<table>
<thead>
<tr>
<th>Title</th>
<th>Difference in fine specificity to polysaccharides of Candida albicans mannoprotein between mouse SIGNR1 and human DC-SIGN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takahara, Kazuhiko; Arita, Takuya; Tokieda, Sumika; Shibata, Nobuyuki; Okawa, Yoshio; Tateno, Hiroaki; Hirabayashi, Jun; Inaba, Kayo</td>
</tr>
<tr>
<td>Citation</td>
<td>Infection and immunity (2012), 80(5): 1699-1706</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/156138</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012, American Society for Microbiology.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Difference in fine specificity to polysaccharides of *C. albicans* mannoprotein between mouse SIGNR1 and human DC-SIGN

Kazuhiko Takahara¹*, Takuya Arita¹, Sumika Tokieda¹, Nobuyuki Shibata², Yoshio Okawa², Hiroaki Tateno³, Jun Hirabayashi³ and Kayo Inaba¹*¶

Running title: Recognition of *C. albicans* polysaccharides by SIGNR1

From ¹Department of Animal Development and Physiology, Graduate School of Biostudies, and *CREST, Kyoto University, Yoshida-Konoe, Sakyō, Kyoto, Kyoto 606-8501, Japan, ²Department of Infection and Host Defense, Tohoku Pharmaceutical University, Aoba, Komatsushima 4-4-1, Sendai, Miyagi 981-8558, Japan, and ³Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Ibaraki 305-8568, Japan.

¶Address correspondence to: Dr. Kayo Inaba, Laboratory of Immunobiology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyō, Kyoto 606-8501, Japan.

Phone: +81-75-753-4088, Fax: +81-75-753-4112, E-mail: kayo@lif.kyoto-u.ac.jp
Abbreviations used in this paper: antibody, Ab; carbohydrate recognition domain, CRD; fluorescein isothiocyanate, FITC; human DC-SIGN, hDC-SIGN; monoclonal antibody, mAb; phycoerythrin, PE; phosphorylated mannose, PM; RAW264.7 cells expressing human DC-SIGN, RAW-hDC-SIGN; RAW264.7 cells expressing hDC-SIGN of which CRD is replaced with SIGNR1 CRD, RAW-chimera; RAW264.7 cells expressing SIGNR1, RAW-SIGNR1; soluble lectin, sLectin; soluble form SIGNR1, sSIGNR1; soluble form human DC-SIGN, shDC-SIGN; toll-like receptors, TLRs.
Abstract

C-type lectin SIGNR1 directly recognizes *Candida albicans* and zymosan, and has been considered to share properties of polysaccharide recognition with human (h)DC-SIGN. However, the precise specificity of SIGNR1 and difference from that of hDC-SIGN remains to be elucidated. We prepared soluble forms of SIGNR1 and hDC-SIGN and conducted experiments to examine their respective specificities.

Soluble SIGNR1 (sSIGNR1) bound several types of live clinical isolate *C. albicans* strains in an EDTA-sensitive manner. Inhibition analyses of sSIGNR1 binding by glycans from various yeast strains demonstrated that SIGNR1 preferentially recognizes N-glycan α-mannose side chains in Candida mannoproteins, as reported in hDC-SIGN. Unlike shDC-SIGN, however, sSIGNR1 recognized not only *S. cerevisiae* but also *C. albicans* J-1012 glycan even after α-mannosidase treatment that leaves only β1,2-mannose capped α-mannose side chains. In addition, the glyco-microarray analyses showed that sSIGNR1 binds mannans from *C. albicans* and *S. cerevisiae*, but does not recognize Lewis^a/b/x/y^ antigen polysaccharides as in shDC-SIGN.

Consistent with these results, RAW264.7 cells expressing hDC-SIGN of which the carbohydrate recognition domain (CRD) was replaced with that of SIGNR1 (RAW-chimera) produced comparable amounts of IL-10 in response to glycans from *C. albicans* and *S. cerevisiae*, but those expressing hDC-SIGN produced less IL-10 to *S. cerevisiae* than *C. albicans*. Furthermore, RAW-hDC-SIGN cells remarkably reduced IL-10 production after α-mannosidase treatment.
compared with RAW-chimera.

These results indicate that SIGNR1 recognizes *C. albicans*/yeast through a partly distinct specificity from its homologue hDC-SIGN.
Introduction

Numerous microbes are covered with the polysaccharides. Recognition of the polysaccharides by pattern recognition receptors (PRRs), including lectins, is vital in order to recognize pathogens, since recognition of the outermost components is the first interactive step with immune cells during infection to evoke innate and adaptive immune responses.

Candida albicans is an opportunistic agent of infection in immune compromised patients. In the host innate immune system, several types of receptors for sensing ligands on the microbe have been defined, e.g., C-type lectins and toll-like receptors (TLRs) (18). Ligands for these receptors are present in the outer structure of microbes. However, some ligands are sequestered by the outermost polysaccharides, which consist of mannoproteins, as reported in the case of β-glucan, a ligand for Dectin-1 (6). Mannoproteins are rich in polysaccharides composed of mostly α- and β-mannose and recognized by mannose/mannan type lectins.

C-type lectin human (h)DC-SIGN (CD209) has been shown to interact with a wide range of pathogens, including microbes, viruses and protozoa (11) via mannose and fucose moieties on the surface of the pathogens. Microbes such as Mycobacterium tuberculosis and C. albicans are endocytosed and processed for antigen presentation to induce the subsequent T cell-mediated immune responses. However, the recognition also induces immunosuppressive responses in cooperation with TLRs (8).

Mice have eight hDC-SIGN homologues (19, 20). One of these homologues, SIGNR1,
is structurally related to hDC-SIGN based on its long neck domain. SIGNR1 is expressed on particular subsets of macrophages (Mφ)/dendritic cells (DC) in the marginal zones of the spleen, resident peritoneal cavity, medulla of lymph nodes, skin and lamina propria (4, 10, 17, 30). SIGNR1 on these cells plays a role as a sentinel in the recognition of pathogens through capsular polysaccharides. In fact, SIGNR1 on marginal zone Mφ recognizes *Streptococcus pneumoniae* (10), leading to efficient activation of the complement system *in situ* (9).

Previously, we reported that SIGNR1 recognizes Gram-negative bacteria (*Salmonella typhimurium* and *Escherichia coli*) and *C. albicans* (27). The former are recognized through their non-reductive end of the lipopolysaccharide core sequence by SIGNR1 (17). This is also the case of hDC-SIGN in recognition of *E. coli* (13). Recently, hDC-SIGN has been reported to strongly recognize the α-mannose structure of N-glycan side chains of *C. albicans*, but weakly that of *S. cerevisiae* (2). However, the recognition motif on *C. albicans* by SIGNR1 is not clear at present.

Therefore, we aimed to elucidate the properties of SIGNR1 in the recognition of polysaccharide on *C. albicans*. To this end, we prepared soluble forms of SIGNR1 (sSIGNR1) and hDC-SIGN (shDC-SIGN) and used structurally distinguished glycans purified from various types of *C. albicans* and *S. cerevisiae* as well as respective microbes. The results indicate that sSIGNR1 binds equally well to glycans from *S. cerevisiae* as to *C. albicans*. Furthermore, sSIGNR1, but not shDC-SIGN, was shown to readily recognize *C. albicans* glycan treated with α-mannosidase. In addition, a glyco-microarray based on an evanescent-field fluorescence...
detection method clearly revealed that sSIGNR1 binds α-mannose monosaccharide and mannans
from *C. albicans* and *S. cerevisiae*, but does not recognize Lewis\(^{a/b/x/y}\) antigen polysaccharides as
in shDC-SIGN. Different properties in recognition of yeast glycans between SIGNR1 and
hDC-SIGN CRD were also observed in induction of IL-10 from RAW264.7 cells.
Materials and methods

Cells and cultures. Maintenance of human embryonic kidney (HEK) 293T cells and macrophage-like RAW264.7 cells and preparation of RAW264.7 expressing SIGNR1 (RAW-SIGNR1) were as described previously (27). In order to prepare RAW-hDC-SIGN, cDNA encoded hDC-SIGN (kindly provided by Dr. R.M. Steinman, Rockefeller University) was cloned into pMX-IRES-puromycin (12). RAW264.7 cells were transfected by the plasmid with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) in accordance with the manufacturer’s protocol. RAW264.7 cells expressing hDC-SIGN (RAW-hDC-SIGN) were maintained in the presence of 4 µg/ml puromycin (InvivoGen, San Diego, CA). To prepare RAW264.7 cells expressing chimeric lectin consisting of hDC-SIGN and SIGNR1 (RAW-chimera), cDNA fragments encoding amino acids 1 - 253 (corresponding to cytosolic-neck domain of hDC-SIGN) and 193 - 325 (corresponding to CRD of SIGNR1) were amplified using KOD polymerase (Toyobo, Tokyo, Japan) using primer pairs (5’-gggctgcacaaccttatgcagctgaacccaggaac-3’, 5’-ggcaagcagcgtctcctcactcctgcccctgggacttggg-3’), and (5’-tggaacgcctgtgccgactctgcccctgggactggtctcctgggacttc-3’, 5’-attactcgcagcgcgtccctgcgcgcttgggactttg-3’), respectively. These were introduced into EcoRI - Not I site of pMX-IRES-puromycin using the In-Fusion PCR Cloning System (Clontech, Mountain View, CA). RAW264.7 cells were transfected by the plasmid as described above.

Reagents and yeast strains. Alexa647-coupled hamster anti-SIGNR1 mAb 22D1 and rabbit
anti-hDC-SIGN Ab (H-200) were purchased from eBioscience (San Diego, CA) and Santa Cruz Biotechnology (Santa Cruz, CA), respectively. Anti-hDC-SIGN mAb (DCS-8C1; eBioscience) was labeled with Alexa-555 (Invitrogen) in accordance with the manufacturer’s protocol. Glycogen of bovine liver type IX (G0885) and Jack bean (Canavalia ensiformis) α-mannosidase (EC 3.2.1.24) were from Sigma-Aldrich (Irvine, CA). C. albicans (J-1012: serotype A, NBRC1060 and NIH B-792: serotype B, NBRC10108), C. lusitaniae (NBRC1019) and S. cerevisiae X2180-1A (WT) (BY21559) were obtained from the Biological Resource Center of the National Institute of Technology and Evaluation (Tokyo, Japan). C. albicans (JCM1542) was from the Japan Collection of Microorganisms, RIKEN (Saitama, Japan).

Preparation of mannann from yeast strains. Glycan was prepared from mannoprotein of the blastospore (yeast) form using Fehling’s solution, as previously described (24). Glycans used in this study were purified from strains of C. albicans J-1012 (25), C. albicans NIH B-792 (22), C. stellatoidea (24), C. parapsilosis (22), C. lusitaniae (23), S. cerevisiae (WT) (1), S. cerevisiae (mnn1/mnn4) (1) and S. cerevisiae (mnn2) (21). The α-mannosidase treatment of C. albicans J-1012 mannann was carried out in 50 mM sodium acetate buffer (pH 4.6) containing 20 units of α-mannosidase at 37°C for 48 h.

Preparation of sSIGNR1 and shDC-SIGN and binding analyses to microbes. Soluble lectin
(sLectin) tetramers, such as sSIGNR1 and shDC-SIGN, were prepared as described (26). Briefly, cDNA fragments encoding their extracellular domains were cloned into pEXPR-IBA44 (IBA, Göttingen, Germany) to add N-terminal BM40 secretion signal and Strep-Tag II sequences, followed by the transfer into pEF6/V5-His (Invitrogen). HEK293T cells were then transfected with each plasmid using the calcium phosphate method (3) and cultured in serum-free medium 293 SFM II (Invitrogen) for the last 48 hr. sSIGNR1 and shDC-SIGN in the supernatant were purified using Strep-Tactin Sepharose (IBA) in accordance with the manufacturer’s protocol (>95% of purity by SDS-PAGE).

Purified sLectins (2.5 µg/ml) were incubated with PE-labeled Strep-Tactin (7.5 µg/ml) in 18 µl of Hanks' balanced salt solution (pH 8.3) (binding buffer) for 2 h at 4°C and for a further 10 min at 37°C. The tetramers thus formed were incubated with 5 x 10^6 live microbes for 4 h at 4°C in the presence of 1% BSA (total volume 25 µl). After washing with the binding buffer, the amount of bound PE-Strep-Tactin was measured by Gemini EM (Molecular Devices, Sunnyvale, CA). The direct binding of sSIGNR1 is shown as an arbitrary unit of fluorescence intensity. The % inhibition was calculated using the following formula: [1 - (fluorescence intensity of C. * albicans by the staining with sLectin plus inhibitor - that without sLectin) / (that with sLectin without inhibitor - that without sLectin)] x 100.

Lectin ELISA. sSIGNR1 and shDC-SIGN were formed by incubating sLectins (62.5 ng) with
HRP-Strep-Tactin (12.5 ng) in 20 µl of the solution as above. Microtiter plates were coated with 50 µl of mannan/glycan (5 mg/ml) in 50 mM sodium bicarbonate buffer (pH 9.6) for 12 h at 4°C, followed by the incubation with 2.5% BSA at room temperature for 2 h after washing with 25 mM Tris-HCl pH8.3 + 150 mM NaCl. The plates were then incubated with sSIGNR1 or shDC-SIGN in the presence of 1% BSA for 2 h at 4°C. For inhibition experiments, sLectin tetramer was pre-incubated with inhibitors for 1 h at 4°C before adding to plates. After washing, binding of sLectin tetramer was measured as the absorbance of TMB (eBioscience) at 450 nm by VERSAmax (Molecular Devices). The % inhibition was calculated as above.

Inhibition of FITC-dextran binding to RAW-SIGNR1 with glycans. RAW-SIGNR1 cells (2 x 10^5 cells) were pre-incubated with various types of glycan and EDTA (25 mM) for 30 min at 4°C and then mixed with 80 µg/ml of FITC-dextran (2,000 kDa; Sigma-Aldrich) for 4 h at 4°C. Binding of FITC-dextran was analyzed by a flow cytometer. The % inhibition was calculated using the following formula: [1 - (mean fluorescence intensity (MFI) of RWA-SIGNR1 cells with FITC-dextran plus inhibitor- that without FITC-dextran) / (that with FITC-dextran without inhibitor - that without FITC-dextran)] x 100.

Glyco-microarray analyses of sLectins by evanescent-field fluorescence detection. The glyco-microarray analysis was performed as described (28). To form immune complex,
Takahara et al.

sSIGNR1 and shDC-SIGN (10 µg/ml) were pre-incubated with Alexa647-anti-SIGNR1 (22D1) and Alexa555-anti-hDC-SIGN (DCS-8C1; 1 µg/ml) for 15 min at room temperature in 25 mM Tris-HCl buffer (pH 7.4) containing 0.8% NaCl, 1% (v/v) Triton-X100, and 2 mM CaCl₂ with or without 10 mM EDTA. This complex was directly added to the array immobilized with multivalent glycan ligands (Supplementary Fig. S1), followed by incubation overnight at 20°C. Binding was then detected using an evanescent-field fluorescence-assisted scanner. Data were analyzed with the Array Pro analyzer ver. 4.5 (Media Cybernetics, Bethesda, MD).

IL-10 production of RAW264.7 transfectants by stimulation in microplates coated with glycan. Non-treated plates were pre-coated with 600 µg/ml glycan in PBS for 12 h. After blocking with RPMI1640 containing 10% FCS for 30 min, RAW264.7 transfectants (5 x 10⁴ cells) were cultured in the presence of 100 ng/ml ultra pure LPS (Invitrogen) for 24 h. IL-10 in the supernatants was analyzed using the Cytometric Bead Array (CBA) for mouse inflammation kit (BD Biosciences, Franklin Lakes, NJ).

Statistical analysis. Data are expressed as the means ± SD of triplicate assays. Statistical significance was determined by the two-tailed Student’s *t*-test or multiple comparisons with Tukey's multiple range test. All experiments were performed two or more times and representative results are shown.
Results and Discussion

SIGNR1 recognizes various types of Candida strains. Each Candida strain has a unique set of oligomannose side chains, generating a great diversity of N-glycans (see Fig. 1A) compared with that of O-glycans. Moreover, N-glycans account for more than 95% of glycans in the surface mannoproteins.

Therefore, we first examined the direct binding of sSIGNR1 to several Candida strains (Fig. 1B). We used sSIGNR1 tetramerized with Strep-Tactin, because the affinity of sSIGNR1 monomer is weak (20). This method not only helps to increase the affinity of sSIGNR1 but also helps to avoid the formation of large complexes using Fc-fusion lectins polymerized with anti-Fc polyclonal Ab. Before using this sSIGNR1-tetramer for experiments, we confirmed that sSIGNR1-tetramer bound to mannan-agarose was eluted with EDTA (data not shown), although the yield was less than half the amounts applied. sSIGNR1 bound clinical isolate live *C. albicans* JCM1542 (serotype A) in an EDTA-sensitive manner, indicating that sSIGNR1 binding occurs via the carbohydrate recognition domain (CRD). The other clinical isolate strains, *C. albicans* J-1012 (serotype A) and NIH B-792 (serotype B), were also recognized by sSIGNR1, although sSIGNR1 binding was much less to nosocomial strain *C. lusitaniae*.

It is of note that sSIGNR1 binds to *S. cerevisiae* comparably to clinical isolate *C. albicans* (Fig. 1B), and its binding to *C. albicans* J-1012 microbes was equally inhibited by N-glycans from *S. cerevisiae* (WT and mnn1/mnn4) and *C. albicans* NIH B-792 as *C. albicans*
SIGNR1 possibly recognizes α-mannose in side chains of *C. albicans* N-glycan. To delineate the polysaccharide structure recognized by SIGNR1, inhibition experiments with lectin ELISA were conducted using N-glycans from the various yeast strains listed (Fig. 1A and Table I).

The direct binding of sSIGNR1 to *C. albicans* J-1012 N-glycan, which is composed of complexed side chains, was inhibited by glycans from several types of microbes: *C. albicans* NIH B-792 and *C. stellatoidea* glycans lacking β1,2-mannose, *C. parapsilosis* glycan lacking β1,2-mannose and α1,6-branched mannose, and *S. cerevisiae* WT glycan composed of short side chains lacking β1,2-mannose and α1,6-branched mannose (Fig. 2A). These glycans share the α1,2-mannose side chain structure, suggesting that SIGNR1 recognizes similar moiety in N-glycan as hDC-SIGN (2). Moreover, *S. cerevisiae* 4484-24D-1 (*mnn1/mnn4*) glycan, which lacks phosphorylated mannose (PM), β1,2-mannose, α1,3-mannose, and α1,6-branched mannose but possesses the short (mono- or di-) mannose side chain structure, appeared to be recognized by SIGNR1. However, *S. cerevisiae* X2180-1A-5 (*mnn2*) glycan, which lacks all side chains, wasn’t effective (Figs. 2A and B), suggesting the crucial involvement of the side chain structure.

In addition, *C. lusitaniae* glycan, the side chain of which is composed of more than 75% of β1,2-mannose (mono- ~ tri-β-mannose)-capped side chain (23), was also ineffective in inhibiting the sSIGNR1 binding (Figs. 2A and B), implying that these β1,2- mannoses disturb the access of
SIGNR1 to the α-di-mannose to some extent. Glycogen itself had no effect. As in the case of sSIGNR1 binding to microbes, that to *C. albicans* J-1012–derived N-glycan was EDTA-sensitive (Fig. 2A).

Interestingly, treatment of *C. albicans* J-1012 mannan with α-mannosidase, which removed the α-mannose side chains other than the β1,2-mannose-capped side chains (see Fig. 1B) (14), did not affect the inhibitory activity (Fig. 2A). This result also indicates that β1,2-mannose capped α-mannose side chains in the N-glycan are sufficient to be recognized by SIGNR1. We also obtained similar results when mannan from *S. cerevisiae* (M7504; Sigma-Aldrich) was employed to coat plastic plates in lectin ELISA (data not shown). Therefore, it is feasible that SIGNR1 recognizes long internal α-mannose (tri- or more-mannose) capped with β1,2-mannose in addition to α-mannose side chains.

Since RAW-SIGNR1 cells effectively bind and endocytose high molecular weight FITC-dextran in an EDTA-sensitive manner (27), we carried out the inhibition analysis using RAW-SIGNR1 cells to bind FITC-dextran instead of lectin ELISA (Fig. 2C). The inhibition activities of glycans from *C. albicans* J-1012 and NIH B-792, and *S. cerevisiae* and its mutant (*mnn1/mnn4*) were again comparably effective. The treatment of *C. albicans* J-1012 glycan with α-mannosidase was also ineffective in reducing the inhibitory activity. In addition, low efficiencies of glycans from *S. cerevisiae* (*mnn2*) and *C. lusitaniae* were also confirmed in this experimental system. When resident peritoneal Mφ that express SIGNR1 (27) were used, similar
results were obtained (data not shown). Together with the results using N-glycan only consisting of α-mannose in side chain, these results strengthen the possibility that SIGNR1 recognizes both α-mannose side chain and β1,2-mannose capped α-mannose side chains composed of more than tri-mannoses in N-glycan.

Specificity of N-glycan recognition by hDC-SIGN. Cambi et al. previously reported that hDC-SIGN recognizes glycans of S. cerevisiae strains less efficiently than those of Candida strains (2). In contrast, SIGNR1 equally recognized glycans from both wild type and mnn1/mnn4 mutant of S. cerevisiae as C. albicans, suggesting that the specificities of hDC-SIGN and SIGNR1 are somehow different from each other. In order to examine this possibility, we prepared shDC-SIGN and compared the sugar specificity with that of sSIGNR1.

In lectin ELISA, the binding of shDC-SIGN to C. albicans J-1012 glycan was more sensitive to fucose than mannose, and less sensitive to glucose and GlcNAc (Fig. 3A), as reported (16). Results using this probe showed that shDC-SGIN bound comparably well to C. albicans J-1012 and NIH B-792 (Fig. 3B). Unlike sSIGNR1, shDC-SIGN bound less to S. cerevisiae microbes, as reported (2).

In addition, shDC-SIGN binding to C. albicans J-1012 glycan was not efficiently blocked by glycans from S. cerevisiae and mnn1/mnn4 mutants (Fig. 3C), indicating different specificity in N-glycan recognition between hDC-SIGN and SIGNR1. It is worth noting that
treating C. albicans J-1012 glycan with α-mannosidase dramatically reduced its inhibitory activity (Fig. 3C). We further confirmed the abrogation of inhibitory activity of N-glycan from C. albicans J-1012 by α-mannosidase treatment by titrating its dose (Fig. 3D), showing that the reduced activity is nearly comparable to that of S. cerevisiae. These results suggested that hDC-SIGN only recognizes the α1,2-mannose at the non-reductive end of α-mannose side chains, but not the internal α1,2-mannose capped with β1,2-mannose and short α-mannose chains that are recognized by SIGNR1, of the N-glycan side chains in mannoprotein.

It has been reported that another SIGNR lectin, SIGNR3, also recognizes C. albicans (27) and that its saccharide specificity resembles that of hDC-SIGN (20). Based on the inhibition assay using lectin ELISA, SINGR3 was shown to bind a little more efficiently to wild type and the mnn1/mnn4 mutant of S. cerevisiae than hDC-SIGN but less so than SIGNR1 (Supplementary Fig. S2).

Glyco-microarray analyses of SIGNR1 and hDC-SIGN. Previously, Powlesland et al. reported that sSIGNR1 did not bind any ligand on array using the regular method (20), suggesting a weak affinity of SIGNR1. However, a sensitive glyco-microarray, based on an evanescent-field fluorescence-assisted detection, has recently been developed (28). This method, in which analysis was performed in the presence of lectin probe without washing, enabled us to detect weak glycan-lectin interactions in the equilibrium state (15, 29), possibly representing
genuine interactions of ligand and cellular lectin.

An array plate immobilized with the glycans indicated (Fig. 4A and Supplementary Fig. S1) was visualized by staining with Alexa647-coupled sSIGNR1/anti-SIGNR1 mAb complex (Fig. 4B). The results clearly show that SIGNR1 binds to α-mannose and yeastmannans from *C. albicans* and *S. cerevisiae*, but not β-mannose, in an EDTA-sensitive manner (Figs. 4B and C).

Of note, SIGNR1 did not recognize fucose-containing moieties, such as Fucα2Gal and Lewisα/β/γ antigen. The binding of sSIGNR1 to heparin is likely to be false positive, because of the insensitivity to EDTA.

We previously performed array analyses using shDC-SIGN-Fc fusion as a probe (28). However, structural forms between SIGNR1 and shDC-SIGN-Fc were different and this made it difficult to compare the precise sugar specificities. Therefore, we again performed glyco-array analysis using shDC-SIGN dimer as in sSIGNR1. The results clearly showed the recognition of fucose-containing glycans and *C. albicans*, but not *S. cerevisiae*, mannan by shDC-SIGN (Fig. 4D), being consistent with our results in lectin ELISA and direct binding to microbes.

However, there are some discrepancies in our current observation and previous array results. It has been shown that SIGNR1 can recognize fucose-containing moiety using glyco-array and solid phase competition binding assays (5). One of our previous microarray analyses also demonstrated that hDC-SIGN-Fc fusion was able to bind to glycans from *C. albicans* and *S. cerevisiae* (28). In both reports, lectin CRD was fused with the Fc portion of IgG
and polymerized with anti-Fc polyclonal Ab, giving rise to a very large and multi-valent complexed probe. In the current glyco-microarray analyses, we utilized dimerized lectin probes, which possibly have lower avidity than those used in previous studies, enabling us to uncover the difference in binding activity of shDC-SIGN to *S. cerevisiae* and *C. albicans* glycan.

Biological significance of the different sugar specificity between SIGNR1 and hDC-SIGN in IL-10 production using RAW264.7 transfectants. To examine the biological significance of distinct saccharide recognition between SIGNR1 and hDC-SIGN, we measured IL-10 production by RAW-SIGNR1 and RAW-hDC-SIGN cells, because hDC-SIGN on DCs is known to induce IL-10 production by recognizing *C. albicans* (7), and lamina propria DCs expressing SIGNR1 are also capable of producing IL-10 (30). After stimulation with *C. albicans* J-1012 microbe and glycan coated on plastic plate, RAW-hDC-SIGN, but not RAW-SIGNR1, produced IL-10 (data not shown). Therefore, we prepared RAW264.7 cells expressing the chimeric hDC-SIGN molecule (RAW-chimera), of which CRD was replaced with SIGNR1 CRD, to compare glycan recognition specificity in terms of the induction of IL-10 production. The RAW-chimera cells expressed comparable levels of lectin to that of RAW-hDC-SIGN cells (Fig. 5A). Upon stimulation with *S. cerevisiae* X2180-1A (WT) glycan, RAW-hDC-SIGN and RAW-chimera cells produced equivalent amounts of IL-10 (Fig. 5B, *upper panel*). RAW-hDC-SIGN produced much less IL-10 in response to *S. cerevisiae* than *C. albicans* glycan in comparison with
Interestingly, in the case of \textit{C. albicans} J-1012 glycan, RAW-chimera (Fig. 5B, \textit{lower panel}). RAW-hDC-SIGN produced more IL-10 than RAW-chimera (Fig. 5B, \textit{upper panel}). However, the former significantly reduced IL-10 production after α-mannosidase treatment compared with the latter (Fig. 5C), being consistent with the results showing that SIGNR1, but not hDC-SING, recognizes β-mannose capped α-mannose side chains in \textit{C. albicans} glycan.

It is feasible that \textit{C. albicans} induces higher IL-10 production than \textit{S. cerevisiae} via hDC-SIGN on DCs in humans, leading to the immunosuppressive milieu at the site of infection. This may explain why \textit{C. albicans} is more virulent than \textit{S. cerevisiae}. Regarding the sugar specificity of SIGNR1, there were no significant differences in the binding specificity to mannose moieties between \textit{C. albicans} and \textit{S. cerevisiae} at the molecular level. However, IL-10 production was slightly but significantly higher in response to \textit{C. albicans} than \textit{S. cerevisiae}, implying that cellular responses by the recognition through lectin receptors is affected by some other unknown factors. In this study, we used glycans prepared from the blastospore (yeast) form of each yeast strain. However, it should also be kept in mind that the difference in the growth form between \textit{C. albicans} and \textit{S. cerevisiae} might modulate cellular activity against microbes \textit{in situ}. hDC-SIGN in the mouse cells prepared in this study properly transduce signals for IL-10 production. Although it is unknown how hDC-SIGN activates the mouse Src family and subsequent Raf-1 kinase in this situation, hDC-SIGN likely has a certain motif that is lacking in SIGNR1, to work in both human and mouse cells for IL-10 production.
Collectively, SIGNR1 and hDC-SIGN bind polysaccharides in surface mannoprotein on live *C. albicans*. However, SIGNR1 recognizes both α-mannose and β1,2-mannose capped α-mannose side chains composed of more than tri-mannoses, whereas hDC-SIGN recognizes only α-mannose at the non-reductive end of the side chains, but not internal α-mannose capped with β1,2-mannose and short α-mannose chains, of N-glycan side chains in mannoprotein. Differential recognition of yeast strains by SIGNR1 and hDC-SIGN may be relevant to the differences in cellular responsiveness.
Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (19590389 to KT and 18390121 and 20390109 to KI) and a Grant-in-Aid for Scientific Research on Priority Area (19041036 to KT) from the Ministry of Education, Science, Sports and Culture of Japan and by the Hokuto Foundation for Bioscience (KT) and the Naito Foundation (KI).
References

lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific

glycoproteins. Proteomics 8:3042-3050.

Figure legends

Fig. 1. sSIGNR1 binds various types of yeast strains.

(A) Structural diagrams of N-glycan used in this study. Structures of N-glycan of *C. albicans* J-1012 (25), *C. albicans* NIH B-792 (22), *C. stellatoidea* (24), *C. parapsilosis* (22) and *C. lusitaniae* (23) are adopted from our structural analyses using NMR. Structure of *S. cerevisiae* wild type, *S. cerevisiae* 4484-24D-1 (*mnn1/mnn4*) and *S. cerevisiae* X2180-1-A-5 (*mnn2*) are based on previous reports (1, 21). Side chains that are digested by treatment with α-mannosidase in *C. albicans* J-1012 N-glycan are shaded. The side chain sequence is not specified. (B) Binding of sSIGNR1 to Candida and *S. cerevisiae* strains. PE-Strep-Tactin alone (-) or PE-sSIGNR1 (+) were incubated with the indicated live yeast strains with or without EDTA (25 mM). (C) Inhibition of sSIGNR1 binding to *C. albicans* J-1012 by glycans purified from the *C. albicans* and *S. cerevisiae* strains indicated. sSIGNR1 was pre-incubated with 50 µg/ml of glycans before mixing with microbes. Glycogen was used as a negative control. Inhibition is indicated as the percent decrease of fluorescence intensity in experimental groups compared with the control without inhibitor. The results are shown as the mean ± SD of triplicate assays. *p < 0.05 on solid line by Tukey's multiple range test. Grey lines show no significant differences.

Fig. 2. Recognition of α-mannose side chains in N-glycan by sSIGNR1.

(A) Inhibition analysis by lectin ELISA. Binding of sSIGNR1 to *C. albicans* J-1012 glycan
coated on microtiter plates was analyzed in the presence of glycans (25 µg/ml) purified from various types of yeast strains. Blocking activities of inhibitors are shown as the % inhibition of sSIGNR1 binding. (B) Titration of inhibitory activity of glycans from the indicated yeast strains for sSIGNR1 binding by lectin ELISA. Half of maximal inhibition activity was indicated by dashed line. (C) Inhibition of FITC-binding to RAW-SIGNR1 cells by glycans. Transfectants were incubated with the graded dose of glycans as in (B) prior to FITC-dextran. The results are shown as % inhibition. Results are shown as the mean ± SD of triplicate assays. *p < 0.05 on solid line by Tukey's multiple range test. Grey lines show no significant differences.

Fig. 3. Binding of shDC-SIGN to microbes and inhibition of shDC-SIGN binding by glycans. (A) Inhibition analysis of shDC-SIGN binding by monosaccharides (50 mM) and glycan from C. albicans J-1012 using lectin ELISA. (B) Binding of shDC-SIGN to yeast strains was analyzed as in Fig. 1B. (C) Inhibition analysis using glycans from various yeast strains as in Fig. 2A. (D) Inhibition assay was performed in the presence of graded doses of glycans from the indicated yeast strains. Half of maximal inhibition activity was indicated by dashed line. The results are shown as the mean ± SD of triplicate assays. *p < 0.05 on solid line by Tukey's multiple range test. Grey lines show no significant differences.

Fig. 4. Glyco-microarray analysis of sSIGNR1.
(A) The layout of glyco-microarray. (B) Results of the glyco-microarray analyses. Binding of soluble SIGNR1/Alexa647-anti-SIGNR1 mAb immune complex to the array was performed in the absence (left panel) or presence (right panel) of 10 mM EDTA and detected by an evanescent-field fluorescence-assisted scanner. (C) Data analyzed with the Array Pro analyzer ver. 4.5. (D) Glyco-array analysis was performed using immune complex of soluble hDC-SIGN/Alexa555-anti-hDC-SIGN mAb as in sSIGNR1.

Fig. 5. IL-10 production of RAW264.7 transfectants upon stimulation with glycan coated on plastic plate.

(A) RAW-control, RAW-hDC-SIGN and RAW-chimera cells were analyzed by flowcytometry using polyclonal anti-hDC-SIGN Ab and anti-SIGNR1 mAb (22D1) specific to SIGNR1 CRD. (B) The transfectants (5 x 10^4 cells) were cultured on plates pre-coated with C. albicans J-1012 and S. cerevisiae X2180-1A (WT) glycan in the presence or absence of LPS (100 ng/ml). After 24 h, IL-10 in the supernatants was analyzed (upper panel). IL-10 production against S. cerevisiae glycan is shown as a percentage to that against C. albicans glycan (lower panel). (C) IL-10 production after stimulation with native and α-mannosidase-treated C. albicans J-1012 glycan was analyzed as in B. IL-10 production against the treated glycan is shown as a percentage to that against the native glycan. **p = 0.0067, ***p = 0.0001 by Student’s t-test.
TABLE 1. Composition of side chains and properties of N-glycan used in this study.

<table>
<thead>
<tr>
<th>N-glycan</th>
<th>Presence of side chain<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α1,3-mannose</td>
</tr>
<tr>
<td>C. albicans J-1012 (serotype A)</td>
<td>+</td>
</tr>
<tr>
<td>C. albicans NIH B-792 (serotype B)</td>
<td>+</td>
</tr>
<tr>
<td>S. cerevisiae (WT)</td>
<td>-</td>
</tr>
<tr>
<td>S. cerevisiae 4484-24D-1 (mnn1/mnn4)</td>
<td>-</td>
</tr>
<tr>
<td>S. cerevisiae X2180-1A-5 (mnn2)</td>
<td>-</td>
</tr>
<tr>
<td>C. stellatoidea</td>
<td>+</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>+</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>-</td>
</tr>
<tr>
<td>C. albicans J-1012 (α-mannosidase treated)</td>
<td>+</td>
</tr>
</tbody>
</table>

^a PM, phosphorylated mannose. Side chain structure presence and absence in the N-glycan are indicated by + and -, respectively.

^b Branching in side chain.
Takahara et al. Fig. 1.
Inhibition of sSIGNR1 binding to C. albicans J-1012 glycan (%)

Inhibitor/Glycan

- C. albicans J-1012
- C. albicans NIH B-792
- S. cerevisiae (WT)
- S. cerevisiae (mnn1/mnn4)
- S. cerevisiae (mnn2)
- C. stellatoidea
- C. parapsilosis
- C. lusitaniae
- C. albicans J-1012 (α-mannosidase-treated)
- Glycogen
- 25 mM EDTA

A

B

C

Takahara et al. Fig. 2.
A

Inhibition of shDC-SIGN binding to
C. albicans J-1012 glycan (%)

<table>
<thead>
<tr>
<th>Inhibitor/Glycan</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GlcNAc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA (25 mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Fluorescence intensity
(binding of shDC-SIGN to microbes)

<table>
<thead>
<tr>
<th>Strain</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans NIH B-792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Inhibition of shDC-SIGN binding to
C. albicans J-1012 glycan (%)

<table>
<thead>
<tr>
<th>Inhibitor/Glycan</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans NIH B-792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (mnn1/mnn4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (mnn2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. stellatoidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(α-mannosidase-treated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA (25 mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

Inhibition of shDC-SIGN binding
C. albicans J-1012 glycan (%)

<table>
<thead>
<tr>
<th>Inhibitor (μg/ml)</th>
<th>0</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans J-1012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(α-mannosidase-treated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. cerevisiae (mnn2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Takahara et al. Fig. 3.
Takahara et al. Fig. 4.
A

![Graph A](image)

B

![Graph B](image)

C

![Graph C](image)

Takahara et al. Fig. 5.
<table>
<thead>
<tr>
<th>Glycoprotein</th>
<th>Sigma no.</th>
<th>PAA</th>
<th>Sigma 88 L PAA</th>
<th>Sigma 88 L PAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asialo-FET Glycoprotein</td>
<td>01-319</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
</tr>
<tr>
<td>Asialo-AP Glycoprotein</td>
<td>08-085</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
</tr>
<tr>
<td>Asialo-TF Glycoprotein</td>
<td>01-300</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
<td>SIG-3004</td>
</tr>
</tbody>
</table>

Takahara et al. Fig. S1.

Precise information of ligands on the glyco-microarray.
Takahara et al. Fig. S2.

Inhibition analysis by lectin ELISA. Binding of sSIGNR3 to *C. albicans* J-1012 glycan coated on microtiter plates was analyzed as in Fig. 2A.