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SUMMARY This paper proposes a reliability evaluation environment
for coarse-grained reconfigurable architectures. This environment is de-
signed so that it can be easily extended to different target architectures and
applications by automating the generation of the simulation inputs such as
HDL codes for fault injection and configuration information. This automa-
tion enables us to explore a huge design space in order to efficiently analyze
area/reliability trade-offs and find the best solution. This paper also shows
demonstrative examples of the design space exploration of coarse-grained
reconfigurable architectures using the proposed environment. Through the
demonstrations, we discuss relationship between coarse-grained architec-
tures and reliability, which has not yet been addressed in existing literatures
and show the feasibility of the proposed environment.
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1. Introduction

As CMOS process technology enters in the range of a few
tens of nanometers, NRE cost for manufacturing LSIs is in-
creasing rapidly. The process scaling also has made vari-
ous phenomena which disturb the normal operation of LSI
systems notable. For example, process variation such as
varying doping concentration can cause delay fault or stuck-
at fault, SEU (Single-Event Upset) and SET (Single-Event
Transient) caused by cosmic particles and alpha particles
can cause soft-errors. Soft-errors have been paid attention
especially because they often cause troubles or raise prob-
lems in satellite systems [1] and avionics systems [2]. Re-
cently, reconfigurable devices, especially FPGAs have been
regarded as one of the solutions for both problems. It is
widely known that the reconfigurability can reduce NRE
cost. It is expected that reconfigurable devices can also ex-
tend the life time of LSI systems using their reconfigurabil-
ity [3]. The systems with faulty units can continue normal
operation with configurations which avoid using the faulty
units.

Due to process scaling, soft-error resilience is expected
to be also a major concern even for consumer-oriented sys-
tems in the near future. It means that not only performance,
circuit area and power consumption but also reliability of
the systems have to be evaluated. The evaluation has to be
performed with the fault model which is best suited for op-
erational environment. There is a significant difference in
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acceptable cost margins for reliability between aero-space
systems and consumer-oriented systems. These make LSI-
system design even more complex. Therefore, the next-
generation methodology for designing LSI systems which
meet various requirements including reliability has to be es-
tablished.

It is expected that reconfigurable devices enable us to
solve these problems. The reconfigurability enables us not
only to implement the various functions onto one chip, but
also to apply the appropriate techniques for reliability en-
hancements depending on the priority of reliability or the
environment factors, e.g. soft-error incidence ratio. There-
fore, reconfigurability facilitates answering the wide variety
of demands such as reliability with cost effectiveness.

Recently, especially in multimedia and stream pro-
cessing of consumer-oriented embedded systems, coarse-
grained reconfigurable architectures have become gradually
noticeable. Such architectures are advantageous to the fine-
grained counterpart (FPGAs) in terms of performance and
energy efficiency. More noteworthy is the fact that they
have a much smaller amount of configuration memory than
FPGAs, and this can reduce the incidence of soft-errors.
Hence, the design space of coarse-grained reconfigurable ar-
chitectures is worth exploring from reliability aspect. How-
ever, only a limited number of studies have been made for
reliability-oriented coarse-grained reconfigurable architec-
tures [3]–[5]. Therefore, this paper focuses on exploration
of coarse-grained reconfigurable architectures.

The goal of our project is to establish such an LSI sys-
tem design methodology. To that end, we should be able to
(1) make quantitative comparisons of reliability of several
architectures and implementations, and (2) explore the re-
configurable architecture from reliability aspect to find op-
timal usages of the techniques for reliability enhancement
under specific constraints. Furthermore, it is strongly de-
sired to automate (1) and (2).

In this paper, we propose the reliability evaluation envi-
ronment for designing coarse-grained reconfigurable archi-
tectures. In this proposed environment, application mapping
and generation of simulation inputs such as HDL codes for
fault injections are automated. This enables efficient design
space exploration and helps evaluation of various techniques
such as architecture-tailored application mapping, selective
redundancy injection, etc. in order to enhance reliability.
This paper also shows demonstrative examples of the de-
sign space exploration of coarse-grained reconfigurable ar-
chitectures using the proposed environment, including (1)
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locating memory elements to be protected from SEUs, (2)
comparing ALU architectures in terms of SEU tolerance,
(3) area-reliability trade-off using selective TMR, and (4)
comparison of routing architectures for several applications.

The remainder of this paper is organized as follows.
Section 2 discusses the existing coarse-grained reconfig-
urable architectures and the evaluation of their reliability.
Section 3 describes the proposed environment. Section 4
shows the demonstrations. Section 5 concludes this paper
and describes future works.

2. Existing Coarse-Grained Reconfigurable Architec-
tures and Their Evaluation

A lot of coarse-grained reconfigurable architectures have
been proposed [6]. [7] discusses about the design-space
exploration of energy-delay-area efficient datapath. How-
ever, only a limited number of studies have been made for
reliability-oriented coarse-grained reconfigurable architec-
tures [3]–[5].

In [4], flip-flops and combinational circuits are multi-
plexed in different ways. It achieves the same reliability as
TMR with lower area-overhead. However, there is no area-
reliability trade-off in this architecture, because the multi-
plexings are always activated in the whole circuit.

In [3], hot-swapping concept is proposed. In this archi-
tecture, the faulty units are swapped for spares with run-time
fault diagnoses using partial reconfiguration. This architec-
ture achieves area- and performance-reliability trade-offs by
varying the ratio of active units and spares. The reliability
is evaluated using a statistical approach, but not with actual
applications. The design-space exploration in basic com-
ponents such as routing structure and instruction set from
reliability aspect is not carried out.

In [5], cluster array architecture for flexible reliability
is proposed. The cluster has four modes of operation, which
enable several degrees of reliability. Area-reliability trade-
off is achieved by varying the degrees of reliability for each
cluster in the array independently, i.e. selecting more reli-
able modes of operation at the expense of area usage. The
reliability is evaluated in statistical approach and with ac-
tual applications. However, similar to [3], the design-space
exploration in basic components such as inter- and intra-
routing structure from reliability aspect is not carried out.

Most of the existing research on reliability in LSI sys-
tems, including coarse-grained reconfigurable architectures,
assume single fault only. However, [8] shows that multi-
ple fault such as MCU (multi-cell upset) occurrence will
be more frequent in future process. Therefore, the multi-
ple fault model should be employed. The model needs the
vast number of fault pattern and immense simulation time
but they can be cut down efficiently by using physical dis-
tance restriction between faulty elements.

Therefore, efficient platform for exploration and eval-
uation is necessary. Huge design space, several reliability
enhancement methods and multiple fault models underscore
the need for a platform that can take all of these into account,

explore solutions and evaluate them in a systematic manner.
In order to perform reliability-aware design space ex-

ploration of coarse-grained reconfigurable architecture, we
need a design environment which includes (1) a retargetable
compiler that covers a certain range of target coarse-grained
reconfigurable architectures to be explored, and (2) a tool
which evaluates reliability of architectures quantitatively.
However, there is no design environment that has (1) and
(2). Little attempts have been made for (1), because each
conventional design environment is dedicated for its own re-
configurable architecture and is not usable as a retargetable
compiler. VPR [9] is a unique retargetable place-and-route
solution for FPGAs, but it does not support coarse-grained
reconfigurable architectures. To solve (1), we need an
architecture model of coarse-grained reconfigurable archi-
tecture and architecture-independent place-and-route algo-
rithms. (2) is also a challenging issue, because we need a
universal criterion to compare reliability of different coarse-
grained reconfigurable architectures.

3. Proposed Reliability Evaluation Environment

Based on the discussions so far, this section presents the pro-
posed reliability evaluation environment for exploring de-
sign space of coarse-grained reconfigurable architectures.

First of all, we have to decide the abstraction level
of analysis; higher-level analysis, in general, is efficient in
terms of time and memory, while lower-level analysis gives
us more accurate results. Low-level analysis based on gate-
level simulation with accurate delay model is necessary if
we need to handle SETs, but full-chip gate-level simula-
tion is time consuming or even impossible. On the other
hand, high-level approach such as statistical-analysis-based
method can be considered. However, it is hard to formulate
the reliability of a reconfigurable fabric on which specific
applications are implemented. We decided to employ “mid-
level” analysis based on RTL simulation to estimate the ef-
fect of SEUs for specific architectures and applications.

One of important features of our reliability evaluation
environment is automated generation of simulation inputs
(e.g., configuration data for given architecture and applica-
tion, and fault injection script for given architecture and as-
sumptions) to make efficient design space exploration pos-
sible.

3.1 Target Architecture Model

In this paper an ALU-array-based architecture model is es-
tablished which covers a certain range of coarse-grained re-
configurable architectures. The target coarse-grained recon-
figurable architecture model in the proposed environment is
shown in Fig. 1. The basic unit which is called as cluster are
arranged in a two dimensional array. The proposed environ-
ment targets both homogeneous and heterogeneous arrays.

A cluster is composed of some cells for execution of
operations. A cell is composed of flip-flops for configura-
tion information, an ALU which has two inputs and basic
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Fig. 1 The target coarse-grained reconfigurable architecture model.

instructions or three inputs and specific instructions such as
voting instruction and product-sum instruction, multiplexers
for selecting inputs of the ALU and switch-boxes for routing
outputs of the ALU. The cluster and cell can have additional
circuits for reliability enhancement such as an encoder and
a decoder for ECC and a voter for TMR. There are SRAMs
for configuration information, a control circuit for distribut-
ing the information to each cluster and cell and I/O buffers
outside the cluster array.

3.2 The Fault Model in the Proposed Environment

The fault model in the proposed environment is summarized
as follows.

1. Only SEUs in flip-flops are taken into account.
2. The number of bits which flip at one time is one or two.

If a two bit flip occur, the bits exist in the same cluster.

1. is based on [10] and [11] which state that the probability
of a SEU in flip-flops occurring are much larger than SEU in
SRAMs or SET in 32 nm and below. 2. is based on [8] which
states that the probability of one or two bit SEUs occurring
is larger than 95% of all SEUs in 65 nm and below.

3.3 Reliability Evaluation Flow

Figure 2 shows the reliability evaluation flow of the pro-
posed environment. The detailed processes are summarized
as follows.

3.3.1 Input Data

The input data set of the proposed environment which
should be prepared by the users is summarized as follows.

(1) Fault model, which specifies the assumption on multi-
ple faults and the target flip-flops (configuration FFs,
data-path FFs or both).

(2) RTL description of target architecture which is used for
RTL simulation, circuit area evaluation, and fault injec-
tion.

Fig. 2 The evaluation flow of the proposed environment.

Fig. 3 The examples of the inputs for the proposed environment.

(3) External I/O configuration.
(4) Routing resource graph.
(5) Application Description in the form of technology-

mapped data-flow graph (DFG) for the target architec-
ture.

(6) Specification of selective TMR.

Figure 3 shows the examples of (1), (3), (4), (5) and
(6). (3) specifies the data sets of input, the file name of out-
put stream, the length of input and output stream, and the
output delay. (4) represents the available routing resources
and their connectivities of the target architecture, and simi-
lar information has been generally used by retargetable au-
tomated place-and-route tools for FPGAs [12]. (6) defines
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which nodes in target DFG will be applied selective TMR.

3.3.2 Preparations for Simulation

The retargetable compiler we developed for simple 2-
dimensional ALU array described in Sect. 3.1 executes the
automated placement and routing and configuration infor-
mation is generated using the routing resource graph, the
target DFG and the specification about selective TMR. The
placement algorithm is a pairwise exchange method using a
simulated annealing algorithm [13]. The routing algorithm
consists of two-stages: global routing and detailed routing.
The global routing is executed based on the negotiation-
based algorithm and the detailed routing is executed based
on the rip-up and re-route algorithm [9], [14]. We used ver-
satile algorithms for placement and routing such as sim-
ulated annealing, negotiation-based global routing, and so
on. We avoided ad-hoc algorithms which causes the tool
architecture-specific.

Parsing RTL description extracts the list of registers
in target RTLs. Fault patterns are generated automatically
based on the list and the fault model described in Sect. 3.2.
Simulation input such as RTL description for fault injections
are generated automatically based on the simulation param-
eters.

These processes are fully automated. This automation
enables us to explore a huge design space in order to effi-
ciently analyze area/reliability trade-offs and find the best
solution.

3.3.3 Simulation and Evaluation

The RTL simulation is executed using the RTL description
of the architecture, the generated fault injection script, and
the configuration information with ModelSim. The simu-
lation outputs show the circuits’ behavior with and without
the fault injections. By comparing these outputs, errors ap-
peared in the output streams can be evaluated. By applying
different ALU architectures, different routing architectures,
different applications, and different partial TMR directives,
we can obtain valuable information for design-space explo-
ration, as demonstrated in the next section. One of the most
useful and universal reliability criteria for mutual compari-
son of reconfigurable architectures is “sensitive bit” which
has been used for FPGAs [15]. The proposed environment
supports evaluation of sensitive bit, which is demonstrated
in Sect. 4.3 and Sect. 4.4.

4. Demonstrations of Design Space Exploration with
the Proposed Environment

This section demonstrates design space exploration of
coarse-grained reconfigurable architectures from various as-
pects with the proposed environment. Through the demon-
strations, we discuss relationship between coarse-grained
architectures and reliability and show the feasibility of the
proposed environment.

The contents of the demonstrations are summarized
as follows. Sect. 4.1 demonstrates that the proposed envi-
ronment can locate memory elements to be protected from
SEUs. Sect. 4.2 compares cluster and cell architectures in
terms of SEU tolerance and demonstrates the feasibility of
selective TMR with built-in voter. Sect. 4.3 demonstrates
that the proposed environment with automated P&R feature
successfully analyzed that there is a meaningful trade-off
between area and reliability using selective TMR for a re-
cent coarse-grained reconfigurable architecture with built-in
voter [5]. Sect. 4.4 compares routing architectures for sev-
eral applications

4.1 Locating Memory Elements to be Protected

[15] states that the importance of a memory element in terms
of impact induced by SEU depends on its role in the entire
circuit. The quantitative order of the impact means the pri-
ority of each unit for protection. In this demonstration, the
proposed environment can figure out the priority quantita-
tively.

4.1.1 Target Architecture

The target architecture is a simple 2-dimensional ALU array,
a special case of the cluster array model where each cluster
has only one cell. Each cell has an ALU which has two
inputs and ten arithmetic and logical instructions and flip-
flops for accumulation.

4.1.2 Target Application

The target application is ten-tap FIR filters. The number of
error bits which appear in output streams depends on the
location of the fault. Therefore, those cells which generate
a lot of errors when an SEU occurs to their own flip-flops
should be protected preferentially.

4.1.3 Experiment and Result

It is natural to assume that the rate of SEU incidence is con-
stant spatially and temporally. Based on this assumption, the
behaviors of the target circuit with one-bit SEUs are simu-
lated exhaustively, where the SEU can occur at any flip-flops
and at any clock cycle from the beginning of data input to
the ending of data output. The pseudo-code of this simula-
tion is described as follows;

err=0;

for (c=c0;c<=c1;c++) {

for (f=0;f<n;f++) {

err += NumberOfErrorAppeared

InOutputStream(c,f);

}

}

return(err);

where c0 and c1 are the clock cycle when data input starts
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Fig. 4 The number of errors in the primary output when SEUs occur in
the flip-flops for configuration.

Fig. 5 The number of errors in the primary output when SEUs occur in
the flip-flops for accumulation.

and data output ends, respectively, and n is the number
of flip-flops. NumberOfErrorAppearedInOutputStream(c,f)
invokes a simulation run with an SEU that occurs in a flip-
flop f at clock cycle c and returns the number of erroneous
words appeared in the output stream.

Figure 4 illustrates the result of the experiment. Each
square represents a cell and each arrow represents their con-
nectivity. The color of each cell represents how many errors
in the primary output of the FIR filter are generated when
SEUs occur in its flip-flops for configuration. Black cells
generates many errors in output streams when SEUs occur
in it so they should be protected. The cell located on the
right edge of the second row generates the largest number
of errors, that is, 72.5% of output stream are faulty. The
cell located on the left edge of the first row generates the
smallest number of errors, that is, 33.3% of output stream
are faulty.

Figure 5 illustrates the result of the experiment with
SEUs in flip-flops for accumulation. The cell located on
the left edge of the first row generates the largest number of
errors, that is, 24.9% of output stream are faulty. The cell
located on the fifth row generates the smallest number of
errors, that is, 2.9% of output stream are faulty.

4.1.4 Discussion

Figure 4 shows that the cells on second row generate many
errors. The reason comes from that these cells operate with
an immediate operand which requires many bits for config-
uration. The error counts of cells on the second row are
different because their immediate operand values are differ-
ent. This suggests that vulnerability of cells in an FIR fil-

ter strongly depends on their constant coefficients. Note that
this new insight is gained by experiments using the proposed
environment.

The cells on first row generate fewer errors than others.
This is because only a limited number of configuration bits
are essential to implement functions on these cells.

Figure 5 shows that the locations of the cells impact
their reliability, that is, SEUs in the cells which are far from
the primary output of the FIR filter generate many errors.
It should be noted that Figs. 4 and 5 show different trends.
This suggests that different approaches are effective for flip-
flops for configuration and datapath to enhance reliability.

These results show that the proposed environment can
figure out the priority of each unit for protection quanti-
tatively. Furthermore, these results suggest that selective
TMR in coarse-grained reconfigurable architectures is ap-
plicable.

4.2 Comparing Cluster and Cell Architectures in Terms of
SEU Tolerance

There are various techniques for reliability enhancement
such as TMR and Hamming codes. Their effectiveness for
reliability depend on the assumed fault model. Under sin-
gle fault model, both TMR and Hamming code can achieve
the same reliability. In contrast under multiple fault model,
achievable reliability would be different.

The cluster and cell architectures for implementing the
techniques affect the reliability. For example, various imple-
mentations of voter for TMR can be considered (e.g., a voter
implemented by multiple cells using native instructions such
as AND/OR, a voter implemented by single ALU which has
a dedicated instruction for voting operation, and a built-in
voter within a cluster) and different implementations can re-
sult in different reliability.

This demonstration compares cluster and cell architec-
tures in terms of SEU tolerance under multiple fault model
with the proposed environment.

4.2.1 Target Architectures

We will use four target architectures; one is the same archi-
tecture introduced in Sect. 4.1.1 (denoted by “Simple ALU
Array”), and the others are its extensions summarized as fol-
lows.

a Triplicated flip-flops
All flip-flops in each cluster and cell are triplicated. All
reconfigurable components receive the configuration
information through built-in voters. Note that built-
in voters have no vulnerability to SEUs because the
functionality of built-in (or hard wired) circuit is not
affected by SEU.

b Voting operation in the ALU’s instruction set
Each cluster is composed of two types of cells. One
cell has a three-input ALU which has voting operation
in instruction set. Five patterns of binary code (“0000,”
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Table 1 Failure rate of each architecture and implementation.

Architecture Amount of Failure rate [%]
and configuration 1 bit 2 bit

implementation information [bit] SEU SEU

(1) Simple ALU array 376 94.41 99.68
(2) (1) with full-TMR 2232 3.58 23.64

(3) Triplicated flip-flops 1128 0.00 0.17
(4) Voting operation 1520 0.00 18.04
(5) Hamming code 1209 0.00 1.72

“0001,” “0010,” “0100,” “1000”) are assigned to the
voting operation and “0000” are used normally. This
make the correct voting operation under one-bit SEUs
possible. The other cell is the same as those in simple
ALU array.

c Hamming code
All configuration information and data for accumula-
tion are protected by Hamming code encoder and de-
coder.

4.2.2 Target Application

The target Application is MixColumns which is a part of
AES encryption/decryption process. Unlike FIR filters, even
only one-bit error in the primary output of MixColumns is
fatal in encryption and decryption.

4.2.3 Experiment and Result

This demonstration assumes SEUs in configuration flip-
flops only.

The behavior of the MixColumns with one-bit and two-
bits SEUs. The definition of the “failure rate” which is used
for evaluation of reliability in this experiment is given as
follows;

• one-bit SEU:(
The number of configuration bit

which affect the output stream with SEU

)
(
The total number of configuration bit

)
• two-bit SEU:(

The number of combinations of configuration bit
which affect the output stream with SEU

)
(
The total number of combinations of configuration bit

)
Unlike Sect. 4.1, the timing of SEU injection is fixed

at the beginning of the data input, because the experiment
in this section targets only the flip-flops for configuration
which are not overwritten during the runtime by the appli-
cation.

Table 1 shows the failure rate of each circuit. (1) and
(2) are the circuit implemented using simple ALU architec-
tures. (1) is implemented without any redundancy, while (2)
implements full-TMR using combination of simple ALUs.
(3) is implemented using a. (4) is implemented using b with

full-TMR. (5) is implemented using c.

4.2.4 Discussion

(2), (3) and (4) are different in the amounts of configuration
information for executing voting operation. (2) requires 5
clusters for implementing a voting operation, so many con-
figuration information is required. In (3) All built-in voters
are always activated, so no additional configuration infor-
mation is required. (4) requires 4-bit configuration for exe-
cuting voting operation. These difference is the reason why
failure rates differ especially under multiple fault model.
The result of (5) shows that Hamming code is less efficient
than TMR with built-in voter. These result shows that TMR
with built-in voter is the most efficient and promising imple-
mentation.

The results of this demonstration are derived only by
user’s effort for implementing the target architecture, owing
to the automation of the application mapping and reliabil-
ity evaluation. This is one of the benefits of the proposed
environment.

4.3 Area-Dependability Trade-Off Using Selective TMR

Sections 4.1 and 4.2 show the feasibility of selective TMR
and built-in voter. There is a coarse-grained reconfigurable
architecture which is designed based on these concept [5].
This section shows a demonstration that the architecture and
the proposed environment, especially automated placement
and routing, enables us to draw an area-dependability trade-
off curve. Furthermore, the experiment demonstrates that
the same overhead in area provides different reliability de-
pending on which units are configured as TMR.

4.3.1 Target Architecture

The target architecture is a slight modification of [5] to fit the
Sect. 3.1 architecture model. This demonstration deals with
two modes of operation: 1) TMR mode, which triplicates
the operational circuit, the data-path and the configuration
information by using three cells in a cluster; and 2) SMM
mode, which enables four cells in a cluster to operate inde-
pendently and maximizes the area efficiency in exchange for
the reliability.

4.3.2 Target Application

The target application is Viterbi decoders (constraint length
is 3). The process of Viterbi decoding is divided into three
parts: branch metric unit, path metric unit and path memory
unit.

4.3.3 Experiment and Result

This demonstration assumes only one-bit SEU in configura-
tion flip-flops. For comparison, we evaluated five patterns
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Fig. 6 Area-reliability trade-off of the viterbi decoders.

of Viterbi decoder implementations: fully triplicated imple-
mentation using TMR mode only (denoted by T-T-T), fully
single-modular implementation using SMM mode only (de-
noted by S-S-S), and partially triplicated implementations in
which only one of three parts is fully triplicated (denoted by
T-S-S, S-T-S, and S-S-T). The reliability of each circuit is
evaluated in a similar way to [15], that is, by counting the
number of “sensitive bits.”

Figure 6 describes the result of the evaluation. X-axis
(circuit area) is the number of cluster. Y-axis (number of
sensitive bit) is averaged over 50 input data.

4.3.4 Discussion

There is a considerable trade-off between area and reliabil-
ity in Fig. 6. Comparing “S-T-S” with “S-S-T,” the area of
the both circuits are the same but the number of sensitive
bits are different, that is, the same overhead in area provides
different reliability depending on which units to be config-
ured as TMR. This result is mainly attributed to the differ-
ence between the functions of the units. In Viterbi decoder,
only path metric unit has feedback paths, hence, it seems
that the path metric unit should be protected with higher
priority than path memory unit, if we use partial TMR. To
achieve high reliability efficiently, it is important to identify
which part of the target circuit should be protected, and this
is where the proposed environment is effectively used.

4.4 Comparison of Routing Architectures for Several Ap-
plications

This experiment demonstrates a design space exploration of
routing architecture.

There is complex relationship among routing architec-
ture, circuit area, and reliability. Architectures with less-
flexible routing sometimes achieves area-efficient imple-
mentation for small circuits. However, large and complex
applications demand large amount of routing resources, and
thus architectures with poor routing resources results lower
usage of cells. This makes target system not only area-
inefficient but also less reliable. In contrast, rich routing

Fig. 7 The target routing architectures.

architectures can implement large and complex applications
with area-efficiently. For small applications, however, many
routing resources are left unused which can disturb the nor-
mal operations of the neighboring resources when SEU oc-
cur. Selective TMR makes the relationship more complex.

This demonstration evaluates area-reliability trade-off
using selective TMR for three types of routing architectures
based on [5] and three applications.

4.4.1 Target Architecture

Figure 7 illustrates the target routing architectures. Each fig-
ure means intra-cluster connection, that is, four squares rep-
resent switch-boxes for intra-cell connection, a central rect-
angle represents switch-box for inter-cell connection, each
arrow represents fixed wires.

Type 1 is equivalent to [5] and the intra-cell connec-
tivity is restricted compared to the others. Type 2 is imple-
mented by changing the intra-cell connectivity of type 1 into
completely connected network. Type 3 is implemented by
adding inter-cluster fixed wires.

The area of type 1 is small but the flexibility is low,
so type 1 is suited for simple and small applications. In
contrast, types 2 and 3 have high flexibility and large area,
so they are suited for complex and large applications.

4.4.2 Target Applications

The first target is a four-tap FIR filter as a simple and small
application. The result of Sect. 4.1 shows the units in the
same row have similar trends in reliability. Therefore, eight
patterns of FIR filters are implemented with varying the re-
dundancy (triplicated or not) row-by-row. The second target
is MixColumns used in Sect. 4.2 as a medium-scale appli-
cation. This application can be divided into four parallel
circuits. Therefore, sixteen patterns of MixColumns are im-
plemented with varying the redundancy of every circuit. The
third target is Viterbi decoder used in Sect. 4.3. Five patterns
which are same as Sect. 4.3 are implemented.

4.4.3 Experiment and Result

This demonstration assumes one-bit SEU in configuration
flip-flops only. The reliability of each circuit is evaluated by
counting the number of “sensitive bits.”

Figures 8, 9, and 10 show the result of the FIR filters,
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Fig. 8 The result of FIR filters.

Fig. 9 The result of MixColumns.

Fig. 10 The result of Viterbi decoders.

the Mix-Columns, and the Viterbi decoders, respectively.
The circuit areas are evaluated using 0.13 µm CMOS stan-
dard cell library, and Synposys Design Compiler. The x-axis
of these figures are normalized by the gate count of a cluster
of type 1.

4.4.4 Discussion

The result of Viterbi decoders shows the highest flexible
routing architecture achieves the best circuit area and relia-

bility. In this demonstration, therefore, highly-flexible rout-
ing architectures are suited for large and complex applica-
tions such as Viterbi decoder. In contrast, the result of FIR
filters shows that if the constraint for circuit area is severe,
type 3 is appropriate, and if large area overhead is permitted
type 2 is appropriate. The same is equally true for reliability
constraints. The result of MixColumns shows that type 2 is
appropriate for the severe constraints for area and type 3 is
appropriate when large area overhead is permitted.

These results suggest that the proposed environment is
useful for exploration of the appropriate routing architecture
suited for various area and reliability constraints and target
applications.

5. Conclusions

In this paper, we propose the reliability evaluation environ-
ment for designing coarse-grained reconfigurable architec-
tures. This environment enables us to evaluate the reliability
of a coarse-grained reconfigurable architecture, and helps to
explore design space of architectures and find an optimal
usage of the reliability hardening techniques under specific
constraints (e.g., from Fig. 8, we can select Type 2 or Type 3
architecture to minimize number of sensitive bit depending
on the allowable circuit area.)

This environment is designed so that it can be easily
extended to different target architectures and applications by
automating the generation of the simulation inputs such as
HDL codes for fault injection and configuration informa-
tion. Therefore, this environment also can be used to evalu-
ate the feasibility of a certain technique for increasing relia-
bility of a certain reconfigurable architecture.

This paper also shows demonstrative examples of the
design space exploration of coarse-grained reconfigurable
architectures from various aspect using the proposed en-
vironment. These demonstrations generate various discus-
sions such as the relationship between routing architectures
and applications, which is not addressed in existing litera-
ture.

In this paper, only area-reliability trade-off is evaluated,
but power-reliability trade-off is also very important. We
expect that the comparison of relative power consumption
between various types of architecture is possible using ex-
isting tools. In addition, we are interested in the comparison
of power consumption overhead between spatial and time
redundancy.

As future work, by extending these tools, we will ex-
plore other kinds of coarse-grained reconfigurable architec-
tures which are not ALU-array-based in order to find an ap-
propriate one for achieving reliability efficiently. To make
the design space exploration efficient, It is desired that the
generations of the input files for the proposed environment
are automated. For example, it will be better if application
definition (DFG) is generated automatically from higher-
level description like C, and RTL description of target ar-
chitecture and routing resource graph are generated auto-
matically from an architecture description language which
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specifies the instruction set of ALUs and routing architec-
tures. Also we intend to compare the advantages and disad-
vantages over FPGA implementations from the standpoints
of reliability, performance, power consumption and so on.
Moreover, various techniques such as time and information
redundancy and dynamic reconfiguration will be targets of
our environment.
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