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A procedure for the ultrasonic evaluation of the interlayer interfacial stiffness of multilayered

structures is proposed. As a theoretical background to this proposal, the elastic wave propagation in a

multilayered structure, in which the layers are bonded with spring-type interfaces, is analyzed

theoretically based on the transfer-matrix method. Using the notion of the Bloch phase which

characterizes wave transmission in the corresponding infinite periodic structure, some explicit

relations are derived for the reflection coefficient of the multilayered structure. Based on the features

clarified theoretically, the interlayer interfacial stiffness of the multilayered structure can be

evaluated from the locations of local minima and maxima of the amplitude reflection spectrum. By

numerical analysis, the proposed procedure is shown to apply even when the viscous property of the

layers is not known precisely, and when a transient waveform of a limited length is used. Using the

proposed procedure, the stiffness of interlayer resin-rich regions in a carbon-epoxy cross-ply

composite laminate is identified from the experimental reflection spectrum. The identified stiffness is

shown to lie within the range as expected from the micrographic observation and a simple estimate

for a thin resin layer. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704692]

I. INTRODUCTION

Multilayered structures are commonly found in different

fields of technological applications. Such structures include,

for example, fiber-reinforced composite laminates which are

widely used in aerospace engineering. Understanding of

elastic wave propagation characteristics in multilayered

structures is important regarding their design against

dynamic loading as well as their nondestructive diagnosis

using ultrasonic waves. This subject has been studied exten-

sively,1,2 and various analytical approaches such as the

transfer-matrix method3,4 have been developed. For periodic

layered structures, the so-called Floquet wave homogeniza-

tion enables the clarification of the dispersive nature of the

propagating wave and the existence of stop bands.5–7

When modeling wave propagation in multilayered struc-

tures either theoretically or numerically, it is important to

account for the nature of interfaces between adjacent layers.

Many types of interfacial imperfections can be found in dif-

ferent layered structures, such as thin interphase layers, weak

bonds, delaminated but contacting surfaces, and so on. In the

case of fiber-reinforced composite laminates, it is well

known that thin resin-rich regions, typically with thickness

of a few microns, exist between laminas. Foregoing

studies8–11 have revealed that such imperfect interfaces are

most simply modeled as spring-type interfaces, where the

stresses are continuous but the displacements suffer disconti-

nuities. These interfaces are hence characterized by their

normal and tangential stiffnesses.

In order to perform the analysis or numerical simulations

of elastic wave propagation for actual multilayered structures,

one needs to identify their interfacial stiffnesses experimentally

as material properties.7,12 For a single spring-type interface

between solid bodies, the ultrasonic reflection=transmission

coefficients13–15 or the wave velocity and attenuation along the

interface16–18 can yield the interfacial stiffnesses. For double

spring-type interfaces for a layer between solids, Lavrentyev

and Rokhlin19 proposed a technique to identify the interfacial

stiffness from the ultrasonic reflection spectrum. For multiple

spring-type interfaces in multilayered structures, Lu and

Achenbach20 and Lu21 analyzed the wave propagation behavior

based on the transfer-matrix technique and examined the influ-

ence of random variations of the interfacial stiffness. Many

other works have been carried out for ultrasonic characteriza-

tion of the interfacial weakness in multilayered structures.22,23

Due to the complex wave propagation behavior in multilayered

systems, however, it is not a straightforward task to identify the

interfacial stiffness from a limited number of observations.

In this paper, the elastic wave propagation in multilay-

ered structures with spring-type interfaces is explored theo-

retically, and the relation between the interfacial stiffness

and the reflection spectrum is investigated. This leads to the

proposal of an identification procedure for the interlayer

interfacial stiffness of multilayered structures by utilizing the

oscillatory nature of the reflection spectrum. Some numerical

simulations and experimental results are shown to demon-

strate the identification procedure for a carbon-epoxy cross-

ply composite laminate.

This paper is structured as follows. The one-dimensional

wave propagation in a multilayered structure with spring-type

interfaces is considered based on the transfer-matrix approach

in Sec. II. The so-called Bloch phase,24,25 which characterizes

the wave nature in infinitely repeated periodic structures, is also

closely related to the nature of the transfer matrix for a finite
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number of interfaces, and gives some explicit relations for the

reflection coefficient of the multilayer. In particular, it is shown

that the locations of the zeroes of the amplitude reflection spec-

trum are completely determined by the acoustic properties of

the layer and the interfacial stiffness. Based on the described

features, a procedure to identify the interfacial stiffness from

local minima and maxima of the reflection spectrum is pro-

posed in Sec. III, and some discussions are given on its feasibil-

ity. In Sec. IV, quantitative experimental results for a cross-ply

laminate of carbon-epoxy composite are also demonstrated.

The conclusions of the present study are summarized in Sec. V.

II. WAVE PROPAGATION IN A MULTILAYERED
STRUCTURE WITH SPRING-TYPE INTERFACES

A. Transfer matrix formulation

The multilayered structure to be considered has N elastic

layers of density q, wave velocity c, and thickness h, with

(N� 1) spring-type interfaces of stiffness KS as shown in

Fig. 1. The structure is acoustically coupled to semi-infinite

media (e.g., water in the case of immersion testing) of den-

sity q0 and velocity c0 occupying x<X0 and x>XN, and sub-

jected to longitudinal wave propagation in the x-direction

normal to the layers. The interlayer interfaces are located at

x ¼ X1, X2, …, XN�1. Since all layers are assumed to have

the same thickness, XJ ¼ XJ�1þ h for J ¼ 1, 2, …, N.

The harmonic wave propagation with angular frequency

x is considered (the temporal dependence of the form

exp(�ixt) is assumed), and the wave displacement is

denoted as U(x). The wave field in each layer consists of the

forward-propagating wave UF(x) and the backward-

propagating wave UB(x), i.e., U(x) ¼ UF(x)þUB(x).

The values of UF and UB at the left side of the interface

at x ¼ XJ, i.e., when one approaches this interface from

x<XJ, are denoted by UJ;�
F and UJ;�

B , respectively. Likewise,

UJ;þ
F and UJ;þ

F denote the waves at the right side of that inter-

face. The transfer-matrix method3,4 can be used to express

the wave transmission across the layered structure. First, for

J ¼ 1, 2, …, N, the waves on both sides of the layer at

XJ�1< x<XJ are connected as

UJ;�
F

UJ;�
B

 !
¼ P

UJ�1;þ
F

UJ�1;þ
B

 !
; P ¼ expðikhÞ 0

0 expð�ikhÞ

� �
;

(1)

where k ¼ x=c. From the spring-type boundary conditions,20

the waves on both sides of the interlayer interface at x ¼ XJ

(J ¼ 1, 2, ……, N� 1) are related by

UJ;þ
F

UJ;þ
B

 !
¼ S

UJ;�
F

UJ;�
B

 !
; S ¼ 1þ ia �ia

ia 1� ia

� �
; (2)

where

a ¼ kqc2

2KS

¼ qcx
2KS

: (3)

Furthermore, the perfect acoustical coupling (continuity of

displacement and stress) at x ¼ X0 and x ¼ XN gives

U0;þ
F

U0;þ
B

 !
¼ TWL

U0;�
F

U0;�
B

 !
;

UN;þ
F

UN;þ
B

 !
¼ TLW

UN;�
F

UN;�
B

 !
;

(4)

where

TWL ¼
1

2Z

ZþZ0 Z�Z0

Z�Z0 ZþZ0

�
; TLW ¼

1

2Z0

ZþZ0 Z0�Z
Z0�Z ZþZ0

�
;

��
(5)

by denoting the characteristic acoustic impedances as Z ¼ qc
and Z0 ¼ q0c0.

Therefore, the whole transmission through the multi-

layer is expressed by

UN;þ
F

UN;þ
B

 !
¼ L

U0;�
F

U0;�
B

 !
; (6)

where

L¼ L11 L12

L21 L22

� �
¼TLWPðSPÞN�1

TWL ¼TLWS�1ðSPÞNTWL:

(7)

If an incident wave with unit amplitude impinges on the

structure in Fig. 1, it generates the reflected wave for x<X0

and the transmitted wave for x>XN, and the waves at x ¼ X0

and at x ¼ XN can be written as

U0;�
F

U0;�
B

 !
¼

expðik0X0Þ
R expð�ik0X0Þ

� �
;

UN;þ
F

UN;þ
B

 !
¼

Texpðik0XNÞ
0

� �
;

(8)

where k0 ¼ x=c0, and R and T are the reflection and trans-

mission coefficients, respectively. From Eqs. (6) and (8), R
and T are given by

R ¼ �L21

L22

expð2ik0X0Þ;

T ¼ L11L22 � L12L21

L22

expf�ik0ðXN � X0Þg:
(9)

B. Bloch phase and zeroes of reflection coefficient

For the present discussion, it is convenient to introduce

the following matrix H and write its components asFIG. 1. A multilayered structure with spring-type interfaces.
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H � SP ¼
H11 H12

H21 H22

� �

¼
ð1þ iaÞexpðikhÞ �ia expð�ikhÞ

ia expðikhÞ ð1� iaÞexpð�ikhÞ

� �
; (10)

from Eqs. (1) and (2). It is then straightforward to observe

the following relations:

H11H22 � H12H21 ¼ 1; (11)

H11 þ H22 ¼ 2fcos ðkhÞ � a sin ðkhÞg ¼ 2Gðx�Þ; (12)

where

x� ¼ xh

c
; Gðx�Þ � cos x� � Kx�sin x�: (13)

In the above expression, x* is the non-dimensional fre-

quency, and the non-dimensional parameter,

K � a
kh
¼ q c2

2KSh
; (14)

represents the relative magnitude of the stiffness of the layer

against that of the interface.

The nature of the matrix H is closely related to the so-

called Bloch phase, which characterizes the wave propaga-

tion in a perfectly periodic structure made of infinitely

arranged spring-type interfaces as shown in Fig. 2. For such

periodic systems, the Bloch theorem yields

UJþ1;þ
F

UJþ1;þ
B

� �
¼ expðiKhÞ UJ;þ

F

UJ;þ
B

� �
; (15)

where K is the Bloch wave number and b : Kh is called the

Bloch phase.24,25 On the other hand, Eqs. (1) and (2) give

UJþ1;þ
F

UJþ1;þ
B

� �
¼ SP

UJ;þ
F

UJ;þ
B

� �
¼ H

UJ;þ
F

UJ;þ
B

� �
: (16)

From Eqs. (15) and (16), it is clear that exp(iKh) is an eigen-

value of the matrix H, i.e.,

fexpðibÞg2 � ðH11 þ H22ÞexpðibÞ þ H11H22 � H12H21 ¼ 0:

(17)

This condition gives, by aid of Eqs. (11) and (12),

expðibÞ ¼ Gðx�Þ6i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fGðx�Þg2

q
: (18)

When �1�G(x*)� 1, Eq. (18) determines b as a real value

given by

cos b ¼ Gðx�Þ; (19)

which gives the dispersion relation in the pass bands of the

infinite periodic structure. Furthermore, in this case the

Cayley-Hamilton theorem gives

H2 � 2cos b Hþ I ¼ 0; (20)

using Eqs. (11), (12), and (19). Then a mathematical induc-

tion yields24

HN ¼ sin ðNbÞ
sin b

H� sin fðN � 1Þbg
sin b

I: (21)

When jG(x*)j> 1, however, b becomes complex, giving

stop bands of the infinite periodic structure. In this case,

Re[b] ¼ mp, where the integer m is determined so as to

make the dispersion curve continuous.

It is important to note here that while the Bloch phase b
is originally a parameter to characterize the wave in the infi-

nite periodic structure in Fig. 2, it is also connected closely to

the nature of the matrix H, and further to the wave propaga-

tion in the finite multilayered structure in Fig. 1. Based on the

mathematical derivation given above, the relation between the

angular frequency x and the Bloch phase b can be made clear,

as illustrated in Fig. 3. When x* increases from 0, G(x*)

decreases from 1 and b increases from 0. At a certain x*,

G(x*) becomes �1 and b ¼ p. Beyond this point, G(x*)

becomes less than �1 and b becomes a complex value, where

the pass-band terminates and the first stop-band starts in the

case of periodic structure. These relationships are shown in

FIG. 2. An infinite periodic structure with spring-type interfaces.

FIG. 3. The relation between the nondimensional frequency and the Bloch

phase for different K.
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Fig. 3 for different values of K, which indicates that a wider

stop band appears for a greater K.

Attention is now turned to the reflection coefficient of

the finite multilayered structure. Using Eqs. (7) and (21), the

matrix L is rewritten as

L ¼ sin ðNbÞ
sin b

TLWPTWL �
sin fðN � 1Þbg

sin b
TLWS�1TWL:

(22)
Explicit computation of the right-hand side of the above

expression gives

L21

L22

¼ ðf2 � 1Þsin ðNbÞsin x� � 2Kx�sin fðN � 1Þbg
ðf2 þ 1Þsin ðNbÞsin x� þ 2Kx�sin fðN � 1Þbg þ 2if ½sin ðNbÞcos x� � sin fðN � 1Þbg�

; (23)

where

f ¼ Z

Z0

: (24)

In the pass bands, the numerator of the right-hand side of Eq.

(23) is real and can be written as

ðf2 � 1Þsin ðNbÞsin x� � 2Kx�sin fðN � 1Þbg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
sin ðNbþ cÞ; (25)

where A, B, and c are given by

A¼ðf2�1Þsin x� �2Kx�cos b; B¼ 2Kx�sinb; (26)

cos c ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2
p ; sin c ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p : (27)

Namely, Eq. (23), hence the reflection coefficient R in

Eq. (9), vanishes when

Nbþ c ¼ np; (28)

where n is an integer. The locations of the zeroes of the

reflection coefficient on the b-axis or on the x*-axis are

determined by Eqs. (13), (14), and (28). It is noted that the

number of these zeroes for 0< b<p are governed by the pa-

rameters N, K, and f.

The variation of the amplitude reflection coefficient jRj
with the frequency is illustrated in Figs. 4 and 5 for differ-

ent N and K for a fixed f. The amplitude spectra of the

corresponding infinite periodic structures are also shown

for comparison, which exhibit clearly defined pass bands

(jRj ¼ 0) and stop bands (jRj ¼ 1). It is easily recognized

FIG. 4. The amplitude reflection spectrum of the multilayered structure for

f ¼ 3.3 and K ¼ 0.3, (a) N ¼ 5 and (b) N ¼ 10, together with the reflection

spectrum of the corresponding infinite periodic structure.

FIG. 5. The amplitude reflection spectrum of the multilayered structure for

f ¼ 3.3 and K ¼ 0.1, (a) N ¼ 5 and (b) N ¼ 10, together with the reflection

spectrum of the corresponding infinite periodic structure.

084907-4 Y. Ishii and S. Biwa J. Appl. Phys. 111, 084907 (2012)

Downloaded 18 May 2012 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



in Figs. 4 and 5 that for the chosen set of parameters, the

5-layered (10-layered) structure has 4 zeroes (9 zeroes)

(besides x ¼ 0) below the first stop band in the infinite

periodic structure.

III. EVALUATION OF INTERLAYER INTERFACIAL
STIFFNESS

A. Proposal for the stiffness evaluation procedure

The above discussion has shown that the reflection coef-

ficient of the N-layered structure takes zeroes at certain dis-

crete points on the frequency axis in the first pass band of the

corresponding infinite periodic structure. The locations of

these zeroes are influenced by N, K, and f, thus by the inter-

facial stiffness as well as the acoustic properties of the

layers. The measurement of these frequencies will then ena-

ble the determination of the interfacial stiffness, provided

that the acoustic properties of the layers are known. Figures

4 and 5 also show that the amplitude reflection coefficient

jRj exhibits local minima (i.e., zeroes) and maxima in the

first pass band, which locations are also dependent on the

interfacial stiffness. When the reflection spectrum is obtained

experimentally, these local extrema are more easily identi-

fied than the exact zeroes of the reflection coefficient. In Fig.

6, these extremum points are depicted as functions of K for

the 16-layered structure with f ¼ 3.3. It is seen that the varia-

tion of the location of these points with K is monotonic in

the first pass band, which makes the determination of K
(hence KS) from the measured extremum frequencies rela-

tively straightforward, except in the region of very small K
where all curves tend to be flat.

To summarize, the proposed procedure for the identifi-

cation of the interfacial stiffness is put forward as follows.

The ultrasonic reflection spectrum is measured for a multi-

layered structure for a sufficiently wide bandwidth, and the

extremum frequencies in the experimental reflection spec-

trum are compared to the theoretical ones in Fig. 6. The

value of the interfacial stiffness to give the best fit between

the theory and the experiment can then be determined.

B. Discussions on the proposed procedure

1. Influence of viscoelasticity of layers

Some considerations are made here regarding the

feasibility of the proposed procedure from theoretical and

numerical points of view. To be specific, consider a carbon-

fiber-reinforced cross-ply laminate immersed in water, for

which an experimental result will be shown in later sections

of this paper. For the unidirectional carbon-epoxy composite

layer, the acoustic properties in the thickness direction26 are

shown in Table I, together with those for water. Note that

even if unidirectional composite layers are stacked with dif-

ferent angles, the acoustic properties in the stacking direction

are the same for all layers, so the composite laminate can be

treated just as the multilayered structure discussed above as

far as normal-incident longitudinal waves are concerned.

First, it should be remembered that the theoretical dis-

cussions in Sec. II are based on the assumption that the

layers are elastic. Real carbon-fiber-reinforced layers, how-

ever, possess certain viscoelastic nature at ultrasonic fre-

quencies. Therefore, it is necessary to examine if the above

procedure is still valid in the presence of the viscoelasticity.

To this aim, the layers are modeled as linear viscoelastic

solid of Voigt type, whose stress (r)-strain (e) relation is

expressed as

r ¼ Ceþ g
@e
@t
; (29)

where C and g are the static stiffness and the damping coeffi-

cient, respectively. For the composite layer, these parameters

are set as shown in Table II from the literature.26 In this

case, the wave velocity c in the transfer-matrix formulation

should be replaced by the frequency-dependent complex

velocity,

cVEðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVEðxÞ

q

s
; (30)

where CVE(x) is the complex modulus given by

CVEðxÞ ¼ C� ixg: (31)

By this replacement, the results in Sec. II A remain valid and

the reflection coefficient from the multilayered structure is

still given by Eq. (9).

The amplitude reflection spectra for N ¼ 16 and KS ¼
0.2 MPa=nm are shown in Fig. 7 for the cases where the

layers are elastic and where they are viscoelastic. The

extremum frequencies are shown in Fig. 8 as functions of the

interfacial stiffness for both cases. It is found in Fig. 7 that

FIG. 6. Variation of the extremum frequencies with K for N ¼ 16.

TABLE I. Acoustic properties of carbon-epoxy composite layer and water.

Density

(kg=m3)

Longitudinal wave

velocity (m=s)

Carbon-epoxy composite 1600 3062

Water 998 1500
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while the values of the local minimum and maximum reflec-

tion coefficients do change with the introduced viscoelastic-

ity, the extremum frequencies are essentially unchanged (the

average error for each KS being within 0.05% in the first pass

band), except that they show different behavior in the second

pass band at low KS: with the introduction of the viscoelas-

ticity, some extrema disappear above the stop band when the

interfacial stiffness is low, say KS< 0.2 MPa=nm. This sub-

tlety can be circumvented by using only the extremum points

in the first pass band for the evaluation of KS. Consequently,

the identification procedure for the interfacial stiffness can

be used without the full knowledge of viscoelastic properties

of the layers, namely, their elastic properties are sufficient.

2. Application with transient waveforms

Another source of concern is that while the above dis-

cussions are based on the frequency-domain formulation,

actual waveform measurements are commonly made in the

time domain, and the waveform of a limited length is proc-

essed to obtain the reflection spectrum. In order partly to

examine if the procedure works well when a transient reflec-

tion waveform of limited length is used, and partly to eluci-

date the features of temporal waveforms, the numerical

analysis is performed for transient wave propagation in the

composite laminate using the finite element method. The

analysis is based on a two-dimensional elastodynamic analy-

sis code with the concentrated-mass approximation and an

explicit time-integration scheme with the Runge-Kutta

method. It is designed to model the one-dimensional multi-

layered structure (16 layers with total thickness 2.16 mm)

immersed in water, accounting for the viscoelastic proper-

ties26 of the layers and the spring-type interfaces with 3392

degree of freedom. The wave motion is excited in water at

1 mm away from the surface of the composite laminate as an

amplitude-modulated sinusoidal wave with the center fre-

quency 10 MHz. It is noted that while the results of the

transfer-matrix analysis can be in principle transformed to

obtain the time-domain waveforms, the finite element analy-

sis is performed independently here to verify the theoretical

analysis.

The computed reflection waveforms are shown in Fig. 9

for different values of the interfacial stiffness. The wave-

forms show different characteristics according to the varia-

tion of the stiffness. Namely, as the interfacial stiffness is

reduced, the bottom echo is delayed significantly, and the

reverberation just behind the surface echo, due to the reflec-

tion at different interlayer interfaces, becomes remarkable. It

is noted, however, that only with these features the determi-

nation of the interfacial stiffness is difficult.

In the case for KS ¼ 0.8 MPa=nm, the amplitude reflec-

tion spectra are calculated by the fast Fourier transform of

the waveform in Fig. 9, gated for different intervals as (i)

0< t< 2 ls, (ii) 0< t< 3.5 ls, and (iii) 0< t< 5 ls. The

results are shown in Fig. 10, together with the correspond-

ing spectrum calculated by the transfer-matrix method of

TABLE II. Viscoelastic properties of carbon-epoxy composite layer.

Static

stiffness C (GPa)

Damping

coefficient g (Pa s)

Carbon-epoxy composite 15.0 14.0

FIG. 7. The amplitude reflection spectrum of the composite laminate when

the layers are modeled as elastic and viscoelastic. FIG. 9. Temporal reflection waveforms.

FIG. 8. Variation of the extremum frequencies with the interfacial stiffness

when the layers are modeled as elastic and viscoelastic (minima and maxima

are not distinguished).
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Sec. II A in the frequency domain. It is then found that the

extremum frequencies from the transient waveforms gated

with the intervals (ii) and (iii) are indistinguishable from

those of the transfer-matrix method (the errors being within

0.2%), while the spectrum for the interval (i) does not pro-

vide the required information of local extrema. Therefore,

it is considered that the proposed identification procedure

for the interfacial stiffness applies for practical experimen-

tal arrangements, as long as the waveform is acquired so as

to contain from the surface echo up to at least the first bot-

tom echo signals.

IV. APPLICATION TO A CROSS-PLY COMPOSITE
LAMINATE

A. Experimental procedure

The reflection measurement was performed for a cross-

ply laminate of carbon-fiber-reinforced epoxy composite

sample (16 layers, thickness 2.16 mm) with the TR30 carbon

fibers and the #340 epoxy resin, supplied by Mitsubishi

Rayon Co. Ltd., Japan. The sample was immersed in water,

and the ultrasonic pulse-echo measurement was made with a

piezoelectric transducer of nominal frequency 15 MHz and a

commercial scanning system FlexScan (Insight, Inc., To-

kyo), as shown in Fig. 11. Although the simultaneous deter-

mination of the acoustic properties of both plies and

interfaces is desirable, in the present study it is assumed that

the ply properties are known and given as in Table I, so the

relation between the extremum frequencies and the interfa-

cial stiffness is given as in Fig. 8.

The acquired reflection waveform is shown in Fig. 9

together with the numerical results. It may be noted that the

reverberation features after the surface echo in the experi-

mental waveform qualitatively resembles one of the com-

puted results with KS ¼ 1.6 MPa=nm, although substantial

ripples are persistent until later time in the experimental

waveform due perhaps to uneven interfacial properties or

other manufacturing imperfections. Such comparison of

waveforms can give a simple estimate of the interfacial stiff-

ness, but its more objective determination is discussed

below. The fast Fourier transform of the experimental wave-

form was obtained, by setting the time-gate as 0< t< 5 ls.

In order to calculate the reflection coefficient of the compos-

ite laminate, a reference waveform was obtained by meas-

uring the reflected wave from a polished surface of a thick

aluminum block immersed in water with the same experi-

mental setting. The amplitude reflection spectrum of the lam-

inate was obtained by dividing its amplitude reflection

coefficient by that of the aluminum block at each frequency,

also by compensating for the reflection coefficient at the

water-aluminum interface which was easily calculated with

the acoustic impedances of both media.

B. Results and discussion

The obtained reflection spectrum of the composite lami-

nate is shown in Fig. 12. The spectrum shows a relatively

high peak at around 10.5 MHz, in conformity with the nu-

merical results in Fig. 8 corresponding to the first stop band

of the corresponding infinite structure. Although the experi-

mental spectrum in Fig. 12 is only shown for a finite fre-

quency range from 5 to 15 MHz because of the limited

bandwidth of the measurement, it contains a sufficient num-

ber of local maxima and minima. The frequencies of these

extremum points are then extracted. It is a relatively a

straightforward task to find a best KS for which these experi-

mental points fit to the theoretical curves, as shown in

Fig. 13. This gives the interfacial stiffness as KS ¼ 1.6

MPa=nm (K ¼ 0.0347), as the value of KS which minimizes

the sum of the squared errors between 17 experimental

points in the first pass band and the corresponding theoretical

curves. Other extremum frequencies in the second pass band

are also depicted in Fig. 13 to demonstrate their agreement

with the theoretical curves, although they are not used for

the stiffness identification.

Using the so-obtained stiffness, the theoretical reflection

spectrum is computed with the transfer-matrix method and

FIG. 10. The amplitude reflection spectrum of the composite laminate as

calculated by the finite element analysis and the transfer-matrix method.

FIG. 11. Experimental setup.

FIG. 12. Experimental and theoretical amplitude reflection spectra of the

composite laminate.
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shown in Fig. 12 together with the experimental result. The

oscillatory characteristics of the reflection coefficient against

the frequency near the stop band seen in the experimental

result are remarkably well reproduced by the theory.

A micrographic observation was made for the composite

laminate sample, and it was confirmed that there were

regions between plies occupied only by epoxy resin. These

regions were typically 3 to 8 lm thick, although they cannot

be identified as layers of well-defined thickness. Neverthe-

less, if these regions are regarded as layers of uniform thick-

ness he, a simple estimate of their stiffness is given by8,13

KS ¼
ke þ 2le

he

; (32)

where ke and le are Lamé constants of epoxy resin. The

value for the epoxy resin from the same supplier as the com-

posite sample, keþ 2le ¼ 8.8 GPa,27 gives estimations of 1.1

to 2.9 MPa=nm corresponding to the above range of he. The

interfacial stiffness obtained with the proposed procedure is

well within this range, which indicates that the estimated

value is quite reasonable. In other words, the identified inter-

facial stiffness implies an equivalent thickness of the resin-

rich region he ¼ 5.5 lm based on Eq. (32), which is reasona-

ble in the light of the micrographic observation.

Finally, some comments are made regarding the pro-

posed procedure for the evaluation of the interfacial stiffness

KS from the reflection spectrum. First, in Fig. 6, it is seen

that for the region of low KS, the slopes of the curves are suf-

ficiently high so that KS can be determined with high accu-

racy. On the other hand, these slopes tend to become very

small as KS becomes higher. This feature may introduce

some difficulties in determining the interfacial stiffness from

the extremum frequencies.

In order to examine this issue, some perturbation studies

have been carried out by numerical analysis. As a result, it has

been found that at KS ¼ 1.6 MPa=nm, a perturbation of 30

m=s to the assumed layer wave velocity (amounting to 1%

uncertainty) shifts the estimated KS by 20% to 30%, while the

1% perturbation of the layer mass density merely gives 1%

change of KS. Therefore, it is important to have an accurate

layer wave velocity in order to obtain a reliable value of KS.

When there are uncertainties in the layer wave velocity, how-

ever, the obtained KS can still serve as a rough estimate which

may suffice for practical applications. In the lower range of

KS, say at KS ¼ 0.1 MPa=nm, either 1% perturbation of the

layer wave velocity or the density only causes 1% variations

of the estimated KS, so the present procedure is expected to

work well for the evaluation of weakened interfaces.

For the region of even higher KS where the dependence

of the extremum frequencies on KS is lost, the interlayer

interface can be to a good approximation treated as perfectly

bonded interface, so the precise determination of KS may be

unnecessary. In fact, when KS> 10 MPa=nm, say, the

extremum frequency curves are nearly flat as shown in

Fig. 8. In accordance, the temporal waveform for KS ¼ 12.8

MPa=nm in Fig. 9 shows that no remarkable internal inter-

face reflections are present, essentially exhibiting character-

istics of perfectly bonded layers.

Second, it is noted that the interfacial stiffness has been

treated and identified as a frequency-independent real-valued

parameter in the present study. When the interlayer interface

is an idealization of, for example, a thin resin-rich region as in

the composite laminate, the interface not only has a spring-

type property but also exhibits a certain damping behavior. To

characterize the elastic as well as dissipative nature of inter-

layer interfaces, their stiffness should be evaluated as a possi-

bly frequency-dependent, complex-valued parameter. Among

others, Fraisse et al.14 identified such features for an adhesive

layer between solids. The complex-valued evaluation of inter-

layer interfacial stiffnesses for multilayered structures is cer-

tainly an intriguing subject, but left for the future study.

V. SUMMARY

In the present study, the elastic wave propagation in

multilayered structures with spring-type interlayer interfaces

has been analyzed theoretically based on the transfer-matrix

method. Using the notion of the Bloch phase which origi-

nally characterizes wave transmission in the corresponding

infinite periodic structures, some explicit relations have been

derived for the reflection coefficient of the multilayered

structure. Based on the features clarified theoretically, a pro-

cedure has been proposed to identify the interlayer interfacial

stiffness of the multilayered structure from the extremum

frequencies in its amplitude reflection spectrum. The pro-

posed procedure has been shown to apply even when the vis-

cous property of the layers is not known and when a

transient waveform of a limited length is used. Using the

proposed procedure, the stiffness of the interlayer interfaces

in a cross-ply composite laminate has been identified from

the experimental reflection spectrum, and shown to agree

with the range as expected from the micrographic observa-

tion and a simple estimate of the stiffness for a thin resin

layer. The identified stiffness represents the mechanical

property of the interlayer interfaces, and can be used to ana-

lyze the wave propagation in the composite laminate. The

procedure may be also applicable to other kinds of interlayer

interfaces, and is expected to facilitate numerical modeling

and nondestructive diagnosis of multilayered structures.

FIG. 13. Experimental extremum frequencies and their theoretical variation

with the interfacial stiffness.
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