<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis and coordination behavior of Cu(I) bis(phosphaethenyl)pyridine complexes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakajima, Yumiko; Shiraishi, Yu; Tsuchimoto, Takahiro; Ozawa, Fumiyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Chemical communications (2011), 47(22): 6332-6334</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-06-14</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/156702</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Royal Society of Chemistry 2011. This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Synthesis and coordination behavior of Cu\(^{1}\) bis(phosphaethenyl)pyridine complexes

Yumiko Nakajima,\(^{a,b}\) Yu Shiraishi,\(^{b}\) Takahiro Tsuchimoto\(^{b}\) and Fumiyuki Ozawa\(^{a,b}\)

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/c0xx00000x

Cu\(^{1}\) complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with SbF\(_6\)\(^{-}\) and PF\(_6\)\(^{-}\) as non-coordinating anions to give [Cu(SbF\(_6\))(BPEP)] and [Cu\(_2\)(BPEP)\(_2\)(μ-PF\(_6\))]\(^{+}\), respectively. NMR and theoretical studies indicate a reduced anionic charge of the μ-PF\(_6\) ligand, which is induced by the strong π-accepting ability of BPEP.

Phosphaalkenes with P=C bond(s) are low-coordinate phosphorus compounds that possess extremely low-lying π* orbitals around the phosphorus atom, and thus exhibit strong π-acceptor properties towards transition metals.\(^1\)\(^,\)\(^2\) We have demonstrated with bidentate diphosphinidenecyclobutene ligands (DPCB-Y) that this property is useful for catalysis, leading to highly efficient organic transformations.\(^3\) More recently, we have developed 2,6-bis[1-phenyl-2-(2,4,6-tri-tert-butylphenyl)-2-phosphaethenyl]pyridine (BPEP) as a tridentate PNP-pincer type phosphaalkene ligand, which successfully stabilizes a coordinatively unsaturated 15-electron complex with a high-spin Fe\(^{1}\) center.\(^4\) This paper reports the synthesis and structures of BPEP complexes of copper. Although PNP-pincer type ligands are ongoing research topics in coordination chemistry,\(^5\) their copper complexes have been extremely limited.\(^6\)\(^−\)\(^8\) In this study, we found that BPEP forms a Cu\(^{1}\) complex of a highly electron-deficient nature, causing effective bonding interactions with “non-coordinating” anions such as SbF\(_6\)\(^{-}\) and PF\(_6\)\(^{-}\).

The BPEP ligand was introduced to CuBr in toluene at 90 °C (Scheme 1). The resulting [CuBr(BPEP)] (1) was characterized by NMR spectroscopy and elemental analysis. While it has been shown that [CuBr(pnp)] [pnp = 2,6-bis(di-tert-butylphosphinomethyl)pyridine] as a phosphine analogue adopts a three-coordinate structure without Cu–N bonding,\(^6\) complex 1 has the four-coordinate structure with a distorted tetrahedral configuration as confirmed by X-ray diffraction analysis (see ESI). A similar structure has been found for the complex with a PNP-pincer type phosphinine ligand, and attributed to lower σ-donating ability of low-coordinate phosphorus ligands than phosphine ligands.\(^7\) Complex 1 reacted with silver salts of non-coordinating anions (AgX; X = SbF\(_6\) and PF\(_6\)) to afford complexes of the formula “CuX(BPEP)” [X = SbF\(_6\) (2a), PF\(_6\) (2b)]. Since both complexes exhibited the same \(^{31}\)P NMR chemical shift (δ 213.3) in CD\(_2\)Cl\(_2\), they should exist in ionic form in a polar solvent without direct interaction between [Cu(BPEP)]\(^{+}\) and X\(^{-}\).

Complex 2a readily coordinated with MeCN, CO, and tBuNC in CD\(_2\)Cl\(_2\) to form [Cu(L)(BPEP)]\(^{+}\)SbF\(_6\)\(^{-}\) [L = MeCN (3), CO (4), tBuNC (5), respectively. The ν(CO) band of 3 appeared at 2132 cm\(^{-1}\) in the IR spectrum; the value is close to that of free CO (2143 cm\(^{-1}\)). Complex 5 exhibited the ν(NC) band at 2198 cm\(^{-1}\). This value is higher than that of the phosphine analogue [Cu(tBuNC)(pnp)]\(^{+}\)SbF\(_6\) (2177 cm\(^{-1}\)). These data illustrate the highly electron-deficient nature of the copper center.

While the \(^{31}\)P NMR signal of 2a appeared at δ 213.3 in CD\(_2\)Cl\(_2\), the signal was shifted downward (δ 234.2) in C\(_6\)D\(_6\). This tendency was quite different from that observed for 1, which showed the same chemical shift in CD\(_2\)Cl\(_2\) and C\(_6\)D\(_6\) (δ 251.5). As we have documented for DPCB-Y complexes,\(^8\) the \(^{31}\)P NMR chemical shift of the phosphaalkene ligand is rather sensitive to the M–P bond length, and tends to increase as the M–P bond is elongated. Although there is the possibility that the Cu–P distance of 2a varies with coordinating solvents, it seems more likely that the SbF\(_6\)\(^{-}\) anion is associated with the cationic [Cu(BPEP)]\(^{+}\) moiety to form a neutral complex in nonpolar C\(_6\)D\(_6\). To examine this point, single crystals of 2a were grown from a toluene solution (87%), and examined by X-ray diffraction analysis.
Figure 1 ORTEP drawing of 2a with 50% probability ellipsoids. Hydrogen atoms, disordered tert-butyl groups and disordered F6 atom were omitted for clarity. Selected bond distances (Å) and angles (deg): Cu–N 2.107(3), Cu–P1 2.2526(11), Cu–P2 2.2612(11), Cu–F1 2.190(3), Sb–F1 1.916(3), Sb–F2 1.843(4), Sb–F3 1.859(5), Sb–F4 1.846(4), Sb–F5 1.850(5), N–Cu–F1 146.05(15), P1–Cu–P2 156.25(5), Cu–F1–Sb 143.9(2).

Figure 1 shows the structure of 2a. The copper center has a distorted tetrahedral configuration with the N–Cu–F1 angle of 146.04(15)° and the P1–Cu–P2 angle of 156.25(5)°. The Cu–F1–Sb bond angle is 143.9(2)°, and the Sb bond adopts a typical octahedral configuration. The Cu–N and Cu–P lengths are in the range of PNP-pincer complexes (2.06–2.16 and 2.22–2.32 Å, respectively).

The most striking feature of 2a is the significantly short Cu–F1 bond [2.190(3) Å], which is comparable to that of CuI fluorides (~2.1 Å). Reflecting the occurrence of an effective bonding interaction between the Cu and F1 atoms, the Sb–F1 bond is elongated by 0.057–0.073 Å, compared with the other Sb–F bonds. To the best of our knowledge, this is the first example of a CuI complex with a coordinated SbF6 anion.

Next, we attempted to crystallize PF6 complex 2b from a toluene solution. However, the crystalline product obtained was not 2b, but a cationic PF6-bridged dimer of Cu(BPEP) units, having a PF6– counter anion (6). Figure 2 shows the X-ray structure of the cationic portion, which adopts C1 symmetry with the P3 atom at the point of symmetry. Two Cu(BPEP) units are connected by a μ-PF6 group in a zigzag conformation. The length of the Cu–F1 bond is 2.241(2) Å, which is somewhat longer than that of 2a, but still in the range of an effective bonding interaction between the Cu and F atoms.

Moreover, the P3–F1 bond [1.637(2) Å] is clearly longer than the other P–F bonds [1.586(2) and 1.588(2) Å].

NMR spectroscopy revealed that the dimeric structure of 6 was preserved in CD2Cl2, even in the presence of excess MeCN or CO. Furthermore, dynamic behavior on the NMR time-scale was observed within the molecule (Scheme 2).

Figure 3(a) shows the 19F NMR spectrum measured at room temperature, showing two sets of doublets at δ −73.7 (JPF = 711 Hz) and −77.8 (JPF = 978 Hz). Since the chemical shift and JPF constant for the former signal were identical to those of Bu3NPF6, this signal is assigned to PF6– as the counter anion. Accordingly, the latter arises from the μ-PF6 group. A remarkable feature of the spectrum is the significantly weak intensity of the latter signal at δ −77.8. The JPF value (978 Hz) is clearly larger than that of the PF6– anion (711 Hz), and comparable to that of neutral PF3 (938 Hz).

The 31P{1H} NMR spectrum shown in Fig. 3(b) consists of two sets of signals at δ −17.3 (JPF = 978 Hz) and −143.0 (JPF = 711 Hz), arising from μ-PF6 and PF6–, respectively. The former signal appears as a triplet, while the latter shows septet coupling as expected for PF6–; namely, the P–F couplings for four out of the six fluorine atoms are missing from the signal of the μ-PF6 group. This phenomenon is rationalized by assuming effective interactions of the four fluorine atoms with copper centers having a quadrupole moment (I = 3/2) via the rapid motion illustrated in Scheme 2. This behavior was not frozen at −80 °C.

To gain further insight into the bonding interaction between copper and the μ-PF6 group, DFT calculations were carried out. Initially, we attempted geometry optimization for a model compound of the cationic part of 6, [[bpep]Cu(μ-PF6)–Cu(bpep)] (6′), in which the 2,4,6-tri-tert-butylphenyl (Mes+) and phenyl groups on the BPEP ligands were replaced by hydrogen atoms. However, although the dimeric structure of 6 was reproduced, distances between the Cu and F atoms were unreasonably shortened (Cu–F1 = 2.16 Å; Cu–F2 = 2.48 Å).
This is probably due to the absence of the bulky Mes* groups. Therefore, the geometry of the Cu-(μ-\(\mu\)-PF\(_6\))-Cu core was fixed to the X-ray structure, and the remaining portion was optimized assuming C\(_3\) symmetry around the F3–Cu–F3* axis.

Figure 4 shows the optimized geometry of \(6^*\) under the above structural constraints. The Mayer’s bond orders (\(B\)) for Cu–F and P–F bonds are also presented. There is evidence for a bonding interaction between Cu and F1 (\(B = 0.32\)) and a weakening of the P3–F1 bond (\(B = 0.66\)). It is also observed that the F2 atom interacts with the Cu atom with a bond order of 0.13, despite the long distance between those atoms (3.054 Å). Bonding interactions of F atoms with Cu centers are also observed in several molecular orbitals (see ESI).

Table 1 compares the charge distributions in \([\text{bpep}]\text{Cu-(μ-\(\mu\)-PF\(_6\))-Cu(bpep)}\] \((6^*)\) and \([\text{Cu(bpep)}]^2+ (2^+)\), which were evaluated by natural population analysis. The \(\mu\)-PF\(_6\) group of \(6^*\) is charged to -0.84, meaning that the negative charge of the PF\(_6^–\) anion (-1.00) is reduced by bridging coordination with two molecules of 2+. Since the copper center of \(6^*\) is more positively charged than that of 2+, it is concluded that the negative charge of the PF\(_6^–\) anion is distributed to the bpep ligand upon the formation of \(6^*\), very probably via \(\pi\)-back-bonding between copper and bpep.

Complexes 2a and 2b undergo ionic dissociation in CD\(_2\)Cl\(_2\) as a polar solvent (vide supra). It was found that the complexes cleave the Si–N bond of Me\(_3\)SiN\(_3\) to afford [Cu\(_2\)(bpep)]\((\mu-\mu_{\text{N,N}})]^X [X = SbF\(_6^–\)] (7a), PF\(_6^–\) (7b)] in 96 and 36% yields, respectively, along with Me\(_3\)SiF (Scheme 3). The reactions probably proceed via cooperative activation of Me\(_3\)SiN\(_3\) by the electrophilic copper center and nucleophilic fluoride ion. Since it is known that it is very difficult to dissociate a fluoride ion from SbF\(_6^–\) as non-coordinating anions,\(^{25}\) the high reactivity of 2a and 2b should be attributed to the high electrophilicity of [Cu(BPEP)]\(^2+\).

In summary, we have reported novel Cu\(_I\) complexes bearing a phosphoalkene-based PNP-pincer ligand (BPEP). Thanks to the strong \(\pi\)-accepting ability of the P=C bonds, the [Cu(BPEP)]\(^2+\) species possesses a highly electron-deficient copper center, exhibiting strong affinity towards SbF\(_6^–\). This is probably due to the absence of the bulky Mes* groups. Therefore, the geometry of the Cu-(μ-\(\mu\)-PF\(_6\))-Cu core was fixed to the X-ray structure, and the remaining portion was optimized assuming C\(_3\) symmetry around the F3–Cu–F3* axis.

Notes and references

11. Weak coordination of PF\(_6^–\), with Cu at a distance of 2.60(2) Å has been reported for [Cu(\(\text{CH}_3\)-\(\text{CH}=\text{CHCOOCH}_3\)](bpy)][PF\(_6^–\)]. T. Fintauer, J. Organomet. Chem., 2006, 691, 3948.

Table 1 Charge distribution in \(6^*\) and \([\text{Cu(bpep)}]^2+ (2^+)\)

<table>
<thead>
<tr>
<th>Component</th>
<th>([\text{Cu(bpep)}]^{2+}(\mu-\mu_{\text{PF(_6)}})) ((6^*))</th>
<th>([\text{Cu(bpep)}]^2+ (2^+))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>+0.78</td>
<td>+0.67</td>
</tr>
<tr>
<td>bpep</td>
<td>+0.14</td>
<td>+0.33</td>
</tr>
<tr>
<td>(\mu)-PF(_6^–)</td>
<td>-0.84</td>
<td></td>
</tr>
</tbody>
</table>

The values were determined by DFT calculations and NBO analysis.

Fig. 4 The optimized structure and Mayer’s bond orders for a model compound of \(6^*\), [bpepCu-(\(\mu\)-PF\(_6\))-Cu(bpep)]\(^2+\) (6*).

Scheme 3

\(2a\) (\(X = \text{SbF\(_6^–\)}\))

\(2b\) (\(X = \text{PF\(_6^–\)}\))
Cu(I) complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with “non-coordinating anions” such as SbF$_6^-$ and PF$_6^-$.