Freshwater Algae from the Nepal Himalaya, collected by a member of the Japanese Climbing Expedition

Author(s)
HIRANO, Minoru

Citation
Contributions from the Biological Laboratory, Kyoto University (1963), 16: 1

Issue Date
1963-03-05

URL
http://hdl.handle.net/2433/155931

Type
Departmental Bulletin Paper

Publisher
Kyoto University
Freshwater Algae from the Nepal Himalaya, collected by a member of the Japanese Climbing Expedition

by

Minoru Hirano

The third climbing expedition to Mt. Manaslu of the Himalayan Mountain Range, led by Mr. Aritosune Maki, took place during the first half year of 1956, and Mr. Toshio Imanishi, a member of the expedition, who made a small collection of algae in the course of his climbing expedition has given me his material to examine. The writer published a paper on the algae of the Nepal Himalaya a short time ago; the present contribution is a second report on Nepalese algae. The material studied in the present work were collected in almost the same course to Mt. Manaslu as that followed by Dr. Sasuke Nakao. The stations where the later collections were made are quite different from those of the previous report, and the species of algae found are also quite different. The following table shows a comparison of groups of algae between the previous and the present report:

<table>
<thead>
<tr>
<th>Name of groups</th>
<th>1953</th>
<th>1956</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-green algae</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Green algae (excluding desmids)</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Desmids</td>
<td>79</td>
<td>22</td>
</tr>
<tr>
<td>Golden algae (Chrysophyceae)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Diatoms</td>
<td>69</td>
<td>41</td>
</tr>
<tr>
<td>Euglenoid algae</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>197</td>
<td>96</td>
</tr>
</tbody>
</table>

As a whole, the total number of species is not so great as that of the previous collection; however the collections are characteristic in plankton-species, especially in green algae. The desmids are relatively small in num-
ber in every place and this is due to the fact that the collection was not
made from a boggy-water or swamp location; the diatoms, too, are not so
great in number owing to the planktic collections. However, this does not
show a scantiness of desmids or diatoms in the Himalayan district. The
algal flora of the present report is quite similar to the flora of Japan and
Europe. The places of the present collections are shown, together with a short
note, as follows:

1. The pond beside the Museum of Kathomandu. Water temperature
was 21°C in the afternoon of March 6, 1956.

2. Dilli Bazaar. A pond near the side of Mr. Krishna’s house. Water
temperature was 16.7°C at 10 a.m., March 6, 1956.

3. A pond at to the right of the entrance to Patan village. Air tem-
perature was 14°C, water temperature 18°C, at 5 p.m., March 5, 1956.

4. A pond near Patan. Water temperature was 30°C., June 9, 1956.

6. A pool on the way to Bodnut temple. Water temperature was 21°C.

7. A pool situated to the right side of the Buri Gandaki River at an
elevation of about 770 metres above the sea, is about three hours distance
from Arughat Bazaar. The pool faces the Great Rock Cliff which is charac-
terized by black spots on the face of white rock. This pool is used as a
bathing place by buffaloes.

8. A permanent pool lying at the right side of the lower end of the
Manaslu glacier ice fall. The area of the pool is about four square metres,
and its altitude is about 4000 metres above the sea. Water temperature at
11 a.m., April 5, 1956, was 14°C.

9. A pool lying on the ridge continuing to the Naike peak from the
back mountain of the base camp. Its altitude is about 4140 metres above the
sea. Water temperature at 11 a.m., April 10, 1956, was 7°C.

10. A glacier lake below Rarkya Pass: altitude about 4850 metres above
the sea, and water temperature 2°C.

Among the collections obtained from ten places, numbers 1–7 were col-
lected in lower districts, less than 1000 metres above sea level; numbers 8–
10 were collected in high alpine regions of about 4000 metres or more. The
high places correspond to the upper limit of tree-growing. The writer did not observe any phytoplankton in the present material from the two glacier lakes the same as found in the glacier lake of Sama in the previous collection made by Dr. Sasuke NAKAO; however, four algae (blue-green algae two and desmids two) were observed in the material of the glacier lake lying below Rarkya Pass. They are:

- *Aphanathece castagnei*
- *Cosmarium undulatum* var. *minutum*
- *Phormidium papyraceum*
- *C. abbreviatum* forma *pygmaea*

Also two species of blue-green algae *Phormidium autumnale* and *Lyngbya stagnina* were observed in the pool lying at the lower end of the Manaslu glacier ice fall. According to Mr. Toshio IMANISHI’s note, some mosses were growing in 2°C waters of the glacier lake below Rarkya Pass; the elevation of that lake is about 4850 metres above the sea, so that the above mentioned four species must have been growing among mosses or attached to moss-polsters, and would be collected by plankton net in collections. There is, supposedly, a considerable amount of algae in moist soils or in pools near the side of the glacier, even on the alpine zone of Himalaya.

The alga-flora of the lowland area of Nepal is fairly rich in species number, and comprises various kinds of algae in every pond or pool; the flora consists almost entirely of Eurasian elements; however, some are rare, and are sporadically distributed far away from each other. Some are shown as follows:

- *Colasium cyclopica*,
- *Chlorogonium maximum*

The desmids in collected places were quite similar to those of Europe and Japan.

Enumeration of species

Cyanophyta

Chroococccaceae

Colony spherical; cells densely disposed, 4.3µ in diameter.

Hab. Rani Pokhari, appeared in abundant as plankton. Distr. Previously
known to exist in Burma. Cosmopolitan species.

Aphanathece castagnei (Bréb.) Rabenh. in Geitler Süssw. fl. 12, p. 74, f. 63, 1925; Skuja Symb. Sinica 1, p. 14, pl. 1, f. 1, 1937.

Cells elliptic, 2.6μ in breadth and 4.4μ in length.

Hab. in glacier lake below Rarkya Pass. Distr. Previously known to exist in Yunnan, South China. Cosmopolitan species.

Nostoc paludosum Kütz. in Geitler Krypt. Fl. 14, p. 836, f. 528a, 1932; Huber-Pestalozzi Binnengew. 16: 1, p. 196, f. 92, 1938.

Colony spherical; trichome enveloped in gelatinous substance and entangled, 2.6μ in breadth.

Anabaena globosa Hirano, sp. nov.

Trichomata solitaria inter alias algas planctonicas libere natantia regularicer flexuosa vel irregulariter spiralia, subcircularia vel semicirculararia, 9.5-10.8μ in diametro sine vagina gelatinosa; spirae circa 60μ lata sunt, cellulis vegetativis sphaericis vel seriaformibus cum distincte pseudovacuolis leviter constrictis ad geniculatum; heterocystis sphaericis leviter magnioribus quam cellulis vegetativis, circa 10.8-13μ in diametro; sporis sphaericis vel late ellipticis singulatim vel saepe 2-7 in seriatim contiguis ordinatis, circa 13-14.6μ in diametro et 14 17.2μ in longitudinem, ad heterocystis contiguis.

Hab. Rani Pokhari in Kathomündu.

This planktic species was found with Microcystis flos-aquae in a mixed state. The trichome of this species is regularly coiled generally 3-4 times; the breadth of the coils about 60μ. This species resembles *A. spiroides* in
flexuose nature of trichome and globose heterocyst, but the resting spores are globose and connect 2 or 3 spores in a uniseriate chain; furthermore seven spores are often connected with one another. The breadth of vegetative cell and heterocyst is somewhat larger than the cell of *A. spiroides*. This species also resembles *A. planctonica* and *A. circinalis*, but differs from the former by the coiled trichome and the position of the resting spore against the heterocyst and differs from the latter by the form and size of the spore and its separated position to heterocyst.

Oscillatoriaceae

Oscillatoria princeps Vauch. in Geitler Krypt. Fl. 14, p. 947, f. 598a, 601c–g, 1932; Huber-Pestalozzi Binnengew. 16: 1, p. 234, f. 175, 1938.

Trichomes 56–60 μ in breadth and 6.5 μ in length, slightly constricted at the cross wall, and slightly attenuated near the apices which, possess calyptra (43 μ in breadth).

Phormidium ambiguum Gom. in Geitler Krypt. Fl. 14, p. 1015, f. 647e, 1932.

Cells 5.2 μ in breadth, about half times as long as broad, faintly constricted at the cross wall, not attenuated towards the apices.

Trichomes 3.4 μ in breadth, slightly longer than broad, not granulated and constricted at the cross wall.

Phormidium fragile Gom. in Geitler Krypt. Fl. 14, p. 999, f. 636c, d, 1932.

Trichomes 3 μ in breadth, distinctly constricted at the cross wall; apical cell long conical.

Hab. No. 5. Distr. Previously known to exist in South-west China, Europe, N. America, and Africa.

Phormidium papyraceum (Ag.) Gom. in Geitler Krypt. Fl. 14, p. 1020,
Trichomes not constricted at the cross wall, 4.3µ in breadth and only half as long as they are broad.

Phormidium autumnale (Ag.) Gom. in Geitler Krypt. Fl. 14, p. 1026, f. 652k, l, 653a, 1932.

Trichomes 4.3µ in breadth, about as long as broad or slightly shorter than broad, not constricted at the cross wall.

Lyngbya stagnina Kütz. in Geitler Krypt. Fl. 14, p. 1066, f. 679b, 1932.

Trichomes 13µ in breadth without sheath, about 1/3 times longer than broad.

Hab. No. 8. Distr. Previously known to exist in Pamir, Europe.

Euglenophyta

Euglenaceae

Cells 25-26µ in length and 23-24µ in breadth.

Phacus Makii Hirano, sp. nov.

Cellulae mediocriter magna, ellipticae vel elliptico-ovatae cum caudus rectus robustus acute attenuatus mediocriter longus ordinatae, marginibus lateralibus valde incisuris, incisuris singulis unilateralis vel utroque in margine medianis, granulis paramylonis magnis discoidis annulatis in centrum cellulae ordinatis et paene dimidius longius quam latis cellularum, long. sine caudus 64.5µ, cum caudus 86-95µ. (Pl. I, fig. 8, 9)

Cells fairly large, elliptic or elliptic-ovate with a strong robust and fairly long caudus which is straight and sharp toward the apex, paramylon bodies large, disc-shaped, disposed at the center of the cell, and at least half as long as it is broad, lateral margin has a deep incision in one or both sides; periplast numerous and small, disc-shaped. Cell length 64.5µ without caudus,
86–95µ with caudus, 43–45.2µ broad.

Hab. No. 7.

Phacus crenatus Hirano, sp. nov.

Cellulae modicae, asymmetricae subellipticae, parte dorsalis arcuatae valide incisurae, incisuris duobus equidistantibus in margine lateris, parte ventralis paullo convexae mediocrer incisurae, incisuris in medio et subapice marginis lateris; caudus robustus longe et acute attenuatus et recurvatus; granulae paramylaceae discoidea duobus in centrum cellulae ordinatae; chloroplastae viridia discoideae parva numerosa, long. cell. 86µ cum caudus et 64.5µ sine caudus, lat. cell. 31.8µ; membrana striata. (Pl. I, fig. 10.)

Hab. No. 2.

Cells of medium size, asymmetrically subelliptic in outline, gullet somewhat laterally disposed and near the anterior end, posterior end produced into a long and robust caudus which is somewhat recurved and sharp at the end, lateral margin 2–3 crenated, dorsal side 3 and ventral side 2; cell wall longitudinally punctate-striated, series of striation convergent at both ends; paramylon body two and globular in form, length of cell 64.5µ without caudus, 86µ with caudus, breadth of cell 31.8µ.

This species resembles *Ph. lismorensis* but differs from it by the lateral position of gullet in the ventral side, the asymmetry of the cell outline, and also by an unequal crenation in both lateral sides.

Cells without caudus 34.4µ, with caudus 41.3µ in length; 24.5µ in breadth. (Pl. 1, fig. 7.)

Hab. No. 2. Distr. Denmark.

Cells elongate cylindrical with parallel lateral margin, posterior end prolonged into long caudus, paramylon bodies long cylindrical and two or three in number. Cells 180–187µ in length and 10.7–11µ in breadth.

Euglena proxima Dang. in Lemmermann Süssw.-fl. 2, p. 129, f. 193, 1913;
Minoru Hirano

Cells 64.5μ in length and 17.2μ in breadth.

Cells 30-31μ in length and 24-24.7μ in breadth. The lorica is brown in colour.

Trachelomonas oblonga Lemm. in Sässw.-fl. 2, p. 147, f. 278, 1913; Huber-Pestalozzi Binnengew. 16: 4, p. 278, f. 459, 1955.

Cells 38-38.6μ in length and 34-34.6μ in breadth.

Hab. No. 2. Distr. Europe.

Colacium cyclopicola (Giclk.) Bourr. in Huber-Pestalozzi Binnengew. 16: 4, p. 126, f. 109, 1955.

Cells 21.5-22μ in length and 8.6-9μ in breadth. (Pl. I, fig. 2.)

Chrysophyta

Bacillariophyceae

Coscinodiscaceae

Cyclotella Meneghiniana Thwaites in Hustedt Krypt. Fl. 7: 1, p. 338, f. 171a, 1930.

Diameter of valve 13.2μ.

Fragilariaeae

Meridion circulare Ag. in A. Cleve Diat. Schw. Finn. 2, p. 14, f. 312, 1953.

Valve 48.5μ in length and 6.2μ in breadth.

Eunotiaceae

Eunotia angusta (Grun.) Å. Berg in A. Cleve Diat. Schw. Finn. 2, p.
Freshwater Algae from the Nepa Himalaya

81, f. 407g, 1953.
Valve 26.4µ in length and 5.7µ in breadth. (Pl. II, fig. 2.)
Hab. No. 4. Distr. Europe.

Valves 35µ in length, 7.5µ in breadth, striae 7–8 in 10µ. (Pl. III, fig. 5.)
Hab. No. 3. Distr. India, Burma.

Achnanthaceae

Valves 13–13.5µ in length and 4.3–4.5µ in breadth. (Pl. III, fig. 6.)

Valves 13–13.5µ in length and 7µ in breadth. (Pl. II, fig. 12.)
Hab. No. 4. Distr. Europe.

Achnanthes exigua GRUN. in HUSTEDT Krypt. Fl. 7: 2, p. 386, f. 832a, b, 1933; A. CLEVE Diat. Schw. Finn. 3, p. 35, f. 544a–d, 1953.
Valves 17.5–18µ in length and 8–8.3µ in breadth. (Pl. II, fig. 1.)

Achnanthes Imanishii Hirano, sp. nov.
Valva inferiori elliptico-lanceolata vel longe rhomboida, apicibus obtusis rotundatis, 17–43µ longa, 6–8.5µ lata. Area axialis angusta et lineae, non expansa prope centrum valvarum. Raphe directa sed interdum leniter curva prope centrum. Striae lineolatae, fere parallelae, 8 in 10µ, sed dissimilis interruptae prope centrum, in parte centrali ad unum striae in formam triangularem separate ordinatae et in parte alius centrali nullae. Valva superiori pseudoraphe angusta, lineari, centrali, striis transversalibus omnes manifesto punctatis. (Pl. II, fig. 3, 4, 10, 11.)
Inferior valves elliptico-lanceolate or often long rhomboid, apices obtusely rounded, 17–43µ long and 6–8.6µ broad, axial area narrowly linear and not expanded at the centre, raphe straight but faintly curved in one side near
the middle, striae linear, almost parallel, about 8 in 10μ, interrupted at the
middle in unequal manner, striae isolated in groups triangular in manner on
one side and quite absent on other side. Superior valves with a straight and
narrow-linear pseudoraphe, striae punctated, 7-8 in 10μ.

Hab. A pond near Patan.

Cocconeis placentula Ehrenb. var. *lineata* (Ehrenb.) Cleve in Hustedt
Krypt. Fl. 7: 2, p. 348, f. 802d, 1933.

Naviculaceae

Frustulia rhomboides (Ehrenb.) De Toni var. *saxonica* (Rabenh.) De
Toni in Hustedt Krypt. Fl. 7: 2, p. 729, f. 1099a, 1937.

Stauroneis phoenicenteron Ehrenb. in Hustedt Süßw.-fl. 10, p. 255, f.

Valves 62-84μ in length and 15.3μ-19.8μ in breadth.

Hab. No. 4, 6. Distr. India, Yunnan, Setschwan, Afghanistan, Europe.

Stauroneis phoenicenteron Ehrenb. var. *intermedia* (DippL.) A. Cleve

Valves 66-84μ in length and 15.4-20μ in breadth.

Navicula cryptocephala Kütz. in Hustedt Süßw.-fl. 10, p. 295, f. 496,

Valves 27-28.5μ in length and 7.4-7.8μ in breadth. (Pl. III, fig. 15.)

Hab. No. 4. Distr. Yunnan, Setschwan, Pamir, Afghanistan, Europe.

The forms from the Patan-pond are similar to *Navicula Gregaria* but
differ from it by the prominently radial arrangement of the striae.

Navicula mutata Krasske in A. Cleve Diat. Schw. Finn. 3, p. 163, f.
829a, b, 1953.

Valves 17-18μ in length and 6-6.5μ in breadth. (Pl. III, fig. 9.)

Hab. No. 4. Distr. Europe.

Navicula Kriegeri Krasske in A. Cleve Diat. Schw. Finn. 3, p. 170, f.
853A, 1953.
Freshwater Algae from the Nepal Himalaya

Valves oblong-elliptic with rounded end, striae densely disposed, slightly radial, axial area narrow-linear, without central area, 12.8-13.4μ in length and 6.4-6.7μ in breadth. (Pl. II, fig. 8.)

Valves 28-28.5μ in length and 10-10.5μ in breadth. (Pl. III, fig. 11.)

Valves rhomboide-lanceolate with rounded end, 44-47μ in length and 8-9μ in breadth, striae radial, punctate-striated, axial area sublinear and slightly expanded at the middle, central area small elliptic. The specimens from Patan do not always exactly agree with the European description and figure, margin almost straight (instead of convex). SKVORTZOW described a new form of *Navicula hasta* (f. minor SKv.) from Lake Hanka, Manchuria, but the present Nepalese specimens differ from it in the form of the central area. (Pl. III, fig. 8.)

Hab. No. 4. Distr. Afghanistan, Japan, Europe.

Valves 96.8-106μ in length and 17.6-19.8μ in breadth.

Valves rhomboide-lanceolate, with broadly rounded end, 35-37μ in length and 8.5-8.8μ in breadth, striae radial, axial area narrow-linear slightly expanded at the middle, central area small elliptic. The variety resembles *Navicula mollis*, *N. Koenigi* and intermediate form of *Navicula cryptocephala*, figured by A. CLEVE, but do not agrees with their dimensions. (Pl. III, fig. 10.)

Hab. No. 4. Distr. Yunnan, Manchuria.

Valves linear-lanceolate with broadly rounded rostrated ends, margin parallel not inflated at the middle, 39.6-53μ in length and 10.5-11μ in breadth, raphe filamentous, straight, axial area narrow linear but expanded at the middle, central area rhomboidal, transverse striae interrupted at the middle and radial but convergent at the end. (Pl. II, fig. 16, 17.)

Valves somewhat inflated at the median part, with three slightly undulated margins, 50.6-70.4μ in length and 9.2-10.6μ in breadth, axial area somewhat broader than that of the typical form, in other respects as the typical form. (Pl. II, fig. 18.)

Hab. No. 4. Distr. Setschwan, Europe.

Pinnularia biglobosa (Schum.) A. Cleve forma interrupta A. Cleve in Diat. Schw. Finn. 4, p. 28, f. 1029b, c, 1955.

Valve 44μ in length and 8μ in breadth. (Pl. II, fig. 6.)

Hab. No. 6, 7. Distr. Europe.

Hustedt described a new species of Pinnularia from Mus-tagh-ata of Pamir as Pinnularia Hedini, based on the material of collection by Sven Hedén. This species is large in size and corresponds to twice the size of the present form and is also similar to this form by the shape of the cell and its valve structure.

Pinnularia stauroptera (Rabenhl.) Cleve var. lanceolata A. Cleve in Diat. Schw. Finn. 4, p. 68, f. 1091u–w, 1955.

Valves lanceolate with slight convex and subparallel lateral margins, end broad and truncately rounded and somewhat rostrated, 53-57μ in length and 8.8-11μ in breadth, central area broad rhomboidal, series of transverse striae interrupted at the middle, radial near the middle but convergent at the end. This variety resembles Pinnularia Brébissonii var. truncata but differs from it by slightly larger cells and slightly rostrated ends of the valves. (Pl. II, fig. 13.)

Valves with somewhat capitated ends, 26–27μ in length and 8–8.6μ in breadth, central area broad rhomboidal, striae interrupted, radial near the middle and convergent at the end. This variety resembles *Pinnularia Brébissonii* var. *hybrida* but bears a more capitated end. (Pl. II, fig. 7.)

Pinnularia divergentissima (Grun.) Cleve in Van Heurck Synop. Diat. Belg. pl. 6, f. 32, 1885; Hustedt South. Tibet 6, p. 128, pl. 9, f. 6, 1922.

Valves narrow linear-lanceolate, gradually attenuated towards the well rounded end, 30–32μ in length and 5–5.5μ in breadth, striae interrupted at the middle, radial but convergent at the end, axial area linear but gradually expanded towards the centre, central area long rhomboidal. (Pl. II, fig. 5.)

Pinnularia dactylus Ehrenb. in A. Cleve Diat. Schw. Finn. 4, p. 72, f. 1100a, 1955; Hustedt Süssw.-fl. 10, p. 332, f. 615, 1930.

Valves 190–196μ in length and 30–32μ in breadth.

Hab. No. 2. Distr. Europe.

Pinnularia brevicostata Cleve in A. Cleve Diat. Schw. Finn. 4, p. 37, f. 1045a, b, 1955.

Valves linear-lanceolate with well rounded ends, 104–108μ in length and 23–24μ in breadth, axial area broad, linear-lanceolate without special central area, striae radial at the middle, convergent at the end, length of striae do not extend beyond half of the valve width. According to the explanation of A. Cleve, *Pinnularia brevicostata* described and figured by Hustedt belong to *P. crucifera* var. *elongata*.

Hab. No. 2. Distr. Europe.

Valves 156–163μ in length and 26–27μ in breadth.

Hab. No. 2. Distr. Europe.

Pinnularia sudetica Hilsbr var. **leptogongyla** (Ehrenb.) A. Cleve in Diat. Schw. Finn. 4, p. 76, f. 1105k, i, 1955.
Valves 80–82μ in length and 13–13.4μ in breadth.

Pinnularia interrupta W. Smith in Hustedt Süssw.-fl. 10, p. 317, f. 573b, 1930.

Valves with distinctly capitated ends, 38–42μ in length and 8.5–9μ in breadth, transverse striae gradually shortened towards the middle part of the valve and broadly interrupted at the middle, disposed in radial but convergent at the end, axial area narrow-linear, gradually expanded towards the center, central area broadly rhomboidal. This species resembles *Pinnularia biceps* var. *amphicephala*, transferred from *P. amphicephala*, described by A. Mayer and Hustedt's *P. braunii* var. *amphicephala*, but is distinguished by smaller valves and shape of central area. W. Smith's original figure of *P. interrupta* shows an almost straight lateral margin (delicately inflated side) but the present specimens bear straight sides, and sometimes a faint retuse side. (Pl. II, fig. 14.)

Hab. No. 3. Distr. Europe.

Pinnularia gibba W. Smith in A. Cleve Diat. Schw. Finn. 4, p. 69, f. 1092a, b, 1955. (as *genuina* Mayer)

Valves slightly smaller than the European dimensions, 46–48.5μ in length and 8.5–9μ in breadth, distinctly capitated at the end, breadth of capitated end almost equal to the breadth of the valves, axial area fairly broad and linear, transverse striae somewhat short, slightly radial at the middle and convergent at the end.

Hab. No. 3. Distr. Europe.

Pinnularia acrosphaeria (Bréb.) W. Sm. var. *minor* Cl. in A. Cleve Diat. Schw. Finn. 4, p. 25, f. 1022d, 1955.

Valves 48–50μ in length, 8.5–9μ in breadth, striae 11–12 in 10μ. (Pl. II, fig. 15.)

Cymbellaceae

Valves lunate or semielliptic, ventral margin almost straight and faintly inflated at the middle, dorsal margin strongly convex or arcuate, ends well rounded, 28–40μ in length and 8.5–11μ in breadth, raphe straight, eccentric near the ventral margin, polar notch disposed near the end of valve, axial area narrow-linear and without a central area. This species resembles *C. turgida*, but is distinguished by a smaller valve and delicate marking of the striae. This species is probably distributed widely in the Nepalese districts. I have previously reported this species in various districts; Fosd also reported this species in many districts of Afghanistan. (Pl. III, fig. 3.)

Valves 28.4–37.4μ in length and 8.8–9.5μ in breadth. This variety resembles *C. ventricosa* but the end of valves is more acute than those of that species. The terminal notch of the present species is disposed separated from the end of the valves. Striae of dorsal side are disposed somewhat radially, and bear a distinct isolated puncta at the tip of the middle stria. A. CLEVE removed *C. norvegica* var. *curta* to this species as a variety. The present specimens agree well with forma *curta* of this variety figured by A. CLEVE. (Pl. III, fig. 4.)

Valves narrow, ventral side almost straight but faintly inflated at the middle, 65–68μ in length and 8.6–9μ in breadth, axial area narrow-linear, central area small, slightly expanded, raphe straight, eccentric. The valves of the present specimens were somewhat narrower than those of the European description. Nepalese specimens do not agree with the figure of the same species given by HUSTEDT. (Pl. III, fig. 17.)

Gomphonema olivaceum (LYNGB.) KÜTZ. in A. CLEVE Diat. Schw. Finn. 4, p. 191, f. 1291f, g, 1955.
Valves 30–37.5μ in length and 8.7–9.2μ in breadth. (Pl. II, fig. 9.)

Valves heteropolar, narrow-rhomboidal, apical end slightly broader than that of basal end, broadly rounded, 26–28μ in length and 6–6.5μ in breadth, axial area sublinear slightly expanded in centre, striae radial. This variety resembles Gomphonema intricatum var. pumillum but differs from it by equidistant disposition of striae in the centre, and by deficiency of isolate puncta. (Pl. III, fig. 12.)

Valves 56–59μ in length and 12–13μ in breadth. (Pl. III, fig. 1.)

Gomphonema turris (EHRENB.) GRUN. var. nepalense HIRANO, var. nov.
Valva angusta 66μ in longa et 12.3μ in lata, marginibus superioribus levioribus quam marginibus inferioribus. (Pl. III, fig. 2.)
Hab. No. 6.
This variety differs from the typical form by bearing narrower valves. The superior lateral margin is slightly shorter than that of inferior ones (in typical form superior lateral margin is half the length of the inferior ones).

Valves 33–35μ in length and 11.7–12.3μ in breadth. (Pl. III, fig. 13.)
Hab. No. 4. Distr. Siberia, India, Tibet, Afghanistan, Europe.

Epithemiaceae

Epithemia proboscidea (KÜTZ.) W. SMITH in A. CLEVE Diat. Schw. Finn. 5, p. 41, f. 1413a, b, 1952.
Valves 51–54μ in length and 7.7–8μ in breadth.
Hab. No. 4. Distr. Europe.

Nitzschia amphioxys (EHRENB.) GRUN. in A. CLEVE Diat. Schw. Finn. 5, p. 46, f. 1419a–c, 1952.
Valves 18–92\(\mu\) in length and 15–15.7\(\mu\) in breadth, costae 5 in 10\(\mu\).
Hab. No. 10. Distr. Interior of Asia, Europe.

Valves 35–38\(\mu\) in length and 7–7.5\(\mu\) in breadth.
Hab. No. 4. Distr. Europe.

Valves 52–56\(\mu\) in length and 6–6.5\(\mu\) in breadth.

Nitzschia ignorata KRASSKE in HUSTEDT Süssw.-fl. 10, p. 422, f. 819, 1930.
Valves 83–85\(\mu\) in length and 7–7.5\(\mu\) in breadth.
Hab. No. 4. Distr. Europe.

Heterokontae

Chlorobotrydaceae

Chlorobotrys limneticus G. M. SMITH in Wisc. Bull. 57, p. 82, pl. 15, f. 9, 1920.
Diameter of colony 52\(\mu\), cell 8.6\(\mu\) in diameter. Cells broadly elliptic.
Hab. No. 4. Distr. U. S. A.

Chlorophyta

Chlamidomonadaceae

Cells 86–89\(\mu\) in length and 13–13.7\(\mu\) in breadth.
Hab. No. 2. Distr. Europe.
Volvocaceae

Colony 52μ in diameter, cell 8.6μ in diameter.

Palmellaceae

Colony about 130μ in diameter; cells about 13μ in diameter.

Selenastraceae

Hab. No. 1, Distr. Europe, U. S. A.

Chlorellaceae

Chlorococcaceae

Cells 103μ in length and 4.3μ in breadth.

Hab. No. 5. Distr. Europe, U. S. A.

Oocystaceae

Cells without spine, 17.2μ in length and 10.8μ in breadth. (Pl. I, fig. 3, 4.)

Hydrodictyaceae

Scenedesmaceae

Cells 5.6µ in diameter; length of spine 56µ. (Pl. I, fig. 5.)
Hab. No. 7. Distr. Europe, U. S. A.

Cell 25.8µ in length and 7.7µ in breadth; length of spine 26µ. (Pl. I, fig. 6.)
Hab. No. 5. Distr. S. Africa.

Cells 25–26µ in length and 6.4–7µ in breadth.

Hab. No. 6. Distr. Europe, U. S. A.

Cell 17µ in length and 3.4µ in breadth. (Pl. I, fig. 1.)
Hab. No. 7. Distr. Java, U. S. A.

Desmidiaceae

Closterium venus Kütz. var. incurvum (Bréb.) Krieger in Krypt. Fl.

Length 51.6μ, breadth 8.6μ.

Length 385μ, breadth 17.2μ.

Length 236.5μ, breadth 36.6μ.

Length 124–125μ, breadth 10.5–11μ.

Length 616μ, breadth 23.7μ.

Length 385μ, breadth 86μ, Isthmus 60μ. (Pl. 1, fig. 14.)
Hab. No. 5. Distr. Japan, Formosa, Australia, Brazil, Uruguay.

Length 32.3μ, breadth 25.8μ, Isthmus 6.4μ.
Length 23µ, breadth 15µ, isthmus 4µ.

Length 58µ, breadth 38.7µ, isthmus 13µ.

Length 64–66µ, breadth 52µ, isthmus 17µ.

Length 25.8µ, breadth 19.4µ, isthmus 6.4µ.

Length 39.6µ, breadth 23.7µ, isthmus 10.8µ.

Length 28µ, breadth 18.5µ, isthmus 5.2µ.

Length 13.3µ, breadth 14.2µ, isthmus 6µ.

Length 30\(\mu\), breadth 23.7\(\mu\), isthmus 6.2\(\mu\).
Hab. No. 1. Distr. Japan, India, Europe, Spitzbergen, Brazil.

Length 26.7\(\mu\), breadth 23.7\(\mu\), isthmus 10.8\(\mu\).

Length 19.4\(\mu\), breadth 17.2\(\mu\), isthmus 6.3\(\mu\).

Length 53.8\(\mu\), breadth 51.6\(\mu\), isthmus 19.4\(\mu\).

Length 31.4\(\mu\), breadth 28\(\mu\), isthmus 8.6\(\mu\). (Pl. III, fig. 16.)

Length 172-180\(\mu\), breadth 155-160\(\mu\), isthmus 21.5-26\(\mu\).
Hab. No. 1. Distr. India, Japan.

Length 49\(\mu\), breadth without proc. 30\(\mu\), with proc. 79.5\(\mu\), isthmus 13\(\mu\).
There are distinct verrucae on the basal part of the Nepalese forms and also imperfect ones at the inferior base of the processes which are produced horizontally. The cells in vertical view have a pair of emarginate verrucae within
each lateral margin and these verrucae are continued to the serie of denticulations along the inner side of the processes. The processes are somewhat slender and resemble the var. *annulatum*, but differ from it by the lack of double series of granules. (Pl. III, fig. 14.)

Hab. No. 1. Distr. India, China, Europe.

Plate I

1. Scenedesmus Bernardii G. M. Smith 19
2. Colacium cyclopicola (Gickhl.) Bourr. 8
3, 4. Chodatella ciliata (Lagerh.) Lemm. 18
5. Micractinium pusillum Fres. 19
7. Phacus suecicus Lemm. var. inermius Nygaard 7
8, 9. Phacus Makii Hirano 6
10. Phacus crenatus Hirano 7
11-13. Anabaena globosa Hirano 4
14. Pleurotaenium inermium (Möbius) Hirano 20
<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Alga</th>
<th>Author</th>
<th>Plate II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Achnanthes exigua</td>
<td>Grun.</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Eunotia angusta (Grun.)</td>
<td>A Berg.</td>
<td>8</td>
</tr>
<tr>
<td>3, 4.</td>
<td>Achnanthes Imanishii</td>
<td>Hirano</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Pinnularia divergentissima (Grun.)</td>
<td>Cleve</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Pinnularia biglobosa (Schum.)</td>
<td>A. Cleve</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Pinnularia biceps</td>
<td>Greg. var. minor (B. Peters.)</td>
<td>A. Cleve</td>
</tr>
<tr>
<td>8.</td>
<td>Navicula Kriegeri</td>
<td>Kraske</td>
<td>10</td>
</tr>
<tr>
<td>9.</td>
<td>Gomphonema olivaceum (Lyngb.)</td>
<td>Kütz.</td>
<td>15</td>
</tr>
<tr>
<td>10, 11.</td>
<td>Achnanthes Imanishii</td>
<td>Hirano</td>
<td>9</td>
</tr>
<tr>
<td>12.</td>
<td>A. delicatula (Kütz.)</td>
<td>Grun.</td>
<td>9</td>
</tr>
<tr>
<td>13.</td>
<td>Pinnularia stauroptera (Rabenh.) Cl. var. lanceolata</td>
<td>Cleve</td>
<td>12</td>
</tr>
<tr>
<td>14.</td>
<td>Pinnularia interrupta</td>
<td>W. Smith</td>
<td>14</td>
</tr>
<tr>
<td>15.</td>
<td>P. acrospheria (Bréb.) W. Sm. var. minor</td>
<td>Cleve</td>
<td>14</td>
</tr>
<tr>
<td>16, 17.</td>
<td>P. microstauron (Ehrenb.)</td>
<td>Cleve</td>
<td>11</td>
</tr>
<tr>
<td>18.</td>
<td>P. microstauron var. ambigua</td>
<td>Meister</td>
<td>12</td>
</tr>
</tbody>
</table>
Plate III

1. Gomphonema lanceolata EHRENB. ... 16
2. G. turris (EHRENB.) GRUN. var. nepalense Hirano 16
3. Cymbella ventricosa Kütz. ... 14
4. C. gracilis (RabenH.) Cleve var. girardi (Hér.) A. Cleve 15
5. Eunotia indica Grun. ... 9
6. Achnanthes conspicua Mayer ... 9
7. Meridion circulare Ag. .. 8
8. Navicula lanceolata (Ag.) Kütz ... 11
9. N. mutata Krasske .. 10
10. N. peregrina (EHRENB.) Kütz. var. hankensis Skvortzow 11
11. N. dicephala (EHRENB.) W. Smith 11
12. Gomphonema olivaceum (Lyngb.) Kütz. var. subreticulosum GRUN... 16
13. G. subclavatum Grun. .. 16
14. Staurastrum Manf.iiiiii Delp. ... 22
15. Navicula cryptocephala Kütz .. 10
16. Cosmarium dichordrum W. & G. S. West 22
17. Cymbella helvetica Kütz. .. 15
Minoru Hirano: Freshwater Algae from the Nepal Himalaya

Plate III