focused on gene coding sequences did not show significant differences between the targeted frequency of integration under IN-deficient and conventional conditions. However, HIV-1 cDNAs were frequently inserted into minisatellite-like repeat sequences of genomic DNA in IN-deficient conditions ($P=0.0048$). Minisatellites consist of 10-100 bp repeat sequences and is observed near cis-acting meiotic double-strand break hotspots (Richard and Paques, 2000). If the IN-independent integration is carried out by the DNA repair pathway, then double-strand break hotspots may be the
target for the insertion. Moreover, an unknown determinant for these hotspots, such as the chromatin environment, may cause reduced gene expression.

In our study, the integration frequency of provirus into gene coding regions was 68% under an IN-deficient condition and it was much higher than predicted random integration (33%). Hence, this result suggests that there is an integration preference into gene coding regions even during IN-independent integration. One plausible explanation for this may be attributed to the sensitivity of the host chromosome to DNA breaks at gene coding regions. If the retroviral DNA is inserted at a DNA break point under IN-independent conditions, our results might reflect a high frequency of DNA breaks that occur at gene coding regions in the host chromosome. Another possibility is that LEDGF/p75 may promote viral cDNA tethering to the gene coding region even under IN-deficient conditions the same as it would if functional IN was present. We used a lentivirus vector that has a mutation in the catalytic domain of IN. It has been reported that the
mutation at D64 to alanine in IN does not inhibit the protein binding with LEDGF/p75 (Cherepanov et al., 2005). In addition, the binding interface of IN and LEDGF/p75 does not overlap with the active site of IN inhibitors (Hare et al., 2010; Michel et al., 2009). Therefore, it is not surprising that retroviral DNA preferentially integrated into gene coding regions even when IN is devoid of function.

In sum, our findings serve as a caveat for an alternative infection route that HIV can take during DNA damage to bypass a drug therapy involving IN inhibitors. The analysis of integrated provirus obtained from HIV-positive patients after radiotherapy will shed light on the practical risk of the alternative infection pathway of HIV in vivo.
Materials and Methods

Virus preparation

Human embryonic kidney (HEK) 293T cells were used for virus preparation. HEK293T cells were transfected by the calcium phosphate method as described previously (Kawano et al., 2004). The culture supernatants at 48 hr post-transfection were centrifuged and filtrated. To prepare HIV-1 NL4-3, cells were transfected pNL4-3 and the 50% tissue culture infective dose (TCID$_{50}$) was calculated (Kawano et al., 1997; Sato et al., 2008). To prepare the EGFP-expressing HIV vector, pCS-CDF-EG-Pre was used. pCS-CDF-EG-Pre was constructed by exchanging the CMV promoter of pCS-CDF-CG-Pre (Miyoshi et al., 1998) with human elongation factor 1α (EF) promoter. The pCS-CDF-EG-Pre was transfected together with packaging plasmids pMD.G, pMDLg/pRRE and pRSV Rev (Kawano et al., 2004). To prepare VSV-G pseudotyped WT LTIG vector, pEV731, kindly
provided by Dr. Eric Verdin (Jordan et al., 2003), pMD.G, pMDLg/pRRE and pRSV Rev were cotransfected. To prepare IN-deficient D64V mutant virus, pMDKg/pRRE/D64V, kindly provided by Dr. Ikawa (Okada et al., 2009), were used instead of pMDLg/pRRE. The infectious dose of GFP expressing vectors was assessed as follows. Two hundred thousand of Jurkat cells were infected with serial volumes of stock virus in 1 ml culture. At 3 days after infection, GFP positive cells were analyzed by flow cytometry and the infectious dose were calculated based on the input volume of virus counted approximate 25% of GFP positive.

ELISA

To quantify the viral antigen p24CA in virus solutions, an HIV-1 p24 antigen enzyme linked immunosorbent assay (ELISA) kit (ZetroMetrix Buffalo, NY) was used.
Cell culture

HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal calf serum (FCS), 100 U/ml penicillin and 100 g/ml streptomycin. Jurkat cells were maintained in RPMI 1640 medium containing 10% FCS, 100 U/ml penicillin and 100 g/ml streptomycin.

Pseudotyped virus infection and flow cytometry analysis

To infect with pseudotyped EGFP-expressing HIV vector or LTIG virus, Jurkat cells (2 x 10^5 cells) were infected with a pseudotyped virus solution as corresponded as the infectious dose of WT virus at indicated MOI. Under IN-deficient conditions, 1 µM Ral (NIH, Bethesda, MD) or 100 nM Elv (Selleck Chemicals, Houston, TX) were added in the culture medium. Two weeks after infection, the percentage of GFP positive cells were measured by
flow cytometry. Cells were suspended in phosphate-buffered saline (PBS) containing 1% formamide. Flow cytometry was performed with a FACSCalibur (BD Biosciences), and data were analyzed using CellQuest software (BD Biosciences).

Cell cloning

GFP+ Jurkat cells were sorted from the bulk culture 2 weeks after pseudotyped LTIG virus infection by FACSARia (BD Biosciences) and cell cloning was carried out by limiting dilution method.

Induction of DNA damage in target cells

To induce DNA damages with ionizing radiation, Jurkat cells (2 x 10^5 cells/ml) were exposed to appropriate doses (5-10 Gy) of gamma irradiation at room temperature. Gamma irradiation was performed using a Faxitron RX-650 (Faxitron bioptcs, Lincolnshire, IL). To induce DNA damage
with reactive oxygen species, Jurkat cells (2 x 10^5 cells/ml) were incubated with medium containing 10, 50 or 100 µM of hydrogen peroxide at 37°C for 6 hr. The DNA damage-induced cells were immediately used for virus infection after washing with medium once.

Analyses of HIV-1 replication kinetics of IN-independent integrated proviruses

The irradiated or non-treated Jurkat cells (4 x 10^4 cells) were incubated for 2 hr in HIV-1 NL4-3 solution containing 40 ng of p24CA (TCID$_{50}$, 984419/ml) at MOI of 1 with 100 nM Elv or 1 µM Ral. After extensive washing (twice with PBS, once with 5% tripsin/EDTA at 37 °C for 5 min, and twice with 10% FCS RPMI), the cells were resuspended and cultured in 200 µl of 10% RPMI containing an appropriate concentration of IN inhibitor. After 3 dpi, the cells were extensively washed as mentioned above. Then, the cells were co-cultured with fresh Jurkat cells (4 x 10^4 cells)
in the absence of IN inhibitor. The culture medium was harvested at the indicated time points and the level of p24CA antigen was measured by ELISA.

Quantitative analysis of retroviral DNA

The amount of proviral, 2LTR, and full-length forms of HIV-1 DNA was quantified by real-time PCR and the copy number of HIV-1 DNA was normalized by β-actin as previously described (Suzuki et al., 2003). Unintegrated linear DNA was calculated by subtracting the copy number of provirus and 2LTR DNA from that of full-length viral DNA.

Integration site analyses

The integration sites were determined by the linker ligation method described previously (Ciuffi et al., 2009). Briefly, genomic DNA was extracted
from the GFP positive population using a DNeasy column (QIAGEN) and
digested with AvrII, NheI and XbaI. The digested genomic DNA was ligated
with a linker adapter and then used to perform nested PCR amplification.
The PCR products were cloned into a pGEM-T (Promega, Madison, WI)
vector and sequenced using an M13 primer.

Statistical analysis

The student’s t test was used to determine statistical significance. P
values of <0.05, <0.01 and <0.001 were considered significant. The
chi-square test was also used to determine statistical significance from the
frequency of distribution.
Acknowledgments

We thank Eric Verdin (Gladstone Institute of Virology and Immunology) for providing pEV731, and Masahito Ikawa (Research Institute for Microbial Diseases, Osaka University) for providing pMDKg/pRRE/D64V. We are also grateful to Peter Gee (Institute for Virus Research, Kyoto University) for proofreading and comments on the manuscript, and Yuri Nakamura (Kyoto University) for support of experimental techniques and helpful discussions. This work was supported in part by Grant-in-Aid for Scientific Research, Grant-in-Aid for Exploratory Research, the Uehara memorial foundation, and the Fujiwara memorial foundation.

Michel, F., Crucifix, C., Granger, F., Eiler, S., Mouscadet, J.F., Korolev, S.,

Figure legend

Fig.1. The transduction and integration efficiency of HIV under IN-deficient conditions. Jurkat cells were infected with a MOI of 1-10 with WT EGFP-expressing HIV vector in the absence or presence of 100 nM Elv or 1 µM Ral and indicated as WT, WT+Elv and WT+Ral, respectively. Alternatively, the IN-deficient mutant virus (D64V) was also used. (A) Two weeks after infection, the copy number of integrated, 2LTR and unintegrated forms of viral DNA were analyzed by qPCR. The cell number was determined quantity by qPCR detecting β-actin. (B) The efficiency of integration under IN-deficient conditions is shown. The values were calculated by dividing the integrated copy number of provirus derived from IN-deficient conditions by that of WT. (C) GFP positive cells were detected by flow cytometry 2 weeks after infection. Pseudo plots of the raw data analyzed by flow cytometry are shown. The numbers indicated on the plot show the percentage of GFP positive cells. These results are summarized in the bar graphs depicted below.
(D) Coefficient of correlation. The correlation of GFP positive cells (%) and HIV DNA (copies/1000 cells) are shown. Gray squares indicate WT+Elv (n=9) and triangles indicate D64V (n=9). Pearson’s product-moment correlation coefficient was calculated from populations of WT+Elv and D64V (n=18).

(E-H) DNA damage enhanced IN-independent integration. Jurkat cells were exposed to various doses of gamma radiation, IR (E and G) or hydrogen peroxide, H₂O₂ (F and H). The cells induced with DNA breaks were infected with GFP expressing HIV vector. (E and F) GFP positive cells were analyzed as mentioned in Fig. 1C. Pseudo plots and the summarized graph are shown.

(G and H) The efficiency of integration under IN-deficient conditions was calculated as in 1B. The amount of integrated DNA detected in DNA damage-induced cultures was divided by that obtained in the culture infected with WT virus without inhibitor and under non-damaged conditions. All experiments were performed in triplicate (n=3) in A, B, C, E, F and H. The results of flow cytometry in C, E, and F are data from one experiment, which is representative of independent experiment. The error bars in A, B, C,
E, F, G and H show standard deviations.

Fig. 2. HIV expression from the LTR promoter of IN-independently generated provirus. Pre-irradiated Jurkat cells were infected with VSV-G pseudotyped LTIG vector. (A-C) Transduction efficiency of LTIG vector under IN-deficient conditions with either WT virus in the presence of Elv (WT+Elv) or D64V mutant virus (D64V). The percentage of GFP positive cells was analyzed by flow cytometry at 2 weeks after infection. (A) Pseudo plots of the raw data analyzed by flow cytometry are shown. The bottom numbers indicated on the plot show the percentage of GFP positive cells, while underlined numbers indicate the mean fluorescence intensity. The results are data from one experiment, which is representative of three independent experiments. (B) The percentage of GFP positive cells is summarized as the graph. (C) Magnitude of virus expression from LTR promoter. The MFI of the GFP expressing cells generated after non-irradiated (0 Gy) or irradiated (5 Gy or 10 Gy) stress is shown. All experiments were performed in triplicate.
(n=3) in B and C. The error bars in A and B show standard deviations. (D) Clonal cell analysis of viral expression. The GFP positive cells were isolated from cells shown C and generated clonal cell lines. The MFI of GFP in each cell clones were shown. The average value of population was shown by horizontal line. (E) Frequency distribution table. IN-dependent (n=17) and IN-independent (n=30) were distributed by MFI.

Fig. 3. The involvement of IN-independent integration in replication competent HIV-1 replication.

(A) The experimental procedure is shown. Irradiated (IR(+)) or untreated (IR(-)) Jurkat cells were infected with replication competent HIV-1 NL4-3 in the presence of an IN inhibitor. At 3 dpi, the IN inhibitor and free viral particles were removed with extensive wash. To expand viral replication, fresh Jurkat cells were added and the p24CA viral antigen in culture medium was monitored over the course of 15 days. (B) The p24CA viral antigen in culture medium. (C) The copy number of integrated and 2LTR
form of HIV DNA at day 0. All experiments were performed in triplicate (n=3) in B and C. The error bars in B and C show standard deviations. Heat inactivated virus treated at 60 °C for 2 hr was used as the negative control. IN inhibitors, Ral or Elv, is indicated in top (C and D). The control experiment was performed in the absence of IN inhibitor and indicated as WT without inhibitor.
Fig. 1

A. HIV DNA copies/1000 cells

- MOI 1
- MOI 5
- MOI 10

WT
WT+Elv
D64V

B. Efficiency of integration (%)

- MOI 1
- MOI 5
- MOI 10

WT+Elv
D64V

C. Uninfected

- MOI 1
- MOI 5
- MOI 10

WT
WT+Ral
WT+Elv
D64V

D. Integrated HIV DNA copies/1000 cells

- MOI 1
- MOI 5
- MOI 10

WT+Elv
D64V

R² = 0.81351

GFP (%) vs. Integrated HIV DNA copies/1000 cells
Fig. 1

E

WT | D64V | WT+Ral | WT+Elv | Uninfected

0 Gy

99.2 | 1.2 | 0.8 | 2.1 | 0.3

5 Gy

98.5 | 6.7 | 8.3 | 7.4

10 Gy

98.2 | 10.3 | 11.4 | 12.7

GFP (%)

F

WT | D64V | WT+Ral

0 µM

99.9 | 2.4 | 1.5

10 µM

99.9 | 2.9 | 1.8

50 µM

100 | 9.7 | 7.8

100 µM

100 | 16.8 | 15.3

GFP (%)

H

Efficiency of integration (%)

WT | D64V | WT+Ral | WT+Elv

0 Gy

0.3 | 1.2 | 6.7 | 10.3

5 Gy

98.4 | 9.7 | 11.4 | 12.7

10 Gy

99.9 | 2.1 | 7.4 | 12.7

Efficiency of integration (%)
Fig. 2

A

WT+Elv D64V WT Uninfected
0 Gy 729 497 1064 28
5 Gy 729 626 2.7 2.3
10 Gy 780 552 3.4 2.7

B

WT+Elv D64V
0 Gy 5 Gy 10 Gy

C

P<0.005

D

WT+Elv D64V

E

IN-dependent IN-independent
\chi^2 = 10.927
Fig. 3

A) Schematic diagram showing the infection and recovery phases with IR(-) and IR(+) Jurkat cells with and without an IN inhibitor.

B) Graph showing p24 ng/ml for WT without inhibitor.

C) Graph showing integrated 2LTR copies/culture for WT without inhibitor.
Table 1. Integration sites analysis

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Total Events</th>
<th>In RefSeq</th>
<th>(%)</th>
<th>In repeat Seq</th>
<th>(%)</th>
<th>Deletion or Insertion</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN-dependent</td>
<td>49</td>
<td>40</td>
<td>84.4</td>
<td>1</td>
<td>2.2</td>
<td>3</td>
<td>6.1</td>
</tr>
<tr>
<td>IN-independent</td>
<td>79</td>
<td>54</td>
<td>68.4</td>
<td>15</td>
<td>19.0</td>
<td>21</td>
<td>26.6</td>
</tr>
</tbody>
</table>

*1: This result summarizes 40 sites derived from LTIG vector infected and 9 sites derived from CS-CDF-EG-Pre infected cells.
*2: This result summarizes 9 sites derived from LTIG vector infected and 75 sites derived from CS-CDF-EG-Pre infected cells. Of these sites, 6 are the results from WT+E1v and 76 six are from D64V. Then, 13 out of 79 results were derived from pre-irradiated culture.

*3: Integration events counted as insertion into reference sequence (=gene coding resion).
*4: A frequency of integration into RefSeq. Random integration into RefSeq is expected to be 33% of total integration sites.
*5: A frequency of integration into repeat sequence.
*6: A frequency of integration with deletion in LTR sequence or with up to 50 bp insertion in LTR-host genome junction.

$P=0.098$ $P=0.0048$ $P=0.0039$