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We investigate mass shifts of charmonia driven by change of the gluon condensate below but near transition
temperatures at finite baryonic chemical potential. Extending previous prescription on the relation between
gluon condensates and thermodynamic quantities, we model the gluon condensates of hadronic matter at finite
temperature and baryonic chemical potential such that the scalar gluon condensate fits with the latest lattice QCD
data. By making use of the QCD sum rule and the second-order Stark effect, we find that the smoother transition
in the full QCD can lead to moderate mass shifts of charmonia even below the transition temperature. We also find
larger mass shift at fixed temperature as chemical potential increases. Existing data on charmonium-charmonium
ratio is found to be consistent with the statistical hadronization scenario, including the obtained mass shift.
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I. INTRODUCTION

Properties of heavy quarkonia in medium have been
extensively studied since it was pointed out that suppression
of J/ψ by Debye screening could be a signature of creation of
the deconfined matter in relativistic heavy ion collisions [1].
It should be noted that a mass shift of a charmonium state in
hot hadronic environment could be a precursor phenomenon
of the transition caused by a decrease in the string tension [2].
These early expectations are based on an intuitive picture
on a quarkonium, a heavy quark and its antiquark bound
by a confining potential, which successfully describes the
properties in vacuum [3]. While the lattice QCD provides a first
principle approach to the problem, it still lacks the necessary
resolution needed for discriminating possible changes in the
quarkonium spectral function at finite temperature, especially
near the critical temperature where an abrupt change could take
place. The maximum entropy method for this problem can at
best only tell us about the (non)existence of the lowest peak in
the spectral function [4–8]. Therefore, to assess the medium
modification, one needs a complementary framework such as
the potential model, which utilizes a quark-antiquark potential
extracted from lattice calculation [9]. In the meantime, we
have proposed an approach utilizing the QCD sum rule
and the second-order Stark effect, which allows us to relate
the temperature-dependent gluon condensates as the primary
inputs from lattice QCD to the spectral changes of heavy
quarkonia [10–14].

So far, our studies relied on the gluon condensates extracted
from the trace anomaly of pure SU(3) case [15]. In pure
gauge theory with Nc � 3, there is a first-order deconfinement
transition at T = Tc; thus, the trace anomaly shows abrupt
change across Tc [16], which leads to the similar behavior of
the spectral property of the quarkonia.
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In order to compare results with experimental data, we
need more realistic estimates of the condensates based on full
QCD lattice calculations, including dynamical light quarks.
Recently, the calculation of the equation of state has been
carried out with physical quark masses at vanishing chemical
potential [17]. Due to the crossover nature of the transition
[18], the critical temperature is no longer a well-defined
quantity. The pseudocritical temperature defined by a peak or
an inflection point depends on observables [19] and is found
to range from 147 (chiral susceptibility) to 165 MeV (strange
quark number susceptibility).

As for the scalar gluon condensate, which is the gluonic
part of the trace anomaly, it is expected to have the same bulk
property but with smoother change near the pseudocritical
temperature Tpc. In fact, the magnitude for the change of the
scalar condensate in a pure gauge theory at the transition region
has been found to be almost the same as in the full QCD
case [11,20], when the temperatures are normalized by Tc and
Tpc, despite the difference in the (pseudo)critical temperatures;
Tc � 265 MeV in the pure SU(3) [15,16] and Tpc � 190 −
200 MeV in full (2+1) flavor QCD with mπ � 220 MeV [20].
The crossover nature of the transition has led to the smoother
temperature dependence of the gluon condensate near Tpc [21].
For the twist-2 gluon condensate, which is not a dominant but
non-negligible contribution to the sum rule [11,22], no lattice
data at physical quark masses is available yet.

In this paper, we first extract the gluon condensates in full
QCD by making use of the resonance gas model. This prescrip-
tion enables us to study a finite baryonic chemical potential
case also. Using these gluon condensates, we investigate the
change of spectral properties of charmonia in hot hadronic
matter at various values of temperature and baryonic chemical
potential along the freeze-out line, which is deduced from
statistical model analyses [23,24] and is expected to be close
to the hadronization points. Although the charmonium produc-
tion mechanism in relativistic heavy ion collisions has not been
understood well, some experimental data seem to indicate that
the statistical production of charmonia could be possible [25].
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Despite the complexity of the collision processes, this scenario
considerably simplifies the charmonium-charmonium particle
number ratio. We examine possible influences of the spectral
modification on this quantity.

In the next section, we present a resonance gas model for
the gluon condensates of hot and dense hadronic matter. In
Sec. III, we report results of spectral changes of charmonia.
The experimental implication will be discussed in Sec. IV.
Section V is devoted to a summary.

II. RESONANCE GAS MODEL FOR THE GLUON
CONDENSATES

We start with two quantities, M0 and M2, characterizing the
temperature dependence of the thermal expectation value of
gluonic operators:〈

β(g)

2g
Ga

μνG
aμν

〉
T

= M0(T ) (1)

〈−ST Ga
αμG

aμ
β

〉
T

=
(

uαuβ − 1

4
gαβ

)
M2(T ). (2)

Here, the symbol ST denotes the traceless and symmetric part
of the operator. We assign to M0(T ) only the temperature-
dependent part of the expectation value; it has, in general, a
temperature-independent part, which is nothing but the gluon
condensate in the vacuum.

The above equations immediately relate M0 and M2 to the
thermodynamic quantities via the energy-momentum tensor in
thermal equilibrium; namely, M0(T ) = ε − 3p and M2(T ) =
ε + p with ε and p being the energy density and the pressure
respectively in the case of pure gluonic system [13]. In the
presence of fermions, however, it is not straightforward to
relate M0 and M2 to the thermodynamic quantities since
the energy-momentum tensor has a fermionic part. The trace
anomaly receives contributions from massive fermions as

〈
T μ

μ

〉 =
〈
β(g)

2g
Ga

μνG
aμν

〉
+

∑
i

mi〈q̄iqi〉. (3)

M0 becomes ε − 3p only when the second term is negligible;
otherwise, the fermionic part has to be explicitly subtracted
out from ε − 3p before identifying it to M0. In lattice QCD
calculations, contributions from each term in Eq. (3) have
been estimated [20,21].1 Similarly, M2 can be related to the
off-diagonal part of the energy-momentum tensor after the
fermionic part is subtracted out. Such data are not yet available.
Therefore, we need a scheme to subtract the fermionic
contribution from the total of the energy-momentum tensor.

Going back to the original definition given in Eq. (2), one
can relate the nucleon expectation values to M0 and M2 within
the linear density approximation [26]

Mn.m.
0 = ρm0

N, (4)

Mn.m.
2 = ρAGmN, (5)

1In Ref. [17], however, a somewhat different scheme is used to
calculate the trace anomaly.

where ρ, m0
N , AG, and mN are the density of nucleus, the

nucleon mass in the chiral limit, the second moment of gluon
distribution function of the nucleon, and the nucleon mass,
respectively. One sees in Eq. (4) that the chiral limit is taken
for the nucleon mass, which corresponds to removing the
fermionic term in the trace anomaly [Eq. (3)]. In Eq. (5),
AG plays a similar role. Since these equations are expressed in
terms of the mass of the particle consisting of the medium and
its number density, one can extend them to genuine hadronic
matter as

Mhad
0 =

∑
i=hadrons

ρim
0
i (6)

Mhad
2 =

∑
i=hadrons

ρimiA
i
G. (7)

The quantities with subscript i denote hadronic counterparts
for the nucleon values appearing in Eqs. (4) and (5). As a
simple model, we use a hadron resonance gas, including all
hadrons for which the quantum numbers are known as given
in the Particle Data Group [27]. The number density ρi is now
generalized to a hadron gas and is calculated as a function of
T and μB as

ρi = di

2π2

∫ ∞

0

p2dp

exp
[(√

p2 + m2
i − μi

)/
T

] ± 1
, (8)

where the sign is + for fermions and − for bosons, and di is
the degree of freedom of the ith hadron. We take into account
the baryon number conservation and strangeness conservation
and neglect isospin chemical potential for simplicity. The
strangeness chemical potential μs is determined from the
neutrality condition

∑
i ρiSi = 0 [28].

In Eq. (6), the masses of hadrons in the chiral limit
mi

0 are needed. Note that strange quark contribution from
Eq. (3) and its off-diagonal counterpart also have to be
subtracted. Thus, we will work within the flavor SU(3)
symmetric limit. At present, we cannot know all of hadron
masses in the mu = md = ms = 0 limit, especially those of
the highly excited states. Therefore, for the masses in the
three-flavor chiral limit, we use different masses only for the
Goldstone bosons, ground-state octet and decuplet baryons,
and keep the masses of other hadrons the same as their vacuum
values. Detailed lattice studies on hadron masses, as done in
Ref. [29] with physical quark masses, will be helpful for more
accurate treatment. Specifically, we first put m0

π = m0
K = 0

and m0
N = 750 MeV from heavy baryon chiral perturbation

theory [30]; these are the most important inputs needed for
the masses in the chiral limit as the contributions to the
thermodynamic quantities are dominated by these hadrons,
especially by the Nambu-Goldstone bosons. For the vector and
axial vector mesons, we assume m0

ρ = mρ and m0
a1

= ma1 . We
also assume m0

	 = m	. Furthermore, we also put m0
f0

= m0
σ ,

m0
φ = m0

ω = m0
K∗ = m0

ρ , m0
 = m0

� = m0
� = m0

N , and m0
�∗ =

m0
�∗ = m0

� = m0
	, according to the flavor SU(3) symmetry.

The second moment of the gluon distribution function is
set to Ai

G(8m2
c) = 0.9 for all the hadrons. Generally, it can

differ among hadrons, but it can be shown that Aπ
G differs

little from this value at such a high energy scale, where the
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FIG. 1. (Color online) Comparison of the resonance gas
with lattice results. Upper: interaction measure (ε − 3p)/T 4.
Lower : its gluonic part M0. Lattice data are taken from the
HotQCD collaboration for HISQ action with Nτ = 6 and 8 [33] and
from the “Budapest-Wuppertal” collaboration for “stout” action with
continuum estimation (average of Nτ = 8 and 10) [17]. For M0, stout
data is estimated from ε − 3p by assuming the same ratio of the
gluonic part as that of HotQCD. See text for details.

parametrization of the gluon distribution functions [31,32] are
relatively well known.

The result of M0 from the resonance gas model calcu-
lated with Eqs. (6) is shown in the lower panel of Fig. 1
together with ε − 3p in the upper panel. We compare the
resonance gas model with lattice data from two different
fermion discretization schemes. One is from highly improved
staggered fermion (HISQ) action, calculated by the HotQCD
collaboration with temporal extent Nτ = 6 and 8 [33]. The
other is from stout-link improved staggered fermion (“stout”)
action calculated by “Budapest-Wuppertal” collaboration [17].
In the former, the light quark mass is slightly heavier than
the physical one, and the continuum extrapolation is not
made, while the latter corresponds to physical quark masses
and gives a continuum estimation. The upper panel shows
the full trace anomaly, including both gluonic and fermionic
parts for a reference. Lattice data obtained from the different
schemes show reasonable agreement in the temperature range
considered here. Therefore, we assume the present HISQ data
already approximates the continuum result well. As already
discussed in Ref. [17], the resonance gas model shows a
small discrepancy at T > 150 MeV, which could be attributed

to missing heavier states [34]. Since in our model M0 is
essentially dominated by light hadrons, we presume that this
discrepancy does not affect the following analyses. In the
lower panel, the HISQ data shows the gluonic part of the
trace anomaly. Since the equation of state of the stout action
was calculated in a different way, such that the gluonic part is
not separated [17], we estimate it in the following way. First,
we assume the ratio of the gluonic part of the trace anomaly
to the total one is the same as those in the HISQ data. Next,
we calculate the ratio by averaging that of HISQ data for
130 MeV < T < 170 MeV. The upper bound corresponds to
upper limit of the pseudocritical temperature, below which we
do not see clear temperature dependency in the ratio. Then
we multiply ε − 3p in the stout action by the resultant ratio
factor 0.667. Errors are estimated from the upper and lower
value of the data points and from the average deviation of the
ratio factor 0.052 of the HISQ data. One sees our model M0

reproduces the lattice data well, and, therefore, we expect that
the model gives a good approximation to M2.2 We display M0

and M2 as functions T and μB in Fig. 2.
In Fig. 2, we also draw the chemical freeze-out lines

proposed by two groups. One (denoted by “FOI”) is from a
combined fit to statistical model results and has been shown to
agree with various freeze-out conditions [23]. The temperature
is given by

T (μB) = a − bμ2
B − cμ4

B, (9)

where a = 0.166 ± 0.002 GeV, b = 0.139 ± 0.016 GeV−1,
and c = 0.053 ± 0.021 GeV−3. Collision-energy dependence
is also given through the chemical potential

μB(
√

s) = d

1 + e
√

sNN

, (10)

with d = 1.308 ± 0.028 GeV and e = 0.273 ± 0.016 GeV−1.
It has been shown that this parametrization works well for
recent STAR data [36].

The other (denoted by FOII) is a parametrization of results
of a statistical model shown in Ref. [24]. The freeze-out
temperature and chemical potential are given as functions of√

sNN (in unit of GeV):

T (
√

s) = Tlim

(
1 − 1

0.7 + (e
√

sNN − 2.9)/1.5

)
(11)

μB(
√

s) = a′

1 + b′√sNN

, (12)

where Tlim = 161 ± 4 MeV, a′ = 1303 ± 120 MeV, and b′ =
0.286 ± 0.049 GeV−1. We draw two lines for each freeze-out
curve, corresponding to upper and lower temperatures esti-
mated by uncertainties in the parameters. The main difference
between the two freeze-out curves is seen at μB > 300 MeV,
which corresponds to

√
sNN < 10 GeV. While the one by

2One may try to improve the agreement by introducing interactions
in the resonance gas. For example, we can use an excluded volume
correction to the resonance gas, which incorporates the repulsive
interaction among hadrons [35]. We found, however, that χ 2 fitting
of the excluded volume parameter v0 to the lattice data of M0 and
ε − 3p gives a consistent result with v0 = 0.
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FIG. 2. (Color online) Contour plots for M0[(a)] and M2[(b)]
obtained from the resonance gas model, Eqs. (6) and (7). The thick
solid lines (black) indicate the chemical freeze-out line, including
uncertainty of parameters given in Ref. [23]. The thick dashed lines
(red) also indicate the freeze-out line from Ref. [24].

Cleymans et al., FOI, has a strong curvature, which leads to
lower freeze-out temperature in this region, and the other, by
Andronic et al., FOII, shows almost constant freeze-out tem-
perature up to μB ∼ 500 MeV, resulting in coincidence with
the QCD chiral transition line [37].3 Although the difference
between them seems to partly come from the fact that FOI
uses 4π particle yield while FOII uses midrapidity data only,
one may consider the constant temperature case (FOII) to be
simultaneous chemical freeze-out at the hadronization.

For charmonium production, it is not clear which scenario
is more likely, due to small production rate at lower energies.
At the top SPS energy, where the charmonium particle ratio
data is available,

√
sNN = 17.3 GeV, the two freeze-out curves

coincide. From Fig. 2, one sees both M0 and M2 increases as
μB does so at fixed temperature. This implies larger medium
modification of charmonia for larger chemical potential. If the
freeze-out temperature decreases steeper, as in FOI, however,
resultant M0 and M2 do not differ so much. Therefore, we
expect that the mass shift of charmonium substantially differs
at lower collision energies between the two possible freeze-out
scenarios.

3Although this line corresponds to the chiral transition, it can
presumably represent the deconfinement transition line also.

III. MASS SHIFT OF CHARMONIUM

A. Second-order Stark effect

First, we calculate the mass shift of J/ψ using the second-
order Stark effect in QCD as done in Ref. [13]. Provided the
wave function of the quarkonium in the momentum space ψ(k)
is normalized as

∫
d3 k

(2π)3 |ψ(k)|2 = 1, the formula of the mass
shift for the 1S state is given by [13,38–40]

	mJ/ψ = − 1

18

∫ ∞

0

kdk2

k2/mc + ε

∣∣∣∣∂ψ(k)

∂k

∣∣∣∣
2 〈

αs

π
	E2

〉
T ,μB

(13)

= −7π2

18

a2

ε

〈
αs

π
	E2

〉
T ,μB

, (14)

where k = |k| and mc and ε are the charm quark mass and
the binding energy, respectively. The above formula can be
also derived from potential nonrelativistic QCD (pNRQCD),
as shown in the Appendix. The second line is obtained for the
Coulombic bound state with Bohr radius a. These parameters
can be determined by a fit to the J/ψ mass in vacuum and the
size of the wave function in the Cornell potential model [3]. It
gives mc = 1704 MeV, a = 0.271 fm, and αs = 0.57. In this
formula, the mass shift is proportional to the change of the
electric condensate 〈αs

π
	E2〉T ,μB

from its vacuum value. The
electric condensate as well as the magnetic counterpart can be
written in terms of M0 and M2 as [13], for Nf = 3,〈

αs

π
	E2

〉
T ,μB

= 2

9
M0(T ,μB ) + 3

4

αeff
s

π
M2(T ,μB), (15)

〈
αs

π
	B2

〉
T ,μB

= −2

9
M0(T ,μB ) + 3

4

αeff
s

π
M2(T ,μB ). (16)

Here, the effective coupling constant αeff
s can be chosen

according to the relevant energy scale to the expectation value
of the operator. In this case, the formula is based on OPE with
separation scale ε. Thus, it is plausible to take αeff

s = 0.57
obtained from the fit to the bound state.

Figure 3 shows the electric condensate for μB =
0, 100, 200, 300, and 400 MeV as a function of temperature.
The maximum chemical potential 400 MeV roughly corre-
sponds to 40A GeV Pb + Pb collisions at SPS, the lowest
collision energy above the J/ψ production threshold [41].
One sees a larger change of the electric condensate for high
temperature and chemical potential as is expected from Fig. 2.
Now we are able to estimate the mass shift of J/ψ by putting
the condensate into Eq. (13). We compute the mass shift along
the freeze-out lines shown in Fig. 2 and show the result as a
function of

√
sNN in Fig. 4. For higher colliding energies than√

sNN > 30 GeV, the mass shift is independent of the colliding
energy owing to the fact that the freeze-out temperature varies
little and the chemical potential does not change the condensate
significantly (see Fig. 3). The amount of the downward mass
shift is 10–20 MeV, including uncertainty. On the other hand,
low-energy results differ between FOI and FOII, as expected
from Fig. 2. Along the FOI chemical freeze-out line, the mass
shift becomes smaller while opposite behavior is seen for
FOII. In the FOII case, since temperature is almost constant,
the larger the chemical potential, the bigger the mass shift
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FIG. 3. (Color online) Temperature-dependent part of the electric
condensate 〈 αs

π
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chemical potential.

becomes, owing to the effects from the chemical potential.
In the other case, however, decreasing freeze-out temperature
cancels the effect of the chemical potential. For instance, one
can see in Fig. 3 that 	E2 at T = 165 MeV and μB = 0 is
almost equal to that at T = 145 MeV and μB = 400 MeV.
Therefore, At the lowest SPS energy, the downward mass shift
ranges from 10 to 60 MeV, depending on the choice of the
thermal parameters.

B. QCD sum rules

While the second-order Stark effect provides the downward
mass shift directly in the case of the increasing electric con-
densate, QCD sum rule is expected to be more quantitatively
reliable according to the larger separation scale by going to the
deep Euclidean region. Here we give an estimation based on
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FIG. 4. (Color online) Mass shift of J/ψ at freeze-out temper-
ature and chemical potential from the second-order Stark effect.
The horizontal axis denotes the collision energy, which is related to
the temperature and the chemical potential via Eqs. (9) and (10) for
the FOI case and Eqs. (11) and (12) for the FOII case.

the Borel sum rule framework used in Ref. [14] with further
improvement as described below.

The two-point current correlation function in the vector
channel after the Borel transformation with the Borel mass
M2 is given by [14,42,43]

M(M2) = e−νπA(ν)[1 + αs(M
2)a(ν)

+ b(ν)φb(T ) + c(ν)φc(T )], (17)

with ν = 4m2
c/M

2. Here, the system is assumed to be at rest
with respect to the medium. The Wilson coefficients a(ν), b(ν),
and c(ν) are listed in Ref. [14]. The temperature dependency is
governed by the dimension four gluon condensate terms φb(T )
and φc(T ) given by

φb = 4π2

9
(
4m2

c

)2 G0(T ), (18)

φc = 4π2

3
(
4m2

c

)2 G2(T ). (19)

The relations of the positive definite quantities M0 and M2 to
the dimension four gluon condensates appearing in the OPE
side correlation function are given by

G0(T ) = Gvac
0 − 8

9
M0(T )

G2(T ) = −αeff
s

π
M2(T )

after taking the one-loop expression for the beta function. As in
the pure gauge case, we use a temperature-dependent effective
coupling constant αeff

s = αqq(T ), extracted from the lattice
calculation of the color singlet heavy quark free energy by
assigning αs〈Ga

μρG
aνρ〉T ≡ 〈αs(T )Ga

μρG
aνρ〉 in the spirit of

the separation scale in the heavy quark system, which imposes
all the temperature effect on the condensates [13,22]. We
take the values from Nf = 2 results of αqq(rmax) in Fig. 6
of Ref. [44]. To account for different critical temperatures
between the Nf = 2 simulation, Tc = 202 MeV, and the
reality (see Sec. I), we rescale the coupling constant from
the data by assuming similar temperature dependency to that
of Tc = 170 MeV. This value is considered to be the upper
bound of the pseudocritical temperature in reality, owing to a
measurement based on the strange quark number susceptibility
Tpc = 165(5)(3) MeV in Ref. [19]

Presumably, this choice does not affect the results quan-
titatively, since the twist-2 contribution to the medium mod-
ification is relatively small in the hadronic phase [11]. The
T = 0 part of the scalar gluon condensate Gvac

0 is fixed to be
(0.35GeV)4 [45] as in our previous calculations.4

The Borel-transformed correlation function is related to the
spectral density through the dispersion relation

M(M2) =
∫ ∞

0
ds e−s/M2

Im�̃(s). (20)

4Gvac
0 has still a large error after fitting to the various experimental

data; see also Ref. [46] for example. This vacuum value, however,
does not affect the in-medium effect significantly, since we are
looking at relative changes from vacuum.

044917-5



KENJI MORITA AND SU HOUNG LEE PHYSICAL REVIEW C 85, 044917 (2012)

We model the right-hand side of the dispersion relation with a
simple ansatz and call it the phenomenological side as usual.
In the hadronic medium below Tc, previous analyses based
on the gluon condensate of pure gauge theory indicates the
broadening is small enough to ignore. Provided the continuum
part of the model spectral density Mcont(M2), the the mass of
J/ψ is given by

m2
J/ψ (M2) = −

∂
∂(1/M2) [M(M2) − Mcont(M2)]

M(M2) − Mcont(M2)
. (21)

We use the perturbative expression up to O(αs) for Mcont(M2)
as in Ref. [14].

Since the mass of J/ψ is a function of the Borel mass M2,
which is an unphysical parameter, one has to choose the range
of M2 called Borel window by following the criteria:

(i) M2
min: Convergence of the OPE by imposing the

dimension four operator contribution less than 30% to
the total OPE [47];

(ii) M2
max: Continuum contribution to the dispersion in-

tegral is less than 30%. We choose the threshold
parameter s0 such that extracted J/ψ mass is least
sensitive to M2.

As discussed in Ref. [14], the values 30% are physically rea-
sonable but arbitrary. Due to truncation of the OPE, we cannot
obtain the completely M2-independent mass. Specifically, the
mass strongly varies with M2 at lower M2 even inside the Borel
window. As this can be regarded as a systematic uncertainty
due to the truncation, we take this effect into account in the
mass evaluation by averaging the mass over the Borel window
and take its variance as the error [22]. Namely,

m̄ =
∫ M2

max

M2′
min

dM2m(M2)

/(
M2

max − M2′
min

)
(22)

and

(δm)2 =
∫ M2

max

M2′
min

dM2(m(M2) − m̄)2

/(
M2

max − M2′
min

)
.

(23)

An example taken from T = 0 is shown in Fig. 5. Here, the
Borel window is defined by M2 ∈ [M2′

min,M
2
max] and M2′

min ≡
max(M2

min,M
2
0 ).

We have introduced M2
0 such that dm(M2;

√
s0 =

∞)/dM2 = 0 in order to remove the strongly M2-dependent
part of m(M2) from the evaluation of the average [Eq. (22)]
and variance [Eq. (23)]. This is a reasonable choice as the
continuum threshold is so determined that it makes the Borel
curve flattest at M2 > M2

0 .
Figure 5 shows an example of the determination process.

We start with
√

s0 = ∞ case, which gives M2
0 shown as

the dashed line. Then we search for
√

s0 such that it gives
the smallest δm using Eq. (23), which takes its minimum
when the deviation from the average value is the smallest.
The resultant average deviation is indicated by the band in
the figure. Irrespective to the temperature, it is found to be
approximately 5 and 6 MeV in the case of J/ψ and χc1,
respectively. Parameters of the theory are fixed to mc(p2 =

3

 3.1

 3.2

 3.3

1  1.5 2  2.5 3

m
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G
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]

M
2
 [GeV

2
]

J/ ψ , T=0

m=3095 ± 5MeV

M0
2

M min
2

s 0
1/ 2

= ∞

s 0
1/ 2

=3.49 GeV

FIG. 5. (Color online) Borel curves at T = 0. The dashed line
stands for the case of

√
s0 = ∞. The solid line denotes the case of√

s0 = 3.49 GeV, which gives the flattest curve according to Eq. (23).
The band indicates the systematic uncertainty associated with the
flattest Borel curve.

−2m2
c) = 1.262 GeV and αs(8m2

c) = 0.21 by fitting to the
vacuum J/ψ and χc1 masses on the basis of the same criterion
of the Borel window. This process removes the ambiguity
on the arbitrary choice of the criterion mentioned above.
Including the width is straightforward. As shown in Ref. [14],
introducing width increases the mass at small M2. This fact
leads to larger s0 after minimizing δm. Then we will have the
mass-width relation similar to those shown in Refs. [10,11,14].
In most cases, M2

0 > M2
min holds in the charmonium sum

rules. At high temperature and chemical potential, however,
we found that the Borel stability is lost [10,14]; thus, M2

0
is not well defined. In such cases, we can still recover the
Borel stability by decreasing the threshold parameter or by
introducing the width. When the width must be introduced,
we cannot determine both mass and width simultaneously but
have only constraints. In what follows, we restrict ourselves to
cases in which the Borel stability is established with vanishing
width.

Figure 6 displays the results of the mass shift obtained
from the QCD sum rule analysis as described above. We plot
the mass shifts corresponding to the two freeze-out curves
as in the Stark effect results (Fig. 4). Errors are estimated
from the uncertainty in the thermal parameters in Eqs. (9)–
(12). The systematic errors in the Borel sum rules, which
have been introduced above, are not included in the plot. We
also calculate mass shift of χc1 in the same way. In χc, we
have observed the loss of the Borel stability at lower collision
energies than

√
sNN < 8 GeV in FOII, owing to much change

of the gluon condensate [14]. Comparing the result with Fig. 4,
one finds that the two methods give consistent mass shifts as
found in Ref. [14]. The mass shift of χc1 is approximately
twice as large as that of J/ψ , as previously found [12,14]. We
expect similar results for other χc states.

Before closing the section, we would like to comment
on the effect of the scattering term, which was pointed out
in Ref. [48] to appear as a pole at the zero mode in the
correlator. In our previous works, it was neglected since
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FIG. 6. (Color online) Mass shift of J/ψ (upper) and χc1 (lower)
obtained with QCD sum rules. Solid and dashed lines stand for the
mass shift corresponding to the different freeze-out curves, as in
Fig. 4. Errors are calculated from the uncertainty in the thermal
parameters.

such a contribution appears in the OPE side to cancel the
phenomenological side put as an ansatz. In the deconfined
phase, this argument should hold because the physical particle
absorbing the current is the (anti)charm quark, while this
is not so in the hadronic phase, where charmed mesons
are the physical particles. In general, these terms can be
neglected as they contribute at zero energy in the spectral
density. However, without invoking such arguments, it can be
neglected in the present case on the following grounds. First,
the scattering terms in the OPE and the phenomenological
side will be proportional to e−mc/T and e−mD/T , respectively,
while the other OPE terms in the Borel transformed sum
rule will in general scale as e−4m2

c/M
2
. Hence, as long as

T < M2/(4mc) or T < M2mD/(4m2
c), the scattering terms

can be neglected. Since the smallest Borel mass relevant in our
analysis is always larger than 1 GeV, taking mc = 1.26 GeV,
one finds that the scattering terms can be safely neglected
for T < 200 MeV. Moreover, the open charm meson will
receive greater medium effect than charmonia, making mD

close to mc. Thus, the scattering contribution from the OPE
and the phenomenological side will tend to cancel each other.
Second, one can remove the scattering contribution by making
use of the fact that it contributes as a constant term to
the Borel transformed correlator M(M2) = ∫

dse−s/M2
ρ(s),

since the scattering contribution to the spectral density takes

3
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=3.49 GeV
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1/2

=3.43 GeV

Derivative, s0
1/2

=3.36 GeV

FIG. 7. (Color online) Borel curves for the mass obtained from
the ordinary QCD sum rule and from the differentiated one, Eq. (24).
See text for detailed explanation.

a form as ρscat(s) ∝ δ(s) [48](equivalently
√

sδ(
√

s) [49–51]).
Therefore, the effect of the scattering term does not exist in the
derivative of M(M2) with respect to M2 (1/M2 in practical
calculations). One may then start from the once differentiated
sum rule and express the mass in the � = 0 limit as

m2
cc̄ =

∂2

∂(1/M2)2 [M(M2) − Mcont(M2)]

− ∂
∂(1/M2) [M(M2) − Mcont(M2)]

. (24)

Indeed, such a method was advocated in Ref. [52] but
criticized in Ref. [53] because starting with a higher-order
derivative makes the OPE side more sensitive to unknown
higher-dimensional condensates and Borel stability is lost; it
was claimed in Ref. [53] that due to this artifact, the light vector
meson was found to increase in the medium in Ref. [52]. This
comes from the fact that the OPE in the light vector meson has
no scale parameter other than the Borel mass; therefore, after
the Borel transformation, the sum rule becomes a polynomial
in 1/M2 with the highest power determined by the highest
dimensional operator calculated in the OPE. In the case of
heavy quarkonia, however, the presence of heavy quark mass
does not make the OPE a mere polynomial in 1/M2, so that
stability is not lost even after derivatives.

Figure 7 shows evidence for the above argument. We show
the Borel curves obtained from Eq. (24) as well as those from
the ordinary method, Eq. (21). For illustration, we show a case
with large medium effect, corresponding to

√
sNN = 8.7 GeV

in FOII, of which temperature and chemical potential are T =
156 MeV and μB = 403 MeV, respectively. For vacuum, we
display three curves. The thin dotted (black) curve shows the
same one as in Fig. 5 for the reference. The thin solid (green)
curve denotes that obtained from Eq. (24) with the same value
of

√
s0. One sees both curves give almost the same mass.

After minimizing δm in the differentiated sum rule [Eq. (24)],
one gets a slightly smaller mass indicated by the thick solid
(red) line. One notes Eq. (24) gives smaller mass at small
M2, as expected from the fact that it becomes sensitive to
higher-dimensional operators. The small discrepancy of the
mass can be attributed to the dimension six contribution, which

044917-7



KENJI MORITA AND SU HOUNG LEE PHYSICAL REVIEW C 85, 044917 (2012)

slightly increases the mass [54]. The remaining two curves are
for the medium. The thick dotted (red) curve is obtained from
the ordinary sum rule while the thick dashed (blue) curve is
from the derivative with the optimization. If one compares
them with the corresponding results for vacuum, one finds that
the mass shifts are almost the same between the two sum rules.
Hence, we conclude the general properties of the in-medium
modification of heavy quarkonia at low temperature up to near
T � 160 MeV will not change by including the scattering
contribution.

IV. IMPLICATION FOR EXPERIMENTS

We have discussed mass shifts of J/ψ in hot medium,
which could be produced in heavy ion collisions. Production
mechanism of J/ψ has not been fully understood yet because
of the still unknown elementary production process and also
the complicated collision processes [55]. In the following, we
briefly review the collision process and specify the situation we
will consider in this section. Charmonia have been considered
to be mostly produced by collisions between initial state
quarks and gluons in nuclei at the initial stage of heavy
ion collisions. The formation time scale τ ∼ 1/(2mc) is
supposed to be shorter than the thermalization time scale of
the medium, which is related to flow measurements through
hydrodynamic model calculations. The produced charmonia
will also interact with colliding nuclei. The dissociation of
J/ψ by this interaction, called cold nuclear matter effect,
is estimated by the nuclear absorption cross section, which
is roughly 1.5 mb at RHIC energies and 4.4 mb at SPS
energies [56]. In the hot medium, charmonia could melt. While
Lattice QCD have shown existence of the spectral peak even at
higher temperature [4,5,7,8], model calculations can explain
the lattice data with melting of J/ψ [57]. Even if the bound
states can survive, they will acquire substantial collisional
broadening through interacting with quarks and gluons in
medium [55,58]. There could be also recombination of a cc̄ pair
inside deconfined medium below dissociation temperature.
Finally, (anti-)charm quarks hadronize at the phase boundary
to form charmed mesons, baryons, and hidden charm states.
If J/ψ mass is modified in the medium and decay inside the
mediun, one may be able to observe it as modification of the
peak in dilepton channel. However, one needs a dynamical
approach in order to take into account various processes
described above, as well as microscopic information like cross
sections to estimate the final yield [2,55,59].

Here, we consider an alternative possibility of indirect
observation via statistical production [25,41,60–62]. This has
been already considered as a part of the contribution in the
transport approach and could give substantial contribution to
the final yields at high centrality [55]. In Ref. [41], in-medium
effect on the charmonium yields was considered as a result
of D meson mass modification and charm conservation. As
emphasized in the literature, charm conservation plays an
important role in the statistical description of charm quarks.
However, as for the particle ratio between charmonia, the
fugacity factor cancels and the ratio can be expressed as that of
thermal number densities at given temperature and chemical

potential. Therefore, we can focus on observables dominated
by the statistical production.

First we examine Nψ ′/NJ/ψ at midrapidity, which was also
investigated in Ref. [25], since there was experimental data
for Pb + Pb collisions at

√
sNN = 17.3 GeV in CERN-SPS.

The temperature and chemical potential in the two freeze-out
curves coincide at this energy as seen from Fig. 2. We adopt
T = 160 MeV and μB = 240 MeV in the following [25] and
discuss possible effects of charmonium mass shifts.

Although the QCD sum rule method cannot assess in-
medium modification of ψ ′,5 it is expected to be strongly
affected [63]. While applicability of the formula of the second-
order Stark effect in Ref. [38] is questionable for the physical
ψ ′, a crude estimation based on the dipole nature might be
possible. If we assume the mass shift scales with the size of
the wave function, the mass shift of ψ ′ is a factor 4.2 larger
than that of J/ψ . For the SPS data at

√
sNN = 17.3 GeV,

which we will analyze below, 	mψ ′ becomes 63–119 MeV
by adopting the result from QCD sum rules and fully taking
the errors into account. Here, we vary ψ ′ mass shift in a
broader range than the above estimation and calculate the
ratio as a function of 	mψ ′ . The total number of J/ψ is
obtained by summing up decay contributions from ψ ′ and
χcJ (J = 0, 1, 2). We assume the mass shifts of different χc

states to be the same as that of χc1 and the branching ratios to
be the same as their vacuum values. Specifically, the branching
ratios of ψ ′ and χcJ (J = 0, 1, 2) to J/ψ are taken to be 0.595,
0.0116, 0.344, and 0.195, respectively [27].

We plot the result for T = 160 MeV and μB = 240 MeV
together with experimental data taken from Pb+Pb collisions
at

√
sNN = 17.3 GeV [64] in the lower panel of Fig. 8.

One sees that a strong variation of the ratio as a function
of ψ ′ mass shift. The band for our result corresponds to
the uncertainty in the mass shift shown in Fig. 6. If the
ψ ′ downward mass shift is smaller than 100 MeV, which
is a reasonable value according to the crude estimation, the
expected mass shifts are consistent with the experimental data.
At present, however, it seems difficult to draw a conclusion
from this observation; in-medium modification of ψ ′ is still
controversial. While the ground state, J/ψ , seems to exist in
the vicinity of the transition, ψ ′ can be dissociated at finite
temperature even below transition temperature according to
potential model calculations [9]. Even if ψ ′ is statistically
produced with the large mass reduction, it can still be
dissolved into charmed mesons in hadronic medium thus
observed yields might be smaller than what was produced
at the hadronization: the dissociation cross section of J/ψ in
hadronic matter is expected to be smaller than that of ψ ′ due
to its smaller size [59]. In this case, there must be, of course,
enhancement of charmed mesons due to charm conservation.
The analysis might become complicated if initially produced

5In the Borel transformed sum rule, we can obtain the same
J/ψ mass even if we incorporate the ψ ′ contribution in the model
spectral function explicitly [14]. Therefore, in-medium effect on ψ ′

is incorporated in the effective threshold parameter
√

s0. This shows
the strong sensitivity of the sum rule to the lowest pole of the spectral
function.
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FIG. 8. (Color online) Particle number ratio at T = 160 MeV and
μB = 240 MeV as a function of ψ ′ mass shift. The band in the lower
panel indicates the experimental data taken from Pb + Pb collisions
at

√
sNN = 17.3 GeV measured by NA50 collaboration [64]. The

solid lines stand for the results without any mass shift in the charmonia
for comparison.

charmonium could survive the quark-gluon plasma phase and
the hadron phase. Then there will be modification to statistical
model prediction as discussed in a two-component model
of charmonium production in a heavy ion collision [59,65].
However, even within the two-component model, the thermal
production will be dominant at LHC and production ratios can
reveal vital information at the hadronization point.

Although experimentally challenging, a more promising
observable could be the ratio of χc to J/ψ . In the upper panel,
we display a fraction of J/ψ coming from χc1 and χc2 to the
total number of J/ψ for T = 160 MeV. This quantity, Rχc

was measured by HERA-B collaboration in proton-nucleus
collisions [66]. Our result shows 10–20% increase of this
quantity for the statistical production with mass reductions,
almost independent of the uncertain ψ ′ mass shift.

V. SUMMARY

In this paper, we investigate the mass shift of charmonia
induced by change of gluon condensates in hadronic medium
by making use of both perturbative (QCD second-order Stark
effect) and nonperturbative (QCD sum rule) approaches. The
inputs for the medium effect are the gluon condensates
calculated by a resonance gas model that well reproduces the

thermodynamic quantities calculated on the lattice QCD result
in the temperature region considered here. Extending it to the
finite baryonic chemical potential, we found that the change
of the gluon condensates becomes larger at large chemical
potential, which could result in a larger medium effect on
charmonium production in heavy ion collisions at lower
colliding energies, depending on hadronization temperature.
We found that both the perturbative and nonperturbative
estimations give almost the same mass shift. After elaborating
on the sum rule analysis, we estimated systematic error on
the obtained mass shift and found that most of the uncertainty
comes mainly from thermal parameters. While the mass shift
is almost constant along the chemical freeze-out line of
which freeze-out temperature decreases as chemical potential
increases (FOI), it can exhibit stronger downward shift at
lower colliding energies if the charmonia are produced at
hadronization and simultaneously frozen out (FOII).

We consider experimental implications of this observation
in the context of statistical hadronization picture in which
hadronization and the freeze-out of charmonium occur simul-
taneously. We found the data in Pb + Pb collisions at 17A GeV
are consistent with mass reduction of J/ψ and χc, although
the effect on ψ ′ should be clarified before final conclusion
is made. We pointed out that 10–20% enhancement of the
production ratio between χc and J/ψ could be a signature of
the downward mass shift, which indicate a precursor of the
deconfinement phenomenon.
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APPENDIX: DERIVATION OF THE SECOND-ORDER
STARK EFFECT FORMULA FROM POTENTIAL NRQCD

In this Appendix, we show that the second-order Stark
effect, Eq. (13), can be derived from potential nonrelativistic
QCD (pNRQCD) which provides a systematic perturbative
approach to the OPE.

Here, the effective lagrangian in the static limit is given
by [67,68]

L = −1

4
Ga

μνG
aμν +

nf∑
i=1

q̄i iD/qi

+
∫

d3rTr

{
S†

[
i∂0 + CF

αVS

r

]
S

+ O†
[
iD0 − 1

2Nc

αVO

r

]
O

}
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+VATr{O†r · g ES + S†r · g EO} + VB

2
Tr{O†r · g EO

+ O†Or · g E} + · · · . (A1)

The fields S = S1c/
√

Nc and O = OaT a/
√

TF are normalized
static quark-antiquark singlet and octet fields, respectively, E
is the chromoelectric field, and CF = (N2

c − 1)/(2Nc) = 4/3.
The trace is over the color indices. The matching coefficients
at leading order are αVS

= αs, αVO
= αs, VA = 1, VB = 1.

The leading-order correction to the singlet potential at finite
temperature as given in Eq. (64) of Ref. [69] is

[δVS(r)]11 = −ig2 TF

Nc

r2

d − 1

∫ ∞

0
dt e−it	V

× [〈 Ea(t)φ(t, 0)ab
Eb(0)〉T ]11, (A2)

where

	V = 1

r

(
αVO

2Nc

+ CF αVS

)
≈ Ncαs

2r
(A3)

and is the potential difference between the singlet ground
state and the octet state excited by the color electric field.
d is the number of the dimension in the regularization of the
momentum integral. In Ref. [69], the electric propagator is
calculated in thermal perturbation in various limits.

To obtain the formula for the second-order Stark effect
Eq. (A2), we have to take the following steps:

(i) First, to extract the contribution from the lowest-
dimensional operator, we take

[〈 Ea(t)φ(t, 0)ab
Eb(0)〉T ]11 → [〈 Ea(0) Ea(0)〉T ]11.

(A4)

Moreover, since we are interested in temperatures near
Tc, instead of using thermal perturbation to calculate the
temperature-dependent part of the electric condensate,

we use the nonperturbative value extracted from lattice
QCD. This approximation is valid as long as the scale in
the matrix element is smaller than the separation scale.

(ii) We take the matrix element of Eq. (A2) for the ground-
state charmonium and calculate it using the relative
momentum between the cc̄ quarks:

δEJ/ψ = −ig2 TF

Nc

−i

d − 1

∫
d3p

(2π )3

r2

EO − EJ/ψ

× |ψ(p)|2〈Ea(0)Ea(0)〉T . (A5)

(iii) We assume that the energies for the intermediate octet
charmonium sate and the initial ground state can be
written as follows:

EJ/ψ = 2mc − ε
(A6)

EO = 2mc + p2/mc,

where ε is the binding energy for the J/ψ and EO

represents the energy of the octet continuum state.
Putting these energies into Eq. (A5) and provided
TF = 1/2, d = 4, and Nc = 3, one obtains Eq. (13).
The contribution from the repulsive coulomb potential
was neglected in the continuum octet energy as it
vanishes in the large Nc limit taken in the Peskin
formalism [38].

The leading-order OPE term taken here is quite similar
to the limit taken in Refs. [70,71]. The difference there was
the assumption of Lorentz invariance of the vacuum, which
is broken at finite temperature; therefore, the mass shift was
proportional to the gluon condensate. As we have identified
the approximations taken in the derivation of the second-order
Stark effect, it would be useful to improve the formula
by taking into account the renormalization group improved
potentials and the 1/Nc corrections [68].
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[50] Á. Mócsy and P. Petreczky, Phys. Rev. D 73, 074007

(2006).
[51] T. Umeda, Phys. Rev. D 75, 094502 (2007).
[52] Y. Koike, Phys. Rev. C 51, 1488 (1995).
[53] T. Hatsuda, S. H. Lee, and H. Shiomi, Phys. Rev. C 52, 3364

(1995).
[54] S. Kim and S. H. Lee, Nucl. Phys. A 679, 517 (2001).
[55] R. Rapp, D. Blaschke, and P. Crochet, Prog. Part. Nucl. Phys.

65, 209 (2010).
[56] X. Zhao and R. Rapp, Phys. Lett. B 664, 253 (2008).
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