
Cyclic transitions in simulated food-web evolution 1 

Daisuke TAKAHASHI1, Åke BRÄNNSTRÖM2, Rupert MAZZUCCO2, 2 

Atsushi YAMAUCHI1,3, and Ulf DIECKMANN2 3 

1Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan 4 
2Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden 5 

3Evolution and Ecology Program, International Institute for Applied Systems Analysis, 2361 6 

Laxenburg, Austria 7 
3PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi 332-0012, Japan 8 

Abstract 9 

Eco-evolutionary food-web models help elucidate the processes responsible for the emergence and 10 

maintenance of complex community structures. Using an individual-based model of evolving trophic 11 

and competitive interactions, we highlight a pattern of community macroevolution involving two 12 

meta-stable states, corresponding to a plant–herbivore community and a plant community, 13 

respectively. On the evolutionary timescale, our model exhibits cyclic transitions between these 14 

alternative community states. The model also helps understand the eco-evolutionary mechanisms 15 

underlying these recurrent rapid transitions, which end intermittent periods of near-stasis or 16 

punctuated equilibrium. 17 
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 19 

Interest is mounting in the evolutionary emergence of food-web structures. Understanding the 20 

processes that maintain or alter community structure offers valuable insights into the functioning of 21 

ecosystems, which may in turn facilitate the preservation of vulnerable natural systems. Several 22 

models have been proposed for analyzing the coevolutionary dynamics of exploiter–victim 23 

interactions (Drossel et al. 2001, 2004; Rossberg et al. 2006, 2008; see also models reviewed by 24 

Yoshida 2006). However, most of the existing models assume that community evolution proceeds by 25 

random speciation, and thus do not consider the gradual evolution of key functional traits. Ito and 26 

Ikegami (2006), Troost et al. (2008), and Ito et al. (2009) considered the gradual evolution of trait 27 

distributions; however, their models do not include stochastic fluctuations. Rossberg et al. (2010a) 28 



studied the gradual stochastic evolution and random speciation of trophic traits (Rossberg et al. 29 

2010b) in predator–prey communities, but did not derive the examined evolutionary dynamics from 30 

the underlying population dynamics. Here, we introduce and analyze an individual-based model in 31 

which complex ecological communities emerge through the repeated evolutionary branching of 32 

trophic traits driven by the underlying ecological interactions. In our model, individuals are 33 

characterized by two quantitative traits that determine, respectively, predation ability and predation 34 

vulnerability. The eco-evolutionary community dynamics unfold through the succession of 35 

stochastic birth and death events (Gillespie 1976). Reproduction is asexual, and during each birth 36 

event quantitative traits may undergo mutations of small effect with a small probability. The rates at 37 

which birth and death events occur are determined by the intensity of interference competition and 38 

predation among individuals. 39 

Unexpectedly, we find that the structure of the evolving community does not settle toward an 40 

equilibrium, but instead cyclically alternates between two meta-stable states (Figure 1). One state is 41 

characterized by a diverse assembly of primary producers (plants), whereas the other state features a 42 

collection of primary producers exploited by specialized consumers (herbivores). These two 43 

meta-stable states are connected through unidirectional transitions: coevolutionary diversification of 44 

producers and consumers, and cascading extinction of producers and consumers. In a meta-stable 45 

community with diverse primary producers and matched consumers, the emergence of an additional 46 

consumer species through evolutionary branching can destabilize the producer community and, thus, 47 

trigger a cascade of extinctions. The implied sharp reduction in species richness is followed by the 48 

coevolutionary diversification of producers and consumers, resulting in an increase in species 49 

richness until the second meta-stable community state is reached, whence another evolutionary 50 

community cycle starts. 51 
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 83 

Figure 1. Changes in producer ratio (producer biomass per total biomass, measured across the entire 84 

community) caused by the modeled eco-evolutionary community dynamics. Two meta-stable states 85 

can be distinguished, corresponding to producer ratios of nearly 1 and approximately 0.8. In the 86 

latter case, producers coexist with consumers. Sharp increases and decreases of the producer ratio 87 

indicate the rapid transitions between the two meta-stable community states. 88 


