Precipitation behavior of highly Sr-doped LaPO₄ in phosphoric acid solutions

Naoyuki Hatada,⁺⁺ Yoshitaro Nose,⁺ Akiko Kuramitsu⁺ and Tetsuya Uda⁺⁺

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
DOI: 10.1039/b000000x

The precipitation condition of LaPO₄ in phosphoric acid solution was investigated under both atmospheric and humidified conditions. The crystal morphology, Sr doping level, H₂O incorporation, and high temperature stability of Sr-doped LaPO₄ precipitates were also analyzed. Increasing pH₂O from 0.01 to 1 atm extends the precipitation region of LaPO₄ in phosphoric acid solutions toward higher temperatures by nearly 100 °C. Under such conditions (e.g. T = 250 °C and pH₂O = 1 atm), it is possible to obtain aggregated crystals up to 200 μm. The Sr doping level in LaPO₄ shows a strong dependence on the precipitation ratio of La₃X₄. The Sr doping level is higher in the low X₄La region, reaching 20 mol% at maximum. This value is one order of magnitude higher than the previously reported solubilities. It was confirmed H₂O is certainly incorporated in the bulk by Sr doping. The solubility of Sr in LaPO₄ would be sufficiently high (at least 20.1 %) even at 600 °C; however, it becomes considerably lower at 1200 °C.

1. Introduction

In recent years, lanthanum orthophosphate (LaPO₄) has received attention because of its potential application as a solid electrolyte in fuel cells.¹⁻⁴ It exhibits protonic conductivity on the order of 10⁻⁴ S cm⁻¹ at 700 °C when La is partially substituted with alkaline earth metals such as Sr.¹,⁵ For practical use, however, further enhancement of the conductivity is necessary.

Amezawa et al. reported that the conductivity of Sr-doped LaPO₄ increased with increasing the dopant concentration.⁶ They also reported that the solubility of Sr in LaPO₄, represented by the molar ratio Sr/(La₃Sr), was approximately 2 %⁷ with higher Sr mixing ratios, a secondary phase, Sr₂P₂O₇, appeared and the conductivity decreased with increasing Sr concentration. Thus, the low solubility of Sr is an obstacle to enhancing the conductivity of LaPO₄.

While the solubility research described above was conducted with samples prepared by solid state reaction and sintered at 1200 °C,¹ there are several reports of different Sr doping levels with different synthesis temperatures. Tyholdt et al. reported the solubility of Sr in LaPO₄ to be ~1 % with samples sintered at 1450 °C.⁸ Gallini et al. prepared 5 % Sr-doped LaPO₄ by combustion synthesis followed by calcination at 800 °C.¹ Schatzmann et al. synthesized Sr-doped LaPO₄ by adding La(NO₃)₃·6H₂O and Sr(NO₃)₂ to heated phosphoric acid at 150 °C, followed by precipitation of LaPO₄ within 30 minutes.⁹ With this method, at least 4 % Sr-doped LaPO₄ was obtained. These results suggest that the solubility of Sr would be higher at lower temperatures. Besides temperature, water vapor pressure may also affect the solubility of Sr. When Sr is doped into LaPO₄, a certain amount of water is also introduced into LaPO₄ as represented by the following expression:

\[
(1-x) \text{LaPO}_4 + (x/2) \text{Sr}_2\text{P}_2\text{O}_7 + (y/2) \text{H}_2\text{O} \rightarrow \text{La}_{1-x}\text{Sr}_x\text{H}_y\text{PO}_4-(x/2)+(y/2).
\]

Therefore, Sr-doped LaPO₄ (La₁₋ₓSrₓPO₄₋(x/2)+(y/2)) would be stabilized with higher water vapor pressure. However, the relationship between the solubility of Sr and these parameters has not been clarified yet.

When the above synthesis methods are used, powder samples are generally obtained. For use as electrolytes, they need to be sintered at over 1000 °C for densification. This heat treatment is expected to limit the solubility of Sr to approximately 2 %.⁷ Therefore, to synthesize highly Sr-doped LaPO₄, avoiding high temperature heat treatments in syntheses would also be important.

Synthesis of single crystals of rare earth ultraphosphates (REP₂O₄, RE: rare earth elements) in phosphoric acid solutions has been the subject of intensive investigations since the 1970s, for the purpose of using them as laser materials.¹⁰,¹¹ In the series of these researches, Chudinova et al. investigated the La₂O₃ – P₂O₅ – H₂O system and reported that LaPO₄ precipitated in phosphoric acid solutions at below 160 °C.¹² Although there is no detailed information on the precipitation behavior of LaPO₄, it is possible to obtain Sr-doped LaPO₄ with sufficiently large size and density for use as electrolytes directly.

Therefore, synthesis of LaPO₄ in homogeneous phosphoric acid solutions was performed in this research. The conditions (temperature and water vapor pressure) where LaPO₄ can be precipitated in phosphoric acid solutions were investigated. The morphology of precipitates was also observed. Then, the condition dependence of the Sr doping level was analyzed to reveal the optimum condition for obtaining highly Sr-doped LaPO₄. The effectiveness of Sr doping was verified by observing unit cell volume changes by doping and the evaporation of H₂O which had been incorporated into LaPO₄.
during the synthesis. Finally, the stability of Sr-doped LaPO₄ at high temperatures was investigated.

2. Experimental

2.1. Synthesis

Undoped and Sr-doped LaPO₄ were synthesized by precipitation in homogeneous phosphoric acid solutions containing La₂O₃ and SrCO₃, La₂O₃ (99.99%, Nacalai Tesque), SrCO₃ (99.99%, Wako Pure Chemical Industries), and H₃PO₄ (85%, Nacalai Tesque) were mixed in a perfluoroalkoxy (PFA) beaker and held at 190 °C in a furnace for several days to obtain a transparent solution. Then temperature and water vapor pressure were changed and held for a predetermined period of time to precipitate LaPO₄. The temperature was set between 120 °C and 250 °C, and the water vapor pressure was set to approximately 0.01 atm (atmospheric conditions) or 1 atm (humidified conditions). Synthesis parameters are summarized in Table 1 and Table 2.

For humidification, the apparatus shown in Fig. 1 was used. The whole apparatus was placed in a furnace kept at a constant temperature. A beaker was put on a stainless steel floor plate and covered with a stainless steel box with a capacity of 2.64 L. A 4-m-long spiral tube was attached to a side wall of the box. Liquid water was fed to the box through the spiral tube so that it evaporated before reaching the box. The liquid water feed rate was 0.1 mL/min, which was equivalent to 0.18 L-H₂O(g)/min at 120 °C and 0.24 L-H₂O(g)/min at 250 °C. The apparatus was not sealed tightly so that the inner gas was able to flow out through the narrow gap between the box and the floor plate when the inner pressure exceeded 1 atm. Therefore, the water vapor pressure inside the box was expected to be 1 atm.

After the predetermined precipitation period, the beaker was cooled down to room temperature. In general, there were precipitates on the bottom of the beaker and the transparent solution above them. The solution was collected for the chemical analysis. The precipitates were washed well with hot water (~90 °C).

2.2. Characterization

Phase identification was carried out via X-ray powder diffraction (XRD) analysis on PANalytical X’Pert-Pro MPD using Cu Kα radiation at room temperature. The unit cell volume of samples was evaluated by the Rietveld method using X’Pert HighScore Plus (Version 2.2c) software. The morphology of precipitates was investigated using KEYENCE VE-7800 scanning electron microscopy (SEM). Chemical analysis of solutions and precipitates was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) on Seiko Instruments SPS4000.

The amount of H₂O evaporated from samples was determined by the Karl Fischer titration method. The samples were dried in advance at 600 °C for 30 h in the air (pH₂O ~ 0.01 atm) to eliminate residual water and phosphoric acid on the surface of samples. The protons responsible for the proton conduction were still expected to remain in the samples, judging from the reported pH₂O dependence of the conductivity at 600 °C. Then each sample was held at 800 °C under dry nitrogen flow (200 mL/min) to be dehydrated. The nitrogen which contains the released H₂O was transferred to the Karl Fischer moisture titrator to determine the amount of H₂O evaporated from the sample. For this, Kyoto Electronics Manufacturing MKC-510N (Karl-Fischer moisture titrator) and ADP-512S (evaporator) were utilized.

Table 1 Initial compositions of solutions for the synthesis of LaPO₄.

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Starting materials</th>
<th>Molar ratio</th>
<th>Initial composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr0</td>
<td></td>
<td>1.00 : 0.00 : 15</td>
<td>0</td>
</tr>
<tr>
<td>Sr4</td>
<td>La₂O₃, SrCO₃, H₃PO₄</td>
<td>0.96 : 0.04 : 15</td>
<td>4</td>
</tr>
<tr>
<td>Sr8</td>
<td></td>
<td>0.92 : 0.08 : 15</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2 Dissolution and precipitation conditions for the synthesis of LaPO₄.

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Dissolution</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>pH₂O (atm)</td>
</tr>
<tr>
<td>A230</td>
<td>190</td>
<td>~0.01</td>
</tr>
<tr>
<td>A140</td>
<td>140</td>
<td>~0.01</td>
</tr>
<tr>
<td>A120</td>
<td>120</td>
<td>~1</td>
</tr>
<tr>
<td>A250</td>
<td>140</td>
<td>~1</td>
</tr>
<tr>
<td>A120</td>
<td>120</td>
<td>~1</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic illustration of the apparatus used for humidification during the precipitation of LaPO₄.

3. Results and discussion

3.1. Precipitation condition and crystal morphology of LaPO₄ and LaP₃O₉

The precipitation condition of LaPO₄ was investigated using solutions with the composition Sr0. Experiments were performed under both atmospheric (A230, A140) and humidified (H250, H140) conditions. Fig. 2 shows the X-ray diffraction patterns of the precipitates obtained under each condition. Under the atmospheric conditions, monazite-type LaPO₄ was obtained at 140 °C while LaP₃O₉ was obtained at 230 °C. This is consistent with the results reported by
This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 3

Chudinova et al.12 Under the humidified conditions, monazite-type LaPO\textsubscript{4} was obtained both at 250 °C and 140 °C. With these results, the precipitation region of LaPO\textsubscript{4} was drawn on the temperature – pH\textsubscript{2}O plane (Fig. 3). As indicated in the figure, increasing pH\textsubscript{2}O from 0.01 to 1 atm extends the precipitation region of LaPO\textsubscript{4} toward higher temperatures by nearly 100 °C. At 1 atm H\textsubscript{2}O, LaPO\textsubscript{4} can be obtained even at 250 °C, where LaP\textsubscript{3}O\textsubscript{9} will be obtained at lower pH\textsubscript{2}O such as 0.2 atm. The analogous phenomenon for LaP\textsubscript{3}O\textsubscript{9} and LaP\textsubscript{5}O\textsubscript{14} was reported in detail by Balagina et al.13

Fig. 4 shows SEM images of undoped LaPO\textsubscript{4} and LaP\textsubscript{3}O\textsubscript{9} precipitates. Under the conditions A140 and H140, LaPO\textsubscript{4} precipitates were rice-shaped particles with a size range of 500 nm – 1 \(\mu\)m. In contrast, under H250 condition, the LaPO\textsubscript{4} precipitates were dense aggregates of well-shaped crystals up to 200 \(\mu\)m. Thus, the precipitation temperature had a marked effect on the crystal growth of LaPO\textsubscript{4}. Higher precipitation temperatures, in combination with humidification, may enable direct syntheses of dense LaPO\textsubscript{4} electrolytes in phosphoric acid solutions.

3.2. Optimum condition for obtaining highly Sr-doped LaPO\textsubscript{4}

Attempts to synthesize Sr-doped LaPO\textsubscript{4} were carried out using solutions with the compositions Sr4 and Sr8. Experiments were performed in the precipitation region of LaPO\textsubscript{4} (see Fig. 3) under both atmospheric (A120) and humidified (H250, H120) conditions. The precipitation period was varied to observe changes in the composition of precipitates and solutions with time. In each condition, single phase LaPO\textsubscript{4} was precipitated, as confirmed by X-ray diffraction.

Fig. 5 shows the change in the composition of the solutions with time measured by ICP. The concentrations of La and Sr decreased with time. In particular, under H120 condition, the concentrations decreased rapidly by 2 – 3 orders. This indicates that the solubility of LaPO\textsubscript{4} in phosphoric acid solutions is especially low under H120 condition, or the driving force for the precipitation is strong under that condition. This result corresponds well to the fact that H120 condition is quite deep in the precipitation region of LaPO\textsubscript{4} in Fig. 3. Under A120 condition, the changes in the

Fig. 2 X-ray powder diffraction patterns of undoped LaPO\textsubscript{4} and LaP\textsubscript{3}O\textsubscript{9} precipitates obtained under the conditions (a) A230, (b) A140, (c) H250, and (d) H140.

Fig. 4 SEM images of undoped LaPO\textsubscript{4} and LaP\textsubscript{3}O\textsubscript{9} precipitates obtained under the conditions (a) A230, (b) A140, (c) H250, and (d) H140.

Fig. 3 Phase stability diagram of the La\textsubscript{2}O\textsubscript{3} – P\textsubscript{2}O\textsubscript{5} – H\textsubscript{2}O system with a constant La/P ratio (La : P = 1 : 15). In addition to the results obtained in this study, previous results reported by Chudinova et al.12 and Balagina et al.13 are also shown.
concentrations of La and Sr fluctuated. This is likely due to the fluctuation of water vapor pressure in the atmosphere.

For better understanding of the precipitation behavior, these concentration values were converted into “precipitation ratios.” We defined the precipitation ratio of element M, X_M, by the following formula:

$$X_M = \frac{n_{M, \text{prec}}}{n_{M, \text{init}}} \times 100\%,$$

where $n_{M, \text{prec}}$ and $n_{M, \text{init}}$ are the quantities of M in the precipitate and initial solution, respectively. For example, X_{La} will be 100% when all La in the initial solution precipitates as LaPO$_4$. Fig. 6 shows the changes in X_{La} and X_{Sr}. X_{Sr} was greater than X_{La} in the early stages of the precipitation regardless of the initial composition of the solution. This suggests the formation of Sr-richer LaPO$_4$ than the initial solutions.

The Sr doping levels in the LaPO$_4$ precipitates analyzed by ICP, Fig. 7, showed a strong dependence on X_{La}. In good agreement with the precipitation ratio changes described above (Fig. 6), the Sr doping levels in the precipitates were higher in the low X_{La} region, reaching 20 mol% at maximum. This value is one order of magnitude higher than the reported solubilities of Sr in LaPO$_4$. The precipitation temperature and pH$_2$O did not seem to have a significant effect on this trend, although they affect the attainable precipitation ratio limited by thermodynamics, and the Sr doping level accordingly. Thus, it can be concluded that the precipitation method in homogeneous phosphoric acid solutions serves as the most effective synthesis route to date for highly Sr-doped LaPO$_4$.

3.3. Effectiveness of Sr doping

To examine whether Sr was doped correctly and H$_2$O was incorporated in the bulk as desired, the following two methods were used: (1) The amount of H$_2$O evaporated from samples at 800 °C in dry N$_2$ was measured by the Karl Fischer titration method. (2) The unit cell volume of samples was evaluated before and after the H$_2$O evaporation measurement using
Fig. 8 (a) H$_2$O evaporation from Sr-doped LaPO$_4$ under N$_2$ at 800 °C as measured by the Karl Fischer titration (KFT) method. The samples were held in the air at 600 °C for 50 h beforehand. (b) Unit cell volume of Sr-doped LaPO$_4$ as determined by Rietveld analysis using powder X-ray diffraction patterns. The open circles (○) represent the cell volume of samples before the titration (just after held in the air at 600 °C for 50 h). The filled squares (■) represent the cell volume of samples after the titration.

Prior to these measurements, samples were dried at 600 °C in the air for 50 h.

Fig. 8 (a) represents the H$_2$O evaporation from LaPO$_4$ (expressed in percentage of the initial weight of each sample) with different Sr doping levels (0, 4, 8 and 18 mol%). Although the plots are not linear, H$_2$O evaporation monotonically increased with increasing the Sr doping level. This should indicate that H$_2$O was incorporated in LaPO$_4$ with Sr on the synthesis. Fig. 8 (b) shows the unit cell volume of samples before and after the H$_2$O evaporation measurement. In both cases, LaPO$_4$ with higher Sr doping level had larger unit cell volume. This would indicate that Sr substituted for La in the monazite structure, since the ionic radius of Sr$^{2+}$ in ninefold coordination (1.31 Å) is larger than that of La$^{3+}$ (1.21 Å). After the H$_2$O evaporation measurement, the unit cell volume of Sr-doped LaPO$_4$ significantly decreased while that of undoped LaPO$_4$ remain unchanged. This would reflect the evaporation of H$_2$O from the bulk Sr-doped LaPO$_4$. In Fig. 8 (a) the small H$_2$O evaporation was observed even from undoped LaPO$_4$, but it could be due to some residual water on the surface or grain boundaries of the sample.

These results suggest that Sr successfully substituted for La and H$_2$O was certainly incorporated in the bulk as desired.

3.4. High temperature stability of Sr-doped LaPO$_4$

To evaluate the stability of highly Sr-doped LaPO$_4$, 13.4 % Sr-doped LaPO$_4$ and 20.1 % Sr-doped LaPO$_4$ synthesized in phosphoric acid solutions were heat treated at higher temperatures. The samples were first held at 600 °C for 80 h in the atmosphere, then the 13.4 % doped sample was additionally held at 1200 °C for 5 h. Fig. 9 shows the X-ray diffraction patterns obtained after each heat treatment. While no secondary phase was detected after the first heat treatment at 600 °C, the presence of secondary phases, Sr$_2$P$_2$O$_7$ and Sr$_3$La(PO$_4$)$_3$, was clearly detected after the second heat treatment at 1200 °C. Amezawa et al. reported Sr$_2$P$_2$O$_7$ as the secondary phase at 1200 °C and Sr$_3$La(PO$_4$)$_3$ at above 1350 °C. Tyholdt et al. also reported both as the secondary phases at 1450 °C. The detection of both Sr$_2$P$_2$O$_7$ and Sr$_3$La(PO$_4$)$_3$ in the present study is somewhat incompatible with the previous study by Amezawa but it could be due to some kinetic reason. The present results indicate that the solubility of Sr in LaPO$_4$ would be sufficiently high (at least 20.1 %) at 600 °C, which is in the operating temperature range for the electrolyte. However, the solubility of Sr is considerably lower than

Fig. 9 X-ray diffraction patterns of (a) 13.4% Sr-doped LaPO$_4$ and (b) 20.1% Sr-doped LaPO$_4$. They were collected (a-1)/(b-1) just after washing, (a-2)/(b-2) after the first heat treatment at 600 °C for 80 h and (a-3) after the second heat treatment at 1200 °C for 5 h. Peaks marked with △, ○, and ○ are attributed to LaPO$_4$ (PDF# 1-83-651), Sr$_2$P$_2$O$_7$ (PDF#0-24-1011), and Sr$_3$La(PO$_4$)$_3$ (PDF# 0-29-1306), respectively.
13.4 % at 1200 °C, which is a typical sintering temperature for this material. Therefore, a new synthesis process of LaPO₄ electrolytes based on precipitation in homogeneous phosphoric acid solutions, which enables synthesizing dense LaPO₄ electrolytes without sintering, should have a great advantage. The stability of Sr-doped LaPO₄ for longer periods will be the subject of future studies.

4. Conclusions

In this study, we investigated the precipitation condition of LaPO₄ in phosphoric acid solutions and the morphology of the precipitates. We also studied the optimum condition for obtaining highly Sr-doped LaPO₄. Then we examined the effectiveness of doping. Finally we evaluated the stability of Sr-doped LaPO₄ at high temperatures. The findings can be summarized as follows:

1. Increasing pH₂O from 0.01 atm to 1 atm extends the precipitation region of LaPO₄ in phosphoric acid solutions toward higher temperatures by nearly 100 °C. It is possible to obtain aggregated LaPO₄ crystals up to 200 μm under such conditions (e.g. T = 250 °C and pH₂O = 1 atm). This may facilitate the direct synthesis of dense LaPO₄ electrolytes in phosphoric acid solutions.

2. The Sr doping level in LaPO₄ shows a strong dependence on the precipitation ratio of La, Xₖ₄. The Sr doping level is higher in the low Xₖ₄ region, reaching 20 % at maximum. This value is one order of magnitude higher than the previously reported solubilities of Sr in LaPO₄.

3. Sr partially substitutes for La in monazite-type LaPO₄ when synthesized in phosphoric acid solutions, as well as by solid state reaction as reported in literature. On synthesis, H₂O is certainly incorporated in the bulk by Sr doping.

4. The solubility of Sr in LaPO₄ would be sufficiently high (at least 20.1 %) even at 600 °C, which is in the operating temperature range for the electrolyte. However, it becomes considerably lower than 13.4 % at 1200 °C.

Acknowledgments

This work was financially supported by MEXT Elements Science and Technology Project and a Grant-in-Aid for JSPS Fellows. The authors would like to thank Mr. Takahito Nakajima at Kyoto University for his experimental assistance.

Notes and references