Rhodium-catalyzed asymmetric phenylation of N-phosphinoylarylimines with triphenylborane

Hao, Xinyu; Chen, Qian; Kuriyama, Masami; Yamada, Kenichi; Yamamoto, Yasutomo; Tomioka, Kiyoshi

http://hdl.handle.net/2433/156533

© Royal Society of Chemistry 2011.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。

Kyoto University
Rhodium-Catalyzed Asymmetric Phenylation of N-
Phosphinoylarylimines with Triphenylborane.a

Xinyu Hao,b Qian Chen,c Masami Kuriyama,b Ken-ichi Yamada,b Yasutomo Yamamotoa and Kiyoshi Tomiokaa,c

Received in (XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth XXXXXXXXX 200X
DOI: 10.1039/b000000x

Triphenylborane asymmetrically transfers its phenyl group to N-
diphenylphosphinoylarylimines to give diarylmethylamines with
high ee in high yield without imine hydrolysis under the catalysis
of a chiral amidomonophosphane–rhodium(I) complex.

The success in the chiral amidomonophosphane–rhodium-
catalyzed asymmetric arylation of N-diphenylphosphinoyl
(Dpp) imines with aryloboroxines 1,2 relied on the use of
molecular sieves 4A (MS 4A) as a dehydrating agent to
realize almost water-free conditions, giving the corresponding
diarylmethylamines with extremely high enantioselectivity in
satisfactory high yields. 3,4 For example, the arylation of
benzaldehyde N-Dpp-imine 2a with 4-methylphenyl- and 4-
methoxyphenylboroxines 3b and 3c in a 5:1 mixture of
dioxane and propanol in the presence of the 1-Rh(I) catalyst
and MS 4A at 80 °C for 12 h gave the corresponding arylated
amines (S)-4b and (S)-4c with 98% ee each in 96% and 92%
products, respectively (Table 1, entries 1 and 2).4 Continuing
scope and limitation studies, however, revealed that the reaction
of less reactive 4-methyl- and 4-methoxybenzaldehyde
N-Dpp-imines 2b and 2c with phenylboroxine 3a gave the products (R)-4b and (R)-4c with lower 84% and 83% ee in
decreased 79% and 10% yields, respectively, probably due to
competitive hydrolysis of the imines (entries 3 and 4). Then,
our problem solving research was focused on the survey of
arylation conditions that give shorter reaction time to avoid
the hydrolysis.

Table 1 Scope and Limitation of Asymmetric Arylation of N-Dpp-
arylimines

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar1</th>
<th>temp (°C)</th>
<th>yield ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>80-12</td>
<td>(S)-4b 96</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>80-12</td>
<td>(S)-4c 92</td>
</tr>
<tr>
<td>3</td>
<td>2b</td>
<td>80-12</td>
<td>(R)-4b 79</td>
</tr>
<tr>
<td>4</td>
<td>2c</td>
<td>80-12</td>
<td>(R)-4c 10</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>80-12</td>
<td>(R)-4c 45</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>80-20</td>
<td>(R)-4b 0</td>
</tr>
</tbody>
</table>

Notes: The reaction was conducted with 1.67 equiv of (Ar3)BO; in the presence of 6.6 mol % of 1, and 6.0 mol % of the Rh(I) except entry 6.5 The ee was determined by chiral stationary phase HPLC analysis.6 See ref 4 for the microwave irradiation.7 Racemic phenyl(4-tolyl)methanol, aldehyde adduct, was obtained in 76% yield.

Microwave irradiation of a mixture of 2c and phenylboroxine 3a
at 220 °C for 10 min was apparently beneficial but not
satisfactory to give (R)-4c with 68% ee in improved 45% yield
(entry 5). A cyclic triolborate 3d failed to give an imine adduct (R)-4b but gave the corresponding racemic aldehyde adduct, phenyl(4-tolyl)methyl, in 76% yield (entry 6).

Finally, we found triphenylborane as a reactive phenylation
agent to give phenylated amines (R)-4b and (R)-4c with 93% ee each in 92% and 91% yields, respectively, without imine
hydrolysis. Herein, we report a catalytic asymmetric phenylation
of N-Dpp-arylimines 2 with triphenylborane. In contrast to the
widely used boronic reagents, triarylboranes have not been
utilized as an aryl source in asymmetric catalysis,7 although
of a mixture of triphenylborane and diethylzinc has been employed for in situ generation of diphenylzinc.7

When a mixture of 4-tolualdehyde N-Dpp-imine 2b and triphenylborane (1.67 equiv) was heated in propan-1-ol at
100 °C for 12 h in the presence of a catalytic amount of 1 (6.6 mol %) and acetylacetonatobis(ethylenediborane)(I) (6.0 mol %), the phenylated product (R)-4b with 81% ee was obtained in 63% yield (Table 2, entry 1). The reaction was then performed in the presence of KF because promotion of a
transmetallation process of organoboron reagents by fluoride
was described.8 The reactions with anhydrous KF and KF on
alumina resulted in less satisfactory 39% and 44% yields, and
60% and 81% enantioselectivity, respectively (entries 2 and 3). When the reaction was performed in the presence of KF on Celite, the reaction more smoothly proceeded to give (R)-4b with 89% ee in increased 72% yield (entry 4). A mixture of dioxane and
propanol4 was not suitable solvent for the reaction with
triphenylborane, and only a trace amount of the product was
produced (entry 5). Finally, tert-butanol was found to be the
choice to complete the reaction in only 1 h at 100 °C, giving (R)-
4b with 93% ee in 92% yield (entry 6).

Table 2 Survey of Reaction Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>Solvent</th>
<th>KF source</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PrOH</td>
<td>-</td>
<td>12</td>
<td>63</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>PrOH</td>
<td>KF</td>
<td>6</td>
<td>39</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>PrOH</td>
<td>KF/Al(O)</td>
<td>6</td>
<td>44</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>PrOH</td>
<td>KF/Celite</td>
<td>6</td>
<td>72</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>dioxane/PrOH (1:1)</td>
<td>KF/Celite</td>
<td>6</td>
<td><5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>t-BuOH</td>
<td>KF/Celite</td>
<td>1</td>
<td>92</td>
<td>93</td>
</tr>
</tbody>
</table>

* The reaction was conducted with 1.67 equiv of Ph3B in the presence of 2.0 equiv of the indicated KF source, 6.6 mol % of 1, and 6.0 mol % of Rh(acac)2(C6H5)3.8 The ee was determined by chiral stationary phase HPLC analysis.
This asymmetric phenylation with triphenylborane was applicable to other N-Dpp-arylimines 2 (Table 3). Phenylation of 3-tolylinine 2d gave the corresponding 4d with high 90% ee in high 92% yield (entry 2). Electron-deficient 4-chlorobenzaldimine 2f bearing a chlorine atom was converted to 4f with 92% ee in 91% yield (entry 4). Although the reaction of sterically demanding ortho-substituted arylimines 2e and 2g was slower, the reaction proceeded in highly enantiomeric manner to give 4e and 4g with 90% ee and 93% ee in 86% and 84% yield, respectively (entries 3 and 5). It is noteworthy that the reaction of 4-methoxybenzaldimine 2c, a versatile starting point for this study (Table 1, entry 4), also successfully proceeded for 12 h to give 4c with 93% ee in 91% yield (entry 6). Polyaromatic 2-naphthalaldimine 2h and heteroaromatic 2-furancarboaldimine 2i were also good substrates to give 4h and 4i with 90% and 91% ee in 94% and 86% yield, respectively (entries 7 and 8).

Table 3 Catalytic Asymmetric Phenylation of N-Dpp-arylimines 2 with Triphenylborane

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-MeC₆H₄</td>
<td>1</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>3-MeC₆H₄</td>
<td>1</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>2-PrC₆H₄</td>
<td>10</td>
<td>86</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>4-ClC₆H₄</td>
<td>1</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>2-ClC₆H₄</td>
<td>10</td>
<td>84</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>4-ClC₆H₄</td>
<td>12</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>2-naphthyl</td>
<td>1</td>
<td>94</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>2-furyl</td>
<td>1</td>
<td>86</td>
<td>91</td>
</tr>
</tbody>
</table>

* The reaction was conducted with 1.67 equiv of Ph₃B in the presence of 2.0 equiv of KF/Celite, 6.6 mol % of I, and 6.0 mol % of the Rh(I).
* The ee was determined by chiral stationary phase HPLC analysis.
* Entry 6 of Table 2 is presented for comparison.

In conclusion, we have developed a widely applicable chiral amidomonophosphine–rhodium-catalyzed enantioselective phenylation of aryl-N-Dpp- imines with triphenylborane. The results clearly indicate the utility of triarylborane in avoiding in situ water generation. Because a Dpp group is cleaved under milder acidic conditions than a Boc group, this reaction provides a versatile methodology to access a variety type of optically active diarylmethanines.

This research was partially supported by a Grant-in-Aid for Young Scientist (B) to KY and YY, and a Grant-in-Aid for Scientific Research (A) to KT from the Japan Society for the Promotion of Science (JSPS).

Notes and references

1. Dedicated to the celebration of her 60th birthday of Prof. Carmen Nájera Domingo.
2. Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Fax: 81 75 735 4604; Tel: 81 75 735 4573; E-mail: yamaki@pharm.kyoto-u.ac.jp
3. The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, P. R. China. E-mail: chengyj@hit.edu.cn
4. Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kudo, Kyotanabe 610-0395, Japan. Fax: 81 774 65 8658; Tel: 81 774 65 8676; E-mail: tomioka@pharm.kyoto-u.ac.jp

† Electronic Supplementary Information (ESI) available: experimental details, analytical, and spectral characterization data of the products. See DOI: 10.1039/b000000x/
‡ General procedure of the catalytic asymmetric phenylation: Under argon atmosphere, a round-bottom flask was charged with Rh(acac)(C₆H₆) (3.1 mg, 0.012 mmol), I (6.5 mg, 0.013 mmol), 2 (0.200 mmol), triphenylborane (0.334 mmol), and 50% KF on celite (40 mg). To the flask was added t-BuOH (0.5 mL), and the mixture was stirred at 100 °C. After the indicated reaction time, the mixture was diluted with AcOEt, washed with brine, dried over Na₂SO₄, and then concentrated. The resulting residue was purified through silica gel column chromatography.