Rhodium-Catalyzed Asymmetric Phenylation of N-Phosphinoylarylimines with Triphenylborane.^a

Xinyu Hao,^b Qian Chen,^c Masami Kuriyama,^b Ken-ichi Yamada,^b Yasutomo Yamamoto^d and Kiyoshi Tomioka*

s Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X

DOI: 10.1039/b000000x

Triphenylborane asymmetrically transfers its phenyl group to Ndiphenylphosphinoylarylimines to give diarylmethylamines with 10 high ee in high yield without imine hydrolysis under the catalysis of a chiral amidomonophosphane-rhodium(I) complex.

The success in the chiral amidomonophosphane-rhodiumcatalyzed asymmetric arylation of N-diphenylphosphinoyl (Dpp) imines with arylboroxines 1,2 relied on the use of 15 molecular sieves 4A (MS 4A) as a dehydrating agent to realize almost water-free conditions, giving the corresponding diarylmethylamines with extremely high enantioselectivity in satisfactory high yield.^{3,4} For example, the arylation of benzaldehyde N-Dpp-imine 2a with 4-methylphenyl- and 4-20 methoxyphenylboroxines 3b and 3c in a 5:1 mixture of dioxane and propanol in the presence of the 1-Rh(I) catalyst and MS 4A at 80 °C for 12 h gave the corresponding arylated amines (S)-4b and (S)-4c with 98% ee each in 96% and 92% yields, respectively (Table 1, entries 1 and 2).4 Continuing 25 scope and limitation studies, however, revealed that the reaction of less reactive 4-methyl- and 4-methoxybezaldehyde N-Dpp-imines 2b and 2c with phenylboroxine 3a gave the products (R)-4b and (R)-4c with lower 84% and 83% ee in decreased 79% and 10% yields, respectively, probably due to 30 competitive hydrolysis of the imines (entries 3 and 4). Then, our problem solving research was focused on the survey of arylation conditions that give shorter reaction time to avoid the hydrolysis.

Table 1 Scope and Limitation of Asymmetric Arylation of N-Dpp-35 arylimines^a

entry	2	Ar	3	Ar	(°C)			yield (%)	
1 ^c	2a	Ph	3b	4-MeC ₆ H ₄	80	12	(S)-4b	96	98
2^c	2a	Ph	3c	4-MeOC ₆ H ₄	80	12	(S)-4c	92	98
3	2b	$4-MeC_6H_4$	3a	Ph	80	1	(R)-4b	79	84
4	2 c	4-MeOC ₆ H ₄	3a	Ph	80	12	(R)-4c	10	83
5^d	2 c	4-MeOC ₆ H ₄	3a	Ph	220	0.15	(R)-4c	45	68
$6^{e,f}$	2b	$4-MeC_6H_4$	3d	Ph	80	20	(R)- 4b	0^{g}	-

^a The reaction was conducted with 1.67 equiv of (Ar²BO)₃ in the presence of 6.6 mol % of 1, and 6.0 mol % of the Rh(I) excepting entry 6. b The ee was determined by chiral stationary phase HPLC analysis. ^c See ref 4. 40 Microwave irradiation. ^e 5 equiv of triolborate **3d** was used. ^f Without MS 4A. g Racemic phenyl(4-tolyl)methanol, aldehyde adduct, was obtained in

Microwave irradiation of a mixture of 2c and phenylboroxine 3a at 220 °C for 10 min was apparently beneficial but not 45 satisfactory to give (R)-4c with 68% ee in improved 45% yield (entry 5). A cyclic triolborate 3d⁵ failed to give an imine adduct (R)-4b but gave the corresponding racemic aldehyde adduct, phenyl(4-tolyl)methanol, in 76% yield (entry 6).

Finally, we found triphenylborane as a reactive phenylation 50 reagent to give phenylated amines (R)-4b and (R)-4c with 93% ee each in 92% and 91% yields, respectively, without imine hydrolysis. Herein, we report a catalytic asymmetric phenylation of N-Dpp-arylimines 2 with triphenylborane. In contrast to the widely used boronic reagents, triarylboranes have not been 55 utilized as an aryl source in asymmetric catalysis, 6 although a mixture of triphenylborane and diethylzinc has been employed for in situ generation of diphenylzinc.⁷

When a mixture of 4-tolylaldehyde N-Dpp-imine 2b and triphenylborane (1.67 equiv) was heated in propan-1-ol at 60 100 °C for 12 h in the presence of a catalytic amount of 1 (6.6 mol %) and acetylacetonatobis(ethylene)rhodium(I) (6.0 mol %), the phenylated product (R)-4b with 81% ee was obtained in 63% yield (Table 2, entry 1). The reaction was then performed in the presence of KF because promotion of a 65 transmetalation process of organoboron reagents by fluoride was described.8 The reactions with anhydrous KF and KF on alumina resulted in less satisfactory 39% and 44% yields, and 60% and 81% enantioselectivity, respectively (entries 2 and 3). When the reaction was conducted in the presence of KF on Celite, 70 the reaction more smoothly proceeded to give (R)-4b with 89% ee in increased 72% yield (entry 4). A mixture of dioxane and propanol⁴ was not suitable solvent for the reaction with triphenylborane, and only a trace amount of the product was produced (entry 5). Finally, tert-butanol was found to be the 75 choice to complete the reaction in only 1 h at 100 °C, giving (R)-**4b** with 93% ee in 92% yield (entry 6).

Table 2 Survey of Reaction Conditions^a

entry	Solvent	KF source	time (h)	yield (%)	ee (%) ^b	
1	PrOH	-	12	63	81	
2	PrOH	KF	6	39	60	
3	PrOH	KF/Al ₂ O ₃	6	44	81	
4	PrOH	KF/Celite	6	72	89	
5	dioxane/PrOH (1:1)	KF/Celite	6	<5	-	
6	t-BuOH	KF/Celite	1	92	93	

⁸⁰ The reaction was conducted with 1.67 equiv of Ph₃B in the presence of 2.0 equiv of the indicated KF source, 6.6 mol % of 1, and 6.0 mol % of Rh(acac)(C₂H₄)₂. ^b The ee was determined by chiral stationary phase HPLC analysis.

This asymmetric phenylation with triphenylborane was applicable to other N-Dpp-arylimines 2 (Table 3). Phenylation of 3-tolylimine 2d gave the corresponding 4d with high 96% ee in high 92% yield (entry 2). Electron-deficient 4-5 chlorobenzaldimine 2f bearing a chlorine atom was converted to 4f with 92% ee in 91% yield (entry 4). Although the reaction of sterically demanding ortho-substituted arylimines 2e and 2g was slower, the reaction proceeded in highly enantioselective manner to give 4e and 4g with 90% ee and 93% ee in 86% and 84% yield, 10 respectively (entries 3 and 5). It is noteworthy that the reaction of 4-methoxybenzaldimine 2c, miserable results of which were the starting point for this study (Table 1, entry 4), also successfully proceeded for 12 h to give 4c with 93% ee in 91% yield (entry 6). Polyaromatic 2-naphthaldimine 2h and heteroaromatic 2-15 furancarboaldimine 2i were also good substrates to give 4h and 4i with 90% and 91% ee in 94% and 86% yield, respectively (entries 7 and 8).

Table 3 Catalytic Asymmetric Phenylation of N-Dpp-arylimines 2 with 20 Triphenylborane

		O PPh ₂ + Ph ₃ B	Rh(acac)(KF/Ce		² Ph	O PPh ₂
	Ar N FFII ₂ · 1 135		<i>t</i> -BuOH 100 °C		Ar N H (R)-4	,1 1 112
entry	2	Ar	time (h)	4	yield (%)	ee (%) ^t
1 ^d	2b	4-MeC ₆ H ₄	1	4b	92	93
2	2d	$3-MeC_6H_4$	1	4d	92	96
3	2e	2-MeC_6H_4	10	4e	86	90
4	2f	4-ClC ₆ H ₄	1	4f	91	92

2-furvl ^a The reaction was conducted with 1.67 equiv of Ph₃B in the presence of 2.0 equiv of KF/Celite, 6.6 mol % of 1, and 6.0 mol % of the Rh(I).

b The ee was determined by chiral stationary phase HPLC analysis. 25 Entry 6 of Table 2 is presented for comparison.

10

12

1

4g

4c

4h

84

91

94

93

93

90

In conclusion, we have developed a widely applicable chiral amidomonophosphane-rhodium-catalyzed enantioselective phenylation of aryl-N-Dpp-imines with triphenylborane. The 30 results clearly indicate the utility of triarylborane in avoiding in situ water generation. Because a Dpp group is cleaved under milder acidic conditions than a Boc group,9 this reaction provides a versatile methodology to access a variety type of optically active diarylmethylamines.

35 This research was partially supported by a Grant- in-Aid for Young Scientist (B) to KY and YY, and a Grant-in-Aid for Scientific Research (A) to KT from the Japan Society for the Promotion of Science (JSPS).

Notes and references

4 5

2g

2c

2h

2-ClC₆H₄

4-MeOC₆H₄

2-naphthyl

- ⁴⁰ Dedicated to the celebration of her 60th birthday of Prof. Carmen Nájera
 - Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Fax: 81 75 753 4604; Tel: 81 75 753 4573; E-mail: yamak@pharm.kyoto-u.ac.jp
- 45 ° The Academy of Fundamental and Interdisciplinary
 - Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China. E-mail: chenqian1jp@yahoo.co.jp
- d Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan. Fax: 81 774 65 8658;
- 50 Tel: 81 774 65 8676; E-mail: tomioka@pharm.kyoto-u.ac.jp

- † Electronic Supplementary Information (ESI) available: experimental details, analytical, and spectral characterization data of the products. See DOI: 10.1039/b000000x/
- ‡ General procedure of the catalytic asymmetric phenylation: Under 55 argon atmosphere, a round-bottom flask was charged Rh(acac)(C₂H₄)₂ (3.1 mg, 0.012 mmol), **1** (6.5 mg, 0.013 mmol), **2** (0.200 mmol), triphenylborane (0.334 mmol), and 50% KF on celite (40 mg). To the flask was added t-BuOH (0.5 mL), and the mixture was stirred at 100 °C. After the indicated reaction time, the mixture was diluted with 60 AcOEt, washed with brine, dried over Na₂SO₄, and then concentrated. The resulting residue was purified through silica gel column chromatography.
 - Palladium-catalyzed cross-coupling reactions of organoboron compounds: N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457-
 - Select examples of Rh-catalyzed asymmetric additions of arylboron reagents to imines: (a) N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani, T. Hayashi, J. Am. Chem. Soc., 2004, 126, 13584-13585. (b) Y. Otomaru, N. Tokunaga, R. Shintani, T. Hayashi, Org. Lett., 2005, 7, 307-310. (c) D. J. Weix, Y. Shi, J. A. Ellman, J. Am. Chem. Soc., 2005, 127, 1092-1093. (d) H.-F. Duan, Y.-X. Jia, L.-X. Wang, Q.-L. Zhou, Org. Lett., 2006, 8, 2567–2569. (e) R. B. C. Jagt, P. Y. Toullec, D. Geerdink, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Angew. Chem., Int. Ed., 2006, 45, 2789-2791. (f) Z.-Q. Wang, C.-G. Feng, M.-H. Xu, G.-Q. Lin, J. Am. Chem. Soc., 2007, 129, 5336-5337. (g) H. Nakagawa, J. C. Rech, R. W. Sindelar, J. A. Ellman, Org. Lett., 2007, 9, 5155-5157. (h) M. Trincado, J. A. Ellman, Angew. Chem., Int. Ed., 2008, 47, 5623-5626. (i) K. Kurihara, Y. Yamamoto, N. Miyaura, Adv. Synth. Catal., 2009, 351, 260-270.
 - M. Kuriyama, T. Soeta, X. Hao, Q. Chen, K. Tomioka, J. Am. Chem. Soc., 2004, 126, 8128-8129.
 - X. Hao, M. Kuriyama, Q. Chen, Y. Yamamoto, K. Yamada, K. Tomioka, Org. Lett., 2009, 11, 4470-4473.
 - Y, Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Angew. Chem., Int. Ed., 2008, 47, 928-931.
 - Direct phenyl transfer reactions from triphenylborane: (a) E. Shirakawa, Y. Yasuhara, T. Hayashi, Chem. Lett., 2006, 768-769. (b) H. Zeng, R. Hua, J. Org. Chem., 2008, 73, 558-562. (c) H. Tsukamoto, T. Uchiyama, T. Suzuki, Y. Kondo, Org. Biomol. Chem., 2008. 6. 3005–3013.
 - (a) J. Rudolph, F. Schmidt, C. Bolm, Adv. Synth. Catal., 2004, 346, 867-872. (b) J. Rudolph, M. Lormann, C. Bolm, S. Dahmen, Adv. Synth. Catal., 2005, 347, 1361-1368 (c) S. Dahmen, M. Lormann, Org. Lett., 2005, 7, 4597-4600. (d) V. J. Forrat, O. Prieto, D. J. Ramón, M. Yus, Chem. Eur. J., 2006, 12, 4431-4445. (e) C. Bolm, F. Schmidt, L. Zani, Tetrahedron: Asymmetry, 2005, 16, 1367-1376. (f) V. J. Forrat, D. J. Ramón, M. Yus, Tetrahedron: Asymmetry, 2005, 16, 3341–3344. (g) V. J. Forrat, D. J. Ramón, M. Yus, Tetrahedron: Asymmetry, 2008, 19, 537-541. (h) V. J. Forrat, , D. J. Ramón, M. Yus, Tetrahedron: Asymmetry, 2009, 20, 65-67. (i) F. Schmidt, R. T. Stemmler, J. Rudolph, C. Bolm. Chem. Soc. Rev., 2006, 35, 454-470.
 - S. W. Wright, D. L. Hageman, L. D. McClure, J. Org. Chem., 1994,
 - R. Ramage, D. Hopton, M. Parrott, G. W. Kenner, G. A. Moore, J. Chem. Soc., Perkin Trans. 1, 1984, 1357-1370.