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Abstract 

   This paper describes new methods for measuring the modal equivalent stiffness ratios and modal 

electromechanical coupling coefficients of piezoelectric elements attached to a host structure such as a beam. 

Modal equivalent stiffness ratios and modal electromechanical coupling coefficients are essential for estimating 

the performance and determining an optimum design of active vibration control and passive vibration 

suppression systems that use piezoelectric elements. Accurate determination of these modal parameters is also 

useful for other systems including piezoelectric sensors and energy generators. This paper not only describes the 

measurement methods but also presents the theoretical formulations derived by taking into account the effect of 

adhesive bonds. The formulations in this paper demonstrate the necessity of experimental measurements and the 

accuracy enhancements that the theoretical estimations can provide. Conventional methods for obtaining the 

modal equivalent stiffness ratios are sensitive to measurement errors, which result in the loss of accuracy, 

rendering these methods unreliable for many practical applications. The proposed methods use an inductor 

instead of an open circuit to address the abovementioned issue and, thereby, provide significant improvement in 

the accuracy. Because the loss factors of the experimental apparatus tend to compromise the accuracy of the 

proposed methods, a method using a negative resistor is proposed, theoretically analyzed, and confirmed to 

eliminate some of the errors introduced by loss factors. The advantages of the proposed methods and the 

effectiveness of theoretical analysis, considering the effect of adhesive bonds, are verified experimentally. 
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1. Introduction 

   Vibration suppression methods using piezoelectric elements can be divided into two main categories: passive 

vibration suppression [1–5] and active vibration control [6, 7]. In addition, several hybrid vibration suppression 

methods have been studied in recent years [8–11]. Passive vibration suppression methods usually involve the use 

of either an inductive–resistive circuit or only a resistive circuit coupled to a piezoelectric element. The inductive

–resistive circuit functions in a manner similar to that of a dynamic vibration absorber, and the resistive circuit 

functions as a Houde damper. If these circuits are optimally tuned, their performances will depend almost 

entirely on the equivalent stiffness ratio of the piezoelectric element [1]. Further, the optimum values of the 

circuit elements also depend on the equivalent stiffness ratio. On the other hand, the performance of active 

vibration control is determined on the basis of the electromechanical coupling coefficient of the piezoelectric 

element. This is because the control force is expressed as product of the electromechanical coupling coefficient 

and the voltage applied by the controller. Active methods use only the inverse piezoelectric effect, whereas 

passive methods use both the piezoelectric effect and the inverse piezoelectric effect. This is the reason why the 

equivalent stiffness ratio is related to the square of the electromechanical coupling coefficient. If either the 

equivalent stiffness ratio or the electromechanical coupling coefficient is known, the other can be determined. 

The mechanical and electrical energy conversion efficiency of the piezoelectric element attached to a host 

structure depends on the electromechanical coupling coefficient, and the value of the electromechanical coupling 

coefficient and the mode shape function of the host structure are closely related. If multiple vibration modes 

exist in the targeted frequency range, the modal electromechanical coupling coefficients for all the vibration 

modes must be obtained.  

   In prior literature, the equivalent stiffness ratio and the electromechanical coupling coefficient have been 

formulated theoretically under ideal conditions. Values of these parameters are derived on the basis of the 

properties of the piezoelectric material, sizes of the piezoelectric element and the host structure, and location of 

the piezoelectric element. However, in many cases these theoretical formulations do not agree well with the 

experimental ones. This disagreement occurs because of the inaccurate assumptions regarding the stiffness of the 

adhesive bonds under ideal conditions [1]. The restraint imposed by the adhesive bonds depends on their 

material properties, surface area, and thickness. The effect of adhesive bonds has not been investigated in detail 

with a viewpoint of vibration suppression because the experimentally measured values of equivalent stiffness 

ratio and electromechanical coupling coefficient that are used to study the effect of adhesive bonds are not 

sufficiently accurate. Similarly, the theoretically and experimentally obtained mode shapes are also different. In 

some cases, small differences in the mode shapes produce large differences in the performance of a system. In 

cases wherein the configuration of the host structure is complicated, it is difficult to obtain accurate mode shapes, 

even if numerical techniques such as the finite element method are employed.  

   In the research literature, the most widely used experimental method derives the equivalent stiffness ratio 

using the measured values of natural frequencies [2]. This method uses two natural frequencies corresponding to 

the short- and open-circuit states of the piezoelectric element. This method is simple and easy to implement in 



practical applications because it does not require the mode shape functions; however, it lacks accuracy when the 

difference between the two natural frequencies is small. In fact, in some cases, the equivalent stiffness ratio 

cannot be derived by any means using this method. In order to solve this problem, two new methods using an 

inductive circuit are proposed in this paper. We briefly described one of the methods [12]; the other method is 

based on the one proposed by Porfiri et al. [13]. The latter method proposed by us is more flexible than the one 

proposed by Porfiri et al. because it does not require precise tuning of inductance. The influence of loss factors 

such as the damping of the host structure on the equivalent stiffness ratio is investigated thoroughly in this study 

because, thus far, it has not been discussed in detail despite the fact that it cannot be neglected in practical 

applications. 

   In order to examine the accuracy of the theoretical estimations, governing equations are briefly derived by 

considering the effect of adhesive bonds on the basis of knowledge of bonding layers used for piezoelectric 

sensors [14–16]. The equivalent stiffness ratios are formulated using the conventional method as well as the 

proposed ones. The effects of frequency resolution, damping ratio of the system, dielectric loss in the 

piezoelectric element, and inductor loss on the accuracy of equivalent stiffness ratio are theoretically investigated. 

Because the losses in the piezoelectric element and the inductor reduce the accuracy of the equivalent stiffness 

ratio obtained by the proposed methods, a further improved method using a negative resistor is also presented. 

The effectiveness and advantages of the proposed methods are verified through simulations and experiments. 

 

2. Governing equations 

2.1. Stiffness of adhesive bonds 

   Piezoelectric elements generate voltage in response to the applied force and generate strain in response to the 

applied voltage; these phenomena are called the piezoelectric effect and inverse piezoelectric effect, respectively. 

There are several types of piezoelectric elements which are classified according to the directions of vibration, 

electrical field, and polarization. In this study, a plate-type piezoelectric element is used; however, there is no 

essential difference among the different types of piezoelectric elements that can be used with the proposed 

methods. Plate-type elements are often used for the suppression of bending vibrations because these elements 

have a low profile and are easy to work with. As shown in Fig. 1 (a), the vibrations and electrical field are 

produced in a direction perpendicular to each other. The plate-type piezoelectric element is attached to the host 

structure by using adhesive bonds, as shown in Fig. 1 (b). The bonding layer transmits force between the 

piezoelectric element and the host structure through shear coupling.  

   Analysis of the bonding layer is critical for studying its effect. The effect of the bonding layers has been 

investigated for piezoelectric sensors [14–16]. On the basis of this knowledge of bonding layers, the model 

shown in Fig. 2 (a) can be adopted as an approximate analytical model for the stiffness of the bonding layer. 

Here, for the sake of simplicity, the transverse stress applied to the piezoelectric element by the adhesive bond is 

assumed to be negligible, and 1ak  is the total spring constant of the equivalent springs. The mechanical spring 



constant of the piezoelectric element in the longitudinal direction is expressed as 
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where pE  is the Young’s modulus of the piezoelectric element, and pl , pw , and pt  are the length, width, and 

thickness of the piezoelectric element, respectively. From the knowledge of bonding layers, the spring constant 

ratio between 1ak  and 
1pk  is expressed as follows [14]: 
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where λ  is the shear lag parameter, aG  is the transverse elasticity modulus of the adhesive bond, at  is the 

thickness of the bonding layer, hE  is the Young's modulus of the host structure, and hw  and ht  are the width 

and thickness of the host structure, respectively. 

   The abovementioned formulations can be extended to obtain an approximate two-dimensional model [14]. 

For this purpose, the longitudinal and width directions of the one-dimensional model must be interchanged for 

obtaining the formulations of the width direction. Accordingly, we adopted the approximate analytical model 

shown in Fig. 2 (b), wherein the one-dimensional model is extended to develop a two-dimensional model. Here, 

2ak  is the total spring constant of the equivalent springs in the width direction. The deformation of the 

piezoelectric element is uniform in both the directions because the stress applied to the side surfaces of the 

piezoelectric element is uniform. 

2.2. Piezoelectric constitutive equations and equivalent mechanical models considering the stiffness of adhesive 

bonds 

   The force equilibrium and the piezoelectric constitutive equations are given as 
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where 1F  and 2F  are the forces applied to the piezoelectric element by the equivalent springs in the 

longitudinal and width directions, respectively; px  and py  are the total displacement of the piezoelectric 

element in the longitudinal and width directions, respectively; and hx  and hy  are the total displacement of the 



connection points between the equivalent springs and the host structure in the longitudinal and width directions, 

respectively. Further, 1S  and 1T  are the strain and stress in the longitudinal direction, respectively; 2S  and 

2T  are the strain and stress in the width direction, respectively; 3E  is the electrical field applied to the 

piezoelectric element; 3dD  is the electrical displacement; 
pν  is the Poisson’s ratio of the piezoelectric 

element; 31d  is the piezoelectric constant; and 
33

Tε  is the electrical permittivity. Subscripts 1, 2, and 3 denote 

the longitudinal, width, and thickness directions, respectively. Superscript T  denotes the value that is obtained 

under constant stress. We assumed that the piezoelectric element was isotropic in the longitudinal and width 

directions. In this research, a thin beam is used as the host structure, the beam and piezoelectric element are 

assumed to be aligned in the longitudinal direction. Yamada et al. derived an equivalent mechanical model using 

the same analytical model shown in Fig. 2 (b) [1]. Further, Yamada et al. assumed that 0hy  ; however, this 

assumption can be adopted only if the beam is sufficiently wider than the piezoelectric element and if the 

piezoelectric element is placed around the center of the width direction. In this research, we adopted a more 

general condition wherein hx  and hy  are expressed as  

 ha1h px S l , (9) 

 
ha2h py S w , (10) 

where ha1S  and ha2S  are the average strains in the longitudinal and width directions, respectively, in the region 

of the host structure where the piezoelectric element is attached. Further, the average strain ratio of ha1S  to ha2S  

is defined as 
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In general, b  is not equal to the Poisson’s ratio of the host structure. From Eqs. (9)–(11), hy  is expressed as  
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From Eqs. (4)–(8) and (12), the following equations are derived [1]:  
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From Eqs. (13) and (14), the equivalent mechanical model is developed, as shown in Fig. 3. Here,  1 S

pb C   

is the spring constant, 1pθ  is the length ratio of the virtual lever arms, 
3V  is the force, and  1q b  is the 

displacement. The virtual lever arms represent the internal electromechanical behavior of the model, instead of 

the physical elements. The geometry of the levers is determined by the sign of 
1pθ . The levers do not exhibit 

inertial properties, and therefore, these properties are not considered. The values of S

pC , 1pθ , 
3V , and q  are 

equal to those of S

pC , 
1pθ , 3V , and q , respectively. The left half of the model, which consists of only a spring, 

represents the mechanical properties of the piezoelectric element, and the right half represents the electrical 

properties. The lever, thereby, provides the transducer’s electromechanical coupling. The equivalent mechanical 

model can be reconstructed to obtain a model in which the function of a lever is integrated, as shown in Fig. 4. In 

this paper, the equivalent mechanical models shown in Figs. 3 and 4 are hereafter referred to as the equivalent 

mechanical models with and without a lever, respectively.  

   The spring constant of the electrical part is expressed as follows:  
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In Eq. (27), pE  is the apparent Young’s modulus, and pE  increases with an increase in 1ar . On the other hand, 

as 2ar  increases, both pE  and 31d   increase, whereas 33

Tε  decreases. Ratio 1e pk k   increases with an 

increase in 1ar  and 2ar . These results imply that the efficiency of the electrical part of the piezoelectric element 

improves with an increase in 1ar  and 2ar .  

2.3. Governing equations for passive vibration suppression 

   The analytical model consists of a cantilever, a piezoelectric element, and electrical impedance, as shown in 

Fig. 5. The cantilever is excited by an external force ef . For simplicity, we assume that the piezoelectric 

element, owing to the effect of the adhesive bond, is rigidly attached to the host structure.  

   Flexible structures have an infinite number of bending vibration modes. Depending on a particular vibration 

mode, the attached piezoelectric element can be simultaneously subjected to tension and compression; this case 

is referred to as complex deformation. On the other hand, the case where the piezoelectric element is subjected to 

either tension or compression is referred to as simplex deformation. Because simplex deformation is a special 

case of complex deformation, complex deformation is investigated in this section. 

   As shown in Fig. 6, the piezoelectric element is divided into several parts depending on the deformation 

states. These parts are numbered as 1, 2, …, n  from the clamped end side. The mechanical spring constant, the 

elemental electromechanical coupling coefficient, and the capacitances of the j-th part are given as  
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respectively, where j

pl  is the length of the j-th part with superscript j denoting the j-th part. The divided parts 

are electrically connected in parallel by the surface electrodes. The governing equations for passive vibration 

suppression can be obtained in a manner similar to that used by Yamada et al. [1]. We assume that the 

piezoelectric element is subjected to complex deformation in the i-th vibration mode. The equation of motion 

when the electrodes of the piezoelectric element are in a short-circuit state is expressed as 
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where iξ  is the modal displacement; iM  is the modal mass; iD  is the modal damping coefficient; iK  is the 

modal stiffness; iB  is the modal influence coefficient of the external force; iγ  is the modal damping ratio; bρ  

and 
pρ  are the densities of the beam and the piezoelectric element, respectively; bE  is the Young’s modulus of 

the beam; bl , bw , and bt  are the length, width, and thickness of the beam, respectively; and nt  is the distance 

between the neutral axis and the upper side of the beam in the region where the piezoelectric element is attached. 

Further, Lx  and Rx  are the distances between the clamped end and the left and right endpoints of the 

piezoelectric element, respectively, and 
fx  is the distance between the clamped end and the point at which the 

external force is applied. j

Lx  and j

Rx  are the distances between the clamped end and the left and right 

endpoints of the j-th part, respectively, and iψ  is the shape function of the vibration mode. The x  axis 

represents the longitudinal direction, and the clamped end represents the origin. Variable z  denotes the distance 

from the neutral axis. Subscript i denotes the i-th vibration mode. Because the cantilever in the analytical model 

is thin, the shear deformation and rotary inertia of the cantilever are ignored. As shown in Eq. (35), the shape 



function iψ  is normalized with respect to the modal mass iM . When the electrodes are shorted, the electrical 

properties of the piezoelectric element do not affect the vibration system. Because j

piK  is derived from 1

j

pk  , the 

modal influence coefficient of the j-th part j

k iθ  is expressed as 
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where j

hx  is the displacement of the j-th part in the longitudinal direction. The influence of the j-th part on the 

main system is determined by j

k iθ . Figure 7 (a) shows the equivalent mechanical model with levers for the 

targeted vibration mode when the electrodes of the piezoelectric element are shunted with the electrical 

impedance eZ . In this model, jq  is the charge of the j-th part, and 
eZ  and  1jq b  are the damping 

coefficient and displacement, respectively. The values of 
eZ  and jq  are equal to those of eZ  and jq , 

respectively. The mechanical element for the electrical impedance is omitted and only the case wherein both 
1pθ  

and j

k iθ  are positive is shown in the figure. The equivalent mechanical model shown in Fig. 7 (a) provides the 

following objective governing equations: 
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Equations (46) and (47) can be simplified as  
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where iΘ  is the modal electromechanical coupling coefficient expressed as  
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where k iθ  is the modal influence coefficient of the piezoelectric element. The signs of j

k iθ  in the regions of 

tension and compression are different, and therefore, j

k iθ  in the compression and tension regions cancel each 

other because the signs of the charges generated in these regions are different. The fourth term on the left-hand 

side of Eq. (50) denotes the force resulting from the inverse piezoelectric effect, whereas the first term on the 

right-hand side of Eq. (51) denotes the voltage generated by the piezoelectric effect. Because both the effects 

contribute to passive vibration suppression, the system performance can be evaluated by the modal equivalent 

stiffness ratio defined as  
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The square root of the modal equivalent stiffness ratio is referred to as the nondimensional electromechanical 



coupling coefficient or the generalized electromechanical coupling coefficient. On the basis of Eqs. (50) and (51), 

a simplified equivalent mechanical model without levers is shown in Fig. 7 (b). The equivalent stiffness ratio 

corresponds to the ratio of the spring constants in the equivalent mechanical model. The value of the modal 

equivalent stiffness ratio is certainly less than 1. 

2.4. Governing equation for active vibration control 

   To obtain formulations for active vibration control, a control voltage is required to be applied to the 

piezoelectric element instead of adding electrical impedance to the element. Vibration of the host structure is 

actively controlled by using the piezoelectric element as an actuator. The equation of motion is given as follows: 

 i i i i i i i A i eM ξ D ξ K ξ ΘV B f    , (55) 

where AV  is the control voltage. The voltage applied by electrical impedance in Eq. (50) is replaced by the 

control voltage. If the value of the modal equivalent stiffness ratio is known, the modal electromechanical 

coupling coefficient can be derived as follows: 
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The sign of the modal electromechanical coupling coefficient can be determined from the polarity of the 

electrodes and the shape function of the vibration mode. 

 

3. Methods to derive modal equivalent stiffness ratio 

   In this section, we describe the two methods proposed for deriving the modal equivalent stiffness ratio 

experimentally. In the preceding section, the dielectric loss in the piezoelectric element was ignored; however, it 

affects the accuracy of the derived parameters. Hence, the equivalent circuit of a piezoelectric element with the 

dielectric loss, as shown in Fig. 8, is used in the following analysis. The equivalent parallel resistance pR  is 

defined as  
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where ω  is the excitation angular frequency, and tan pδ  is the dielectric loss tangent of the piezoelectric 

element attached to the host structure. When tan 0pδ  , no energy loss occurs in the piezoelectric element. 

3.1. Conventional method 

   The conventional method used for experimentally determining the modal equivalent stiffness ratio requires 

measurement of natural frequencies when the electrodes are short- and open-circuited [2]. When the electrodes 

of the piezoelectric element are shorted, the governing equation is simplified as  
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From Eq. (58), the nondimensional compliance is obtained as 
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where iΞ  is the complex amplitude of iξ , eF  is the amplitude of ef , and j  is the imaginary unit. From Eq. 

(59), the nondimensional undamped natural frequency with shorted electrodes is derived as 

 1Sg  . (63) 

In contrast, when the piezoelectric element is in an open-circuit state, the circuit equation is expressed as  
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From Eqs. (50), (57), and (64), the nondimensional compliance is obtained as 
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Under an ideal condition of tan 0pδ  , the nondimensional undamped natural frequency for the piezoelectric 

element in an open-circuit state is obtained as  

 1O ig β  . (66) 

From Eqs. (63) and (66), the modal equivalent stiffness ratio is formulated as  
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where SΩ  and OΩ  are the undamped natural angular frequencies for short- and open-circuited electrodes, 

respectively. It should be noted that Eq. (67) requires only the natural frequencies. The shape function of the 

targeted vibration mode is not required. 

   The natural frequencies can be determined experimentally by different methods. The Bode plot of 

compliance is used in this research because it is the most popular approach for obtaining the frequency response 

of a system. The frequency at which a peak occurs in the magnitude plot of the compliance is considered as the 

natural frequency in the experiment, for simplicity. However, in some cases, the modal equivalent stiffness ratio 

obtained using this method may be inaccurate because this method provides damped natural frequencies instead 

of undamped ones. The effect of the modal damping ratio iγ  and the dielectric loss tangent tan pδ  on the 

accuracy of the modal equivalent ratio is investigated in section 4. Mobility and accelerance can also be used 

instead of compliance to determine the natural frequencies; however, we have used compliance as an example in 

the following sections. 

3.2. Two-peak method 

   The analytical model of the two-peak method is shown in Fig. 9. An inductor is coupled to the piezoelectric 

element. Because the model shown in Fig. 9 has two degrees of freedom in the frequency range with respect to 



the i-th vibration mode, two resonance peaks appear in the frequency response function. The inductor should be 

tuned in order achieve two peaks of almost equal amplitude. The details required for optimum tuning of the 

inductor are described in the following subsection. Further, any type of inductor can be used with this method; 

however, an inductor simulated using the generalized impedance converter is used in this study because of the 

ease with which it can be tuned. The schematic diagram of the simulated inductor is shown in Fig. 10 (a). The 

nominal inductance 
gL  is defined as  

 1 3 4 5

2

g

R R C R
L

R
 , (70) 

where 1R , 2R , 3R , and 5R  are the resistances in the model, and 4C  is the capacitance. A variable resistor is 

used to tune the inductance. The dielectric loss of the capacitor is also taken into consideration to investigate its 

effect. The equivalent parallel resistance of the capacitor is given as  
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4

1

tan c

R
ωC δ

 , (71) 

where tan cδ  is the dielectric loss tangent of the capacitor. Because the equivalent circuit of the capacitor is 

represented by a parallel connection of 4C  and 4R , the exact electrical impedance of the simulated inductor is 

obtained as  

 jg g gZ ωL R  , (72) 

 tang g cR ωL δ , (73) 

where gR  is the resistance of the simulated inductor. The equivalent circuit of the simulated inductor is 

depicted in Fig. 10 (b). The circuit equation of the model shown in Fig. 9 is written as  

    2 2 2

1
1 i

g g p iS S

p p

Θ
L q R q R q q b ξ q

C C
     

 
, (74) 

where 2q  is the charge that passes through the inductor. Using Eqs. (50), (57), and (74), we derive the 

nondimensional compliance as  
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For the cases in which the loss terms are negligible, Eq. (75) is simplified as  
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From Eq. (78), the two nondimensional undamped resonance frequencies are obtained as 
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Using Lg  and Rg , we derive the modal equivalent stiffness ratio as  
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, (80) 

where LΩ  and RΩ  are the undamped angular resonance frequencies. It should be noted that Eq. (80) requires 

only three frequencies and does not include the natural frequency ratio if . The derived equation indicates that 

the value of the inductance is not required when using this method. The effects of the modal damping ratio and 

the dielectric loss tangents on the equivalent stiffness ratio obtained using the proposed methods as well as the 

conventional method are investigated in section 4. 

3.3. Two-point intersection method 

   The analytical model of the two-point intersection method is shown in Fig. 11. The resistances of the 

piezoelectric element and the simulated inductor are represented separately in this model. Further, a resistor is 

added to the model shown in Fig. 9. 

   The circuit equation is given as  

    2 2 2
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p A i
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, (81) 

where AR  is the resistance of the additional resistor. From Eqs. (50), (57), and (81), the nondimensional 

compliance is obtained as  
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In the case when iγ  is negligible, the magnitude of the nondimensional compliance (82) has two fixed points 

that are independent of Aζ  and tan pδ . The two fixed nondimensional frequencies are derived as 

 

2
2 2 2

2 2 2

,

1 1
1 1 4

1 tan 2 1 tan 2 1 tan

2

i i i
i i

c c c

P Q

f f f
β β

δ δ δ
g

 
     

   
 . (84) 

The modal equivalent stiffness ratio is defined using Pg  and Qg  as follows: 
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, (85) 

where PΩ  and 
QΩ  are the angular frequencies of the two fixed points. In the experiment, the two fixed points 

are obtained by varying the value of AR . The intersection points of the magnitude plots using 0AR   and 

AR    are obtained easily because they correspond to the short-circuit condition and a condition in which 

only the inductor is considered, respectively. AR   is employed in the following. When AR   is 

substituted in Eq. (83), Eq. (82) is simplified to Eq. (75). The effect of the loss factors on the accuracy of the 



derived modal equivalent stiffness ratio is investigated in section 4. 

3.4. Measurement error tolerance in equivalent stiffness ratio and optimum frequency ratio 

   The frequencies obtained by performing experiments include measurement error. This error reduces the 

accuracy of the modal equivalent stiffness ratio. We assume that 2ˆ
Og , 2ˆ

Lg , 2ˆ
Rg , 2ˆ

Pg , and 2ˆ
Qg  are the measured 

values. These measured values can be considered to consist of true values and errors as follows: 

 2 2ˆ
O O Og g ε  , 2 2ˆ

L L Lg g ε  , 2 2ˆ
R R Rg g ε  , 2 2ˆ

P P Pg g ε  , 2 2ˆ
Q Q Qg g ε  , (86–90) 

where the circumflex ˆ denotes the measured values. Further, the first and second terms on the right-hand sides 

of the expressions represent the true values and errors, respectively. We assume that the errors are random and 

that their absolute values do not differ significantly. The modal equivalent stiffness ratio with error is obtained as  
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where the first terms for all the methods correspond to the true values of iβ , and the remaining terms 

correspond to the errors. The condition that minimizes the expected values of the error is given as  
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where L Rε ε  and P Qε ε  are ignored because they are significantly small. Using Eqs. (79), (84), and (92), we 

derive the optimum frequency ratio as  
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The optimum frequency ratio 
opt if  is used in the following. Substituting Eq. (93) in Eqs. (79) and (84), we 

obtain Lg , Rg , Pg , and Qg  as 

 , 1L R ig β , (94) 

 ,

1
1

2
P Q ig β . (95) 

Substitution of Eqs. (94) and (95) in Eq. (91) gives  
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. (96) 

From the definition of iβ , it is known that the value of iβ  is less than 1; therefore, the measurement errors 

introduced by the two proposed methods are lower than those introduced by the conventional method. This is 

because the true value and the error are independent of each other in the expression of ˆ
iβ  for the conventional 



method; thus, the accuracy of ˆ
iβ  is compromised when Oε  is not negligible compared with iβ . In contrast, 

the errors introduced by the proposed methods depend on iβ . Therefore, the value of ˆ
iβ  obtained by the 

proposed methods is accurate even if the value of iβ  is mall, because the errors are dependent on the value of 

iβ . Equation (96) indicates that the ˆ
iβ  obtained by the two-peak method is slightly more accurate than that 

obtained by the two-point intersection method. However, the two-point intersection method has an advantage 

over the two-peak method, i.e., in the two-point intersection method, the accuracy of ˆ
iβ  is not affected by the 

presence of tan cδ  and tan pδ  under the condition when the modal damping ratio can be ignored. 

3.5. Quantization of modal equivalent stiffness ratio by frequency resolution 

   The conventional and proposed methods require measurement of a few frequencies. The frequencies that are 

obtained by performing experiments have a certain frequency resolution. The frequency resolution causes 

quantization of the measured modal equivalent stiffness ratio. Using the angular frequency resolution ω , we 

find that the measured angular frequencies are given as  

 ˆ ΔS SΩ n ω , ˆ
O OΩ n ω  , ˆ

L LΩ n ω  , ˆ
R RΩ n ω  , ˆ

P PΩ n ω  , ˆ
Q QΩ n ω  , (97–102) 

where Sn , On , Ln , Rn , Pn , and 
Qn  are the numbers of ω  included in ˆ

SΩ , ˆ
OΩ , ˆ

LΩ , ˆ
RΩ , ˆ

PΩ , and 

ˆ
QΩ , respectively. The measured modal equivalent stiffness ratio is expressed as 
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In general, the value of the modal equivalent stiffness ratio is significantly lower than 1. Under this condition, Eq. 

(103) can be approximately expressed as follows: 
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. (104) 

Further, on the basis of Eqs. (94) and (95), the following relations are formulated: 
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From Eqs. (104)–(108), the approximate resolution of the measured modal equivalent stiffness ratio ˆ
iβ  is 



defined as  
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. (109) 

The ratio of iβ  to ˆ
iβ  is critical in evaluating the accuracy of ˆ

iβ . However, it is impossible to obtain the true 

value of iβ  in principle. Therefore, a resolution evaluation index is defined using ˆ
iβ  instead of iβ , as 

follows:  
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. (110) 

The larger the value of the resolution evaluation index rA , the higher is the accuracy of ˆ
iβ . Equation (110) 

indicates that values of rA  for the proposed methods are better than the value obtained for the the conventional 

one. 

4. Effect of modal damping ratio and dielectric loss tangents 

   The modal equivalent stiffness ratio is derived under the assumption that all or some of the loss factors are 

negligible. However, for the cases in which the loss factors are not negligible, the accuracy of the estimated 

modal equivalent stiffness ratio reduces. In subsection 3.4, the proposed methods were found to have higher 

tolerance toward the measurement errors; however, reduction in accuracy is inevitable if the measurement errors 

are large. In this study, we assume that the frequencies are obtained using the magnitude plot of the measured 

compliances. In this case, the natural angular frequency, when the piezoelectric element is in the short-circuit 

state, is also affected by the modal damping ratio. 

 
21 2d

S S iΩ Ω γ  , (111) 

where d

SΩ  is the so-called damped natural angular frequency. 

   In addition, the effect of the modal damping ratio and the dielectric loss tangents on the accuracy of the 

modal equivalent stiffness ratio depends on the value of the modal equivalent stiffness ratio itself. Equation (96) 

indicates that the loss factors largely affect the accuracy if the value of the modal equivalent stiffness ratio is 

small. In order to investigate this effect, the normalized nondimensional compliances are used. The significance 

of this effect is highlighted by considering that the value of the modal equivalent stiffness ratio is significantly 

smaller than 1. 



4.1. Normalization of nondimensional compliance 

   In order to normalize the nondimensional compliance expressed by Eq. (65) with respect to the conventional 

method, the following parameters are introduced: 
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Substitution of Eqs. (112)–(114) in Eq. (65) gives the normalized nondimensional compliance for the 

open-circuit state as follows: 
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where 1 1i OiβG   is assumed because 1iβ  . It can be observed that the normalized nondimensional 

compliance (115) does not include iβ . Therefore, the effect of the loss factors can be evaluated without losing 

generality by using Oiγ  and tan pδ . 

   In order to normalize the nondimensional compliance expressed by Eq. (75) with respect to the proposed 

methods, the following parameters are introduced:  
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Substituting Eqs. (116)–(120) in Eq. (75), we derive the normalized nondimensional compliance as  
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where parameters with negligible values are ignored considering that 1i iβ β  , tan 1cδ  , and 

tan 1pδ  . Because the optimum frequency ratios for both the proposed methods differ by a small amount as 

indicated by Eq. (93), the normalized nondimensional compliances for both the methods are given by Eq. (121). 

Equation (121) indicates that the effect of the loss factors can be evaluated using Liγ , piδ , and ciδ . Further, it 

indicates that the effects of the dielectric loss tangents tan cδ  and tan pδ  are almost similar. In practice, a 

capacitor value with tan cδ  less than tan pδ  is usually chosen.  

4.2. Validation of normalization and verification of the effect of loss factors by simulations 

   In this subsection, the effect of the modal damping ratio and the loss factors on the measured equivalent 

stiffness ratios is investigated, and the change in the magnitude plots of the nondimensional compliance is 

investigated through simulations. In the simulations, a high frequency resolution, which satisfies 10000rA  , is 

used to eliminate the errors caused by the frequency resolution. Here, the resolution evaluation index rA  is 



calculated using the true value of the equivalent stiffness ratio. The ratio of the measured equivalent stiffness 

ratio ˆ
iβ  to its true value iβ  is defined as the agreement evaluation index: 
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 . (122) 

The agreement evaluation indices for the conventional and proposed methods are obtained by simulations using 

the nondimensional compliances obtained using Eqs. (65) and (75), respectively. Further, the optimum frequency 

ratios given by Eq. (93) are used in the two proposed methods. In the simulations, 0.03iβ  , 0.003iβ  , and 

0.0003iβ   are used to validate the normalization. 

   The simulation results of the agreement evaluation index for the conventional method using different values 

of Oiγ  and tan pδ  are shown in Fig. 12. The decrease in accuracy is observed to be sufficiently small. The 

accuracy of the measured equivalent stiffness ratio depends almost exclusively on the dielectric loss tangent 

tan pδ . The effect of the modal damping ratio is small when the value of the equivalent stiffness ratio is 

significantly smaller than 1. In such cases, normalization is also effective because it causes the difference 

between the results obtained using 0.003iβ   and 0.0003iβ   to be negligible. The simulated magnitude 

plots of the nondimensional compliance of the piezoelectric element with short- and open-circuited electrodes 

are shown in Fig. 13 for 0.003iβ  . It is observed that the peaks are obtuse for large values of loss factors. In 

practice, this obtuseness tends to introduce errors; however, the effect of obtuseness is not taken into 

consideration in the simulations.  

   The simulation results of the agreement evaluation index obtained for the two-peak method using different 

values of Liγ  and piδ  are shown in Fig. 14. However, the simulation results obtained using different values of 

ciδ  are not shown in the figure because they are similar to those obtained using different values of piδ . The 

normalization is validated because the difference among the simulation results obtained for 0.03iβ  , 

0.003iβ  , and 0.0003iβ   is small. Furthermore, the effects of the modal damping ratio and the dielectric 

loss tangents are not independent of each other. In the case where the dielectric loss tangents are negligible, the 

accuracy is not compromised even if the modal damping ratio is large. The simulated magnitude plots of the 

nondimensional compliance when the inductor is coupled to the piezoelectric element are shown in Fig. 15. Here, 

only the combination of 0.003iβ   and 0ciδ   is used because it represents the general tendency of the loss 

factors. In addition, the optimum frequency ratio given by Eq. (93) is applied. From the results obtained using 

the inductive circuit, it is observed that it becomes difficult to distinguish between the two peaks when the 

dielectric loss tangents are large, and the two peaks combine into one if pi ciδ δ  is slightly greater than 1. 

Because the amplitudes of the two peaks are almost equal when the optimum frequency ratio is used, the 

inductance should be tuned for the experimental measurement such that the two resonance peaks match in 

amplitude. 

   The simulation results of the agreement evaluation index obtained for the two-point intersection method 

using different values of Liγ  and piδ  are shown in Fig. 16. The simulation results obtained using different 

values of ciδ  are not shown in the figure because they are similar to those obtained using different values of 



piδ . These results show the effectiveness of normalization. In the case when the modal damping ratio or the 

dielectric loss tangents are negligible, the accuracy of the measured equivalent stiffness ratio is maintained. If 

both of them are not negligible, the measured equivalent stiffness ratio becomes greater than the true value. The 

simulated magnitude plots of the nondimensional compliance are shown in Fig. 17. Here, 0.003iβ   and the 

optimum frequency ratio given by Eq. (93) were used. The accuracy of the measured value is not compromised 

even if piδ  is greater than 1. This result is obtained under the condition that the modal damping ratio is 

negligible in theory; however, this method has a disadvantage that the intersection points obtained under the 

abovementioned condition are unclear. Similar to the two-peak method, even for this method, the inductance 

should be tuned to achieve two peaks of equal amplitude for the experimental measurements. A comparison 

between the two proposed methods suggests that the two-point intersection method is better than the two-peak 

method only when the modal damping ratio is small enough to be neglected. 

4.3. Improved method using negative resistor 

   The accuracy of the measured equivalent stiffness ratio for the two proposed methods is compromised owing 

to the existence of the modal damping ratio and the dielectric loss tangents. The most important cause of this 

effect is the change in the resonance frequencies and, thus, the intersection points. The second cause is the 

obtuseness of the peaks and the intersection points in the frequency response. The obtuseness tends to introduce 

an error in the actual experimental measurements. The measured equivalent stiffness ratio can roughly be 

corrected by using the results shown in Figs. 14 or 16; however, the accuracy obtained after error correction is 

moderate because the error due to the obtuseness of the two peaks or the two intersection points cannot be 

prevented. In order to solve these problems, we propose an improved method that uses a negative resistor. The 

analytical models of the proposed improved method are shown in Fig. 18. A negative resistor is added to the 

inductor in parallel or series. The resistances of the piezoelectric element and the simulated inductor are 

represented separately in this model. The negative resistors must be tuned such that the dielectric loss tangents 

are canceled. Both the parallel and series configurations can be applied; however, the optimum values of the 

negative resistances are different for the two configurations. The model of the parallel configuration is identical 

to that shown in Fig. 11. The nondimensional compliance for the parallel configuration is expressed as  
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where 
npR  is the resistance of the added negative resistor. Further, the nondimensional compliance for the series 

configuration is expressed as  
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In order to clarify the function for the negative resistor, the normalized nondimensional compliance is expressed 

as  
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where npiζ  and nsiζ  are the normalized resistance ratios for parallel and series configurations, respectively. 

From Eq. (127), it can be observed that the effect of the dielectric loss tangents can be eliminated using negative 

resistance. The optimum tuning condition is defined as  
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Under this condition, the system becomes unstable, and the values of npiζ  and nsiζ  are slightly greater than 

ci piδ δ  .  

   The simulation results of the agreement evaluation index obtained for the two-peak method using a negative 

resistor are shown in Fig. 19. For cases where the value of the modal equivalent stiffness ratio is small, only 

0.0003iβ   is used in the simulations. This is because the accuracy is largely affected by the dielectric loss 

tangents. In addition, different values of Liγ  and piδ  were used, and npiζ  and nsiζ  were tuned to 

0.02piδ  . However, the simulation results using different values of ciδ  are not shown in the figure because 

they are similar to those obtained using different values of piδ . The accuracy of the equivalent stiffness ratio 

obtained using the two-peak method is significantly improved even if piδ  is greater than 1. The simulated 

magnitude plots of the nondimensional compliance are shown in Fig. 20. Here, 0.0003iβ   and the optimum 

frequency ratio given by Eq. (93) were used. The two peaks can be clearly observed by using the negative 

resistors. This improvement can also be applied to the two-point intersection method; however, the effectiveness 

of this method is not verified here because the accuracy of the equivalent stiffness ratio obtained using the 

two-point intersection method is, in general, lower than that obtained for the two-peak method when the 



dielectric loss tangents are sufficiently small.  

 

5. Validation of proposed methods through experiment 

5.1. Experimental apparatus 

   A schematic of the experimental apparatus is shown in Fig. 21. The material properties of the experimental 

apparatus are listed in Table 1. Here accm  is the mass of the accelerometer, accx  is the x  coordinate of the 

accelerometer, aE  is the Young’s modulus of the adhesive bond, and av  is the Poisson’s ratio of the adhesive 

bond. The estimated average strain ratio 0b   is given in Table 1 because the width of the cantilever was much 

larger than that of the piezoelectric element. Two piezoelectric elements were attached to the cantilever. The 

modal equivalent stiffness ratios of each piezoelectric element were measured by exciting the cantilever using 

the other piezoelectric element. For convenience, the two elements are referred to as A and B. The experimental 

results obtained using piezoelectric element B are not provided except for necessary information because there is 

no essential difference between piezoelectric elements A and B. The piezoelectric elements were attached to the 

cantilever using conductive and nonconductive adhesive bonds. A drop of conductive adhesive was placed on the 

center of the piezoelectric elements, and this drop was surrounded by a nonconductive adhesive. The conductive 

adhesive was used to simplify wiring, and the nonconductive one was used for electrical insulation. 

Cyanoacrylate was used as the nonconductive adhesive because it requires a short curing time and has low 

viscosity. These properties of cyanoacrylate are advantageous for the preparation of a thin bonding layer. For 

simplicity, the effect of the conductive adhesive bond was considered to be the same as that considered for the 

cyanoacrylate adhesive bond in the theoretical estimation. In addition, the bonding layer was assumed to be 

uniform. The value of the Poisson’s ratio of the acrylate resin instead of that of the actual adhesive bond is given 

in Table 1. The asterisks * against some of the values listed in Table 1 denote that these values are derived using 

the Poisson’s ratio of the acrylate resin. The modal equivalent stiffness ratios for the first five vibration modes 

were measured in this experiment. A schematic of the negative resistors used in the experiment is shown in Fig. 

22. A negative impedance converter was used to obtain negative resistance. The resistance of the negative 

resistors in parallel and series configurations is given as  
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The arrangement of the input stage of the operational amplifier is determined by the stability condition. The 

value of the negative resistance was adjusted using a variable resistor. The generalized impedance converter 

shown in Fig. 10 was used for the simulated inductor in the experiments, wherein 5R  was variable. 

 

 

 

 



Table 1 

Material properties of cantilever, accelerometer, piezoelectric elements, and bonding layer. * denotes the values 

derived using the Poisson’s ratio of acrylate resin. 

Cantilever 

Length bl  0.280  m  

Width bw  0.0499  m  

Thickness bt  0.00293  m  

Density bρ  7900  3kg m  

Young’s modulus bE  112.06 10  2N m  

Average strain ratio b  0   

Accelerometer 
Mass accm  0.0020  kg  

Location accx  0.270  m  

Piezoelectric element 

Length pl  0.0320  m  

Width pw  0.0220  m  

Thickness pt  0.00023  m  

Density 
pρ  8050  3kg m  

Young’s modulus pE  106.45 10  2N m  

Piezoelectric constant 31d  102.30 10  C N  

Electrical permittivity 
33

Tε  82.35 10  F m  

Poisson’s ratio pν  0.30   

Location of piezoelectric element A  ,L Rx x   0.0050, 0.0370  m  

Location of piezoelectric element B  ,L Rx x   0.0400, 0.0720  m  

Bonding layer 

Thickness at  0.00010  m  

Young’s modulus aE  89.80 10  2N m  

Poisson’s ratio (acrylate resin) av  0.35   

Transverse elasticity modulus aG  83.6 10 * 2N m  

Shear lag parameter λ  500 * -1m  

 

5.2. Theoretical estimation 

   The spring constant ratios 1ar  and 2ar , which are derived using Eq. (2) and the material properties of the 

experimental apparatus, are listed in Table 2. Further, the values of pE , 31d  , and 33

Tε  obtained using Eqs. 

(27)–(29) are also listed in Table 2. Because accurate mode shapes are essential for theoretically obtaining 

accurate modal equivalent stiffness ratios, a calculation model for the cantilever is constructed, as shown in Fig. 

23. The cantilever is divided into 280 segments, and the equivalent spring constant and mass of each segment 

were derived. The stiffness and the mass of the two piezoelectric elements along with the mass of the 

accelerometer were considered. 



   The theoretically calculated modal equivalent stiffness ratios iβ , modal electromechanical coupling 

coefficients iΘ , capacitance S

pC , modal stiffness iK , the apparent elemental electromechanical coupling 

coefficient in the longitudinal direction 
1pθ , and the modal influence coefficient of the piezoelectric element 

k iθ  are listed in Table 3. Here, iψ  is positive in the downward direction, and the mode shape functions whose 

 i bψ l  are positive are used. In addition, symbols (s) and (c) denote simplex and complex deformations, 

respectively. The values of  acciψ x  are also listed in Table 3 because these values are required to derive the 

modal displacement in the subsequent experiments.  

 

Table 2 

Spring constant ratios and apparent material properties of piezoelectric elements used in the experiment. 

Spring constant ratio 
1ar  6.8   

2ar  4.4   

Apparent Young’s modulus pE  106.0 10  2N m  

Apparent piezoelectric constant 31d   102.9 10  C N  

Apparent electrical permittivity 
33

Tε  82.1 10  F m  

 

Table 3 

Theoretically calculated properties of piezoelectric element A. 

Mode (s) or (c) 
iβ  

 

iΘ  

 N V  

S

pC  

 F  

iK  

 N m  

1pθ  

 N V  

k iθ  

 

 acciψ x  

 

1 (s) 0.0038  0.0026  

84.8 10  

37500  

0.38  

0.00691  3.31  

2 (s) 0.0021  0.012  1460000  0.0321  2.83  

3 (s) 0.0011  0.025  11400000  0.0662  2.42  

4 (c) 0.00028  0.024  43900000  0.0642  2.02  

5 (c) 0.0000031  0.0043  120000000  0.0113  1.64  

 

5.3. Measurement in experiments 

   The experimental results of the nondimensional compliance when the electrodes of the piezoelectric element 

A were short- and open-circuited are shown in Fig. 24. In order to derive the nondimensional compliance, the 

modal displacement and the static modal displacement are required. In this study, the modal displacement is 

expressed as  

 
 

 
acc

acc

,
i

i

W x t
ξ

ψ x
 , (132) 

where  acc ,W x t  is the displacement of the cantilever with respect to the position of the accelerometer. 

 acc ,W x t  was obtained from accelerometer measurements, and the values of  acciψ x  that are listed in Table 3 



were obtained by theoretical calculation. Because the excitation force was applied using the other piezoelectric 

element, the modal electromechanical coupling coefficient is required to derive the static modal displacement. 

The values of the modal electromechanical coupling coefficients, which are derived later in this section and are 

listed in Table 15, were used. However, it should be noted that the modal equivalent stiffness ratios can be 

obtained without an accurate electromechanical coupling coefficient of the piezoelectric element used for 

excitation. Furthermore, the modal mass iM , modal damping coefficient iD , modal stiffness iK , modal 

damping ratio iγ , natural frequency 
S iF  with short-circuited electrodes, and frequency resolution F  

obtained in the experiment are listed in Table 4. The natural frequencies listed in Table 4 are the damped natural 

frequencies. The modal stiffness was approximately derived as  

  
2

2i S iK πF . (133) 

The dielectric loss tangent tan pδ  and capacitance S

pC  were measured for the natural frequencies of the 

vibration modes, and their values are listed in Table 5. When tan pδ  and S

pC  of the attached piezoelectric 

elements were measured, the host structure was not clamped so that the effect of the resonance of the host 

structure was eliminated. Capacitance S

pC  decreases by a small amount as the frequency increases. This effect 

is attributed to the viscoelastic property of the adhesive bond used in the experiment. Moreover, it can be 

observed from Eq. (1) that the spring constant of the adhesive bond increases with an increase in frequency 

although viscosity was not taken into consideration in this equation. The experimental results for the 

nondimensional compliance when the inductor was coupled to the piezoelectric element are shown in Fig. 25. 

These results were used in the two-peak method as well as the two-point intersection method. The dielectric loss 

tangent tan cδ  measured at the natural frequencies of the vibration modes are also listed in Table 5. Further, the 

experimental results obtained by using the negative resistors are shown in Fig. 26. In this figure, the noise 

generated at approximately 540 Hz is attributed to the ninth-order power line harmonics. The values of the 

inductance, negative resistance, frequency ratio, and resistance ratio are listed in Tables 6–8. It should be noted 

that the values with respect to the electrical circuits are not necessary for obtaining the modal equivalent stiffness 

ratios and the modal electromechanical coupling coefficients. However, these values are presented here for 

reference. The values of resonance frequencies 
LiF  and 

RiF , frequencies of the intersection points 
PiF  and 

QiF , and clearly visible resonance frequencies 
LiF  and 

RiF  obtained using negative resistors are listed in 

Tables 9 and 10. In addition, the natural frequency 
OiF  when the electrodes of the piezoelectric element were in 

an open-circuit state is given in Table 9. The natural frequency 
S iF  when the electrodes of the piezoelectric 

element were in a short-circuit state and the frequency resolution are listed in Tables 9 and 10, for convenience. 

The modal equivalent stiffness ratios derived by the three methods using the frequencies listed in Tables 9 and 10 

are given in Table 11. The resolution evaluation index is listed in Table 12. The significant values of the 

equivalent stiffness ratios were determined on the basis of their resolution evaluation indices. A comparison of 

the resolution evaluation index for the conventional method and the proposed ones indicates that both the 

proposed methods are much more accurate than the conventional one. Further, the improvement resulting from 

the use of negative resistors is notable. Even if the two peaks cannot be observed clearly because of the effect of 



dielectric loss tangents, the modal equivalent stiffness ratio can be obtained using the negative resistor. In order 

to evaluate the effect of the modal damping ratio and the dielectric loss tangents, the average values of the modal 

equivalent stiffness ratios obtained using the negative resistors in parallel and series are used as the preliminary 

true values. The preliminary true values and the normalized values are listed in Table 13. The values of dielectric 

loss tangent tan pδ  are also given in Table 13, for convenience. The values of the normalized negative 

resistance ratios are approximately equal to the sum of the normalized dielectric loss tangent ratios; however, the 

absolute values of the normalized negative resistance ratios are slightly larger than the sum of the normalized 

dielectric loss tangent ratios in many cases. Even in such cases, the system does not lose stability because the 

modal damping ratio is sufficiently large. The values of the results listed in Table 13 indicate that the condition 

under which the normalized damping ratio Liγ  is small and the sum of the normalized dielectric loss tangents, 

piδ  and ciδ , is large is not investigated thus far. Subsequently, an experiment with a resistor added in parallel to 

the inductor was performed to simulate the large dielectric loss tangents. The experimental results of the 

nondimensional compliance using the additional resistor are shown in Fig. 27. Here, 
apR  denotes the resistance 

of the additional resistor, and the first vibration mode was used for the simulation. The improved method was not 

used in this experiment because it obviously works well. The values of the circuit elements, important 

frequencies, and modal equivalent stiffness ratios for this experiment are listed in Table 14. The results of the 

two-point intersection method are found to be more accurate than those of the two-peak method. The results 

demonstrate the value of the two-point intersection method. 

   The modal electromechanical coupling coefficients obtained using the preliminary true values of the modal 

equivalent stiffness ratio, capacitance, and modal stiffness in the experiments are given in Table 15. In this table, 

the signs of the values were determined from the phase plots of the compliance when the piezoelectric elements 

were used for excitation. These values were used to obtain the nondimensional compliance shown in Figs. 24–27, 

as already mentioned. The theoretical estimation of the modal equivalent stiffness ratios and the modal 

electromechanical coupling coefficients agrees well with the experimental results in some cases. This good 

agreement validates the theoretical analysis with respect to the effect of the adhesive bonds. However, in several 

cases, there is a large difference in the theoretical and practical results. The disagreements occur particularly in 

cases wherein the value of the equivalent stiffness ratio is small. This indicates that the disagreements occur 

owing to a mismatch in the experimentally measured and theoretically calculated mode shapes. In the example 

illustrated in this study, not only the values but also the signs of the experimentally and theoretically obtained 

electromechanical coupling coefficients differed for the fifth vibration mode. These results indicate that 

experimental measurement is essential for accurately obtaining the modal equivalent stiffness ratio and modal 

electromechanical coupling coefficient even if the host structure is simple and the mode shape function can be 

derived in a relatively precise manner. 

 

 

 



Table 4 

Experimentally measured properties of cantilever when the electrodes of piezoelectric element A were 

short-circuited. 

Mode iM   kg  iD   Ns m  iK   N m  iγ  
S iF   Hz  F   Hz  

1 

1  

(defined) 

0.23  37200  0.00060  30.68  0.02  

2 1.3  1450000  0.00054  191.64  0.04  

3 6.5  11420000  0.00096  537.80  0.05  

4 19  43807000  0.0014  1053.4  0.1  

5 20  119600000  0.00091  1740.8  0.2  

 

Table 5 

Experimentally measured values of dielectric loss tangent and capacitance of piezoelectric element A and 

dielectric loss tangents of capacitors for different vibration modes. 

Mode tan pδ  S

pC   F  tan cδ  

1 0.020  84.96 10  0.0013  

2 0.019  84.86 10  0.0026  

3 0.021  84.73 10  0.0044  

4 0.019  84.67 10  0.0065  

5 0.021  84.68 10  0.0086  

 

Table 6 

Inductance and frequency ratio values obtained with the inductor coupled to the piezoelectric element A in the 

experiment. 

Mode gL   H  if  

1 552  0.991  

2 14.3  0.996  

3 1.91  0.985  

4 0.502  0.987  

5 0.183  0.988  

 

 

 

 

 

 

 



Table 7 

Values of circuit parameters for the improved two-peak method, with a negative resistor connected in parallel to 

the inductor for the experiment using piezoelectric element A. 

Mode 
gL  H  

npR  Ω  if  
npζ  

1 555  4620000  0.989  0.0114  

2 13.9  858000  1.01  0.00986  

3 1.94  253300  0.977  0.0126  

4 0.502  104100  0.987  0.0157  

5 0.183  64600  0.988  0.0153  

 

Table 8 

Values of circuit parameters for the improved two-peak method, with a negative resistor connected in series to 

the inductor for the experiment using piezoelectric element A. 

Mode 
gL   H  nsR   Ω  if  nsζ  

1 563  3170  0.982  0.0149  

2 14.1  192.9  1.00  0.00566  

3 1.94  140.1  0.977  0.0109  

4 0.504  83.4  0.985  0.0127  

5 0.184  56.7  0.985  0.0143  

 

Table 9 

Resonance frequencies used in conventional, two-peak, and two-point intersection methods for the experiment 

using piezoelectric element A. 

Mode 
F  

 Hz  

S iF  

 Hz  

OiF  

 Hz  

LiF  

 Hz  

RiF  

 Hz  

PiF  

 Hz  

QiF  

 Hz  

1 0.02  30.68  30.74  29.80  31.70  30.04  31.38  

2 0.04  191.64  191.80  188.56  196.76  189.12  194.60  

3 0.05  537.80  537.90  532.10  543.75  532.75  543.30  

4 0.1  1053.4  1053.5  - - 1048.6  1059.7  

5 0.2  1740.8  1740.8  - - 1731.4  1749.6  

 

 

 

 

 

 



Table 10 

Resonance frequencies used in the two-peak method with a negative resistor for the experiment using 

piezoelectric element A. 

Mode F   Hz  
S iF   Hz  

Negative resistor  

connected in parallel 

Negative resistor  

connected in series 

LiF   Hz  
RiF   Hz  

LiF   Hz  
RiF   Hz  

1 0.02  30.68  29.72  31.60  29.52  31.46  

2 0.04  191.64  189.32  198.76  189.00  197.88  

3 0.05  537.80  528.10  542.75  527.95  542.75  

4 0.1  1053.4  1048.8  1057.5  1049.2  1057.7  

5 0.2  1740.8  1736.4  1749.6  1736.2  1749.2  

 

Table 11 

Modal equivalent stiffness ratios of piezoelectric element A derived experimentally using the three methods. 

Mode Conventional method 
Two-peak method 

Two-point intersection method 
Normal with 

npR  with nsR  

1 0.004  0.0038  0.0037  0.0038  0.0038  

2 0.002  0.0017  0.0018  0.0018  0.0016  

3 0.0004  0.00047  0.00066  0.00067  0.00077  

4 0.0002  - 0.000068  0.000065  0.00022  

5 0  - 0.000051 0.000051 0.00022  

 

Table 12 

Resolution evaluation indices of equivalent stiffness ratios listed in Table 11. 

Mode Conventional method 
Two-peak method 

Two-point intersection method 
Normal with npR  with nsR  

1 3  47.4  47.0  47.6  33.5  

2 4  99.3  102  101 68.3  

3 2  116  139  140  105  

4 1  - 43.4  42.5  55.0  

5 0  - 31.1  31.1  45.5  

 

 

 

 

 



Table 13 

Normalized values obtained by using preliminary true values of equivalent stiffness ratios in the experiment 

using piezoelectric element A. 

Mode 
Preliminary true 

value of iβ  

Conventional method Proposed methods 

Oiγ  tan pδ  Liγ  piδ  ciδ  npiζ  nsiζ  

1 0.0038  0.63  0.020  0.028  0.26  0.017  0.30  0.39  

2 0.0018  1.2  0.019  0.036  0.37  0.050  0.38  0.22  

3 0.00067  5.7  0.021  0.10  0.66  0.14  0.79  0.69  

4 0.000067  84  0.019  0.48  1.9  0.65  3.1  2.5  

5 0.000051 71  0.021  0.36  2.4  0.98  3.5  3.3  

 

Table 14 

Values of circuit elements, important frequencies, and modal equivalent stiffness ratios for the method with 

additional resistor connected in parallel to the inductor in the experiment using piezoelectric element A. 

gL   H  
apR   Ω  

Two-peak method Two-point intersection method 

1LF   Hz  
1RF   Hz  1β  

1PF   Hz  
1QF   Hz  1β  

552  63.0 10  29.88  31.62  0.0032  30.04  31.40  0.0039  

552  61.0 10  - - - 30.04  31.40  0.0039  

 

Table 15 

Modal electromechanical coupling coefficients derived by using preliminary true values of modal equivalent 

stiffness ratios, capacitance, and modal stiffness for both the piezoelectric elements. 

Mode 
iΘ   N V  

Piezoelectric element A Piezoelectric element B 

1 0.0026  0.0020  

2 0.011  0.0007  

3 0.019  0.021  

4 0.012  0.0605  

5 0.017  0.0806  

 

6. Conclusion 

   The governing equations for passive vibration suppression and active vibration control were theoretically 

formulated by considering the effect of the restraint imposed by the adhesive bonds on the piezoelectric element. 

Two methods for measuring the equivalent stiffness ratios have been proposed, and their tolerance to 

measurement error and frequency resolution was theoretically investigated by comparing them with the 



conventional method. Because the accuracy of the equivalent stiffness ratios obtained using the proposed 

methods is compromised when the loss factors are not sufficiently small, an improved method using a negative 

resistor has been proposed. These methods were validated through experiments. Further, the accuracy of the 

theoretical estimations was improved by taking into consideration the restraint imposed by the adhesive bonds. 

The necessity of experimental measurements for further accuracy improvement was also demonstrated. 

Moreover, the experimental results are significant because they do not require mode shape functions and circuit 

element values. Further, it has been shown that these methods provide accurate modal equivalent stiffness ratios 

and electromechanical coupling coefficients particularly when conventional methods yield poor results. 
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Fig. 1. Schematic diagrams of plate-type piezoelectric element: (a) plate-type piezoelectric element and (b) 

piezoelectric element attached to host structure by adhesive bond. 
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Fig. 3. Equivalent mechanical model of piezoelectric element and its lever: (a) 1 0pθ   and (b) 1 0pθ  . 
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Fig. 4. Equivalent mechanical model without levers. 

 

Piezoelectric element 

Cantilever
ef eZ

Rx
Lx

fx

bt
pt

bl

pl

q
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Fig. 6. Conceptual diagram of complex deformation of piezoelectric element. 
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Fig. 7. Equivalent mechanical models for targeted vibration mode when the piezoelectric element is shunted with 

electrical impedance: (a) equivalent model with levers of 0j
k iθ   and 1 0pθ   and (b) equivalent model 

without virtual levers. 
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Fig. 8. Equivalent circuit of piezoelectric element with dielectric loss. 
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Fig. 9. Analytical model of two-peak method. 
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Fig. 10. Schematic diagram of the simulated inductor using generalized impedance converter and its equivalent 

circuit: (a) simulated inductor circuit and (b) equivalent circuit. 
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Fig. 11. Analytical model of two-point intersection method. 
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Fig. 12. Simulation results of the agreement evaluation index for conventional method using different values of 

Oiγ  and tan pδ : (a) 0.03iβ  , (b) 0.003iβ  , and (c) 0.0003iβ  . 
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Fig. 13. Simulated magnitude plots of nondimensional compliance using 0.003iβ  : (a) short-circuited 

electrodes with varying Oiγ , (b) open-circuited electrodes with tan 0pδ   and varying Oiγ , (c) open-circuited 

electrodes with 0Oiγ   and varying tan pδ , and (d) open-circuited electrodes with 0.2Oiγ   and tan 0.1pδ  . 
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Fig. 14. Simulation results of the agreement evaluation index for two-peak method using different values of Liγ  

and piδ : (a) 0.03iβ  , (b) 0.003iβ  , and (c) 0.0003iβ  . 
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Fig. 15. Simulated magnitude plots of nondimensional compliance using 0.003iβ  : (a) short-circuited 

electrodes with varying Liγ , (b) inductive circuit with 0piδ   and varying Liγ , (c) inductive circuit with 

0Liγ   and varying piδ , and (d) inductive circuit with various combinations of Liγ  and piδ . 
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Fig. 16. Simulation results of agreement evaluation index for two-point intersection method using different 

values of Liγ  and piδ : (a) 0.03iβ  , (b) 0.003iβ  , and (c) 0.0003iβ  . 
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Fig. 17. Simulated magnitude plots of nondimensional compliance for 0.003iβ  : (a) 0piδ   and varying Liγ , 

(b) 0Liγ   and varying piδ , (c) 0.3Li piγ δ  , and (d) 1Li piγ δ  . 
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Fig. 18. Analytical model of the improved method: (a) negative resistor connected in parallel and (b) negative 

resistor connected in series. 
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Fig. 19. Simulation results of agreement evaluation index for 0.0003iβ   using two-peak method with 

improvement: (a) negative resistor connected in parallel with np 0.02i piζ δ    and (b) negative resistor 

connected in series with ns 0.02i piζ δ   . 
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Fig. 20. Simulated magnitude plots of nondimensional compliance for 0.0003iβ  : (a) 0Liγ   and 3piδ  ; 

(b) 0Liγ  , 3piδ  , and np 2.98iζ   ; (c) 0Liγ  , 3piδ  , and ns 2.98iζ   ; (d) 1Liγ   and 3piδ  ; (e) 

1Liγ  , 3piδ  , and np 2.98iζ   ; and (f) 1Liγ  , 3piδ  , and ns 2.98iζ   . 

 



 
Fig. 21. Schematic of experimental apparatus. 
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Fig. 22. Schematic diagram of negative resistors realized using negative impedance converter: (a) negative 

resistor for parallel connection and (b) negative resistor for series connection. 

 



 
Fig. 23. Calculation model for the cantilever with piezoelectric elements to derive the mode shapes. 

 

30

35

40

45

50

55

60

30.5 30.6 30.7 30.8 30.9 

40

45

50

55

60

191.1 191.5 191.9 192.3 

45

47

49

51

53

55

537.0 537.5 538.0 538.5 539.0 

46

47

48

49

50

51

52

1052 1053 1054 1055

48

50

52

54

56

1739 1740 1741 1742 1743

1
st

1
Ξ

Ξ
(d

B
)

2
st

2
Ξ

Ξ
(d

B
)

3
st

3
Ξ

Ξ
(d

B
)

4
st

4
Ξ

Ξ
(d

B
)

5
st

5
Ξ

Ξ
(d

B
)

 
Fig. 24. Experimental results of nondimensional compliance when the electrodes of piezoelectric element A are 

short- and open-circuited: (a) first vibration mode, (b) second vibration mode, (c) third vibration mode, (d) fourth 

vibration mode, and (e) fifth vibration mode. 
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Fig. 25. Experimental results of nondimensional compliance when the inductor was coupled to piezoelectric 

element A: (a) first vibration mode, (b) second vibration mode, (c) third vibration mode, (d) fourth vibration 

mode, and (e) fifth vibration mode. 
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Fig. 26. Experimental results of nondimensional compliance of piezoelectric element A when the two-peak 

method with a negative resistor was applied: (a) first vibration mode, (b) second vibration mode, (c) third 

vibration mode, (d) fourth vibration mode, and (e) fifth vibration mode. 
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Fig. 27. Experimental results of the nondimensional compliance of piezoelectric element A using inductor and 

additional resistor. 

 


