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This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal
surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket
dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is
on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111).
The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical
modelings.

1. Introduction

When a material is excited with a laser pulse with dura-
tion shorter than a vibrational period, coherent vibration
in which molecules or atoms oscillate in phase over a
macroscopic region is induced [1, 2]. This “impulsive” exci-
tation of vibrational (nuclear) wavepacket has been observed
for a variety of substances: from gas-phase molecules to
solids. The coherent nuclear motions can be probed via
modulation of optical response of the materials due to
the influence of the nuclear displacement on the com-
plex refractive indices. Typically, changes of absorbance or
reflectance of a time-delayed probe pulse are measured as
a function of pump-probe delay time and the coherent
vibrational motions emerge as oscillatory intensity modu-
lations. Elucidation of the excitation mechanism and the
decay dynamics of the nuclear wavepacket leads to detailed
understanding of the electron-vibration (phonon) coupling
and photochemical dynamics.

Phenomenological equation of motion of the amplitude
Q(t) of the relevant coherent vibrational mode can be
described as a forced harmonic oscillator with damping,

Q̈(t) + 2βQ̇(t) + Ω2
0Q(t) = F(t)

μ
, (1)

where Ω0/2π is the natural frequency of the undamped
oscillator, β is the damping rate, μ is the effective mass of the
oscillator, and F(t) is the force exerted on the system. With
this driving force, a time evolution of the amplitude is given
by [3]

Q(t) ∝ cos
(
Ω1t − φ

)
e−βt, (2)

where Ω1 =
√
Ω2

0 − β2 and φ is the initial phase. The initial
phase provides information on the nature of the driving force
through the following general relationship [3]:

tanφ =
Im
[
iF̃
(−Ω1 − iβ

)]

Re
[
iF̃
(−Ω1 − iβ

)] , (3)

where F̃(Ω) is the Fourier transform of F(t). If the driving
force is impulsive, the initial phase is π/2 and the oscillation
becomes sin-like. If the force is a step function like in time
domain, the initial phase is 0 or π and the oscillation becomes
cos-like.

While there exists a body of literature on coherent
vibration in gas phase and in bulk condensed matter, those
at surfaces or interfaces are relatively less explored. This is
because the signal intensity from surface monolayer of atoms
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and molecules is generally very small and the experimental
observation is demanding. Second-order nonlinear optical
process paves the way for probing the dynamics at surfaces
and interfaces. We have found that time-resolved second
harmonic generation (TRSHG) [4] is a powerful technique
to probe the coherent vibration (phonon) of alkali atoms
adsorbed on metal surfaces [5–8]. In this paper, we describe
our recent achievements in understanding the dynamics
of coherent surface phonons at alkali-metal-covered metal
surfaces [9–11]. One of the most important issues in the
study of coherent phonons at metal surfaces is to determine
what electronic transition is most responsible for their
creation. Thus, we focus on the electronic structure of alkali-
covered metal surfaces and the excitation mechanism of the
coherent vibration.

2. Alkali Metals on Metal Surfaces and
Enhancement of Nonlinear Susceptibility

Here we describe general features of alkali atoms on metal
surfaces particularly focusing on their electronic structure
and optical responses. Overlayers of alkali metal atoms on
metal surfaces are typical model systems of metals on metals,
and detailed information on the adsorption geometries [12],
the vibrational [13, 14] and electronic structures [15], and
the electronic excitation [16] has been reported. Here we
briefly summarize some features of the electronic structure
of alkali-covered Cu(111) [17]. The bonding of alkali atoms
on metal surfaces strongly depends on alkali coverage. At
low coverages the work function decreases sharply with the
increase of the coverage. As the coverage increases further,
the work function reaches to a minimum and increases
toward that of the bulk alkali metal. In the classical model of
Gurney [18], an alkali atom donates an outermost occupied
s electron to the metal to form a positive ion at the low
coverages; this results in a surface dipole layer that induces
the large drop in work function. As the coverage increases,
the lateral interaction of alkali atoms becomes stronger;
alkali atoms are depolarized and the alkali overlayer becomes
metallic.

The metallic character of the alkali overlayer at high
coverages is due to emergence of two bands: an overlayer
resonance (OR) located below the L-band gap and a
quantum well state (QWS) around the Fermi level. These
bands correlate to those of a free standing alkali monolayer
in the vacuum: the s-like lowest and the pz-like second lowest
bands [19]. When the monolayer is brought closer to the
metal surface, these bands are stabilized by the interaction
with the metal, while maintaining the integrity. The s-like
band correlates to OR; the pz-like band correlates to QWS.
Because QWS is located in the L-band gap, its wave function
is localized at the surface. In contrast, the wave function of
OR extends more into the substrate, because it is located
below the lower edge of L-band gap.

It has been known that alkali overlayers enhance the con-
version efficiency of second harmonic generation (SHG) by a
few orders of magnitude in comparison with clean metal sur-

faces [20]. When an optical field �E increases, the macroscopic

polarization induced in a medium �P shows nonlinearity with
respect to the field. The nonlinear polarization responsible
for SHG is given by

�P(2)(2ω) = χ(2)(2ω,ω,ω) : �E(ω)�E(ω), (4)

where χ(2)(2ω,ω,ω) is the second-order nonlinear suscepti-
bility for SHG. In a medium with centrosymmetry, χ(2) of
the medium is zero within the electric dipole approximation.
In contrast, at a surface where centrosymmetry is generally
broken, dipole-allowed SH signals are generated from the
surface. Thus, SH generation spectroscopy provides an
inherent surface sensitivity if bulk materials have centrosym-
metry [21].

Figure 1 shows how the SH intensity of 800 nm
(hν= 1.55 eV) photons depends on coverage of alkali atoms
on Cu(111) surfaces. The coverage has been calibrated by
measuring the ratio of Auger electron signals of alkali
adsorbates to that of the substrates as a function of the
deposition time [10]. Throughout this paper, we define the
alkali coverage as one monolayer when the first layer is
completed, although in the original articles the coverage was
defined as a ratio of the alkali atomic density to that of the
substrate.

The SH intensity is enhanced by a few orders of
magnitude compared to the clean surface when alkali atoms
are adsorbed [10]. There are two major origins of the SH
enhancement associated with alkali adsorption: interband
transitions between surface electronic states and multipole
plasmon excitation [16, 22]. At the low coverages, interband
transitions from occupied surface state (SS) to alkali-induced
antibonding state (AS) [23] or from SS to image potential
states (IPSs) become resonant to 2hν (= 3.10 eV) below
θ = 0.4. Therefore, the “resonant” peaks observed at θ ≤
0.5 in Figure 1 are likely due to resonant or near-resonant
transitions in which the surface localized bands, SS, AS, and
IPSs, are involved. As coverage increases over θ = 0.4, the
alkali overlayer is depolarized and the metallic QWS and
OR bands are formed. The transitions from the occupied-
OR band to the s, p bands of the substrate and interband
transitions from QWS to the substrate bands contribute to
the SH intensity.

At θ ∼ 1.0, the contribution to SH intensity from
multipole plasmon excitation may be larger than that from
the interband transitions because the photon energy 2hν
(= 3.1 eV) is close to plasmon resonance energies: �ωp =
3.8 and 3.5 eV for K and Cs, respectively, where �ωp is
the bulk-plasma frequency. Irradiation of a metal surface
with an oscillating electromagnetic field induces a dynamic
screening field [24]. If the optical frequency is close to
0.8ωp, electronic transitions at the surface excite resonantly
a damped collective mode along the surface normal. This
coupling between the optical field and multipole plasmons
at the surface results in the local field enhancement of
the nonlinear response such as SHG. Liebsch calculated
the frequency dependence of SH dipole moments of alkali
overlayers at θ = 1 by using the time-dependent density-
functional method [22] and found that the resonant peak of
the imaginary part of the dipole moment is located at 2.0,
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Figure 1: Second harmonic intensity as a function of coverage of (a) potassium and (b) cesium on Cu(111) surface. The excitation
wavelength is 800 nm (1.55 eV). Note that here one monolayer corresponds to the saturation coverage of the first layer, although in the
original papers one monolayer has been defined as the atomic densities of the substrates.

1.4, and 1.3 eV for Na, K, and Cs on Al, respectively. The
photon energy of hν = 1.55 eV is close to the resonance of
the potassium overlayer at θ = 1. This is consistent with the
significant increase of SH intensity at the saturation coverage
of K on Cu(111) as shown in Figure 1.

3. Principles of the Time-Resolved Second
Harmonic Generation

In TRSHG spectroscopy, the SH intensity of a probe pulse
is measured as a function of pump-probe delay time t.
Transient changes in the SH intensity ΔISH(t) are defined as

ΔISH(t) =
[
ISH(t)− I0

SH

]

I0
SH

, (5)

where ISH(t) is the SH intensity at a delay time t and I0
SH is

that without a pump pulse, respectively.
When a metallic alkali monolayer is brought from the

vacuum to a metal surface, the electronic bands of the free-
standing alkali monolayer shift their binding energies as a
result of interactions with the metal substrate. Thus, the
binding energies of the alkali-induced bands depend on
the displacement of the overlayer along the surface normal
δQ. Consequently, the oscillation of δQ due to coherent
excitation of the alkali-substrate stretching mode (S mode)
alters the binding energies and populations of the alkali-
induced bands; in this way, the coherent vibration of alkali
atoms contributes to TRSHG signals. Because the lateral
displacements of the alkali overlayer are not expected to
shift the binding energies of alkali-induced bands as large
as the vertical ones, the lateral motions of alkali adsorbates
contribute little to TRSHG signals.

The modulation of χ(2) due to the displacement of the ith
phonon mode, δQi, can be approximated by (neglecting the
modulation due to the electronic population change) [25]

χ(2) = χ(2)|0 +
∑

i

(
∂χ(2)

∂Qi

)

0

δQi. (6)

Because the SH intensity is proportional to the square of
|χ(2)|, the dominant contribution of the coherent phonons
to ΔISH(t) is expressed as

ΔISH(t) ∝ χ(2)|0 ·
∑

i

(
∂χ(2)

∂Qi

)

0

δQi, (7)

in which the SH intensity modulation is proportional to the
displacement of the phonon mode.

4. TRSHG Experimental Setup [7, 10, 11]

The experiments were carried out in an ultrahigh vacuum
chamber equipped with a cylindrical analyzer for Auger
electron spectroscopy (AES) and low energy electron diffrac-
tion. Alkali atoms from a degassed alkali dispenser (SAES
Getters) were deposited on a clean substrate at 90–110 K.
The coverage was determined by the ratio of AES intensity
of adsorbate and substrate atoms.

For the TRSHG measurements we used home-made non-
collinear optical parametric amplifiers (NOPAs) pumped
with the second harmonic (400 nm) output of a Ti: sapphire
regenerative amplifier (1 kHz, 130 fs). NOPA delivers 25–
35 fs pulses whose center photon energy is tunable from
2.0 eV to 2.4 eV. In addition, we also used a fundamental
(800 nm) output of the regenerative amplifier with an extra
pulse compression apparatus: the output was focused into a
2 m long cylindrical tube filled with Kr gas. The bandwidth
of the output pulse is broadened and the pulse compression
to 35 fs was attained with additional multiple reflections on
negative group-delay dispersion mirrors.

p-Polarized pump and probe pulses were focused onto
the sample with an incidence angle of about 70 degrees,
and the second harmonic intensity of the probe pulse that is
generated coaxially with the probe was detected as a function
of pump-probe delay. All the measurements were carried out
with sample temperature at 85–110 K.
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Figure 2: Coverage dependence of TRSHG traces for K/Cu(111).
Potassium coverages are indicated. 1 ML corresponds to the satura-
tion coverage of the first layer [10]. The pump pulse photon energy
was 2.20 eV, and probe pulse photon energy was 1.55 eV.

5. Coverage Dependence

Figures 2 and 3 show coverage dependence of TRSHG traces
from K and Cs on Cu(111). In both cases, the coherent
nuclear motions emerge as damped oscillatory components.
The TRSHG traces are analyzed by using singular value
decomposition [7] assuming the following linear combina-
tion of damped cosinusoids and exponential decay compo-
nents:

ΔISH =
∑

i

Ai exp
(−t
τi

)
cos
(
ωit + φi

)
+
∑

i

Bi exp
(−t
τi

)
,

(8)

where ωi and φi are phonon frequency and initial phase,
respectively, and τi is a dephasing time of a vibrational
coherence or a decay time of a background component. The
first term represents the coherent nuclear motions of the S
modes and the second term describes the SH modulation due
to the electronic population changes.

The oscillation frequencies were found to be 3.0-3.1 THz
(at θ < 0.8) for K/Cu(111) and 1.8 THz for Cs/Cu(111);
these values are in consistence with the S mode frequencies
found by other surface vibrational spectroscopy [10, 11].
Large oscillation amplitudes are observed only for coverages
higher than θ ∼ 0.6. This is also the case for Cs/Pt(111)
[7] and K/Pt(111) [26]: the S mode oscillation amplitudes
in TRSHG signals are not proportional to the alkali coverage
but show an onset at around a half monolayer. According
to the discussion on the electronic structure of alkali
overlayer, the formation of OR and QWS is the expected
feature occurring at around half monolayer. Consequently,
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Figure 3: Coverage dependence of TRSHG traces for Cs/Cu(111).
Cesium coverages are indicated. 1 ML corresponds to the saturation
coverage of the first layer. The bottom trace is a cross-correlation
curve between pump and probe. The pump pulse photon energy
was 1.55 eV, while the probe pulse photon energy was 2.20 eV.

the coherent excitation of the S mode is in line with the
emergence of these surface states.

6. Excitation Mechanisms for Na and
K Overlayers on Cu(111)

The pump pulse creates hot electrons and holes in substrate
and in the surface bands. However, not all electronic
excitations are effective to couple with motions of alkali
atoms. There are two extreme cases in photo-induced nuclear
dynamics at surfaces, as has been frequently discussed in
the studies of surface photochemistry: adsorbate-localized
excitation versus substrate-mediated excitation. [27] For the
alkali adsorption systems in the coverage range from θ = 0.5
to 1.0, transitions of OR→QWS, OR→ IPSs, and QWS→
IPSs are candidates for the adsorbate-localized excitation.
Intra- and interband excitations of s, p, and d bands of bulk
are involved in the substrate-mediated excitation: electrons
or holes created by the electronic excitation of bulk bands
transiently transfer to the alkali-induced electronic state,
resulting in modulation of the electron density near alkali
adatoms. In addition, another possible excitation mechanism
specific to alkali overlayers is the multipole plasmon exci-
tation. This excitation produces a longitudinally oscillating
electron density at an alkali-covered surface, which may also
initiate the coherent motion of alkali adsorbates.

In order to distinguish the excitation mechanisms, the
excitation photon energy dependence of the initial amplitude
of the S mode coherent motion was measured for K/Cu(111)
(Figure 4) [10]. The excitation photon energy dependence
was found to resemble the absorption curve of bulk copper:
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Figure 4: Excitation photon energy dependence of the initial ampli-
tude of the coherent vibration of the S mode of K/Cu(111) (filled
circles). The potassium coverage was 0.63 ML. Numerical esti-
mation of the number of photogenerated carriers within the Cu
substrate [10] (solid curve).

that corresponds well to the carrier density curve (solid
curve) estimated from substrate absorption. Therefore, the
substrate electronic excitation is likely responsible for the
coherent phonon excitation of alkalis on copper. Similar
results have been obtained also for Na/Cu(111) [9].

Because the emergence of oscillatory modulations in
TRSHG traces is concomitant with stabilization of the QWS
band to the Fermi level, it is likely that the population
change in the QWS band is responsible for a driving force
to alkali atoms along the alkali atom-Cu coordinate. One
possible excitation path for generating the impulsive force is
hole creation in the QWS. Electron-hole pairs are formed in
the substrate by the d-band→s, p-band transition, followed
by subsequent Auger recombination of an electron in the
QWS band with the d-band hole, resulting in creation of
holes in the QWS. An appreciable coupling between the hole
creation at the alkali-derived QWS and surface (or interface)
phonon excitation has been suggested [28]. Alternatively,
hot electrons created by the d-band→s, p-band transition
could be injected into the QWS above EF , resulting in abrupt
fluctuations of electron density at alkali atoms. In either
case, the rapid changes in charge density at the surface,
particularly in the QWS band, are likely to be the origin
for the driving force along the alkali atom-Cu stretching
coordinate.

7. Switching of the Excitation
Mechanism for Cs/Cu(111) Depending on the
Pump Photon Energy [11]

As has been described in the previous section, investigation
on Na/Cu(111) and K/Cu(111) system has revealed that the
S mode excitation occurs via substrate-mediated process.
However, this is not the whole story, and here we show that
the Cs monolayer on Cu(111) provides a good opportunity
to elucidate further the excitation mechanisms [11]. A
peculiar feature of the Cs/Cu(111) is that at high coverages,
in addition to the OR and QWS bands, an unoccupied band

originating from Cs 5d band is located at 1.6 eV above the
Fermi level [29]. Thus, the resonance transition from QWS
to the unoccupied Cs 5d band is expected to take place at
around 1.6 eV. Note that no transitions take place from bulk
Cu d bands at hν= 1.6 eV because the top of the Cu d bands
are located at ∼2.0 eV below the Fermi level. Consequently,
it is possible to examine how the characteristics of surface
coherent phonons depend on the nature of electronic exci-
tation by varying the excitation photon energy: adsorbate-
localized excitation versus substrate-mediated excitation.

Figure 5(a) shows typical traces of TRSHG signals from
Cs-covered Cu(111) (θ = 1) for excitations at the wave-
lengths λex = 400 and 800 nm. Although both TRSHG traces
at λex = 800 and 400 nm show a prominent oscillating
component with frequency of 1.8 THz, the initial phase of
the oscillating component at λex = 800 nm is very different
from that at λex = 400 nm, as shown in Figure 5(b). Cs–Cu
stretching is sin-like (φ = −81 ∼ −103◦) at λex = 800 nm,
while this is close to cos-like (φ = −144 ∼ −161◦) at
λex = 400 nm. The initial phase difference provides useful
information of the temporal profiles of the driving force: it
is impulsive like for λex = 800 nm, but step function like for
λex = 400 nm (see (3)). In addition to the initial phase, the
pump fluence dependence of the oscillation amplitude was
found to be very different between λex = 400 and 800 nm
(Figure 6). While the amplitude at λex = 400 nm increases
linearly with the pump fluence, the amplitude at λex =
800 nm shows strong saturation feature. This indicates that
surface localized excitation plays a role at λex = 800 nm.

8. Theoretical Modeling of
the ExcitationMechanism [11]

The significant dependences on excitation photon energy
found for Cs/Cu(111) indicate different excitation mech-
anisms operating for the two excitation photon energies.
Since adsorbate-localized excitation is expected at λex =
800 nm, Yasuike and Nobusada (YN) developed a theoretical
modeling to rationalize the observed feature applying the
transient-adsorbate mediation (TAM) mechanism recently
proposed by themselves [30, 31].

The TAM mechanism is schematically depicted in
Figure 7. Three potential energy curves (PECs) are consid-
ered: one is that of the ground state, Vg(Z), and another
one is that of the excited state with adsorbate localized
nature, Ve(Z), and the third one is that of bulk excited
state, V ε

b (Z). In the adsorbate-localized excited state, the
Cs–Cu equilibrium distance is shifted from that in the
ground state. In addition, the state has a finite width Γ
because of interactions with bulk continuum electronic
states. The bulk excited states are composed of a continuum
caused by electron-hole pair creations in bulk bands. Unless
bulk excitations lead to electron transfer to the adsorbate-
localized unoccupied band, they do not directly trigger Cs
nuclear motions. Thus, the potential energy curves of the
bulk excited states V ε

b (Z) are assumed to have the same Z
dependence as Vg(Z) but shifted vertically by the excitation
energy of bulk electrons.
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Figure 5: (a) TRSHG traces for Cs/Cu(111) with λex = 800 nm (1.55 eV) (red) and 400 nm (3.10 eV) (blue). The probe wavelength was
565 nm (2.20 eV). Cs coverage was 0.8 ML for λex = 800 nm and 0.9 ML for λex = 400 nm. The inset shows the Fourier spectra of the
oscillatory components. (b) The oscillatory parts of the TRSHG traces in (a). Reprinted with permission from [11]. Copyright (2011)
American Chemical Society.
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Figure 6: Incident pump fluence dependence of the initial amplitude of oscillation in TRSHG traces from Cs-covered Cu(111). The
excitation wavelengths were (a) λex = 400 nm nm (blue) and (b) λex = 800 nm (red). Solid lines are guides to the eye. Reprinted with
permission from [11]. Copyright (2011) American Chemical Society.

After the irradiation of near-resonant light pulse, the
population partially transfers to the adsorbate-localized
excited state. The wavepacket on this PEC starts to propagate
toward vacuum owing to the repulsive force and gains
momentum. Because the back donation of charge to the bulk
occurs rapidly, the lifetime of this state is very short. Thus,
the quenching of the adsorbate-localized excited state brings
the wavepacket to the PEC of bulk continuum states; then, an
oscillatory motion of the wavepacket takes place on the PEC,
while bulk electrons dissipate energy via electron-phonon
coupling.

From a numerical analysis based on the model, the
sin-like initial phase and the saturation behavior in the
pump fluence dependence were successfully reproduced
[11]. Figure 8 shows initial phases calculated from TAM
model as a function of the lifetime of the excited state. The
sin-like behavior is due to a short lifetime in the adsorbate-
localized state, and the saturation (Figure 6) originates
primarily in the limited density of states of the initial state:
only a small fraction of the QWS band is occupied.

At λex = 400 nm, bulk excitations from the d bands of
copper generate the coherent Cs–Cu stretching vibration.
In contrast to the case of λex = 800 nm, the coherent

oscillation is nearly cos-like and the amplitude of oscillatory
signals linearly increases with pump fluence (Figure 6). In
general, absorption of an intense fs laser pulse generates
quasithermal equilibrium in the surface electron gas, and its
peak temperature reaches several thousand K over a time
scale of several hundred fs. At λex = 400 nm, the effect
of the hot electrons may play a crucial role: under the
circumstances, the adsorbate-localized state is temporarily
occupied with hot electrons. The force exerted on Cs is
generated by transient occupation of the adsorbate-localized
band by resonant electron transfer from bulk bands. Because
the excitation takes place much faster than the period
of Cs–Cu stretching, the indirect excitation can coherently
excite this mode. Note that the electron temperature decays
with a slower time scale than the Cs–Cu oscillation period,
and the driving force is no longer close to a delta function
but rather like a step function.

YN proposed that the effective PEC for the adsorbate
vibration excitation under the influence of the substrate hot
electrons is given by [11, 32]

Veff(Z) = Vg(Z)−
∫∞

−∞
nF(E,Te)δ(E,Z)dE, (9)
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Figure 7: Schematic representation of the potential energy curves
(PECs) of the TAM model: ground state (blue), the adsorbate-
localized excited state (green), and the bulk continuum states (red).
Reprinted with permission from [11]. Copyright (2011) American
Chemical Society.

where nF(E,Te) is the Fermi-Dirac distribution at electron
temperature Te. The function δ(E,Z) is an effective occupa-
tion number of the adsorbate-localized excited states and is
defined by the integration of the local density of states for the
adsorbate-localized excited state,

δ(E,Z) = 1
π

∫ E

−∞
dE

′ Γ/2

(E′ − Er)
2 + (Γ/2)2 , (10)

where Er = Re[Ve(Z)] and Γ is the effective band width. In
the limit of the step function profile of the driving force,
the oscillation should be pure cosine because Cs atoms
oscillate on the displaced potential energy surface. However,
we found experimentally that the oscillation deviates from
the pure cosine function. Theoretical simulations using (9)
and (10) successfully reproduced the deviations of initial
phase from pure cosine by considering relaxation of hot
electrons: the effective PEC shows a transient shift in line
with the electron temperature decay, and the phase of the Cs
vibration is modulated by the change of the PEC. In addition,
the simulations verify the linear dependence of the initial
amplitude on the pump fluence if the band width of the
unoccupied state is 1.0 eV [11].

9. Summary and Outlook

We describe the principle of time-resolved SHG spectroscopy
under an ultrahigh vacuum condition and its application
to the alkali metal adsorption systems. Electronic excita-
tion of the adsorption systems by ultrafast laser pulses
induces coherent surface phonons. The large enhancement
in SH intensity at the alkali-covered metal surfaces allows
to monitor precisely the time-evolution of the coherent
phonons. Electronic excitations of both adsorbate-induced
and substrate bands by using ultrafast light pulses can
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induce abrupt fluctuations of charge density around alkali
adatoms, resulting in coherent nuclear motions of adsorbates
via electron-phonon couplings. For Na and K/Cu(111),
excitation-photon-energy dependence for coherent surface
phonons clearly indicates that substrate electronic excita-
tion induces the coherent motions of the S mode. For
Cs/Cu(111), we observed clear switching of the excitation
mechanism from bulk excitation for λex = 400 nm to
adsorbate localized excitation at λex = 800 nm. Attempts for
theoretical modeling of the both excitation processes have
been described.

TRSHG is versatile to investigate coherent phonon
dynamics at surfaces. This method is ideally suited for
alkali overlayers because of the marked enhancement of
SH intensity. However, applications of TRSHG to other
adsorption systems have been very limited, mainly because
they lack such large enhancement in SH intensity. This
obstacle can be removed if SH intensity is enhanced by
tuning the photon energy of probe pulses to an electronic
resonance of adsorption systems. In addition, using much
shorter pump pulses extends the applicability of TRSHG to
coherent surface phonons and adsorbate vibrations at higher
frequencies.
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