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Abstract 

In recent years, great advancements have been achieved in the field of computer and au­
tomatic control technologies. For large-scale complicated systems such as a nuclear power 
plant (NPP), the advancements have changed the role of operators from the traditional role 
of manual controllers to the supervisory controllers of the automated system, which consists 
of multiple computer-controlled subsystems. The introduction of automation technologies 
into plant systems has been indeed reduced operators' physical workload and failure of 
machine system. On the other hand, the accidents or incidents resulted from human errors 
have been notable recently. As the results, human reliability has been recognized as an 
important issue with respect to the safety and reliability of the man-machine system as a 
whole. 

In order to examine the reliability of operators' activities, the human system interac­
tions (HSis) in case of an emergency have been studied by conducting large-scale operator 
experiments, in which operators are asked to interact with the plant simulator through a 
mockup of the MMI in the central control room. The obtained experimental data have 
helped to improve MMI design and operator training, in order to minimize the human 
error. However, the approach requires a large amount of time and considerable cost to 
create the experimental environment and to analyze the experimental data. Moreover, the 
application of the experimental data is limited to the HSis that have been examined by 
the large-scale operator experiments. 

In this thesis study, a new methodology is proposed to supplement the existing large­
scale experimental approach. The new methodology is based on a computer simulation 
system in which a human model of the operator is utilized together with the plant and 
MMI simulators. The human model is a computerized model of the operator's cognitive 
behaviors in case of an emergency, such as anomaly detection and diagnosis. Numerical 
experiments based on the computer simulation are conducted to simulate the complicated 
HSis by utilizing the human model to interact with the plant simulator. The results show 
the validity of the human model. The findings of the study demonstrate the flexibility of 
the new methodology and the promising possibility of its application to human reliability 
analysis. The study has been conducted in three steps that are described in the three main 
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ABSTRACT 

parts of the thesis, respectively. 

In the first part, a laboratory experiment is described. The laboratory experiment 

is carried out to examine how operators actually monitor the plant system, detect and 

diagnose the abnormal transients. The analysis results clarified the operator's cognitive 

information process and provided various concrete data for developing the human model 

at the next step. 

The second part describes the development of the human model in detail. The study 

aims at developing a human model that can simulate operators' cognitive behaviors (anomaly 

detection and diagnosis) observed in the laboratory experiment and can be applied to hu­

man reliability analysis easily. The human model is developed at a real-time expert devel­

opment platform in accordance with a general human modeling framework. The human 

model consists of a number of sub-models of the human memory mechanism: working mem­

ory element for the short-term memory (STM) and graphical network-structured knowledge 

database for the long-term memory (LTM). The details of operators' cognitive behaviors are 

modeled as the various kinds of information processing conducted in STM and LTM. The 

validity of the human model is demonstrated by conducting an inter-comparison between 

the simulation results by the human model and the laboratory experimental data. 

The third part gives a description about an application study of the developed human 
model. The study aims at establishing a new approach for the human reliability analysis 

(HRA) practice. The application study attempts to estimate the ''time-reliability curve" 

that describes human cognitive error probability required in HRA. The ''time versus cogni­

tive reliability" (TCR) curves are then derived from the laboratory experiment, in order to 

analyze the probabilistic factors influencing operator's performance of anomaly detection 

and diagnosis. The TCR based on the human model simulation of plant anomaly diagno­

sis (TCR/HUMOS-PAD) curves are estimated by modeling the probabilistic factors and 
conducting a number of numerical experiments. The validity of the application study is 

proven by the inter-comparison between TCR/HUMOS-PAD curves and the TCR curves 

derived from the laboratory experiment. Furthermore, the human model is incorporated 

into a real-scale man-machine interaction simulation system SEAMAID, in order to es­

timate TCR curves in the simulation environment of the real-scale central control room 

of NPP. The results demonstrate the promising possibility that the computer simulation 

could replace the large-scale experiments in the future . 

List of Figures 

1.1 Three approaches of human model study · · · · · · · · · · · · · · · · · . . 

2.1 Configuration of laboratory experiment · 

2.2 Hierarchical structure of man-machine interface 

2.3 Plant status summary window · 

2.4 Experimental data collection · · 

2.5 Experimental data processing · 

2.6 Monitoring phase and diagnosing phase · 

2. 7 Reference time and reference frequency ("Subject I") 

2.8 Reference time and reference frequency ("Subject A") · · 

2.9 Reference time and reference frequency ("Subject T") 

2.10 Chronological diagram (CD) · · · · · · · · · · · 

2.11 Questionnaires sheet 1 · · · · · · · · · · · · · · 

2.12 Anomaly hypothesis hierarchy diagram ( AHHD) · 

2.13 Questionnaires sheet 2 · · · · · · · · 

2.14 Experimental data analysis results · ... ... 

3 

18 

19 

20 

23 

24 

26 

28 

28 

28 

30 

31 

37 

38 

42 

2.15 Reference time of each parameter group · 43 

2.16 Reference frequency of each parameter group · 43 

2.17 Analysis the diagnosis process by AHHD ("Subject T" simulation trial No.12) 47 

2.18 Analysis the diagnosis process by CD ("Subject T" simulation trial No.l2) 48 

2.19 Diagnosis process summarized from all experimental trials · · · · · · · · 52 

2.20 Sets of knowledge for diagnosing abnormal transients based on AHHD · 53 

3.1 Fallible machine Model (by J.Reason [6]) · · · · · · · · · · · · · 

3.2 The general human modeling framework (by H.Yoshikawa [1]) · · 

3.3 Modeling of operators' cognitive behaviors in monitoring phase · 

3.4 Fuzzy membership function for interpreting parameters' value 

-vii-

67 

67 

73 

75 



LIST OF FIGURES 

3.5 Modeling of information processing in anomaly diagnosis · · · · · · · · 
3.6 Knowledge module of "PRZ.Prs Control System" · · · · · · · · · · · · 
3. 7 Modeling methods of the knowledge about "PRZ.Prs Control System" · 
3.8 Logical mechanism of the pressurizer pressure control system 
3.9 Knowledge module of "RCS leakage" accident · · · · · · · 
3.10 Modeling methods of the knowledge about "RCS leakage" 
3.11 Information processing in PWM · · · · · · · · 
3.12 Information processing in FWM · · · · · · · · 
3.13 Internal cognitive information processing flow 

3.14 Comparison of detection time between subjects and the models 
3.15 The confidence-score changes during the simulation 

4.1 An example of fault tree · · · · · · · · · · · · · · · · 
4.2 An example of event tree for a small LOCA in PWR 
4.3 An example of event tree utilized in THERP · · 
4.4 Human cognitive reliability curves · · · · · · · · · 
4.5 Human error probability required in PSA/HRA 
4.6 Two kinds of TCR curves from the laboratory experiment 
4. 7 TCR curve before normalization · · · · · · · · · · · · · · · 
4.8 Normalization of TCR curves by the median time · · · · · 
4.9 Anomaly detection TCR curves derived from the laboratory experiment · 
4.10 Anomaly diagnosis TCR curves derived from the laboratory experiment 
4.11 Fuzzy membership ftmction for interpreting parameters' value · · · · 
4.12 Fuzzy membership function for decision-making of a hypothesis · · 
4.13 Anomaly detection TCR/HUMOS-PAD curves after normalization· · 
4.14 Anomaly diagnosis TCR/HUMOS-PAD curves before normalization 
4.15 Anomaly diagnosis TCR/HUMOS-PAD curves after normalization · 
4.16 Adherence effect in anomlay diagnosis of "SGTR" · · · · · · · · · · 
4.17 Configuration of SEAMAID · · · · · · · · · · · · · · · · · · · · · · 
4.18 Modeling architecture of operator simulator in SEAMAID/HUMOS-PAD 
4.19 Validation of human model by SEAMAID simulation 
4.20 Future HRA methods by HUMOS-PAD · · · · · · 

5.1 Summary Screen · · · · · · · · · · · · 
5.2 Loop-A Coolant Temperature Monitor 

-vn1-

80 

86 

86 

87 

87 

87 

96 

98 

103 

110 

116 

128 

129 

131 

133 

134 

140 

142 

142 

146 

146 

156 

159 

163 

164 

165 

167 

168 

171 

174 

176 

191 

192 

LIST OF FIGURES 

5.3 Loop-B Coolant Temperature Monitor 

5.4 Loop-C Coolant Temperature Monitor 

5.5 Pressurizer System · · · · · · · · · 
5.6 Trend Graph of Pressurizer System 

5.7 CVCS System · · · · · · · · · · · · 
5.8 Main Feed Water System · · · · · · 

5.9 Trend Graph of Loop-A Steam Generator · 

5.10 Trend Graph of Loop-B Steam Generator· · 

5.11 Trend Graph of Loop-C Steam Generator· 

5.12 Trend Graph of Radiation Monitor System · 
5.13 Pressurizer Pressure Control Monitor System· · 
5.14 Pressurizer Level Control Monitor System 

5.15 Feed Water Control Monitor System · · · 

5.16 Trend Graph of NIS · · · · · · · · · · · · 
5.17 Show and hide parameter value by movement of mouse pointer · 
5.18 Method of calculating non-response probability · · · 
5.19 TCR curves for detecting "PRZ.Spray V. Fail small" 
5.20 TCR curves for detecting "RCS leakage small-scale" · 
5.21 TCR curves for detecting "RCS leakage middle-scale" 
5.22 TCR curves for detecting "FW. flow sensor failure" 
5.23 TCR curves for detecting "PRZ. Spray V. Fail big" 
5.24 TCR curves for detecting "SGTR" 

5.25 TCR curves for detecting "PRZ.Lvl. Cont. Fail-low" 
5.26 TCR curves for detecting "PRZ.Lvl. Cont. Fail-high" 
5.27 TCR curves for detecting "NIS sensor failure" · · · · 
5.28 TCR curves for detecting "FW. Cont. V. failure" · · 
5.29 TCR curves for detecting "PRZ.Prs. Cont. fail-low" · 
5.30 TCR curves for detecting "PRZ.Prs. Cont. fail-high" 
5.31 TCR curves for diagnosing "PRZ.Prs. Cont. fail-high" 
5.32 TCR curves for diagnosing "PRZ. Spray V. Fail big" · 
5.33 TCR curves for diagnosing "SGTR" · · · · · · · · · · · 
5.34 TCR curves for diagnosing "PRZ.Lvl. Cont. Fail-low" 
5.35 TCR curves for diagnosing ''PRZ. Spray V. Fail small" 
5.36 TCR curves for diagnosing "FW. flow sensor failure" 

-Ix-

. ... . 

192 

193 

193 

194 

194 

195 

195 

196 

196 

197 

197 

198 

198 

199 

203 

210 

213 

214 

214 

215 

215 

216 

216 

217 

217 

218 

218 

219 

220 

221 

221 

222 

222 

223 



LIST OF FIGURES 

5.37 T CR curves for diagnosing "FW. Cont. V. failure" 
5.38 T CR curves for diagnosing "RCS leakage small-scale" 
5.39 T CR curves for diagnosing "RCS leakage middle-scale" 

-x-

223 

224 

224 

List of Tables 

2.1 Participants · · · · · · · · · · · · · · · · · · · · · · · · · · 
2.2 Abnormal transients emulated in the laboratory experiment 
2.3 Alarm messages utilized in the laboratory experiment · 

2.4 Operation sequence history· · · · · · · · · · · · · · · 
2.5 First-Symptom-First-Hypothesis patterns of "Subject I" 
2.6 First-Symptom-First-Hypothesis patterns of "Subject A" 
2. 7 First-Symptom-First-Hypothesis patterns of "Subject T" 

2.8 Threshold values to recognize deviation · · · · · · · · · · 

3.1 The rules for assigning the priority of information elements · 
3.2 Data structure of working memory element · 

3.3 Contents of WME · · · · · · · · 

3.4 Five types of knowledge objects 

3.5 Example of confidence score assignment · 

3. 6 Confidence score assignment for confirming sufficient condition · 
3. 7 Interpretation of alarm messages· · · · · · · · · · · · · · · · 
3.8 Modeling of recalling the first hypothesis in the case of "Subject I" 
3.9 Keywords abstracted form the content of WME · · · · · · · 
3.10 Inputs and outputs of the information processing in LTM · 

3.11 Time delay settings · · · · · · · · · · · · · · · · · · · · · · 
3.12 The comparison of first symptom in the case of "Subject A" 
3.13 The comparison of first symptom in the case of "Subject I" · 
3.14 The comparison of first symptom in the case of "Subject T" 
3.15 Evaluation index of the agreement shown in the above figure 

3.16 The comparison of operation sequence history · · 

3.17 The actions in the phases shown in the above table 

-XI-

16 

17 

21 

25 

33 

34 

35 

39 

75 

83 

83 

88 

91 

93 

94 

95 

97 

101 

106 

108 

108 

109 

110 

113 

113 



LIST OF TABLES 

4.1 Features of TRC t echniques · · · · · · · · · · · · · · · · · · · · · 
4.2 Anomaly sorted by the slope of the detection TCR curves · · · · · 

4.3 Anomaly sorted by the median time of the detection TCR curves 

4.4 Anomaly sorted by the slope of the diagnosis TCR curves · · · · · 

4.5 Anomaly sorted by the median time of the diagnosis TCR curves 

137 

144 

144 

145 

145 
4. 6 Probabilistic factors in detection and diagnosis phases · · · · · · · · 14 7 

4. 7 Analysis of the slope of TCR curves for both detection and diagnosis 150 

4.8 Median time of detection and diagnosis TCR curves · · · 

4.9 All possible hypotheses by the first symptom · · · · · · · 

4.10 Settings of time taken to operate MMI in HUM OS-PAD 

4.11 Differences between the three experiments · · 

5.1 The comparison of the average detection time 

5.2 The detailed data about the detection time by human models 

5.3 Modeling of recalling the first hypothesis in the case of "Subject I" 

5.4 Modeling of recalling the first hypothesis in the case of "Subject A" 

5.5 Modeling of recalling the first hypothesis in the case of "Subject T" 

- xn-

151 

158 
161 

173 

205 

206 

207 

207 

208 

List of Acronyms 

ABWR 

Advanced Boiling Water Reactor 

AHHD 

Anomaly Hypothesis Hierarchy Diagram 

AI 

Artificial Intelligence 

BWR 

Boiling Water Reactor 

CD 

Chronological Diagram 

CRT 

Cathode-Ray Tube 

eves 
Chemical Volume Control System 

DNB 

Departure from Nucleate Boiling 

DP 

Diagnosis Phase 

EPRI 

Electric Power Research Institute 

-XIn-



LIST OF ACRONYMS LIST OF ACRONYMS 

FSFH LOCA 

First-Symptom-First-Hypothesis Loss of Coolant Accident 

FWM LTM 

Focal Working Memory Long Term Memory 

HCR MFM 

Human Cognitive Reliability Multilevel Flow Modeling 

HCR/ ORE MMI 

Human Cognitive Reliability based on Operator Reliability Experiment Man Machine Interface 

HEP MMS 

Htnnan Error Probability Man Machine System 

HSI MP 

Human System Interaction Monitoring Phase 

HRA NPP 

Human Reliability Analysis Nuclear Power Plant 

HUM OS-PAD OAT 

Human Model Simulation of Plant Anomaly Diagnosis Operator Action Tree 

I&C occs 
Instrument and Control Operator Crew Cognitive Simulation 

JACOS ORE 

J AERI Cognitive Simulation System Operator Reliability Experiment 

JAERI OSH 

Japan Atomic Energy Research Institute Operation Sequence History 

KB PRZ 

Knowledge Base Pressurizer 

KDB PSA 

Knowledge database Probabilistic Safety Assessment 

- XIV- -xv-



LIST OF ACRONYMS 

PSE 

Peri ph era! Sight Effect 

PSF 

Perforrnance Shaping Factor 

P\VM 

Peripheral \Norking .lviemory 

PWR 

Pressurized Water Reactor 

SEA1viAID 

Si1nulation-based Evaluation and Analysis support system for .lviAn-machine Interface 
Design 

SEAMAID /HU.lviOUS-PAD 

SEA1viAID con1bined with HU.lviOUS-PAD 

SG 

Steam Generator 

SGTR 

Stean1 Generator Tube Rupture 

STivi 

Short Tenn Ivien1ory 

SYBORG 

Sinnllation System for the Behavior of an Operator Group 

TCR 

Tin1e versus Cognitive Reliability 

TCR/HUIYIOS-PAD 

Ti111e versus Cognitive Reliability based on Hun1an .lvlodel Simulation of Plant Anomaly 
Diagnosis 

THE RP 

Technique for Htunan Error Rate Prediction 

-XVI-

LIST OF ACRONYl\JIS 

TRC 

Time Reliability Curve 

W.lvl 

Working Memory 

WME 

\Vorking Memory Element 

-xvu-



Chapter 1 

Introduction 

1.1 Human Factors at Man-Machine Interface 

Along with the great advancements of the modern information technology based on com­
puters, not only in the field of the academic study on information science, but also in 
industrial systems, what is called as "information revolution" has taken place. It has been 
said that the 21st century will be the century of information. 

The advancements of information technologies have changed not only the nature of con­
trolled systems but also the role of operators of large-scale complicated industrial systems, 
such as nuclear power plants (NPP) . Currently, the machine system can work automatically 
and safely in most time since the instrument and control (I&C) systems have been devel­
oped into an information system by utilizing the high-level automation and computer-based 
control technology. Consequently, operators have changed their role in the total system 
from the manual controllers to the supervisor of automated system that consists of multiple 
computer-controlled sub-systems [1]. 

Safety is the most important issue in large-scale complicated systems, especially in NPP 
systems. An NPP system consists of three important components: the machine system, 
operators, and the man-machine interface (MMI). Through the MMI, operators monitor 
and control the plant system. Consequently, all of the components have their contributions 
to the safety and reliability of the total system as a whole. Among the components, the 
safety and reliability of the machine system have been and will be further enhanced along 
the technology advancements. As the results , accidents/incidents occurring simply because 
of failures in machine systems have been decreased. However, the accidents resulted from 
human errors have become noteworthy recently, such as the nuclear accident occurred in 
Three Mile Island in 1979 and the Chernobyl disasters in 1986, where human failures have 
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1.1 Human Factors at Man-Machine Interface 

amplified the magnitude of the accidents. From a study on human error [2], the accidents 
caused by human error account for 80% of all accidents in the industries of airplanes and 
electrical power plants. Although the technology advancements can enhance the safety 
and reliability of machine system, it is very difficult to improve the reliability of human 
beings who are the designer, maker, and operator of the machine systems. Therefore, 
further efforts are necessary to study human factors in human system interactions (HSis). 

nder the background, the human factors has been recognized as an important issue for 
enhancing the safety and reliability of the man-machine system as a whole [3, 4]. Studies 
on the human factors have been flourishing worldwide recently. 

With respect to operators' errors in case of an emergency, two reasons were given by 
J . Rasmussen [5]. One reason is the difficulty of operators ' decision-making tasks at the 
potentially risky situations. The other one is that the requirements for coping with the 
emergency may not be met by the skill developed during normal operating periods. In 
order to study operators' behaviors in case of an emergency, the conventional approach 
is to conduct large-scale operator experiments in which various accident situations are 
simulated to examine the HSis . The plant simulator, real-size MMI simulator (called as 
mockup) and skilled operators are required in the experiments. The operators are asked to 
interact with the plant simulator through the MMI simulator. By observing and analyzing 
operators' behaviors in the experiments, efforts have been made to improve MMI design 
and operator training. The approach can provide valuable experimental data for analyzing 
the HSis in case of an emergency. However, t he approach has also drawbacks summarized 
as follows [6, 7]. 

• Large amount of time and considerable cost are required to create the environment 
for the large-scale experiments. 

• Due to the considerable cost, t he experiment cannot be conducted frequently, and 
the experimental scope has to be also limited to a small extent. 

• The obtained experimental results can be applied only to the situations that have 
been examined by the large-scale experiments. 

Hence the development of other methodologies has been required to supplement the large­
scale experimental approach. 
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Mechanistic (Behaviorism 
Approach Psychology) 

Cognitive (Cognitive 
Approach Psychology) 

Socio-Technical (Social 
Approach Psychology) 

1. Introduction 

Sfmulus 
from outside 

Stimulus 
from outside 

Stimulus 
from outside 

Response 

Internal 
Organism 

Internal 
Organism 

I 
Environment 

I 

Figure 1.1: Three approaches of human model study 

Human Model Researches 

Response 

Response 

Under the background described above, researches on human model have been conduct ed 
as one of the hopeful methods to supplement the large-scale experimental approach. The 
human model approach has been developed on the basis of the achievements both in the 
experimental approach and in the field of psychology. 

Historically, human model researches in NPP have been conducted by adopting three 
approaches categorized by their theoretical origins in the psychology [8] . They are mech­
anistic, cognitive and socio-technical approach. The fundamental concepts for the ap­
proaches are shown in Figure 1.1. The features and achievements of the approaches are 
listed as follows. 

• Mechanistic approach 

The mechanistic approach is developed in accordance with the behaviorism psychol­
ogy. Human behaviors are treated by the same way as hardware elements in the 
machine system. Based on the external observation, human behaviors are classified 
into two categories: "success" and "failure". Based on the mechanistic approach, 
technique for human error rate prediction (THERP) was developed by Swain [9] to 
evaluate the human errors of observable human behaviors quantitatively. 

• Cognitive approach 

The cognitive approach is based on the cognitive psychology. It pays attentions to the 
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high-level human cognitive behaviors that are performed in the brain of human beings 

and are not observable directly from the external behaviors, e.g. decision-making, 

anomaly diagnosis and so on. The cognitive approach models the functioin of the 

brain of the human being as a kind of information processing devices. Thus, human 

behaviors are the outputs of the information-processing device. The human cognitive 

behaviors are divided into a number of basic processing parts in the approach. The 

total cognitive behaviors are then modeled by defining the interactions among the 

basic parts of information processing. 

• Socio-technical approach 

The socio-technical approach is derived from the social psychology. It pays attention 

to the systematic and management factors of total MMS by studying the reliability 

of the crew activity. By examining the factors that exert influences on the crew 

performance, the researches have been devoted to improving the management of 

operator crew. 

In recent years, along with the advancements in computer technologies, the human 

model researches have been progressed to study operators' behaviors by computer simula­

tion, and normally what is called as artificial intelligence (AI) has been employed in this 

approach. AI approach applies the symbolic processing technology to model operators' 

behaviors. The symbolic processing on computers is based on the cognitive information 

processing models proposed by the cognitive psychology mentioned above. The human 

modeling based on AI has been expected to be the most hopeful method to supplement the 

conventional large-scale operator experiment, since the dynamic and complicated HSis can 

be simulated and analyzed on computers by connecting the human model with the plant 

simulator and MMI simulator. 

Currently, most of the human model researches based on AI approach are focused on 

clarifying the mechanism of human error or on supporting the improvement of the MMI 

design [10, 11, 12, 13, 14]. A brief review on the existing human modeling researches in 

Japan is given below. 

With respect to supporting the design of the man-machine system by the human 

modeling approach, OCCS [10] (operator crew cognitive simulation) and SEAMAID [11] 

(simulation-based evaluation and analysis support system for man-machine interface de­

sign) have been developed. OCCS has been developed in accordance with the decision­

making ladder model proposed by J. Rasmussen by utilizing the blackboard control model. 
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Various kinds of researches on HSI [15, 16] have been conducted by utilizing OCCS, such 

as the evaluation of the human mental workload, modeling of the operation crew's activity, 

validation of the human model. But, there are some drawbacks of the human model in 

OCCS with respect to apply it to HRA/ PSA practice. The model did not consider the 

deductive and abductive reasoning required in high-level cognitive activities, and it did not 

give the explicit description about the computerized model of knowledge database. The 

model did not reflect the inherent diversity and variety in human behaviors, which are 

important with respect to evaluating human reliability. 

On the other hand, SEAMAID is developed by MITSUBISHI Electric Corporation to 

support MMI design of NPP system. The human model in SEAMAID only simulate the 

response operation activities that are described in detail by the operation procedures in 

advance. The primary drawback of SEAMAID is that SEAMAID does not consider the 

operator's thinking process to diagnose abnormal transients where no prescribed operation 

procedures are available. 

With respect to clarifying the mechanism of human errors by the human modeling 

approach, SYBORG [12, 13] (Simulation System for the Behavior of an Operator Group) 

and JACOS [14] (JAERI Cognitive Simulation System) are developed by Human Factors 

Research Cent er of CRIEPI (Central Research Institute for Electric Power Indus ry) and 

Human Factors Research Laboratory of JAERI (Japan Atomic Energy Research Institute), 

respectively. SYBORG focused on the thinking process of the individual opeartor and the 

formation of the operation crew's volition, in order to clarify human error mechanism. 

SYBORG has proposed various sub-models to achieve the objective, such as the human­

human interface for crew communication behaviors, micro processing models and memory 

models for the thinking process of the individual operator. The validity of SYBORG has 

been verified by comparing the simulation results with the laboratory experiment using 

several students as the subjects [17]. However, SYBORG does not model the hio-h-level 
0 

decision-Inaking behaviors in which the deductive and abductive reasoning are required. 

The attention of JACOS is paid to the mechanism of short and long term memories of 

human information processing, where the blackboard architecture is utilized to model the 

short-term memory, while the long-term memory as two kinds of knowledge database con­

sisting of "procedural knowledge" and "functional knowledge' . The potential human errors 

in the cognitive information processing are considered from either the lack of necessary in­

formation, or the inappropriate information processing. Some scenarios have been utilized 

to verify whether or not JACOS's simulation would agree with the designed specification 
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[14]. However, the simulation results by JACOS have not been validated by conducting 
any operator experiment. 

Based on these reviews, the subjects remaining in the human modeling approach are 
summarized as follows. 

1. Modeling the inherent characteristics in human behaviors, such as the diversity and 
variety, learning-effect, forgetting-effect. 

2. Modeling the knowledge-based behaviors such as decision-making, anomaly diagnosis 
before the response activities based on operation procedures. 

3. Validation of the developed human mode. 

4. Modeling of the operation crew's activities. 

5. Application of the human model to the researches on human factors, such as sup­
porting MMI design, human reliability analysis (HRA). 

This thesis study is devoted to the researches on the all subjects listed above except for 
the subject 4 by modeling operator's high-level knowledge-based cognitive behaviors with 
highlighting the modeling mothods both for anomaly detection and diagnosis before the 
execution of the operation procedures. 

1.3 Objective and Methodology 

The objective of this thesis study is to develop a simulation system for analyzing and 
evaluating human high-level cognitive behaviors in case of an emergency in NPP. The 
objective can be divided into two sub-objectives; (i) develop and validate a human model 
to simulate operator's cognitive behaviors, and (ii) apply the human model to the practice 
of human reliability analysis (HRA). 

The study therefore requires to resolve the following subjects. 

• Modeling the operator's cognitive behaviors of detecting and diagnosing abnormal 
transients in case of an emergency. 

• Modeling the inherent characteristics in human cognitive behaviors, such as diversity 
and variety. 

• Conducting the simulation of the HSis in real-time. 
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• Validating the human model 

• Application of the human model to HRA practice 

In order to achieve those subjects described above, the thesis study is conducted in 
three steps. Firstly, a small-scale laboratory experiment is conducted to examine how 
the operator behaves in case of an emergency in NPP. In the laboratory experiment, the 
operators are asked to detect and diagnose various abnormal transients. The common 
tendency and the individual characteristics of the cognitive behaviors would be examined 
by analyzing the experimental data. The experimental data and the analysis results would 
be utilized to develop and validate the human model in the succeeding steps of this study. 

Next, a human model is developed to simulate the cognitive behaviors of detecting and 
diagnosing abnormal transients. A general human modeling framework [8] developed out 
of "fallible machine" model [18] is utilized to develop the human model. The framework is 
implemented into computers by applying the symbolic processing methods of AI technology. 
The analysis results of the laboratory experiment are applied to the framework. The 
human model will be validated by conducting inter-comparisons between the laboratory 
experimental data and the simulation results obtained from numerical experiments in which 
the developed human model is utilized. 

As the third step of the thesis study, the developed human model is applied to HRA in 
NPP, in order to conduct a pilot study to estimate fundamental human error probability 
(HEP) parameters required for HRA not by large-scale experimental approach but by 
computer simulation. The current methodology for estimating the HEP parameters of 
human cognitive behaviors depends on the large-scale operator experiment having a number 
of problems described previously. The application of the human model is conducted to 
demonstrate the promising possibility that the computer simulation would be usable for 
obtaining the fundamental HEP parameters efficiently, in stead of conducting the large­
scale experiment with the NPP training simulator. 

The contents of this thesis study are constituted by five chapters and those of the 
subsequent chapters a;e summarized as follows. 

Chapter 2 will describe the conduction of a small-scale laboratory experiment. The 
analysis results of the experimental data will show how the subjects actually monitor plant 
system, detect and diagnose abnormal transients. 

Chapter 3 will describe the development of the human model. Based on a general 
human modeling framework, the human model will be developed to simulate the operators' 
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behaviors of detecting and diagnosing abnormal transients in the laboratory experi1nent. 

Cmnparisons will be conducted between the simulation results and the experi1nental results 

to detnonstrate the validity of the human model. 

Chapter 4 will describe the application of the human model to estimate time reliability 

correlation required in HRA in NPP. The validity of the application will be demonstrated 

by inter-cmnparisons between the "tin1e versus cognitive reliability" (TCR) curves obtained 

fron1 the laboratory experi1nent and the ones derived by the means of conducting numerical 

experiments by the htunan model simulation. 

In Chapter 5, the final chapter, the the findings of the thesis study will be sum1narized 

and the future subjects will be discussed. 

~8~ 

Bibliography 

[1] T. B. Sheridan. Toward a General Iviodel of Supervisory Control. In T. B. Sheridan 

and G. J ohennsen, editors, lv! onitoring Behavior and Supervisory Control, pp. 271 ~281. 

New York: Plenun1 Press, 1976. 

[2] T. Kohda and K. Inoue. Evaluation Methodology of Human Error. Journal of The 

Society of Instrument and Control Engineers (Japan), Vol. 30, No. 7, pp. 623~630, 
1991. (In Japanese). 

[3] vV. B. Rouse. Design of Success. A Wiley-Interscience Publication, 1991. 

[4] T. B. Sheridan. Telerobot, Automation, and Human Supervisory Control. The l'viiT 

Press, 1992. 

[5] J. Rasn1ussen. Information Processing and Human-lvlachine Interaction. An Approach 

to Cognitive Engineering. A1nsterda1n: Elsevier., 1986. 

[6] A. J. Spur gin and et al. Operator Reliability Experiments Using Power Plant Simu­

lators, Volume 2: Technical Report. EP RI JllP-6937, Vol. 2. Electric Power Research 

Institute, Palo Alto, CA., 1990. 

[7] H. Yoshikawa, T. Nakagawa, Y. Nakatani, T. Furata, and A. Hasegawa. Development 

of an Analysis Support Syste1n for Ivian-l'v'Iachine System Design Information. Control 

Engineering Practice, Vol. 5, No. 3, pp. 417~425, 1997. 

[8] H. Yoshikawa and K. Furuta. Htunan l'v'Iodeling in Nuclear Engineering. J. At. Energy 

Soc. Japan, Vol. 36, No. 4, pp. 268~278, 1994. (In Japanese). 

[9] A. D. Swain and H. E. Guttmann. Handbook of human reliability analysis with em­

phasis on nuclear power plant applications. NUREG / CR-1278., 1983. 

~9~ 



BIBLIOGRAPHY 

[10] K. Furuta. An Overview of Human Modeling. Journal of Japanese Soc. Artificial 
Intelligence, Vol. 13, No. 3, pp. 356- 363, 1998. (In Japanese). 

[1 1] T. Nakagawa, K. Sasaki, H. Yoshikawa, M. Takahashi, K. Kiyokawa, and A. Hasegawa. 
Development of Simulation Based Evaluation Support System for Man-Machine Inter­
face Design: SEAMAID. In Proceedings of the 5th European conference on cognitive 
science approaches to process control {CSAPC'95), pp. 377- 386, 1995. 

[12] S. Yoshimura, K. Takano, and K. Sasou. Proposal for operator's mental model using 
the concept of multilevel flow modeling. Trans. Soc. Instrum. Control Eng. (Japan), 
Vol. 31, No. 2, pp. 227-235, 1995. (In Japanese) . 

[13] S. Yoshimura, K. Takano, and K. Sasou. A proposal for operator team behavior 
model and operator's thinking mechanism. Trans. Soc. Instrum. Control Eng. (Japan), 
Vol. 31, No. 10, pp. 1754-1761, 1995. (In Japanese). 

[14] K. Yoshida, M. Yokobayahi, and F. Tanabe. Development of AI-Based Simulation 
Syste1n for Man-Machine System Behavior in Accidental Situation of Nuclear Power 
Plant. J. Nucl. Sci. Technol., Vol. 33, No. 2, pp. 110- 118, 1996. 

[15] K. Furuta and S. Kondo. An approach to assessment of plant man-machine systems 
by computer simulation of an operator's cognitive behavior. Int. J. Man-Machine 
Studies, Vol. 39, No. 3, pp. 473-493, 1993. 

[16] K. Furuta, M. Takahashi, H. Yoshikawa, K. Sasaki, T. Itoh, M. Matsumiya, T. Sakaue, 
K. Kiyokawa, and A. Hasegawa. Cognitive Process in Plant Diagnosis Using an Oper­
ator Cognitive ModeL J. At. Energy Soc. Japan, Vol. 38, No. 1, pp. 65-74, 1996. (In 
Japanese). 

[17] K . Sasou, K. Takano, and S. Yoshimura. Development of SYBORG (Simulation System 
for Behavior of an Operating Group). In Proceedings of 5th European conference on 
cognitive science approaches to process control {CSAPC '95), pp. 368-376, 1995. 

[18] J. Reason. Human Error. Cambridge University Press, 1990. 

- 10-



Chapter 2 

A Laboratory Experiment on 
Studying Operator's Cognitive 
Behaviors at Man-Machine Interface 
and Its Data Analysis 

In order to examine operators' behaviors in case of an emergency in NPP, a laboratory 
experiment is conducted. In this chapter, the detailed description of the experin1ents is 
given together with the analysis methods and analysis results of the experi1nental data. 

2.1 Objective of the Experiment Study 

In nuclear power plant (NPP), operators' activities include the routine n1onitoring tasks at 
regular situations, periodical maintenance, and decision-1naking and response operation in 
case of an emergency. Operators' activities in case of an e1nergency are very important with 
respect to the safety and reliability of the total NPP system. In the ernergency, operators' 
activities can be divided into the following three steps. 

• Step 1: Detect the abnormal transient. 

• Step 2: Identify the root cause of the abnorn1al transient. 

• Step 3: Operate appropriately based on the procedures to cope with the abnorn1al 
transient and to guarantee the safety of the system. 

To analyze the operators' behaviors, step 1 and 2 are usually summarized together and 
called as "decision-n1aking" phase. While, step 3 is called as "response operation" phase. 
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In "response operation" phase, operators' activities are required to follow the operation 

procedures. The response operation behaviors are therefore classified as rule-based behav­

iors by Rasmussen [1]. On the other hand, in "decision-making" phase, operators have to 

detect the anomaly, to collect various symptoms for judging what happened in the plant 

system, and to decide finally what operation procedures should be applied to the situa­

tion. Operators' behaviors in "decision-making" phase are cognitive behaviors that are 

more complicated compared with the rule-based behaviors in "response operation" phase. 

Moreover, since the appropriate response activities must be based on a correct decision 

made in "decision-making" phase, the operators' behaviors in "decision-making" phase are 

also very important with respect to the safety and reliability of the plant system. 

2.1.1 Review on Operator Experiments 

In order to examine operators' cognitive behaviors in case of an emergency in NPP, the 

conventional approach depends on large-scale operator experiments. The large-scale ex­

periments require NPP simulator, real-size model of MMI (called as mockup) and skilled 

operators. One of the typical experimental studies is the operator reliability experiment 

(ORE) carried out by Electric Power Research Institute (EPRI) [2]. ORE was conducted 

for two objectives. One is to collect operator response and reliability data by using full­

scale NPP simulators and actual operation crews. The other objective is to apply the 

experimental data to examine the validity of the human cognitive reliability correlation for 

use in human reliability analysis. The features of ORE are summarized as follows . 

• The experimental data were collected from NPP simulators during routine operator 

re-qualification training sessions at two types of NPP systems (pressurized water 

reactor; PWR and boiling water reactor; BWR). 

• The scenarios selected in 0 RE represent key sequences and important HSis with 

respect to HRA studies. 

• Trained observers collected the experimental data such as operation crew response 

time, errors, and various other human factors. 

• Operators' feedback from post-session interviews was utilized to help understanding 

the causes of operators' actions. 

• Statistical analysis of the experimental data was conducted to validate human cog­

nitive reliability (HCR) correlation for operators' actions in control room. 
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The experimental results turned out that the human cognitive reliability (HCR) correlation 

is not fully supported by the experimental data. Consequently, a new correlation called 

as HCR/ORE is derived from the experimental data to describe the cognitive reliability of 

operators' actions classified by their cue-response characteristics. 

In Japan, similar operator experiment studies were also conducted. Based on the 

collaboration of four electric power corporations 1 , one corporation 2 , and one national 

research institute 3
, experimental data were collected from the performance of operation 

crews at the training center during the period of one and a half years. The experimental 

data were analyzed by statistical method to examine the affordable time before operators 

have to do response operation with respect to the safety of NPP (3]. The experimental 

results turn out that the maximum time taken to diagnose abnormal transients is within 5 
minutes. 

The major merit of the experimental approach is that it can provide valuable experi­

mental data about the interactions between the operation crew and the plant system. In 

case of an emergency, the HSis are very important with respect to the safety and reliability 

of plant system. Hence the analysis results of the experimental data could help to improve 

MMI design, to clarify the problems resulted from human factors, and to enhance the re­

lability and safety of the plant system as a whole. However, as described in the preceding 

chapter, there are some problems by the large-scale experimental approach, with respect 

to the requirements for conducting the experiments and the limitation in the application 
of the experimental results. 

2.1.2 Objective of Laboratory Experiment 

In this thesis study, based on artificial intelligence (AI) and computer simulation technology, 

a new approach called as human modeling is proposed to simulate the interactions between 

the operators and the plant system at MMI. The total simulation system includes plant 

and MMI simulators, and a human model that can simulate the operators' behaviors in 
case of an emergency in NPP. 

In case of an emergency, operators' behaviors can be categorized as "decision-making'' 

and "response operation" phases, as described previously. The methodology is different for 

modeling operators' behaviors in the two phases because the characteristics of operators' be-

~ Kansai, Shikoku, Hokkaido, and Kyushu Electric Power Corporation 
MITSUBISHI Heavy Industry 

3 
Japan Atomic Research Institute 
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haviors in the two phases are different . Operators' behaviors in ''response operations" phase 

are rule-based behaviors that are required to follow the operation procedures completely. 

Modeling the operation procedures properly can be therefore used to simulate operators' 

behaviors in "response operations". However, operators' activities in "decision-making" 

phase are cognitive behaviors that include detecting and diagnosing abnormal transients. 

It is quite difficult to model operators' cognitive behaviors because of the complex dynamic 

characteristics of plant system in the emergency and the versatile characteristics of human 

cognitive activities. 

The attention of this thesis study is paid to the development of a human model that can 

simulate well operators' cognitive activities. A small-scale laboratory experiment was con­

ducted to examine the cognitive behaviors and validate the human model. The objectives 

of the small-scale laboratory experiment are listed as follows. 

• To examine how the operators actually monitor the plant system, detect and diagnose 

abnormal transients. 

• To obtain necessary experimental data that reflect operators' cognitive behaviors for 

developing a human model in the next study step. 
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2.2 Laboratory Experiment and Data Processing 

2.2.1 Methods of Laboratory Experiment 

The experimental methods are described in this subsection. The conduction of the lab­

oratory experiment is different from the conventional large-scale experiments since the 

development of a human model is the fundamental objective of the experiment. 

In the experiments like ORE, the study focused on examining the performance of an 

operation crew consisting of three persons typically in Japan. One of them is the shift­

supervisor who is responsible for activities of the operation crew. The other two operators 

are responsible for monitoring and operating the primary and secondary plant system, 

respectively. In case of an emergency, the shift-supervisor judges what has happened in 

the plant system and decides how to cope with the situation with the collaboration from 

the two other operators. Thus, the cognitive behaviors of the supervisor are very impor­

tant in examining the activities of the operation crew. The attention in this thesis study 

is concentrated on modeling the cognitive activities of the shift-supervisor. The labora­

tory experiment was conducted to examine how a shift-supervisor detects and diagnoses 

abnormal transients. 

The following things were considered with respect to conduct the laboratory experi­

ment . 

• To achieve the objective of developing a human model, the abnormal transients uti­

lized in the laboratory experiments should be selected so that the scenarios represent 

the typical cognitive behaviors of the shift-supervisor. 

• The laboratory experiments only examine shift-supervisor's activities in "decision­

making" phase. The response operation is beyond the scope of the laboratory exper­

iment. 

• External activities of the operator should be recorded exactly for the later analysis, 

such as MMI operation. 

• The interview approach should be applied to examine the causes of the external 

activities. 

• The behaviors of a number of different subjects should be examined with respect to 

diagnosing the same abnormal transient, in order to study the inherent diversity in 

human behaviors. 
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Table 2.1 : Participants 

Subjects Age 
Work Experiences Experiences with PWR-type 
in PWR-type NPP NPP Simulator 

Basic design of 

I 33 
PWR-type NPP and Trained with full scale PWR-

development of type NPP simulator 
advanced MMI 

A 33 Same as Subject I Same as Subject I 

Design of central 
control board and Design and construct full scale 

T 37 development of and simple PWR-type NPP 
computer system for simulator 

PWR-type NPP 

• A number of experimental trials should be conducted for the same subject in order 

to study the inherent variety in human behaviors. 

• A limitation should be put on the number of the experimental trials in which the 
identical subject diagnoses the same abnormal transient, in order to avoid the learning 

effect. 

• Experimental results should be applied to the human modeling easily. 

The laboratory experiment is conducted based on these standpoints. The detailed 
description about the experiment conduction and the experimental data processing will be 

given in the following subsections. 

2.2.2 Contents and Subjects 

In the laboratory experiment, a subject was asked to monitor the simulated status of a 
pressurized water reactor (PWR) type NPP by operating a MMI that presents plant status 
onto a computer display. After experimenters introduce an abnormal transient into the 
plant simulator, the subject was asked to detect the abnormal transient and then to find 
out its root cause based on the plant status information provided by the MMI. 

Three subjects participated in this experiment and they are designated as "Subject 
I", ''Subject A", and "Subject T" here. Table 2.1 gives the detailed descriptions about 
each subject. Most of the subjects are not real operators of NPP, but they either had 
engaged in designing the control system and the simulator of NPP for training, or had the 
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Table 2.2: Abnormal transients emulated in the laboratory experin1ent 
Abbreviation Abnormal Transient Explanation 

Steam Generator Tube 
Due to the rupture in heat-exchange tubes of Steam 

SGTR Generator, the radioactive water in primary system Rupture 
flows into the secondary system. 

LOCA Loss of Coolant Accident Due to the leakage of coolant in primary system, the 
(small and middle scale) radioactive water flows into containment vessel. 

Because of a failure of the sensor instrument, the 

FW.Fl.Sen.F 
Feed Water Flow Sensor water level presented by feed water flow sensors is 

Failure higher than actual one, automatic control systems 
start working to decrease the feed water level. 
Since the control valve of the feed water stuck in 

FW.Cont.V.F 
Feed Water Control Valve the position where the feed water flow is smaller 

Failure (stuck open) than that in normal state, the water level of Steam 
Generator is decreasing. 
Due to the failure in the pressurizer pressure control 
circuit, the input signal of pressure controller, called 

PRZ.Prs. Cont.F.Low 
Pressurizer Pressure as the compensatory pressure, is smaller than 

Controller Failure (fail low) normal one in steady state, automatic control 
'Systems start working to increase the pressurizer 
ores sure. 

PRZ.Prs.Cont.F.High 
Pressurizer Pressure This is just the reverse case of the above abnormal 

Controller Failure (fail high) transient. 

PRZ.Spray.V.F 
Pressurizer Spray Valve Since the pressurizer spray valve opened 

Failure (big and small scale) unexpectedly, the pressurizer pressure is decreased. 

Since a failed sensor of neutron flux indicates a 

NIS .F Power range NIS failure 
lower value than that in steady state, automatic 
control systems start working to pull out the control 
rod in order to keep power output of the reactor. 

Because of a failure in the pressurizer water level 

Pressurizer Water Level 
control circuit, the input signal of water level 

PRZ.L vl. Cont.F.High 
Controller Failure (fail high) 

controller is bigger than the normal one, automatic 
control systems start working to increase the water 
level into primary coolant system. 

PRZ.Lvl. Cont.F .Low 
Pressurizer Water Level This is just the reverse case of the above abnormal 

Controller Failure (fail low) transient. 
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Figure 2.1: Configuration of laboratory experiment 

experience of being an instructor in an operator-training center for PWR type NPP. Their 
behaviors in the experiment are therefore considered very similar to real operators of NPP. 
The activities of the three subjects observed in the laboratory experiment were analyzed 

in detail to study the internal cognitive behaviors of how they really monitor the plant 

system, and how they detect and diagnose abnormal transients. 

In this laboratory experiment, twelve kinds of abnormal transients were selected as 

the diagnosis tasks to examine operators' internal cognitive behaviors. The abbreviations 

and detailed description of the abnormal transients are listed in Table 2.2. Among such 
abnormal transients, "SGTR" and "RCS leakage" are very important accidents with respect 

to the safety and reliability of a PWR-type NPP, the subjects have enough experiences in 

coping with them. It has expected that the subjects would find out the root cause of the 

two abnormal transients easily by applying the experiences. The rest abnormal transients 

are the transients caused by the failures in plant control system. To find out the root 

cause of the abnormal transients, the subjects have to apply his knowledge concerning the 

plant control system to examine the probability of various hypotheses. The final decision 
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Figure 2.2: Hierarchical structure of man-machine interface 

could be made on what had happened in the plant system by verifying and examining 
each hypothesis. The diagnosis tasks of finding the root cause of these abnormal transients 

are also selected intentionally since all of the activities are operators' internal cognitive 
behaviors. 

2.2.3 Configuration of the Laboratory Experiment 

Figure 2.1 shows the overall configuration of the laboratory experiment. Two engineering 

workstations were utilized in the experiment. On the workstation placed in the computer 

room, a real-time PWR type NPP simulator was utilized to simulate the status of NPP both 

.at steady and anomaly situations. On the other workstation placed in the experimental 

room, a MMI of NPP is presented to subjects for providing the information about plant 
status that is obtained from the plant simulator. 

The plant simulator utilized in the laboratory experiment is developed by MITSUBISHI 

Electric Corporation [ 4]. It has the ability to simulate the dynamic characteristics of a 3-

loop PWR plant system in real time for both steady state and anomaly situations. 

The MMI utilized in the laboratory experiment is a simple one designed by referring 

to the second generation MMI of NPP, in which cathode-ray tube (CRT) display is utilized 

as a subsidiary tool for providing information about plant prameters to operators. The 

MMI is called as CRT -based interface in this thesis. The configuration and features of the 

CRT-based interface are described in detail as follows. 
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Figure 2.3: Plant status summary window 

The CRT-based interface is developed as a graphical user interface in the X-window 
environment on the UNIX operation system. It consists of 16 interface windows and has a 
hierarchical organization as shown in Figure 2.2. The pictures of all interface windows are 
listed in Appendix A. As an example, the picture of "Plant Status Summary" window is 
shown in Figure 2.3 to give a simple mimic diagram of the overall plant configuration . 

On the CRT-based interface, plant parameters' values are presented in a format of 
digital numbers. The numbers are shown in a frame around the mimic representation of 
the correspondent plant instrument. Besides "Plant Status Summary" window, there are 
15 interface windows designed for showing the detailed information about sub-systems of 
plant, such as Pressurizer Pressure System, Pressurizer Water Level System, Feed Water 
System. On these interface windows, the mimic representation of the plant sub-system 
and/or trend graphs of a number of important parameters are shown in the same way 
as the CRT display utilized in the actual plant control room. Subjects can switch to 
these interface windows for obtaining detailed information by pushing the buttons that are 

located at the left-bottom of "Plant Status Summary" window. 
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Table 2.3: Alarm messages utilized in the laboratory experiment 
Alarm Messages 

"SG-Level < Steam Flow" 
"SG-Level > Steam Flow" 
SG-Level Big Deviation 
TavgLow 
PRZ. Pressure High 
PRZ. Compensation Pressure High 
PRZ Pressure Low 
PRZ Pressure Low First out alarm 
PRZ Relief Valve Action 
PRZ Level Low 
PRZ Level High 
A-Loop-Tavg Big Deviation 
B-Loop-Tavg Big Deviation 
C-Loop-Tavg Big Deviation 
Neutron Flux Changing Rate(+) High 
Neutron Flux Changing Rate(-) High 

An alarm sub-window is designed for showing plant alarm messages at the right-bottom 
of all16 interface windows. Rather than the large numbers of alarm messages in the actual 
NPP, only few alarm messages are utilized in the laboratory experiment as shown in Table 
2.3. Moreover, no alarm sound and no alarm messages that guide subjects directly to find 
out the root cause of an abnormal transient were utilized intentionally in this laboratory 
experiment. All the settings for the alarm messages aimed at examining how the subjects 
detect the abnormal transient by themselves. It means that rather than depending on 
alarms in the actual NPP operation, subjects had to detect an abnormal transient almost 
by themselves through checking the changes in parameter values. By examining subjects' 
parameter reference activities and the personal biases about focused parameters, the efforts 
are made to obtain the experimental data concerning the judgement on the occurrence of 
abnormal transients. 

In addition, the CRT -based interface has the capability to record the operation activi-
ties of b · t · 1 · d · su Jec s In rea time unng the experiments. Since subject's operation information 
demonstrates t he procedures of how a subject detects and diagnoses an abnormal transient , 
the detailed information about the operation activities of the subject should be recorded 
for the later experimental data analysis, such as at what time, on which interface window 
and to what parameter a subject referred during each simulation trial. The feature of the 
CRT-based interface is that it can record the information automatically in real time. In 
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another experimental study conducted by K.Furuta in 1996 [5], the methodology for record­

ing subject's operation information was relied on video recording. The subjects' behaviors 

were estimated by tracking the mouse point movement recorded by a video recorder. The 

method is not accurate since the parameter focused on by the subject cannot be estimated 

exactly. The function of the CRT-based interface has been expanded so that subjects' 

MMI operation can be recorded automatically and exactly in real time. All of CRT-based 

interface operations are performed by moving or clicking the mouse input device in this 

laboratory experiment. Hence the best and simplest method to obtain the MMI operation 

information is to record the position of the mouse pointer. In accordance with the recording 

method, the subject was asked to move the mouse pointer onto the frame corresponding to 

the parameter he wants to check. The detailed description and discussion on the expanded 

function of the CRT -based interface are given in Appendix B for reference. 

In addition, although the subjects can operate MMI to access parameter status infor­

mation, they cannot make any active operations on the plant. The function for operating 

the plant is not implemented into the MMI, such as starting safety system or manipulat­

ing control system. Such settings are based on the simple consideration that the operator 

should not make active response operations before he finds out the root cause of the ab­

normal transient . 

2 .2 .4 Procedures of the Laboratory Experiment 

In the laboratory experiment, a simulation trial is conducted by the procedures shown 

below; 

1. to initiate the plant simulator to simulate the normal steady status of NPP 

2. to start up the CRT-based interface for presenting plant state to subject . 

3. to ask the subject to monitor the NPP system through operating t he CRT-based 

interface to find out whether or not there is an abnormal deviation from the steady 

state. 

4. to introduce an abnormal transient into plant simulator within 100 seconds after 

starting. 

5. when the subject recognizes an abnormal deviation from the steady state, he is asked 

to push "Anomaly Detected" button located on each interface window. 
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~ I Simulation Trial I => 
30 simulation trial, ~ 
were conducted 
for each subject, and 
12 kinds of abnormal 
transients were emulate _____ ..__, 

.._ ___ Questionnaire I => 

I Questionnaire 2 j => 

Operational 
Sequence 
History 

Questions about 
diagnosis results, 
symptoms used, etc. 

Questions about 
the judgement criteria 
of detecting a deviation 
from steady status for 3 6 
important parameters 

Figure 2.4: Experimental data collection 

6. the subject is asked to find out the root cause of the abnormal transient by referring 

to various plant parameters through operating the CRT-based interface. 

7. when the subject thinks that he find out the root cause, he is asked t o push "Cause 

Identified" button located on each interface window. 

8. a simulation trial ends when a subject pushes "Cause Identified " button or when 

300 seconds of maximum allowed time for one simulation trial expire. 

The simulation trial is conducted for each subject more than twice. Total 30 simulation 

trials were conducted for each of "Subject I" , "Subject A" and "Subject T" across the 

period of two days. 

2.2.5 Experimental Data and Data Processing 

One objective of this laboratory experiment is to obtain the necessary data for developing 

a human model that can simulate operators ' cognitive behaviors in an emergency in NPP. 

In this subsection, the data collection procedures, the obtained experimental data, and the 

data processing methodology are described. 

The experimental data are collected by recording subjects ' external activities (MMI 

operations) in the experiments and by interviewing with subjects for the causes of the 
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Experimental data 
Res ults of 

data o rocessi n2: 
Reference time and 

Operational K reference frequency 

sequence Chronological 
history (OSH) Diagram (CD) 

r<: 
The first symptom 

and the first hypothesis 
Questionnaire 1 

Anomaly hypothesis 
hierarchy diagram (AHHD) 

Thresholds for 

Questionnaire 2 interpreting 
parameter values 

Figure 2.5: Experimental data processing 

external activities. Figure 2.4 shows the procedure for collecting the experimental data. 

The data processing results are shown in Figure 2.5. 

Data Collection Procedures 

Two kinds of experimental data were collected from this laboratory experiment. One is the 
operation information of the CRT -based interface recorded automatically in each simulation 
trial. The other experimental data are the answers to the questions given to subjects in 

interviews, as shown in Figure 2.4. 

For each abnormal transient, 30 simulation trials were conducted for each subject. In 
each simulation trial, the subjects ' operation sequence history (OSH) was automatically 
recorded by the CRT-based interface. After each simulation trial, a questionnaire sheet was 
given to the subject for examining how he found out the root cause of the abnormal transient 
(see Figure 2.11). The questionnaire is called in this thesis as "Questionnaire 1". Questions 
about the just finished simulation trial are given to subjects in the questionnaire, such as 
the diagnosis result and the confidence on the result, the observed symptoms supporting 
the result and their relative important index, and other hypotheses considered in the trial. 
And after the total 30 trials were over, another questionnaire sheet was given to the subject 

for examining how he detected an abnormal transient (see Figure 2.13). The questionnaire 
is called in this thesis as "Questionnaire 2", in which subjects are asked to give the high-
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Table 2.4: Operation sequence history 

Time (sec.) Operation Record Explanation 
24 C-Hot 
25 focused until now 
26 A-Hot 
27 focused until now 
29 A-FW 
29 focused until now 
33 B-Cold 
33 focused until now 
34 Reactor Output 
36 focused until now 

37 Ml43 Malfunction Start 
FW.Fl.Sen.F was introduced into the 
simulator 

39 B-FW 
39 focused until now 
40 A-FW 
40 focused until now 
44 detected The abnormal transient was detected 
70 A-FW 
72 focused until now 
73 A-SG-Lvl 
74 focused until now 
74 A-FW 
77 focused until now 
83 Main Feed Water Screen 
86 A-SG Trend Screen 
87 Trend Graph 
92 focused until now 
93 Trend Graph 
108 focused until now 
110 end The root cause was found out 
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Monitoring Phase Diagnosing Phase 

t 
fa ~..._ ___ ..._t....,..t-b __ __.,..__._._ ___ .._,..1 tc Time Limit 

T T (300 sec.) 

Insert 
Anomaly 

Response-time of Response-time of 

Anomaly Detection Finding Root cause of Anomaly 

Figure 2.6: Monitoring phase and diagnosing phase 

and low-thresholds of parameter values for judging an abnormal deviation. 

The detailed contents, data processing methods and the results are described orderly 

with respect to the obtained experimental data; OSH, "Questionnaire 1" and "Question­

naire 2". 

Operation Sequence History (OSH) 

As an example of an original OSH recorded by the CRT-based interface, table 2.4 shows 

the operation history of "Subject I" in a simulation trial of diagnosing "RCS leakage". The 

left column of the table represents the timing when the subject operates the CRT-based 

interface by moving or clicking the mouse device. The corresponding interface operation is 

shown in the middle column. 

Since OSH represents the history of the subjects' external activities, the analysis of 

the OSH is expected to obtain the information about how subjects were monitoring NPP 

system, by what symptom subjects detected the abnormal transient, how subjects identified 

the root cause of the abnormal transient and so on. The information is very useful with 

respect to developing a human model in the next study step. 

With respect to the data processing of OSH, it is divided into two phases by the time 

when the subject pushed "Anomaly Detected" button, as shown in Figure 2.6. 

• Monitoring phase (MP): Time span from the beginning of a simulation trial until the 

subject detected an abnormal transient. 

• Diagnosing phase (DP): Time span after the detection of the abnormal transient until 

the subject found out the root cause. 

In MP, subjects monitor the status of the plant system by checking the values of various 

plant parameters. On the other hand, subjects collect various symptoms actively for iden­

tifying the root cause of the abnormal transient in DP. The separation of the two phases is 
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therefore necessary to examine the different characteristics of subjects ' cognitive behaviors 

in the two phases. In the experimental studies such as ORE, the exact separation of the 

two phases is difficult since it is made by the subjective judgement of trained observers. In 

this laboratory experiment, it can be made exactly and easily because the subjects push 

"Anomaly Detected" button by himself when he detects an abnormal symptom. 

Corresponding to MP and DP, the data processing of OSH is then conducted sepa­

rately. The OSH in MP is analyzed to clarify how subjects monitor the plant system by 

examining how long and how often subjects conduct the reference of plant parameters. 

The other data processing is made to help understanding subjects' diagnosis process in 

DP by transfiguring OSH into a chronological diagram (CD) . These two methods of data 

processing are described in detail as follows. 

Monitoring strategy: reference time and frequency 

In the laboratory experiment, it has been assumed that parameter reference behaviors of 

each subject in MP have a certain unchanging tendency throughout all simulation trials. 

It is because subjects did not know in advance when and what transient would happen 

throughout all simulation trials where different abnormal transients were simulated by the 

plant simulator. The tendency of the monitoring activities represents subjects' knowledge 

and experiences with respect to monitoring tasks, such as which plant sub-system should 

be paid attention to more than others, which parameters should be checked more frequently 

than others. In this thesis study, the characteristics of subject's parameter reference activ­

ities are defined as his ''monitoring strategy". 

In order to clarif-y the "monitoring strategy", cumulative reference time (how long) 

and cumulative reference number of times (how often) are calculated for the individual 

plant parameters checked by each subject in MP throughout all simulation trials. The 

calculated results of "Subject I", "Subject A" and "Subject T" are shown in the figures 

2. 7, 2.8, and 2.9, respectively. Furthermore, the parameters checked by subjects in MP 

were classified into the following six groups in accordance with the sub-systems composing 

the plant system. 

• parameters related to reactor 

• parameters related to pressurizer (PRZ) 

• parameters related to chemical volume control system ( CVCS) 
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• parameters related to steam generator (SG) 

• parameters related to turbine 

• other parameters 

Each subject's direction of attention on some specific plant subsystem can be then 

clarified by combining the classification of plant parameters with the analysis results of the 

reference time and frequency of individual plant parameters. The detailed analysis results 

are described in next section. 

Chronological Diagram 

The second data processing for OSH is to visualize it so that the subjects ' behaviors, 

especially the behaviors in DP, can be understood and analyzed easily. For each simulation 

trial, one chronological diagram (CD) is drawn as shown in Figure 2.10. The horizontal 

axis of CD represents the elapsed time. The bottom part of CD shows the information 

about at what time, on which interface window, the subject monitored the status of the 

plant. The names of 16 interface windows are listed on the vertical axis in the bottom 

part of CD. On the other hand, the top part of CD shows the information about at what 

time, subject checked what concrete plant parameter. The names of the plant parameters 

checked by subjects are listed on the vertical axis in the top part of CD. The black or 

gray painted parts at both top and bottom of CD represent how long the subject continue 

looking at the plant parameter on the interface window. 

Subjects' diagnostic process can be traced chronologically by the representation of CD. 

Combined with the answers to the questions in ''Questionnaires 1" after each simulation 

trial, CD is utilized to clarify the detailed diagnosis process of each subject. A detailed 

analysis example is described in the next section. 

Answers to "Questionnaires 1" 

After each simulation trial, an interview with the subject was conducted to examine the just 

finished anomaly diagnosis. A questionnaires sheet is given to the subject in the interview. 

Figure 2.11 shows an example of the sheet. The questions given to subjects are listed as 

follows; 

1. diagnosis result and the degree of subject's belief on it, 
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Questionnaires Sheet 1 

1. What is your final diagnosis result? 
Simulation Trial No. _ 

How much do you believe in the result? 
a. not sure b. probably C. sure 

2.Please list the symptoms used to draw the conclusion 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

3. Which is the first symptom by which you detected the anomaly? 
Please give the number of the sypmtom in the above list c::J 

4. What are the other symptoms expected to be observed? 

2 
2 
2 
2 
2 
2 

m 1 2 
m 1 2 
(3) 1 2 
(4) 1 2 

rn 1 2 
~ 1 2 

5. Ptse give: relative import~cefor the symptoms

3
above lj 

not important fairly important necessary 

6. Please listed the other events 
conceived during this trial by time-order. 

o Event 1 

~lEvent 2 

If there exists a Hierarchical 
relationship between them, 
please show it below. 

-o Event 3 
0 

cg_ Event4 
&i Event 5 

Event 6 

7. In the case of such events, please list the symptoms that should be 
observed and their relative importance as described in question 3 

For Event 1 For Event 2 
(1) 1 2 3 (1) 1 2 3 
(2) 1 2 3 (2) 1 2 3 
(3) 1 2 3 (3) 1 2 3 
(4) I 2 3 (4) 1 2 3 
(5) 1 2 3 (5) 1 2 3 

For Event 3 For Event 4 
(1) 1 2 3 (1) 1 2 3 
(2) 1 2 3 (2) 1 2 3 
(3) 1 2 3 (3) 1 2 3 
(4) 1 2 3 (4) I 2 3 
(5) I 2 3 (5 ) I 2 3 

For Event 5 For Event 6 
(1) 1 2 3 (1) l 2 3 
(2) 1 2 3 (2) 1 2 3 
(3) 1 2 3 (3) I 2 3 
(4) 1 2 3 (4) l 2 3 
(5) 1 2 3 (5) I 2 3 

Figure 2.11: Questionnaires sheet 1 
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2. observed symptoms that support his diagnosis result , 

3. the symptom by which subject detected the anomaly first, 

4. other symptoms that might have been observed if the above diagnosis would be 
assumed, 

5. relative importance for each symptom in question 2 and 4 with respect to diagnosing 
the abnormal transients, 

6. all hypotheses considered in time order during the simulation trial and the hierarchical 
relationship between them if there exists one, and 

7. symptoms supporting hypotheses in the answers to question 6 and their relative 
importance. 

Based on subjects' answers to the questions, the detailed information about the diag­
nosis process can be obtained for developing a human model that can simulate such human 
information processing. The necessary data for developing the human model are listed as 
follows. 

• The first symptom, by which the subject detected the abnormal transient . It 1s 
substantially the answer to the question 3, 

• The first hypothesis, by which the subject started the diagnosis tasks. It is contained 
in the answers to the question 6, 

• The relationships among the hypotheses, by which subject considers new hypothesis 
after he rejects one. They are substantially the answers to the questions 5 and 6, 

• The knowledge and experiences by which subjects examine each hypothesis. They 
are substantially the answers to the questions 2, 4, 5, and 7. 

Based on CD and the answers to question 3 and 6, First-Symptom-First-Hypothesis 
patterns throughout all si!fiulation trials are summarized in tables 2.5, 2.6, and 2. 7 for each 
subject , respectively. The characteristics of initiating diagnosis tasks in the cases of each 
subject can be obtained by analyzing these tables. 

With respect to the latter two kinds of necessary data for developing a human model, 
they are substantially the subjects' knowledge and experiences concerning plant operation 
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Table 2.5: First-Symptom-First-Hypothesis patterns of "Subject I" 
Plant First 

First Hypothesis Frequency Parameters Symptom Samples 

SG-LVL. 
Big or 

Feed Water System 4 
No.8, No.26, No.4, 

Small No.19 

PRZ.Pressure control 
1 No.15 system 

No.lO, No.22, No.9, 

Small RCS/SGTR 8 No.29, No.l2, No.30, 
PRZ.Prs. No.7, No. l4 

Leakage in the Gas 
1 No.21 phase of PRZ. 

Big 
Wrong pull of 

2 No.l6, No.3 control rod 
PRZ.Lvl. Small RCS 1 No.20 

Big RCS 5 
No .I , No.23 , No.25, 

No.l L No.24 
CV CS-IN 

PRZ.level control 
Small 3 No.6, NO.l7, No.28 system 

Feed Water 
Big 

Feed Water Control 
2 No.2, No.l8 Level System 

Reactor NIS sensor error 1 No.5 

Output 
Big Wrong pull of 

2 No.l3, No.27 control rod 

- 33-



2.2 Laboratory Experiment and Data Processing 

Table 2 6· First-Symptom-First-Hypothesis patterns of "Subject A" 

Plant 
First Symptom First Hypothesis Frequency Samples 

Parameter 
No.l, No.3, No.S,, 

PRZ.Pressure 
No.7, No9, No.lO, 

PRZ.Prs. Small/Big 14 No.l2, No.14, No.l6, 
control system 

No.21, No.25, No.26, 
Nn ?9 NolO 

Feed Water Small feed water system 1 No.4 

PRZ.Level control 
No.6, No.8, No.ll, 

CVCS-IN Small/Big 7 No.l7, No.20, No.24, 
system No.28, 

Unbalance 
Failure of feed 

between 3-loop 1 No.l8 
Main Steam 

main steam flow 
water sensor 

Flow 
Feed water control 

Big 1 No.l5 
system 

SG-Lvl. Small 
Feed water control 

system 
1 No.19 

Big/Small 
PRZ.Level control 

PRZ.Lvl. system 
2 No.22, No.23, 

Reactor 
Big 

Wrong pull of 
2 No.l3, No.27 

output control rod 

Warning 
Unbalance of 

Feed water control 
feed water flow 1 No.2 

Messsage 
and steam flow 

system 
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Table 2. 7: First-Symptom-First-Hypothesis patterns of "Subject T" 

Plant First 
First Hypothesis Frequency Samples Parameter Symptom 

CV CS-IN Big 
PRZ.Ievel 

2 No.26, N0.11 
control system 

N0.8, NO.l5, No.l 0, 

PRZ.pressure No.22, No.20, No.25, 
Big/Small 15 No.14, No.7, No.30, 

control system 
No.21, No.12, No.23, 
No.29, No.3, No.16 

PRZ.Pressure Small RCS 1 No.9 

Wrong pull of 
1 No.13 

control rod 
Big 

PRZ.level 
1 No.5 

control system 

PRZ.Level Big/Small 
PRZ.level 

5 
No.l, No.28, No.l7, 

control system No.24, No.6 

Warning 
Unbalance of 

Feed Water 
feed water 2 No.2, No.l8 Message 
flow and 

system 

Feed water 
Small 

Feed Water 
2 No.4,No.l9 

flow control system 

Reactor output Big 
PRZ.pressure 

1 No.27 
control system 
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and the natures of abnormal transients. A hierarchical structure is proposed to represent 
the organization of the knowledge and experiences in order to analyze subjects' anomaly 
diagnosis knowledge. The data processing for forming the hierarchical structure is described 

in detail as follows. 

• First, for each subject and each abnormal transient, all of the hypotheses considered 
in the simulation trials were represented as a small hierarchical structure to describe 
their relationships in accordance with the answers to question 6. 

• Then, for each subject, the diagnosis knowledge of all abnormal transients is ob­
tained as a big hierarchical structure by summarizing the small hierarchical structures 
throughout all the abnormal transients. 

• Finally, an integrated diagnosis knowledge of the three subjects is obtained by sum­
marizing the diagnosis knowledge, as shown in Figure 2.12. 

The structure is called here as anomaly hypothesis hierarchy diagram ( AHHD) that 
represents the organization of subjects' knowledge and experiences for diagnosing abnor­
mal transients. AHHD consists of two parts: knowledge about primary NPP system and 
knowledge about secondary NPP system, as shown in Figure 2.12. The former part is 
further divided into three knowledge branches shown below. 

• knowledge branch for Primary System Coolant, 

• knowledge branch for Prilnary System Control, and 

• knowledge branch for Reactor Power Output. 

In AHHD, the nodes in the upper level represent more abstract hypothesis such as "P.S. 
Controller Failure", while the nodes in lower level represent more concrete hypothesis such 
as "PRZ relief valve fails open", etc. Combined with CD, the hierarchical organization of 
subjects' knowledge and experiences is utilized to clarify the diagnosis process in detail for 

each subject in each simulation trial. 

Answers to "Questionnaires 2" 

In the laboratory experiment, subjects detect abnormal transients by noticing an abnormal 
deviation of parameter value from the steady status in most cases. However, the judgement 
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Figure 2.12: Anomaly hypothesis hierarchy diagram ( AHHD) 
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.--------- Questionnaires Sheet 2---------, 
How do you judge if there is a deviation from the steady status 
in the parameter value? Please give your criteria to judge the parameter 
value is low or high obviously based on the sample below. 

r---- Sample: 

155 
I. 

98 
I 

Parameter: Pressurizer pressure (kg) 

156 157 158 159 
I I I I I I I I I I I I I 

i s-L~ i 
Low Obviously 157.2 High Obviously 

Parameter: Reactor Output (%) 

99 100 101 102 
I I I I I I 11 t I I I I I I 

Steady Value 
100.8 

Figure 2.13: Questionnaires sheet 2 

on the parameters' value is a kind of subjective behavior and is different from person to 

person since the parameter values fluctuate even in steady status of NPP system. The 

differences would exert influences on the anomaly detection time that directly influences 

the affordable time for diagnosing the abnormal transient. The subjective judgement is 

therefore important with respect to the human reliability and should be analyzed in detail. 

Consequently, the "Questionnaires 2" is designed for the analysis. It was given to 

each subject after he finished the total 30 simulation trials. Figure 2.13 shows a part of 

"Questionnaires 2" . 

In the questionnaire sheet, total 36 parameters are selected as the indicators of the 

status of the five plant sub-systems (Pressurizer, Chemical Volume Control System, Reac­

tor, Steam Generator, ~d Radioactive Monitoring System). For the 36 parameters, each 

subject was asked to give the high and low thresholds of the parameters value by which 

the subject feels the value is out of normal range and thus thinks something wrong in the 

system were required. These thresholds are subjective values for each subject and reflect 

individual characteristics of how strictly he monitors parameters' deviation. 
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Table 2.8: Threshold values to recognize deviation 
+: Subject recognizes deviation less than 10% of steady state value 
-: Subject recognizes deviation more than 50% of steady state value 
*: Parameter not refered 

Subejct 1 Subject2 Subject3 
Dec. Inc. Dec. lnc Dec. lnc 

PRZ pres. + + + + + + 
PRZ level + + + + 
PRZ heater power 
PRZ releif valve outlet temp. * 

PRZ spray valve open ratio + * 
PRZ relief tank temp. * Surge temp. used 
PRZ relief tank level * Surge temp. used 
PRZ relief tank pres. * Surge temp. used 
Charging flow + + + 
Letdown flow + PRZ Pres. used 
VCT level cont. valve open ratio + VCT level used 
VCT tank level 
Charging flow cont. valve open ratio + Chargin flow used + + 
Reproducible heat Ex.outlet temp. + + + + 

Reactor Power + + + + + + 
Generator output + + + + + + 
Coldleg temp. + + + + + + 
Hotleg temp. + + + + + + 
Tavg. + + + + + + 
HI-Tavg + + + + + + 
Hl-dT + + * + + 
dT + + + + 
Power Range NIS + + + + + + 
P first + + + + + + 

Main steam flow + + + + + 
SG level + + + + + + 
Main FWflow + + + + + + 
SG pressure + + + + + 
Main FW temp. + + + + 
Main FW pres. + + + 
Steam flow-FW deviation 
Main steam header pres. + + + + + + 
SG level deviation + + SG level used + + 
FW cont. valve open ratio + SG level used 

SG blowdown monitor 
CV gas monitor 

-39-



2.2 Laboratory Experiment and Data Processing 

The answers obtained from "Questionnaires 2" are processed to clarify the criteria for 
judging the parameters' abnormal deviation. The data processing is made in two steps. 
Firstly, the 36 parameters were categorized into five groups to represent the five plant sub­
systems. Then, the threshold values of each plant parameter were analyzed by examining 
the deviation degree from the steady status. The analysis aims at examining how much 
severely the parameter was monitored by the subject. 

Table 2.8 summarizes the thresholds of each parameter for three subjects. In the table, 
symbol "+" means that the subject recognizes anomaly at the deviation fewer than 10% 
of steady state value, symbol "-" means more than 50% of steady state value and no sign 
means in-between of those two criterions. Hence the parameters marked with "+" would 
be checked by the subject quite strictly. The detailed analysis results of each subject's 
characteristics are described in the next section. 
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2.3 Exp erimental D a t a Analyses 

The experimental data analysis and the results are described in this section. With respect 
to developing a human model, the attentions of data analysis are concentrated on both the 
common tendency in the behaviors of all the subjects and the differences in the individual 
cases. 

First of all, as the operators of NPP, there does exists a common tendency in their 
cognitive activities due to the standard education and training. The analysis of the common 
tendency could clarify the fundamental mechanism of the cognitive activities. 

On the other hand, there are also individual characteristics in the cognitive behaviors 
due to the inherent diversity and variety in human activities. By analyzing the individual 
characteristics, the methods can be derived for modeling the diversity and the variety in 
the fundamental mechanism. 

With respect to applying the analysis results to the development of the human model 
' 

the common tendency can be utilized to develop the modeling framework. The individ-
ual characteristics can be utilized to suggest how to adjust parameters in the modelinO' 0 

framework to simulate the diversity and variety. 

From the foregoing viewpoints of data analysis, the following subsections give the 
description about the analysis of the subjects' behaviors in the experiments. The obtained 
analysis results are shown in Figure 2.14, together with their application to model the 
subjects' behaviors both in MP and DP. 

2 .3.1 Monitoring St r ategy 

As the results of the data processing of OSH in MP, the figures 2. 7, 2.8, and 2.9 show the 
examination results of the reference time (how long) and reference number of times (how 
often). The "monitoring strategy" of each subject is then analyzed by classifying plant 
parameters into six groups and examining the reference time and reference frequency of 
each group. The analysis results are shown in the figures 2.15 and 2.16. For each subject, 
the reference time and the reference frequency for each parameter group are represented in 
the percentage to the total reference time and reference number of times in MP ' . 

From the figures 2.15 and 2.16, one can find out that the scanning pattern of subjects 
has a common tendency that shows the first three ranks of reference time and frequency are 
"Steam Generato " "R t " "P · " · h · r , eac or , ressunzer wit respect to the six parameters groups. 
There are two reasons for the tendency that parameters related to Steam Generator are 
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Monitoring 
phase (MP) 

Diagnosing 
phase (DP) 

Monitoring 
Strategy 

Criteria for 
judging 

anomaly occurrence 

The relationship 
of the first symptom 

vs. the first hypothesis 
(FSFH) 

Repeat process of 
forming, 

examining, 
rejecting/ accepting 

hypotheses 

Figure 2.14: Experimental data analysis results 

checked most frequently. One is because the anomalies resulted from the steam generato.r 
can evolve so quickly that reactor may reach a scram in a minute 4• Therefore, the pa­
rameters in the parameter group of SG should be checked frequently. The other reason 
is because the steam generator is located between the primary and secondary system for 
exchanging heat. Thus, the anomaly resulted from SG will exert influence to both primary 
and secondary systems. 

As for the differences of the individual "monitoring strategy", "Subject T" seems to 
check parameters most frequently, while "Subject I" least. "Subject A" paid more atten­
tion to the parameters related to reactor than other subjects. The tendency reflects that 
"Subject A" believed parameters related to "Reactor" are more important than others. 

With respect to developing a human model that can simulate subjects' activities of 
monitoring plant system, the analysis results suggest that 

• subjects' monitoring task can be modeled as a repeating process of checking param-
4 Compared with t he amount of the steam generated per unit time , there is no much affordable feed 

water. Therefore , if the feed water is stopped or decreased due to a certain anomaly, it will cause the 
reactor reaches a scram very quickly. 
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oc. v. c. s4"/o 
4% 
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PRZ 
8% 
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200 lOO 400 
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% 
G C. V. C. 
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i 
\ 
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500 600 

Ill Others 
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9% 

Subject T 

PRZ 
15% 

Figure 2.15: Reference time of each parameter group 
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• Turbin.g Others 
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5"/o 

3% 

Subject A 

{ 

\ • PRZ 
16"/o 

D Steam Generator 
53% 

Subject T 

Figure 2.16: Reference frequency of each parameter group 
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eter value, 

• what parameters should be checked can be selected from the 36 important plant 
parameters that represent the indicators of the status of the plant sub-systems, 

• the classification of the parameters into groups can be utilized to model the "moni­
toring strategy" , 

• the individual characteristics in the "monitoring strategy" can be modeled by chang­
ing the checking frequency of each parameter group. 

2.3.2 The Criteria for Judging Anomaly Occurrence 

With respect to analyzing the deviation of parameter values shown in Table 2.8, the factors 
that could exert influences on the subjective judgement are listed as follows. 

• The inherent variation of parameters' value. For an example, the parameters related 
to water level or steam flow always fluctuate even in the steady status. While, the 
parameters related to temperature are almost constant. 

• The importance of parameters with respect to the safety of the plant system. 

Based on the consideration, table 2.8 is analyzed to clarify the criteria for judging the 
occurrence of an abnormal transient. 

The fact that parameters related to reactor were monitored most severely is found as 
a common tendency from the table. It is because reactor core is the most important part 
of all NPP system, and also because the values of the parameters in the group are almost 
constant at steady status. Thus, a minimal change of the parameters should be taken 
seriously. 

As for the differences with respect to each subject, "Subject A" seems to check only a 
number of specific parameters instead of all 36 parameters. He checks the parameters more 
severely than other subjects do. Such characteristics are considered to reflect the level of 
subject's expertise that I?eans he can monitor whole plant system by checking only few 
parameters. 

Moreover, although subjects gave the thresholds for judging the abnormal deviation of 
parameter values, there did exist a common tendency that subjects would also make the 
judgement that a certain anomaly had happened even the absolute changes in parameter 
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value do not exceed the thresholds. In such cases, the subjects predict that the parameter 
value will exceed the thresholds soon by the observed variation tendency. 

With respect to developing a human model that can simulate the subjective judgement 
on parameter values, the analysis results suggest that: 

• it is necessary to set the high and low thresholds for the individual subject and such 
settings are parts of the individual "monitoring strategy", 

• the subjective judgement to interpret parameter values can be modeled as a kind of 
fuzzy judgement in which the obtained thresholds can be utilized. 

2.3.3 First Symptom and First Hypothesis 

After the subject detects an abnormal transient, he will start anomaly diagnosis process. 
The symptom by which subjects detect an abnormal transient is called as "first symptom" 
in this thesis. In the experimental study conducted by K.Furuta (1996) [5], it has been 
found that the first symptom is very important because it almost decides the pattern of 
the following diagnosis process. 

Various hypotheses may be considered in accordance with the first symptom. However, 
since human beings cannot deal with the possible hypotheses simultaneously, he will select 
one of them to start the diagnosis process. The hypothesis is called as "first hypothe­
sis". In this thesis study, the attention is concentrated on the relationships between the 
first symptom and the first hypothesis. How subjects start the diagnosis process can be 
understood by examining the relationship. 

Based on CD and the answers to question 3 and 6 in "Questionnaires 1", the first 
symptom and the first hypothesis are summarized in tables 2.5, 2.6, and 2. 7. together 
with the frequency of the first-symptom-first-hypothesis (FSFH) pattern observed through 
out all simulation trials. By analyzing the table, the characteristics in the relationship of 
First-Symptom-First-Hypothesis are obtained as follows. 

• The first symptoms detected by the three subjects are almost same. They are the 
abnormal deviation observed in the value of the following parameters: PRZ Pressure, 
PRZ Level, Charging Flow, Main FW Flow, Reactor Power, and SG Level or Main 
Steam Flow. 

• The other common tendency is that the first symptom almost always leads the subject 
to diagnose the sub-system to which the plant parameter belongs. For example, the 
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big or small deviations observed in the values of "Main FW Flow", "SG Level", 
"Main Steam Flow'' always lead to the hypotheses about "FW system". While the 
anomaly in "Reactor Power" almost always leads to the hypotheses about NIS system 
or Control Rod. Therefore, the tendency in the FSFH relationship can be explained 
by the characteristics of human reflex action. 

• While, rather than the reflex action, one can also find out another feature from 
the FSFH relationship of "Subject I". In the case of "Subject I", the first symptoms 
observed in the values of PRZ Pressure, PRZ Level, and Charging Flow almost always 
lead to the hypotheses about "RCS leakage" or "SGTR". While, in the cases of 
"Subject A" and "Subject T", such sympto~s lead to the hypotheses about control 
systems. Since "RCS leakage" and "SGTR" are very important accident with respect 
to the safety of NPP, the examination of the hypotheses first in the cased of "Subject 
I" can be considered as a kind of his diagnosis strategy. 

With respect to developing a human model, the analysis results shown above suggest 
that a database should be devised for describing the FSFH relationship. The database 
should be also devised for each subject to reflect the individual characteristics. 

2.3.4 Formation, Examination, and Rejection or Adoption of 
Hypotheses 

So far , the analysis results have been shown to explain how subjects monitor the plant 
system, how they detect abnormal transients, and how they start the diagnosis process. In 
this subsection, a detailed analysis example of the diagnosis process is first conducted to 
examine how the subject finds out the root cause of the abnormal transients. Then, the 
characteristics of the diagnosis process are summarized. Finally, suggestions are given with 
respect to developing a human model to simulate the diagnosis process. 

AHHD and CD are utilized to analyze the detail of subjects' diagnosis process. For 
the simulation trial No.12 of "Subject T" , the figures 2.17 and 2.18 show the AHHD and 
CD, respectively. This is the case where "Subject T" failed to identify "PRZ spray valve 
fails open", but instead ~eached an erroneous conclusion of "PRZ gas phase break". In 
the simulation trial, a message is given to "Subject T" intentionally to inform him that 
the plant will scram in 100 second after introducing an abnormal transient into the plant 
simulator. It is to examine how subjects behave under time pressure. The time pressure is 
considered as one of the factors that lead "Subject T" to the wrong diagnosis result. 
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Figure 2.17: Analysis the diagnosis process by AHHD ("Subject T" simulation trial N o.12) 
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Figure 2.18: Analysis the diagnosis process by CD ("Subject T" simulation trial No.12) 
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From the answers to "Questionnaire 1" , 'Subject T" noticed the decrease of PRZ 
pressure as the first symptom. Although the reference to PRZ pressure is not explicitly 
recorded on CD (as shown in (A) in Figure 2.18), it is assumed that "Subject T" noticed 
the first symptom by the peripheral sight effect (PSE) . PSE is such an effect of perception 
that the distinctive change will be noticed if it occurs in the peripheral sight. In this case, 
the subject would notice the changes in PRZ pressure when he checked the PRZ level 
because PRZ pressure is located near to PRZ level in the interface, as shown in (A) of 
Figure 2.18. 

At this point, the hypotheses of "PRZ control system", "RCS leakage" and "SGTR" 
may be considered by "Subject T". He first considered the hypothesis of "PRZ control 
system" as shown in the shade part (1) of Figure 2.17. The selection of the first hypothesis 
reflects the characteristics of his FSFH relationship as summarized in Table 2. 7. 

Based on the hypothesis, there are two possibilities for the root cause: the wrong 
control signal output by the control circuit and the wrong action of the control devices 
in PRZ system. "Subject T" first switched to "PRZ Prs. Control Window" as indicated 
in (B) of Figure 2.18, in order to check the former possibility. In the inteface window, he 
confirmed that the pressure was decreasing in primary loop and also noticed that "PRZ 
Comp. Prs" was decreasing as well. 5 These symptoms indicate that the control circuit 
performed well. 

Then, in order to examine the latter possibility, "Subject T" switched to "PRZ System 
Monitor Window" to check the states of the various devices related with PRZ pressure 
controller such as "PRZ relief valve", "PRZ safety valve" and "PRZ heater". He found 
that they were all functioning correctly (as shown in (C) of Figure 2.18). But, "Subject 
T" made an oversight that he failed to check the status of "PRZ spray valve", which was 
the root cause of this abnormal t ransient . 

Since "Subject T" felt ambiguously that there may be no anomaly in PRZ control 
system, his attention turned to t he possibility of "RCS leakage" or "SGTR" as shown in 
the shade part (2) of Figure 2.17. However, the hypotheses of "RCS leakage" and "SGTR" 
were denied by the observed facts showing that all radiation monitors retained normal 
status (as shown in (D) of Figure 2.18). In order to confirm the rejection of hypotheses of 
"RCS leakage" and "SGTR", "Subject T" checked the trend graph of "PRZ level" in the 

5 "PRZ. Comp. Prs" is the output of the PRZ control circuit and is the control signal of the devices in PRZ system, such as "PRZ. Spray V", "Heater". Based on the design of the control circuit , the input of a decreasing "PRZ Prs." should generate a decreasing "PRZ. Comp. Prs". 
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"PRZ level Controller Monitor window" (as shown in (E) Figure 2.18). In the interface 

window, he noticed a minimal increase of the PRZ water level that denied the possibility of 

the leakage accidents again and supported another hypothesis of "PRZ gas phase leakage" 

weakly. 

At this point, since "Subject T" still doubted PRZ control system, he visited the 

"PRZ System Monitor Window" again. In that window, he checked the status of "PRZ 

relief tank temperature", tank level, and tank pressure and found they were all in correct 

status (as shown in (F) of Figure 2.18). Before returning back to "Plant Status Summary" 

window, "Subject T" made a very brief reference (under 1 second) to "PRZ Spray Valve 

B", which was malfunctioning and was the root cause of the abnormal transient. However, 

he was unable to notice the wrong status of "PRZ Spray Valve B". The oversight failure 

is considered as the effect of the time pressure. 

In the meantime, what is call as ''Thrbine Run Back" 6 occurred and it made various 

changes in the secondary system. The attention of "Subject T" was then turned to the 

secondary system (as shown in (G) of CD and the shade part (3) of AHHD). However, 

"Subject T" could not understand such subsequent plant behaviors because he lacks the 

knowledge about "Turbine Run Back" . In the end, due to the time pressure effect and 

incapability of understanding the plant behavior, "Subject T" gave the uncertain conclusion 

that the root cause of the abnormal transient was "PRZ gas phase leakage". 

Based on the detailed analysis, the characteristics of diagnosis process can be summa­

rized as follows. 

• Not a single hypothesis, ordinarily, a number of hypotheses are recalled by subjects 

in accordance with the first symptom. 

• The diagnosis process is not a parallel process. The hypotheses recalled by subjects 

are examined in sequence. 

• It is also not a process of tracing the hierarchy map from the abstract upper hypothesis 

downward to the concrete lower hypothesis shown in AHHD. AHHD just represents 

the organization of _subjects' diagnosis knowledge. 

6 Due to the rapid decrease of "PRZ.Prs" in primary system, a phenomenon called as Departure from 
Nucleate Boiling (DNB) will occur. If DNB occurs, the heat exchange between the fuel and the coolant will 
become so worse that the nuclear fuel will be damaged due to extreme high fuel temperature. Therefore, 
to avoid such situation, the turbine output is decreased by an automatic operation called as "Turbine Run 
Back" to reduce the reactor output. 
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• With respect to examining the recalled hypothesis, sets of knowledge elements or 

experiences are utilized rather than the individual knowledge element in AHHD. 

They describe either the function of plant sub-systems or the natures of specific 

accidents / incidents. 

• The diagnosis process is a recursive process of forming, examining, and rejecting or 

adopting hypotheses until the root cause is identified. 

Besides the above features, there is also another common tendency that when the subject is 

not completely sure about his diagnosis results, he will re-confirm other related hypotheses 

in order to convince himself. The tendency is not shown in the above detailed analysis due 

to the time pressure effect. Figure 2.19 describes the total diagnosis process summarized 

from the analysis results of all 30 experimental trials for the three subjects. The detailed 

steps of the information processing are described as follows. 

1. Subjects recall a hypothesis based on the first symptom. 

2. Based on the hypothesis, they predict the status of the plant parameters whose status 

would support the hypothesis. 

3. Subjects would obtain the actual status of the related parameters by performing 

active MMI operations. 

4. Subjects would then compare the actual status with the prediction made previously 

and therefore, change the confidence degree on the hypothesis. 

5. Subject would make a judgement on the next action based on the current confidence 

degree on the hypothesis. 

• If the confidence degree is high enough, the hypothesis will be adopted as the 

diagnosis results. 

• Conversely, the hypothesis will be rejected if the confidence degree is too low. 

In this case, subject will recall a new hypothesis based on the first sy1nptom and 

repeat the step 1 to 4. 

• One of the rest two alternatives is to refer to the other un-checked plant pa­

rameters related to the current hypothesis so that the confidence degree will be 

further increased or decreased. 
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Figure 2.19: Diagnosis process summarized from all experimental trials 

• If a subject is so cautious that he does not accept the hypothesis even all the 
plant parameters related to it have been checked, the last alternative is designed 
for describing the re-confirmation activities of other related system. The re­
confirmation activities will change the confidence degree further. 

Finally, with respect to developing a human model that can simulate the diagnosis 
process, the above analysis results give the following suggestions. 

• The hypothesis formation can be modeled as a selection of hypotheses from a database 
that summarizes the recalled hypotheses in accordance with the first symptom. 

• The hypothesis examination can be modeled as an accumulation process of collecting 
various symptoms that should be observed in accordance with the knowledge about 
the hypothesis. 

• The hypothesis adoption or rejection can be modeled as the results of a decision on 
the hypothesis by using the accumulated symptoms. 

• The total diagnosis process can be modeled as the repeating process of such hypoth­
esis selection, symptoms accumulation and the decision on adoption or rejection of 
hypotheses until the root cause is identified. 
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Figure 2.20: Sets of knowledge for diagnosing abnormal transients based on AHHD 

2.3.5 Sets of Knowledge for Diagnosing Abnormal Transients 

As described in the analysis results of the diagnosis process, sets of knowledge elements are 
utilized to examine the recalled hypothesis, rather than the individual knowledge element . 
Therefore, in order to simplify and to represent the sets of knowledge explicitly, the AHHD 
is modified as shown in Figure 2.20. There are seven sets of diagnosis knowledge: 

• sets of knowledge about coolant leakage accidents in primary system 

• sets of knowledge about the control mechanism of the control rod 

• sets of knowledge about the control mechanism of PRZ pressure 

• sets of knowledge about the control mechanism of PRZ level 

• sets of knowledge about the control mechanism of Feed water 

• sets of knowledge about SGTR 

• sets of knowledge about turbine 

The re-arrangement of the diagnosis knowledge organization helps to model the sets 
of knowledge as a knowledge module. Based on knowledge modules, the human long-term 
memory will be modeled as an integrated knowledge network in the next chapter. 
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So far, the laboratory experiment has been analyzed with respect to how the subjects 
detect and diagnose the abnormal transients. All the analysis results described in the above 
subsections are applied to develop a human model to simulate subjects' cognitive behaviors 
of diagnosing abnormal transients in Chapter 3. 
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2.4 Concluding R emarks 

A laboratory experiment is described in this chapter, in order to examine the operator's 
cognitive behaviors in case of an emergency for developing a human model. The cognitive 
behaviors of the three subjects are examined to show how they monitor the plant system, 
detect and diagnose abnormal transients. Subjects' activities in the laboratory experiment 
are divided into two phases: monitoring phase and diagnosing phase in accordance with 
the experimental procedures. The obtained analysis results are summarized below for the 
two phases, respectively. 

For the monitoring phase, 

1. The monitoring task is a repeating process of checking the value of plant parameters 
until the first symptom is noticed. 

2. The tendency of the monitoring task is summarized as the "monitoring strategy" 
that reflect the subjects' attention on a specific plant sub-system. 

3. The criteria utilized to interpret parameter values are obtained by conducting an 
interview with the subjects. 

For the diagnosing phase, 

1. The diagnosis task is a repeat process of forming, examining, and rejecting or adopting 
hypotheses until the root cause of the abnormal transient is identified. 

2. The diagnosis task is initiated by the first symptom. The relationship between the 
first symptom and the first hypothesis is summarized for each subject. 

3. The knowledge for diagnosing the abnormal transients is obtained by conducting 
another interview with the subjects. The organization of the knowledge is represented 
as the anomaly hypothesis hierarchy diagram. 

These results can be utilized to describe the process of subjects' cognitive behaviors. 
All the results obtained in this chapter are applied to develop a human model in the next 
chapter. The laboratory experiment provides an experimental basis for developing and 
validating the human model. 
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Chapter 3 

Development of Human Model for 
Operator's Cognitive Behaviors at 
Man-Machine Interface and Its 
Validation 

In the preceding chapter, a laboratory experiment is described in detail to show how the 

author examined the operator's cognitive behaviors at MMI in case of an emergency in NPP. 

The experimental data had been analyzed with respect to developing a human model for 

simulating subjects' behaviors. This chapter describes the development and validation of 

the human model. 

3.1 Objective of Human Modeling Study 

Prior to describing how the human model is developed, it is necessary to discuss what 

kind of human model should be developed in this thesis study. In this section, the study 

motivation is first explained for the human modeling in the field of NPP system. Then, 

some of the existing human modeling studies in NPP system are reviewed to clarify the 

subjects for the further development of the studies on human modeling. At the end of this 

section, the objective of the human modeling study is specified for this thesis study. 

3 .1 .1 Human Mode ling Studies B ased on A rtificial Inte lligen ce 

As described in Chapter 1, human model researches have been conducted by three ap­

proaches categorized by their theoretical origin in the psychology [1]. They are mechanis-
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tic, cognitive and socio-technical approach. Among them, the cognitive approach is closely 

related to the human modeling approach developed later by applying artificial intelligence. 

Rather than the observable external human activities focused in the mechanistic ap­

proach, the cognitive approach pays attentions to the high-level internal cognitive behaviors 

such as decision-making, anomaly diagnosis. The internal cognitive activities are described 

as the cognitive information-processing model. A number of models have been proposed by 

the information processing approach. J. Rasmussen proposed SRK (skill, rule, knowledge) 

model [2, 3] to categorize human behaviors into three types, and decision-making ladder 

model (2, 4] describes how the cognitive information processing is conducted. S.K. Card 

gave "Human Processor Model" [5] based on experiments to describe the characteristics of 

human cognitive behaviors such as the required time for various information processing. J. 

Reason proposed "fallible machine" model [6] to describe the memory mechanism within 

which various kinds of cognitive information processing are conducted. These human mod­

els are all qualitative and conceptual models. Although they cannot be utilized to examine 

operators' activities quantitatively, these qualitative and conceptual models established the 

foundation for the following artificial intelligence approach. 

In recent years, a new approach based on artificial intelligence and symbolic processing 

methods of AI technology has been proposed [7, 8] to develop the above information process­

ing approach into a further concrete shape. By applying the symbolic processing methods 

of AI technology, various symbols are devised on computers to represent various kinds of 

information elements consisting of the human model proposed by the information process­

ing approach. Thus, the high-level internal cognitive behaviors are then modeled as the 

manipulation of the structured symbols on computers. The manipulation of the structured 

symbols is similar to computer programming. Consequently, rather than the qualitative 

and conceptual models proposed by the information processing approach, models developed 

by the artificial intelligence approach are generally implemented into computers as com­

puterized programs. Based on the computerized human model, the operators' behaviors 

at various situations can be examined quantitatively by conducting computer simulation. 

Currently, the computerized human models based on the artificial intelligence approaches 

are the predominant methodology of human model study (9]. It is because engineers of 

human-machine systems have found that these computerized structures are very powerful 

for modeling the dynamic and complex interactions between operators and the machine 

system. 

Human model researches based on AI approach have made a great progress in Japan 
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in recent years. Currently, most of the human model researches based on AI approach are 

focused on exa1nining the mechanism of human errors and on supporting the improvement 

of MMI design [10, 11, 12, 13, 14] . 

With respect to supporting the design of the man-machine system, OCCS [10] ( Op­

erator Crew Cognitive Simulation) and SEAMAID [11] (Simulation-based Evaluation and 

Analysis Support System for Man-machine Interface Design) have been developed by Tokyo 

University and MITSUBISHI Electric Corporation, respectively. 

• OCCS has been developed by K. Furuta by applying the decision-making ladder 

model proposed by J. Rasmussen. The ladder model has been developed into a 

computerized model by utilizing the blackboard control model. Various researches 

[15, 16] have been conducted by utilizing the human model, such as the evaluation of 

the human mental workload, modeling of the operation crew's activity, and validation 

of the hu1nan model. 

• SEAMAID has been developed to support MMI design of NPP system. The human 

model utilized in SEAMAID is developed by applying the framework of "fallible 

machine" model proposed by J. Reason [ 6] . The human model in SEAMAID only 

simulate the response operation activities that are described in detail by the operation 

procedures in advance. 

The given designs of MMI can be therefore evaluated comparatively by simulating 

and analyzing the man-machine interaction where the operator's response operation is 

utilized as a kind of standard of MMI evaluatioin. The application of MMI evaluation 

by SEAMAID has been confirmed usable in the maintenance field of NPP system [17]. 

On the other hand, with respect to examining the mechanism of human errors by the 

human modeling approach, SYBORG [12, 13] (simulation system for the behavior of an 

operator group) and JACOS [14] (JAERI Cognitive Simulation System) are developed by 

Human Factors Research Center of CRIEPI (Central Research Institute for Electric Power 

Industry) and Human Factors Research Laboratory of Japan Atomic Energy Research 

Institute ( J AERI) , respectively. 

• SYBORG 

SYBORG focused on the individual thinking process and the communication between 

the members of crew. It proposed a modeling framework for the individual thinking 

process and the concept of human-human interface for the communication between 
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members of the crew. The validity of SYBORG has been confirmed by comparing 

the simulation results with the manned experiment [18]. 

• JACOS 

J ACOS also selected the decision-making ladder model as the modeling framework. 

However, JACOS expanded the modeling framework so that the memory mechanism 

proposed by J. Reason can be incorporated within it. The blackboard is utilized to 

model the short-term memory. While the long-term memory is modeled as knowledge 

database consisting of "procedural knowledge" and "functional knowledge". Subse­

quently, the potential human errors in the cognitive information processing can be 

silnulated either by modifying the knowledge database, or by changing the parameter 

values from plant simulator, or by modeling the characteristics of human information 

processing such as notice bias, characteristics of searching knowledge database, and 

the limitation of short-term memory. The validity of SYBORG has been verified 

by comparing the simulation results with the laboratory experiment using several 

students as the subjects [18]. 

3.1.2 Objective of Human Modeling 

Although the above studies on human modeling have contributed to supporting the MMI 

design and examining human error mechanism, there are still subjects remaining in human 

rnodeling studies. 

Modeling Knowledge-based Behaviors 

With respect to modeling operators' behaviors in the two phases described in Chapter 2, the 

development of human model for "response operation" phase is relatively easy compared 

with the one for "decision-making" phase. The operators' tasks in "decision-making" phase 

are substantially high-level cognitive behaviors including perception, prediction, judgement, 

reasoning and decision-making. Modeling operators' such cognitive behaviors is quite diffi­

cult. In this case, the complexity of the man-machine interaction will be further multiplied 

by the dynamic characte~istics of plant system and the inherent diversity and variety in 

human behaviors. 

However, the existing human modeling researches either avoid developing the model 

for the operator's behaviors in "decision-making" phase, e.g., SEAMAID, or only deal with 

simple cases where the complicated cognitive information processing can be omitted. In the 
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case of aces, it did not consider reasoning required in the cognitive information processing 

for anomaly diagnosis. Rather than utilizing the reasoning rules, the anomaly identification 

in aces is conducted by checking the similarity between the observed symptoms and the 

symptomatic patterns defined in advance. In the case of SYBORG, the primary attention 

is paid to the simulation of team behaviors taking consideration of the communication 

between the members of a crew. JACOS indeed gave a detailed consideration to modeling 

anomaly diagnosis. However, the human model did not consider the situations where the 

first hypothesis does not relate directly to the root cause of the abnormal transient. 

Therefore, further efforts are required to model the knowledge-based behaviors in 

"decision-making" phase. In this thesis study, we have focused on operator's cognitive 

information processing in case of an emergency: anomaly detection and diagnosis. In the 

preceding chapter, the detection and diagnosis of abnormal transients had been examined 

by conducting the laboratory experiment. Hence the human model will be developed in 

accordance with the obtained analysis results of the experimental data. 

Inherent Characteristics in Cognitive Information Processing 

The mechanism of cognitive information processing should be modeled in order to develop 

a model to simulate operator's knowledge-based behaviors. The cognitive approaches of hu­

man modeling have proposed various kinds of conceptual model to describe the mechanism. 

Among them, "fallible machine" model proposed by J. Reason described the characteris­

tics of working memory and the mechanism of information retrieval from the knowledge 

database. The model provided a fundamental framework for describing and modeling 

the memory mechanisms such as working memory, the basic knowledge database retrieval 

mechanisms of "similarity-matching" and "frequency gambling". One cannotice that the 

concepts proposed by J. Reason in the "fallible machine" model have been referred by lots 

of existing human modeling researches. For example, the human model in SEAMAID has 

been developed on the basis of the "fallible machine" model. On the other hand, based on 

the concepts about the memory mechanism, new models are proposed in SYBORG, and 

the decision-making ladder model has been expanded in JACOS so that the concepts of 

both short- and long-term memory can be incorporated into the framework. 

In case of an emergency, the inherent diversity and variety in human behaviors will 

multiply the complexity of the man-machine interaction. The diversity and the variety 

are substantially the external appearances of the internal cognitive information processing. 

However, little efforts have been made to examine how the diversity and the variety of 
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human behaviors derive from the internal cognitive information processing. Moreover, 
these inherent characteristics are important factors in the human reliability analysis where 
the statistical methods are applied to examine the influence of the diversity and variety 
with respect to the safety and reliability of plant system. Further efforts are therefore 
necessary to model the inherent diversity and variety in the cognitive information. 

In this thesis study, a general human modeling framework developed out of "fallible 
machine" by H.Yoshikawa (1] will be utilized to model the inherent characteristics of the 
cognitive information processing. The diversity and variety will be examined to clarify how 
they are generated in the internal cognitive information processing. 

Validation of Human Model 

The confirmation of the validity of the developed human model is necessary to examine 
how well the model can simulate the cognitive information processing of real operators. 
However, it had been pointed out by the H.Yoshikawa and K.Furuta [1] that the scien­
tific validation in the conventional meaning is extremely difficult for the human modeling 
approach. Under the background, a small-scale validation in a specific field has been fo­
cused as the efficient method both for validate the developed human model and for further 
improvements of human model. 

Currently, the most applied validation method is to compare the simulation results 
with the operator experiment, e.g., OCCS and SYBORG. However, there are also such 
cases, e.g., JACOS, where only the verification of the human model has been conducted to 
check whether the model is developed in accordance with the designed specifications. 

In this thesis study, prior to developing the human model, the laboratory experiment 
was conducted to examine the cognitive information processing. Therefore, the validation 
of the human model will be conducted by comparing the obtained experimental data with 
the simulation results. 

Application of Human Model 

Along with the progress _made in the human modeling researches, it has been point out 
by Kirwan [8] that human modeling would become a useful tool for HRA/PSA of NPP, if 
the modeling capability could be expanded so that it could represent well versatile human 
behaviors on monitoring and controlling the process plant, with various environmental 
effects surrounding human tasks taken into consideration. 
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Currently, the purpose of most human modeling studies is either to support MMI 
design or to examine the human error mechanism. Little efforts have been made to estimate 
quantitatively human errors in cognitive information processing by means of the human 
modeling approach. In this thesis study, another objective of human modeling is therefore 
to develop a human model so that it can be applied to the practice of HRA/ PSA in NPP. 

Modeling Crew's Activities 

In NPP, the plant system is monitored and controlled by a group of operators called as 
operation crew. The modeling of the operation crew's activities is therefore necessary to 
examine the human factors in the team behaviors. In this aspect, SYBORG has the lead 
in modeling the crew' activities by focusing on the voice-communication between members 
of a crew. On the other hand, the researches on a single operator have been conducted by 
considering the organization of an operation crew in the central control room in Japan: one 
shift-supervisor responsible for the activity of the total operation crew, and two assistant 
operators responsible for the reactor and turbine, respectively. As described in Chapter 
2, the cognitive behaviors of the shift-supervisor are important in examining the activities 
of the operation crew. Therefore, the modeling of the cognitive behaviors of the shift­
supervisor is conducted as the first step of the studies on modeling total crew's activities. 
In this thesis study, the human model will be developed to simulate the cognitive behaviors 
of the shift-supervisor. 

Summary of the Objectives 

Based on the above discussion, the objectives of the human modeling are then summarized 
as follows. 

• Develop a human model based on the observation, i.e., on the analysis results of 
the experimental data so that the model can well simulate the subjects' cognitive 
behaviors of detecting and diagnosing abnormal transients. 

• Develop and validate the human model that can simulate the inherent diversity and 
variety in human cqgnitive behaviors. 

• Apply the developed human model to the practice of HRA/PSA. 

The study to achieve the former two objectives is described in this chapter. The latter one 
will be the subject of the next chapter. 
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3.2 General Human Modeling Framework 

The human modeling approach based on AI could be conducted in two steps as follows. 

• To select or propose a human modeling framework to describe the mechanism of 

cognitive information processing. 

• To implement the modeling framework into computers by applying the symbolic 

processing methods of AI technology. 

In this section, a general human modeling framework is described for modeling op­

erators ' cognitive behaviors at MMI in NPP system. The framework is developed by H. 

Yoshikawa mainly based on the "fallible machine" model proposed by J. Reason [ 6]. A 

general description is given first to explain the modeling framework briefly. Then, the 

con1ponents and the interactions between them are described in detail to show how the 

fra1nework explains human cognitive information processing. 

In the following sections, we will explain how to apply the symbolic processing methods 

of AI technology to implement the modeling framework into computers in order to develop 

a computerized human model. 

3.2.1 A General Human Modeling Framework 

J. Reason proposed "fallible machine" model in his book "Human Error" [ 6]. The model 

paid attention to describing the mechanism of human memory. The fundamental concepts 

of the model are shown in Figure 3.1. 

"Fallible machine" model has two kinds of memory components. One is the short-term 

me1nory called as working memory (WM) and the other is the long-term memory called 

as knowledge base (KB). WM is further subdivided into two parts: focal WM (FWM) and 

peripheral WM (PWM). Figure 3.1 shows the inter-connections between these components. 

As for the communication with the outside world, the two kinds of memory components 

utilize the input and output functions. The input function comprises an array of specialized 

sensors whose activity is fed into PWM. While the output function consists of sets of 

effectors that transform the instructions stored in KB into speech or motor action, and 

direct the orientation of the sensors. There are also feedback loops connecting the output 

and input functions. 

Since "fallible machine" model is too conceptual and primitive to be implemented into 

computers, H. Yoshikawa [1] had developed it into a general human modeling framework 
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-67-



3.2 General Human Modeling Framework 

for modeling operators' cognitive behaviors at MMI of a plant system. As shown in Figure 

3.2, the framework incorporates other cognitive study achievements on operators' cognitive 

activities, such as the perception information processing, the concept of information chunk­

ing, the deductive and abductive reasoning utilized to diagnose abnormal transients. There 

are mainly three components in the general human modeling framework: the information 

interpreter together with the cognitive filter, the short-term memory (STM) consisting of 

FWM and PWM, and the long-term memory (LTM). 

From next subsection, we will describe these components in detail to explain the char­

acteristics of human cognitive information processing. 

3.2.2 Perception Information Processing 

In NPP system, various kinds of plant information are presented to operators through the 

MMI, such as indicators of instruments and values of plant parameters. The information 

can be perceived through the five organs of sense. The model of such information perception 

is simplified as the function of the information interpreter in the modeling framework. 

The information interpreter will convert the various kinds of information into meaningful 

messages. 

However, human beings do not aware all the information entering the five organs of 

sense. Only such information attracts a person's attention that relates to the current 

context of information processing. The effect is modeled as the function of a cognitive 

filter. Only the salient message elements will be passed into PWM through the cognitive 

filter . 

3.2.3 Peripheral Working Memory 

PWM is an unconscious world and the information processing within it is conducted in 

parallel. Two kinds of information enter into PWM: one is from the cognitive filter and the 

other one is from the knowledge database. They are the background information relating 

to the information processing in FWM. The function of PWM is to govern the access to 

FWM. It is decided in accordance with a number of principles as listed below. 

• Visual information dominance principle 

That is to say visual information has priority access to FWM at any time. With 

respect to the plant operation, it implies that the information about the status of the 

plant parameter within operator's view has a privileged access to FWM. 
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• Change detection dominance principle 

This means that the information indicating a striking change in the outside world 

has a privileged access to FWM. Such principle gives the explanation of peripheral 

sight effect (PSE), which was observed in the laboratory experiment . 1 

• Coherence principle 

Access to FWM is biased to favor information that relates to the current contexts of 

information processing in FWM. This principle preserves the consistency of successive 

FWM elements. 

• Activation principle 

As for the information elements from the knowledge database, the access to FWM 

through PWM is determined by the level of an activation (described later in detail) 

of the knowledge units from which they originate. The higher the level of activation, 

the greater the chances of admission to FWM. 

3.2.4 Focal Working Memory 

FWM is a conscious world and is the workspace for the information processing. The ca­

pacity of the workspace is limited to about seven information chunks, as described in the 

"human processor model" proposed by Card [5]. FWM receives information elements con­

tinuously from both the outside world and the knowledge database through PWM. It has 

a cycle time of a few milliseconds and processes two or three discrete information elements 

in each cycle. During a run of consecutive cycles, these elements may be transformed, 

extended or recombined as the result of the information processing. The cognitive infor­

mation processing is conducted attentively in sequence. J. Reason had given a useful image 

for the function of FWM: "slicer". By "slicer", the information consisting of information 

elements is cut into "slices". As shown in Figure 3.2, the "slices" are then dropped into a 

buffer as the keywords to search knowledge database. The "width" of these "slices" may 

vary in accordance with the type of "work". In the context of anomaly diagnosis, these 

concepts of "slice", "width", "work" will be explained concretely in the following sections 

where the modeling of FWM is described in detail. 

1 PSE means that if there is striking change in a parameter value and the parameter is within operator 's 
peripheral view, he will detect the change. Also refer to subsection 2.3.4 
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3.2.5 Long-term Memory: Knowledge Database 

Long-term memory is a vast database of knowledge units. There are neither capacity 

limits on the knowledge database, nor time limits on the conservation of the knowledge 

units stored in the knowledge database. 

As for the organization of the knowledge database, the following two points had been 

argued by J. Reason [6]. 

• No any hierarchical structure or modularity exists originally in the knowledge base 

itself. 

• The outward appearance of the structured organization is formed by the way with 

which the information is retrieved from the database [19]. 

The organization of the knowledge database is therefore not fixed and will be changed by 

the information retrieval method. On the other hand, the structured organization can be 

formed by continuing a consistent information retrieval method. In other words, if the 

keywords from FWM are dropped repeatedly into the buffer of the knowledge database in 

consistent sequences (e.g., routine actions, rithmetical procedures, and so on), the knowl­

edge units activated by he keywords tend to be organized into a certain structure. Con­

sidering the repeat of education and training in the case of operators in NPP, it could be 

assumed that a certain kind of structured organization has been formed for the knowledge 

concerning the plant system and the operation experiences. Based on the assumption, a 

certain structure is generally utilized to model the organization of operator's knowledge 

database, such as the hierarchy and graphical network. 

As for the retrieval mechanism of knowledge database units, the concept of activation is 

proposed to describe the retrieval processing. For each knowledge unit within the knowledge 

database, it is assumed that there is a modifiable level of activation. When the activation 

level exceeds a given threshold, the knowledge unit will produce a product. The products 

may be instructions for action, words or images, depending on the characteristics of the 

knowledge unit. The products are then delivered either to PWM or to the outside world 

through the output function. Knowledge units receive their activation charge from two 

principal sources labeled as specific and general activators. Corresponding to these two 

kinds of activators, there are two retrieval mechanisms of the knowledge database called as 

similarity matching and frequency gambling. 

In the case of the specific activator, the retrieval mechanism is very simple. After one 

cycle information processing in FWM, the FWM "slices" are dropped into the knowledge 
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database and are held briefly in a buffer as the keywords for retrieving knowledge units. 

With respect to searching the database by the keywords, only the knowledge units pos­

sessing attributes that correspond to the keywords held in the buffer will increase their 

activation level in accordance with the goodness of the match. The closer the match the 
' 

greater charge will be obtained. The retrieval mechanism is therefore called as "similarity 

matching". It guarantees the consistent of the information processing in FWM. 

On the other hand, in the case of the general activator, knowledge units are allowed 

to receive the activation charge without continuous direct relationship with the "slices" 

dropped from FWM. At such situation, the most important general activator derives from 

the frequency of prior use. It means that the more often a particular knowledge unit has 

been applied in the past, the greater is its activation level. As the result of the activation 

principle, the well-used knowledge units will have the advantage to be retrieved in the 

competition. The retrieval mechanism is therefore called as "frequency gambling". 

With respect to developing a computerized human model, the similarity matching and 

frequency gambling give the primitive information retrieval mechanism of the knowledge 

database. In the following sections, the concrete methods of developing a computerized 

human model based on the human modeling framework are described in detail, with respect 

to the context of modeling operator's behaviors of detecting and diagnosing abnormal 

transients in NPP system. 
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3.3 Modeling O perator's C o g nitive Behaviors in Mon­

itoring P hase 

As stated in Chapter 2, the characteristics of operator's behaviors are different in mon­

itoring phase and diagnosis phase. The human modeling has been conducted separately 

for the two phases. The computerized model is developed on a real-time object-oriented 

expert system development environment called as G2 developed by GenSym Ltd [20]. In 

this and the next section, the development of the human model is described with respect 

to the operator's behaviors in the monitoring and diagnosing phase, respectively. 

Based on the analysis results of the experimental data in Chapter 2 and the foregoing 

general human modeling framework, operators' cognitive behaviors are modeled in the 

following two steps. 

• Devising a fundamental configuration to model the common cognitive behaviors ob­

served in the laboratory experiment. 

• Adjusting specific parameters in the fundamental configuration to model the individ­

ual characteristics of operators' cognitive behaviors. 

With the modeling methods, the human model should be able to simulate both the common 

and individual characteristics observed in the laboratory experiment. 

3.3.1 Modeling of Monitoring Phase 

With respect to modeling the subject's behaviors in monitoring phase, t he following mod­

eling methods have been suggested by the analysis results of the experimental data sum­

marized in Chapter 2. 

• Subjects' monitoring task can be modeled as a periodical activity of checking param­

eter value. 

• The common tendency of "monitoring strategy" can be modeled by classifying the 

parameters checked.by subjects into five groups in accordance with the configuration 

of the plant sub-systems. 

• The characteristics of the individual "monitoring strategy" can be modeled by ad­

justing the reference frequency of the parameter group . 
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Figure 3.3: Modeling of operators' cognitive behaviors in monitoring phase 

• The interpretation of parameter values can be modeled by applying the fuzzy mem­

bership function to model the individual characteristics. 

By combining these modeling methods with the general human modeling framework, 

the cognitive behaviors of operators in the monitoring phase can be described as the re­

peated three kinds of information processing; (i) the information perception, (ii) the inter­

pretation of parameter values, and (iii) the judgement on the occurrence of an abnormal 

transient. The repeted informatioin processing will continue until a deviation from steady 

parameter value is detect_ed as the intimation of an abnormal transient. Figure 3.3 shows 

the information processing flow in the monitoring phase in accordance with the human 

modeling framework. The sub-models of the three kinds of information processing are 

described in detail as follows, together with the necessary databases required in the infor­

mation processing. 
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Perception Process 

The modeling of the percept ion process is substantially the modeling of subjects' "monitor­

ing strategy". Based on the analysis results 2 of "monitoring strategy", plant parameters 

checked by the subjects are classified into five groups corresponding to the configuration of 

the plant system. Then, the perception information processing is conducted in following 

two steps. 

1. In the first step, a parameter group will be selected from the total five groups. The 

selection is based on the reference frequency of each parameter group summarized in 

Figure 2.16. In order to model the characteristics of individual "monitoring strat­

egy" , a database is made for each subject to describe the reference frequency of each 

parameter group. 

2. In the second step, a plant parameter will be selected from the parameter group 

chosen in the first step, as the parameter to be check next. This selection is made in 

a sequence defined in advance. 

These two selections are substantially two kinds of searching task to find out which 

plant parameter should be checked next. As explained previously, there are two methods 

for searching database: frequency gambling and similarity matching. The selection of 

parameter group corresponds to the frequency gambling because it is based on the reference 

frequency that reflects the frequency of parameter groups checked in the past. 

On the other hand, the parameter selection within the group corresponds to the simi­

larity matching. In this case, the status of the plant sub-system is the specific activator for 

conducting the similarity matching. The specific activator is derived from the parameter 

group selected by the frequency gambling. In the meaning of indicating the status of the 

plant sub-system, the parameters in the same group are similar. 

Interpretation Process 

The function of the interpretation processing is the translation of the value of parameters 

into meaningful message~. The analysis results of the answers to "Questionnaire Sheet 

2" are utilized to model the translation processing. The analysis results 3 have suggested 

that the interpretation of parameter value can be modeled as a kind of fuzzy judgement. 

2Refer to subsection 2.3.1 
3 Refer to subsection 2.3.2 
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Figure 3.4: Fuzzy membership function for interpreting parameters ' value 

Table 3.1: The rules for assigning the priority of information elements 

High 
~ 

Low 

Importance 
Index 

0 

1 

2 

2 

3 

Paran1eter Status 

Warning Information 

Deviation from normal value range 
of the parameter being focused 

Normal state of the parameter 
being focused 

Deviation from normal value range 
of the parameter located near the 

parameter being focused 
Normal state of the parameters 

located near the parameter being 
focused 

The obtained criteria can be applied to judge the occurrence of an abnormal transient. 

A fuzzy membership function is devised as the interpretation model. The criteria for 

judging anomaly occurrence are modeled for each subject. Figure 3.4 shows the membership 

function for interpreting a parameter value. The inherent individual characteristics of 

interpreting parameter value can be modeled by setting the lower and upper thresholds of 

the parameter value. 

After the parameter values are interpreted into meaningful messages, the meaningful 

information elements are transferred into PWM where the access priority to FWM is as­

signed for each element. The rules for prioritizing the information elements are summarized 

in Table 3.1. The elements having high importance index (0-2) are then transferred into 

FWM for judgement process. 
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Judgement Process 

Based on the information element about the status of parameter values, the judgment is 

made on whether or not there is a symptom indicating the occurrence of a certain abnormal 

transient. If there are no abnormal symptoms, the next parameter to be checked will be 

found out by searching the database of "monitoring strategy" modeled at LTM with the 

two searching n1ethods. In this case, the monitoring behaviors will continue. On the other 

hand, if an abnormal symptom is detected, the symptom will be stored in PWM. The 

symptom is called as the first symptom that is the important background information for 

the following anomaly diagnosis. Then, the monitoring task will be terminated and the 

activities of the human model will be switched to the simulation of the anon1aly diagnosis 

phase. 

3.3.2 Human Model Adjustment Factors for Monitoring Phase 

Inherent Diversity and Variety 

The diversity and variety are inherent characteristics of human behaviors. The diversity 

means here that the different persons would response differently to the identical situation. 

On the other hand, the variety means here that the same person may be response differently 

to the same situation. The diversity and variety are derived from the characteristics of 

internal cognitive processing: frequency gambling and similarity matching. 

In the conventional human modeling studies, little attention had been paid to the mod­

eling of these inherent characteristics, especially to modeling the variety. The simulation 

by these conventional models always results in the same pattern, rather than the various 

patterns observed in human behaviors. In the study field of human reliability analysis, 

these inherent diversity and variety are important factors to evaluate the reliability of hu­

man behaviors. In order to apply the human model to the practice of the human reliability 

analysis in thenext chapter, the human model developed in this chapter should have the 

capability to simulate the diversity and variety. 

In this thesis study, the concept of human model adjustment factor is proposed to model 

the diversity and variety. _Adjustment factors are substantially parameters in the developed 

human model. By adjusting the parameters, the simulation result by the human model 

will be changed so that it can reflect the individual characteristics of human behaviors. 

Subsequently, the inherent characteristics of diversity and variety would be simulated by 

the human model with the different adjust factors. 
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Modeling Individual Characteristics in MP 

In the context of monitoring tasks in case of an emergency, the interest of analyzing op­

erator's behaviors centers on when and by what sy1nptom operators detect the occurrence 

of the abnormal transients. In other words, the detection time and the first sy1nptom are 

the chief interests. However, the inherent diversity and variety in operators' monitoring 

tasks would influence the detection time and the first symptom. In this subsection, the 

attention is paid to modeling the characteristics by applying the concept of human model 

adjustment factor, based on the analysis results of the laboratory experiment . 

• Reference frequency of parameter group 

As stated previously in Chapter 2, the "monitoring strategy" of each subject is differ­

ent and it would influence the detection time and the first symptom. With respect to 

modeling the individual characteristics of monitoring tasks, the reference frequency 

of the five parameter groups is focused as one of the human model adjustment factors . 

• Criteria for judging the occurrence of abnormal transient 

The abnormal transient will be detected quickly if the operator consider a slight 

deviation in parameter values as the abnormal indication. In other words, the criteria 

of judging parameter values play an important role in anomaly detection. Therefore, 

the fuzzy membership factor a shown in Figure 3.4 is focused as another human 

model adjustment factor to model the individual characteristic in interpreting the 

parameter value. 

• Peripheral sight effect (PSE) 

PSE is observed in subjects' OSH in the laboratory experiment and it is considered to 

reflect the characteristics of the individual attention. The modeling of PSE is based 

on the observed PSE samples in the laboratory experiment. PSE samples are collected 

by focusing on the parameters checked by subject immediately after and before he 

detected the abnormal transient. Based on the samples, rules are incorporated into 

the database of "mqnitoring strategy" for the perception processing. The rules define 

for what parameter PSE will occur. If a deviation from normal value range is detected 

by PSE, the priority of the information element is assigned as "2' and therefore, will 

be processed by the judgment sub-model. Thus, the individual characteristics in 

detecting the anomaly can be modeled by modifying these rules. 
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So far, the methods have been described for modeling the subject's cognitive behav­

iors in monitoring phase. In the next section, the modeling of anomaly diagnosis will be 

explained in detail. 
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Modeling Ope r ator 's C o g nitive Behaviors in Di­
agnosing Phase 

In the anomaly diagnosis phase, the information processing is more complicated since both 

the formation and examinations of various hypotheses are required besides the perception 

and the interpretation,. 

In this section, a description is first given to explain characteristics of the cognitive 

information processing in diagnosing abnormal transients. Then, models of STM and LTM 

are described in detail to show how they are implemented into computers by applying the 

symbolic processing methods of AI technology. In the end, the various kinds of information 

processing taken place at STM and LTM are modeled as the manipulation of the symbols. 

3.4.1 Cognit ive Information P rocessing in Diagnos ing Phase 

As the analysis results summarized in the conclusion of chapter 2, the diagnosis task is a 

repeat process of fanning, examining, and rejecting or adopting hypotheses until the root 

cause is identified for the abnormal transient. 

The detailed analysis results of the simulation trial No.l2 of "Subject T" 4 suggests 

following hints for modeling the diagnosis process, 

• The hypothesis formation can be modeled as a selection from a database of hypotheses 

recalled by the first symptom. 

• Since the hypothesis cannot be adopted or rejected by checking only one parame­

ter, the hypothesis examination can be modeled as an accumulation process of the 

confidence variation by checking various symptoms which should be observed in ac­

cordance with the knowledge on the anomaly hypothesis. 

• The judgement of hypothesis adoption or rejection can be modeled as the results of 

the accumulation process of the confidence variation. 

• The whole diagnosi.s process can be modeled as the repeated process of hypothesis 

selection, confidence accumulation and the decision on adoption or rejection until the 

final decision on the root cause is made. 

4Refer to subsection 2.3.4 
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Figure 3.5: Modeling of information processing in anomaly diagnosis 
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Based on the above suggestions, the detailed information processing flow is devised 

for the internal cognitive processing during diagnosis phase, as shown in Figure 3.5. The 

detailed processes indicated as A, B , C, · · · , L in the figure are explained as follows. 

A: Recall the first hypothesis based on the first symptom. 

B: Search related parameter and the prediction about its status based on the hypothesis. 

C: Check the status of the parameter actively. 

D: Calculate the confidence level of the hypothesis based on the agreement or the dis­

agreement between the prediction and the actual status. 

E: Hypothesis adoption judgement. 

F : Adopt the hypothesis as the diagnosis result and terminate diagnosis. 

G: Hypothesis rejection judgement. 

H: Reject the hypothesis and recall a new hypothesis. 

I: Reserve the hypothesis and continue to find out more symptoms to examine the 

hypothesis. 

J : Search the un-checked related parameter and the prediction about its status. 

K: Search related system and the prediction about its condition. 

1: Check the condition of the related system actively. 

The cognitive behav~ors in the anomaly diagnosis phase are implemented into the 

computer as the cycles of the information processing until a hypothesis is adopted as the 

root cause of the abnormal transient. In the following subsections, the detailed descriptions 

are given for the modeling methods of STM, LTM, and the various information processing 

taken place in them. 
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3.4.2 Model of STM: Working Memory Element 

In this and the next subsection, the methods are explained for modeling the objects that 

would be handled by the information processing at STM and LTM. The information ele­

ments processed at STM are modeled by a frame called here as "working memory element 

(WME)" . As for LTM, knowledge database (KDB) has been constructed to model oper­

ator's knowledge and experiences about diagnosing abnormal transients. The knowledge 

and experiences are represented by graphical network structlue in KD B. 

As described previously in this chapter, the function of FWM can be imagining as a 

"slicer" that cut the incoming information into various kinds of "slices". WME is devised 

for modeling the incoming information. Then, the information processing at FWM (the 

function of ''slicer") can be converted into the symbolic processing of WME. 

The data structure of WME is shown in Table 3.2. The explanation is given below for 
each attribute defined in the data structure. 

• Ca egory 

It defines the type of WME. The category is substantially the model of the type of 

"work" described previously in the "slicer" image of FWM function. Therefore, the 

category indicates the cognitive processing context to which the WME belongs. Sev­

eral types of the cognitive processing have been defined as in Table 3.2 to descrihe 

different contexts of the cognitive information processing for diagnosing abnormal 

transient. Such category information is used to retain the coherence of the informa­

tion processing. 

• Content 

It describes the information carried by the WME. The concrete content depends 

on the category of WME and the detailed explanation is shown in Table 3.3. For 

example, if the category of WME is "alarm", the content will be the name of alarm. 

While if the category of WME is "hypothesis", the content will be the combination of 

the name of hypothesis and the current confidence level of the hypothesis. The content 

of WIVIE will be p~ocessed in FWIVI to abstract keywords for searching knowledge 

database. The keywords can be imagined as the "slice" that is the product of the 

information processing at FWM. The concrete keywords then can be imagined as the 

"width" of "slice". Since the different type "slice" has different "width" as described 

previously, the keywords abstracted from the content of WME are different. 
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Table 3.2: Data structure of workino· memory element b 

Attribute Explanation 
alarm, hypothesis, value prediction, trend 

Category prediction, value symptom, trend symptom, 
loop-decision, diagnosing result 

Content defined according to the category 

Processing State yes, no, reserved, verifying, rejected 

Processing Priority the number from 0 to 2 

Holding time 
initial value= 7, if "processing state" =yes 

then minus 1 per second 

Table 3 3· Contents of WME '.f. 

Category Content Examples 
Alarm alarm message "PRZ.Prs. is low" 

Hypothesis 
name of the hypothesis + the 

SGTR+50 
current confidence level of it 

Prediction 
name of the parameter + the PRZ.PRS+small, 

prediction about it status PRZ.Lvl.trend-rdecreasing 

Symptom 
name of the parameter+ its PRZ.PRS+big, 

actual status PRZ.L vl. trend+decreas i ng 

Loop-decision 
name of the parameter + its 

A.SG.Lvl+high+ l4.3 actual status+ the deviation 

Diagnosis result 
name of the root cause + the 

SGTR+ llO 
final confidence level of it 

• Processing State 

It is the flag indicating the processing state of WME. There are four types of flags. 

"No" will be assigned to the WME that is the new incoming information and is 

waiting to be processed. "Yes" will be assigned to the WME that had been processed 

at FWM and will not be used in the later information processing. "Reserved" will 

be assigned to the ,WME that had been processed at FWM and will be utilized in 

later cognitive processing tasks. The "reserved" WME is substantially the model of 

the background information stored in PWM as the FMW information processing. 

"Verifying" and "rejected" will be assigned to the "hypothesis" WME to indicate 

whether the hypothesis is under current examination or had been rejected. 
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• Processing Priority 
It defines the processing sequence of WME. In other words, it defines the priority 
of the access to FWM. Similar to the case of modeling information processing in 
monitoring phase, "0" indicates the highest priority assigned to alarm WME. "1" is 
assigned to the WME generated by the cognitive processing conducted immediately 
before. The assignments reflect the "change detection dominance principle" and 
the "coherence principle" in the previous description about the principles governing 
the priority of access to FWM 5 . The latter principle retains the coherent of the 
information processing. "2" is reserved for the future improvement of the human 
model and is not assigned to any WME at present. 

• Holding time 

It represents how long the WME will be retained at STM. From the characteristics 
of human cognitive information processing examined by Card [5], the holding time 
of WME at STM is about 7 (5'""'-'226) seconds. Currently, 7 seconds have been set as 
the longest holding time if the processing state of WME is "Yes" or "rejected ". As 
for the rest WME whose processing state is "no" or ''reserved" or "verifying", it is 
assumed to be remembered until its processing state is changed to "Yes". 

3 .4.3 Model of LTM : N etwork St ructured Database 

The model of the network-structured organization of the knowledge database is described 
in this subsection to show how the diagnosis knowledge obtained from the laboratory 
experiment is implemented into computers as a computerized form. 

Lots of models of knowledge database of NPP operators have been proposed. K. Furuta 
have proposed recently a generic model of an operator's knowledge on plant systems and 
the operation tasks (21]. The model consists of four cognitive subspaces of fundamental 
knowledge: plant configuration, parameter causality relationship, parameter state and task 
goal spaces. These four subspaces are interrelated with each other to represent the rela­
tionships of the lmowledge entities. The feature of this model is the clear discrimination of 
various different kinds ofknowledge. On the other hand, M. Lind have proposed another 
model called as "Multilevel Flow Modeling (MFM)" [22], which is adopted by JACOS [14] 
to represent the knowledge of NPP operators. The system behavior is represented as the 

5 Refer to subsection 3.2.3 
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flows of mass, energy and information in MFM. The multilevel flows are represented by a 
network structure in JACOS. 

In this study, a graphical network-structured organization is proposed to represent the 
knowledge database by taking a reference of the above modeling methods. The differences 
of the model with the above models are listed below. 

• Only the anomaly diagnosis knowledge is modeled by the graphical network struc­
tured organization. The modeling of the response operation is beyond the scope of 
this thesis study. 

• The anomaly diagnosis knowledge is obtained from the interviews with the three 
subjects in the laboratory experiment, rather that the ideal, very detailed textbook 
knowledge utilized in JACOS. 

This subsection gives the detailed modeling methods of the knowledge database to show 
how the diagnosis knowledge obtained from the laboratory experiment is implemented into 
computers as a computerized form. 

With respect to modeling operators' cognitive behaviors in case of an emergency, the 
knowledge and experiences are divided into two groups: the knowledge about the control 
systems of NPP, and the experiences or knowledge about the nature of accidents in NPP. 
For each type, the knowledge is further divided into knowledge modules based on the 
analysis results of the experimental data, as summarized in the subsection 2.3.5. There 
are totally seven knowledge modules corresponding to the seven sets of knowledge listed 
below. 

• knowledge module of coolant leakage accidents in primary system 

• knowledge module of the control mechanism of the control rod 

• knowledge module of the control mechanism of PRZ pressure 

• knowledge module of the control mechanism of PRZ level 

• knowledge module ;f the control mechanism of Feed water 

• knowledge module of SGTR 

• knowledge module of turbine 
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Figure 3.6: Knowledge module of "PRZ.Prs Control System" 
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Figure 3.10: Modeling methods of the knowledge about "RCS leakage" 
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Table 3.4: Five types of knowledge objects 

Knowledge Object 
Abbreviation Naming of the 

Samples and symbol object in G2 
knowledge element object KEO D Flow-XXX Flow-PRZ-PRS 

anomaly hypothesis object AHO Q Verify-X:XX Verify-RCS 

hypothesis examination object HEO Q Evaluate-XXX Evaluate-RCS 

sufficient condition object sco L. NO-XXX NO-SGTR 

connection post object CPO <> XXX -transient PRZ-PRS-Small-transient 

By utilizing a graphical network structure, these knowledge modules are modeled sep­

arately. Figure 3.6 shows the implemented knowledge module of the pressurizer pressure 

control system in the expert development system G2, as an example of modeling the knowl­

edge about control systems. Figure 3. 7 simplify Figure 3.6 so that it can be understood 

easily. The model of the knowledge about the pressurizer pressure control system is con­

structed in accordance with the control mechanism depicted by Figure 3.8. Figure 3.8 
shows the logical relationships between the components of the pressurizer pressure control 

system, such as "compensation pressure", "relief valve", "backup heater". These compo­

nents are modeled as "knowledge element objects" indicated as "KEO" (explained in detail 

later) in Figure 3.7. Besides "KEO", the other objects are devised to model the related 

knowledge about the anomaly diagnosis. 

As an example of modeling the experiences or knowledge about the nature of acci­
dents, Figure 3.9 shows the imple1nented knowledge module of coolant leakage accidents 

in primary system called as "RCS leakage". Similarly, Figure 3.10 gives a simplified repre­

sentation of Figure 3.9 for understanding it easily. These two examples will be utilized to 

explain the modeling methods of the knowledge database as follows. 

All objects in the two figures are called as "knowledge object". As seen in the figures 

3.7 and 3.10, the graphical network-structured knowledge database consists of five types of 

knowledge objects and t~e pointing arrows between them. The pointing arrows represent 

the cause-effect relationships among the objects. The concrete contents of the relationships 

are defined in the format of IF-THEN rules within each object. The five types of knowledge 

objects are summarized in Table 3.4 and the detailed function of each object is explained 

below. 
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Knowledge Element Object 

KEO is represented by the square mark. It is the fundamental element for constructing 

the network-structured knowledge database. Basically, one KEO corresponds to one plant 

parameter. KEOs store three kinds of information about the plant parameter, summarized 

as follows. 

• The steady values of the parameter, and the upper- and lower thresholds for judging 

the deviation in the parameter value. 

• The location information describing where the instrument corresponding to the pa­

rameter is located on MMI. 

• Rules describing the cause-effect relationship between KEOs. 

The first one will be utilized for the interpretation process. The second one will be utilized 

in an active parameter reference, described in detail later. The last one will be utilized in 

the reasoning of verifying and examining an anomaly hypothesis. 

Anomaly Hypothesis Object 

AHO is represented by the hexagon mark. It is the model of the hypothesis formed by 

operators based on the practical experiences and knowledge about the abnormal transients. 

Basically, one hypothesis corresponds to one AHO. With respect to the abnormal transient, 

the predictions about the status of plant parameters are described in the format of "declare 
type" rules within the AHO. These predictions are described in the left side of the KEOs, 

as shown in the figures 3.7 and 3.10. 

Hypothesis Examination Object 

HEO is represented by the circle mark. It is the model of knowledge that is utilized to 

examine the hypothesis represented by AHO. Basically, one HEO corresponds to one AHO. 

Based on the analysis res11lts summarized in the subsection 2.3.4, the hypothesis examina­

tion can be modeled as an accumulation process of the confidence on the hypothesis. In 

order to model the hypothesis examination, the concept of confidence level is devised for 

describing how much the operator is confident that the hypothesis is correct. The detailed 

modeling methods are described as follows. 
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• With respect to examining a hypothesis, scores are assigned to the plant parame­

ters whose conditions are predicted in accordance with the hypothesis. Such plant 

parameters are called as the ''necessary plant parameters". The score is called as 

confidence score. The "necessary plant parameters" are selected from the analysis 

results of "questionnaire sheet 1" where the questions were given to subjects for ex­

amining the sympto1ns supporting various hypothesis. Table 3.5 shows an assignment 

example of the confidence score for the "necessary plant parameters" with respect to 

diagnosing "RCS leakage" . 

• The confidence scores of the "necessary plant parameters" are set so that the whole 

sum of the1n comes to 100 points. The contidence level "100 points" of an anomaly 

hypothesis means that all the major symptoms supporting the hypothesis are con­

firme and therefore, it is quite possible that the root cause is the hypothesis. The 

accumulation of the confidence score represents the current confidence level of the 

hypothesis. 

• The confidence level will be increased if the actual condition of the parameters agrees 

with the prediction made in accordance with the hypothesis. On the other hand, The 

confidence level will be decreased if the actual condition of the parameters disagrees 

with the prediction. Therefore, the confidence level will be accumulated in either 

plus or minus direction in accordance with the observed symptoms. 

The assignment of the confidence score is based on the relative importance of the "necessary 

parameters" with respect to diagnosing the abnormal transient. The relative importance 

can be abstracted from the analysis results of "questionnaire sheet 1" where the questions 

were given to subjects for examining the relative importance index of parameters with 

respect to diagnosing abnormal transients. 

Sufficient Condition Object 

With respect to adopting a hypothesis, the reference to the status of the necessary plant 

parameters is substantia~ly the verification of the necessary conditions. The hypothesis 

cannot be adopted only by checking the necessary conditions. After all necessary conditions 

are confirmed, the sufficient conditions should be also checked. SCOs represented by the 

triangle mark are devised for the sufficient conditions as shown in the figures 3. 7 and 

3.10. SCO is utilized to model the re-confirmation activities in the cognitive behaviors of 
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Table 3.5: Example of confidence score assignn1ent 

Necessary Predicted Confidence Confidence 

Parameters Status Score for Score for 
agreement disagreement 

PRZ.PRS. small +8 -7 
PRZ.PRS. Trend decreasing +7 -7 

PRZ.LVL small + 15 -7 
PRZ.L VL Trend decreasing + 15 -7 
Radioactive gas 

big +7 - 15 within CV. 
Radioactive gas 

increasing + 13 - 15 within CV. Trend 
Radioactive dust 

big 
within CV. 

+7 - 15 

Radioactive dust 
increasing 

within CV. Trend 
+ 13 - 15 

CV CS-IN big +8 -7 
CVCS-IN Trend increasing +7 -7 

anomaly diagnosis. The re-confirmation activity means that if the operator is not quite 

sure about his diagnosis results , he will consider other related hypotheses and will check 

the related systems to confirm whether the systems are in correct conditions or not. Then, 

the diagnosis result will be further examined by the re-confirmation activity. This re­

confirmation activity corresponds to the information processing flow of "K ~ L ---+ D --+ 

E ~ G ~ I~ K" , as shown in Figure 3.5. The previous subsection 3.4.1 has described 

the meanings of those alphabets in detail. The modeling methods of SCOs are described 

as follows. 

• The plant parameters indicating the condition of the related systems are called here 

as "sufficient parameters" with respect to re-confirming the diagnosis result. 

• The related systems are assumed in correct condition in accordance with the diag­

nosis result. Therefore, the status of the "sufficient parameters" is predicted on the 

assumption. 

• The confidence scores are also assigned to those "sufficient parameters" to feed the 

effect of the re-confirmation back to the confidence level of the diagnosis result. The 

assignment of the confidence scores to the "sufficient parameters" is modeled as a 

table-type database stored in the corresponding SCO. Table 3.6 shows an example 
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of the assignment with respect t o the SCO of "PRZ.Prs.Cont system" in the case of 

the diagnosis result of "RCS leakage" , as shown in Figure 3.10. 

• The confidence scores are assigned to the ''sufficient parameters" whose states in­

dicat e the condition of the pressure control system. The status of the "sufficient 

paran1et ers" is predicted on the assumption that the control system will act correctly 

in the accident of "RCS leakage". If the actual status agrees with the prediction, the 

increase of the confidence level of "RCS leakage" is set to 5 points. However, in the 

case of disagreement, it means that the diagnosis result of "RCS leakage" is wrong 

and there may be a failure in the control system. Therefore, the diagnosis result of 

"RCS leakage" will be rejected immediately and a new hypothesis about the failure 

of the control system will be recalled. 

• There will be several SCOs for one HEO, as shown in the figures 3.7 and 3.10. They 

are classified into two groups called as "must-examination" and "option-examination" 

SCOs, respectively. The "must-examination" means that the related systems repre­

sented by the SCOs must be confirmed with respect to adopting the diagnosis result. 

It models the subject's most important re-confirmation activities to adopt the diagno­

sis result . For an example, "not-SGTR" is defined as the "must-examination" SCO of 

the hypothesis "RCS leakage" . "SGTR" is similar to "RCS leakage" in the observable 

symptoms of the primary plant system. Therefore, the confirmation that "SGTR" 

does not occur is important in adopting the root cause of the abnormal transient is 

"RCS leakage" . On the other hand, the SCOs classified into "option-examination" 

group would be checked optionally to re-confirm the diagnosis result. For an example, 

the re-confirmation of the control system is defined as "option-examination" SCOs 

of the hypothesis "RCS leakage". 

Connection Post Object 

Finally, as for CPO represented by the diamond mark in the figures, it is just the "con­

nection post" object defined originally in G2 [20]. The characteristic of CPO is that the 

CPOs having same name ·would be treated as identical objects. The characteristic of CPO 

is utilized in the following ways to model the knowledge database. 

• Modeling the first symptom 

The first symptom is modeled by CPO, e.g., "PRZ.Prs Small" as shown in the figures 
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Table 3.6: Confidence score assignment for confinnin(J" sufficient condition 
b 

Sufficient Predicted Confidence 
In the case of 

Parameters Status Score for 
disagreement agreement 

PRZ.Comp.PRS. small + 5 
PRZ.Comp.PRS. 

decreasing + 5 
Trend Reject the 

Proportional heater on + 5 hypothesis 
Backup heater on + 5 immediately 

Spray valve off + 5 
Relief valve off + 5 

3. 7 and 3.10. The first symptoms are connected at the downstream position of all 

possible hypotheses recalled by it . 

• Modeling the relationship of the knowledge modules 

As described previously, totally seven knowledge modules are utilized to model the 

knowledge database. The relationships of the knowledge modules are the common 

symptoms. For an example, the abnormal transients "RCS leakage" and "PRZ.Prs. 

Control failure-high" have the common symptoms "PRZ.Prs Small". CPOs are uti­

lized to model the relationship between the knowledge modules . As the result , CPOs 

would help to model the transition of the thinking focus from one knowledge module 

to another one in diagnosing an abnormal transient. 

• Modeling the scope of the hypotheses recalled by the first symptom 

The scope of the hypotheses recalled by the first symptom is the different aspect of the 

relationship of the knowledge modules. The scope is defined as all AHOs connected 

at the upper stream of the first symptom. 

Other Knowledge Database 

Besides the graphical network-structured representation of the knowledge database, table­

type databases are devise_d to represent the following knowledge. 

• The correspondence relation between alarm messages and the variation of parameter 

value. 

• The relationship of the first symptom and the first hypothesis. 
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Table 3. 7: Interpretation of alarm messages 

Alarm Messages Interpretation 
"SG-Level < Steam Flow " SG-Level small 
"SG-Level > Steam Flow " SG-Level big 
SG-Level Big Deviation SG-Level big 
Tavg Low Tavg small 
PRZ. Pressure High PRZ.prs big 
PRZ. Compensation Pressure High Comp.prs big 
PRZ Pressure Low PRZ.prs small 

PRZ Pressure Low First out alarm PRZ.prs small 
PRZ Relief Valve Action Relief-V. On 
PRZ Level Low PRZ.lvl. small 
PRZ Level High PRZ.lvl. big 
A-Loop-Tavg Big Deviation A-Tavg big 
B-Loop-Tavg Big Deviation B-Tavg big 
C-Loop-Tavg Big Deviation C-Tavg big 
Neutron Flux Changing Rate(+) High NIS big 
Neutron Flux Changing Rate(-) High NIS small 

The former one will be utilized to interpret the meaning of alarm messages. Table 3. 7 

shows the interpretation of the alarm messages utilized in the laboratory experiment. 

The latter one is devised for each subject to represent the individual characteristics 

summarized previously in tables 2.5, 2.6, and 2. 7 in Chapter 2. The model of the rela­

tionship in the case of "Subject I" is shown in Table 3.8 as an example. The models of 

the relationship of the other subjects are shown in Appendix D. At present, the table is 

devised so that one first-symptom corresponds to one first-hypothesis. In the cases where 

multiple first-hypotheses are recalled by subjects in the laboratory experiment, only the 

first-hypothesis recalled most frequently will be selected as the first hypothesis correspond­

ing to the first symptom. 

So far , the implementation of knowledge database into computers as computerized 

forms are explained by describing modeling methods of knowledge modules and the con­

nection relationships between them. Such methods have much flexibility to enrich the 

knowledge database only by adding more knowledge module and connecting them with the 

existing ones. 
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Table 3.8: Modeling of recalling the first hypothesis in the case of "Subject I" 

First Symptom First hypothesis of Settings in Model 
Subject I of Subject I 

SG-Lvl FW related ( 100%) FW related 
PRZ.Cont.F (10o/o), 

PRZ-prs Small RCS/SGTR(80% ), 
RCS 

Leakge in Gas phase of 
PRZ.(lO%) 

PRZ-prs Big Reactor related ( 1 00%) Reactor related 
PRZ-lvl small. RCS (100%) RCS 
CVCS-in Big RCS (100%) RCS 

CVCS-in Small 
PRZ. Lvl. Cont. F . 

PRZ. Lvl. Cont. F. 
(100%) 

FW. Lvl. Big FW related ( 100%) FWrelated 
Reactor Output Reactor related ( 100%) Reactor related 

3.4.4 Modeling of I nformation Processing in Diagnosing Phase 

In the beginning of this section, it has been suggested that the information processing 

of anomaly diagnosis can be modeled as the processing flow shown in Figure 3.5. The 

information itself processed at STM and LTM has been modeled as WME and network­

structured knowledge database in the preceding subsection. In this subsection, we will 

describe how to implement the information processing at STM and LTM into computers 

as the manipulation of the WME and the network-structured knowledge database. The 

modeling is based on the discussion about the functions of PWM, FWM and LTM described 

in the general human modeling framework. 

Information Processing in PWM 

As described previously, PWM stores the background information related to the infor­

mation processed in FWM. Its function is to govern the access to FWM. To model the 

information processing on computers, two types of symbol manipulation are devised as 

shown in Figure 3.11. One is for the new incoming information and the other one is for 

setting the holding time of the old information. The details of them are explained as 

follows. 

In accordance with where the new information comes from, there are three types of 

information entering into PWM: 
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Figure 3.11: Information processing in PWM 

• warning infonnation from outside world unexpectedly 

• symptoms by the active parameter reference from outside world expectedly 

• searching results of knowledge database from LTM 

As shown in Figure 3.11, Processing A is devised to model how the new incoming infor­

mation is processed at PWM. Since all incoming information into FWM will pass through 

PWM, the formation of WME is considered as one of the unconscious information pro­

cessing taken place at PWM. Processing A models the formation of WME. That is to 

say, Processing A converts the new incoming information into WME and sets the at­

tributes of WME such a~ Category, Processing Priority, Processing Status, Holding 

Time. The function of governing the privilege access to FWM is modeled as the settings 

of the Processing Priority for WMEs. As described in the data structure of WME, the 

priority of 0- 2 is assigned to WMEs. As the result of the Processing A, the new WME 

is generated and is then transferred into FWM. 
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Table 3.9: Keywords abstracted form the content of W:tvlE 

Category Content Abstracted 
Examples Keywords 

Alarm alarm message same as the content "PRZ.Prs. is low" 

Hypothesis 
name of the hypothesis+ the name ofthe 

SGTR current confidence level of it hypothesis 

Prediction 
name of the parameter + the name ofthe 

PRZ.PRS, PRZ.Lvl.trend prediction about it status parameter 

Symptom 
name of the parameter+ its 

same as the content 
PRZ.PRS+big, 

actual status P RZ.L v 1. trend+decreasing 

On the other hand, there is also information from FWM besides the new incoming 

information. The information had been processed in FWM and is transferred back to 
PWM as the background information. Therefore, such information had been converted into 

WME. Comparing with new WME whose Processing Status is set as "No" by Processing 
A at PWM, Processing Status of the WME from FWM would be set as "reserved" or 

"Yes" by FWM processing in accordance with whether the background information will 

be utilized in the future processing or not. The setting of "Yes" means the WME is no 

longer useful. In this case, Processing B is devised to model the forgetting effect of the 

WME that will be not refreshed by FWM processing, as shown in Figure 3.11. Processing 
B decreases the Impression Index of the WME by 1 per second. As the result of the 

Processing B, the WME will be deleted when the Holding Time is decreased to "0". 

Information Processing in FWM 

As described previously, the function of the information processing in FWM is abstracting 

keywords to search database in the "fallible machine" model. Besides that, the examination 

of hypothesis based on reasoning is also conducted in FWM in the context of anomaly 

diagnosis in the general human modeling framework. The modeling of these two kinds of 

information processing at FWM is described here in detail. 

First of all, since the information processing in FWM is conducted consciously in 

sequence, a stack is devised to define the processing sequence of WMEs transferred from 

PWM. The stack is called as "Processing Sequence". The processing sequence of WMEs 

is set in accordance with the Processing Priority of WMEs. 

As for the keyword abstraction from WMEs, FWM processing is conducted in accor-
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Figure 3.12: Information processing in FWM 
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dance with the category of the WME picked up from the stack. Table 3.9 summarizes the 

keywords abstracted from the content of WME. The details of the information processing 

conducted in FWM are described as follows, as shown in Figure 3.12. 

• "Alarm" 

The alarm messages are abstracted from the content of the alarm WME as the key­

words. The keywords will be utilized to search the knowledge database by the in­

formation processing in LTM to find out the parameter and the prediction about its 

status corresponding to the alarm so that the meaning of the alarm can be under­

stood. The Processing Status of the alarm WME is set to "Yes". The processed 

alarm WME is then transferred back to PWM. 

• "Prediction" 

The name of the parameter is abstracted from the content of the prediction WME 

as the keyword. The keywords will be utilized by the information processing in LTM 

to search the knowledge database to find out where the parameter is located on 

the man-machine interface in order to make an active parameter reference. After 

this abstracting processing, the prediction WME (symbolized here temporarily as 

"P- WME") is transferred back to PWM and its Processing Status is set to 

"reserved" for the later information processing of the hypothesis examination. 

• "Symptom" 

In this case, the processing is different with respect to whether PWM stores a hy­

pothesis WME (symbolized here temporarily as "H - W ME") to be examined or 

not. 

No hypothesis to be examined 

If the hypothesis does not exist, the content of the symptom WME is abstracted 

as the keywords utilized by the information processing in LTM to search the 

knowledge database to find out a hypothesis. In this case, the Processing 

Status of the symptom WME is then set to "reserved" as the model of the 

"first symptom" that is the important background information for the later 

processing of recalling a new hypothesis. The processed symptom WME is then 

transferred back to PWM. 

Exists a hypothesis to be examined 

In this case, the corresponding "P-W ME" reserved in PWM will be transferred 
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again into FWM, together with "H - W ME" representing the hypothesis, in 
order to examine the hypothesis. The examination is conducted by comparing 
the content of the symptom WME with the content of "P - W ME". If the 
contents agree with each other, it means that the hypothesis is supported by 
the symptom. Subsequently, the confidence level of the hypothesis is increased. 
On the other hand, if the contents disagree with each other, the confidence 
level of the hypothesis is decreased. How much the confidence level is increased 
or decreased is decided by the rules defined in the "hypothesis examination 
object" (REO) described previously as one of the objects consisting of knowledge 
database. After the information processing of the hypothesis examination, the 
Processing Status of both the symptom WME and "H - W ME" is set to 
"reserved", and that of "P- W ME" is set to "Yes" since it is no longer useful. 
The content of "H - W ME" is updated to reflect the new confidence level of 
the hypothesis. All the WMEs are transferred back to PWM. The updated 
hypothesis WME is transferred again into FWNI to continue the information 
processing of anomaly diagnosis. 

• "Hypothesis" 

Three kinds of different data processing would be conducted in accordance with the 
confidence level of the hypothesis WME; (i) adopting, (ii) rejecting the hypothesis, 
(iii) and continuing to collect more symptoms to examine the hypothesis further . 

Adopting 

The hypothesis would be adopted as the root cause of the abnormal transient if 
the confidence level were high enough to over an upper threshold set in advance. 
The anomaly diagnosis will be terminated in this case. 

Rejecting 

On the other hand, the hypothesis would be rejected if the confidence level 
were low enough. In this case, Processing Status of the hypothesis WME 
will be set to "Rejected" and the WME will be dropped into PWM as the 
background information. Moreover, the first symptom reserved in PWM will be 
then dropped into LTM again to search a new hypothesis. 

Continuing examination 

As for the third case, it means that the decision of adopting or rejecting the 
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Table 3.10: Inputs and outputs of the information processing in LTM 

Input Output 
Concrete Output 

Contents 
Keywords abstracted from Prediction the corresponding parameter and 

alarm WME information the _Qrediction about its status 
the location information of the 

Keywords abstracted from Active parameter 
parameter on man-machine 

interface, and then conducting prediction WME reference 
an active reference to obtain the 

status of the parameter 
Keywords abstracted from Hypothesis a hypothesis recalled in 

symptom WME information accordance with the symptom 

Keywords abstracted from Prediction 
a related parameter and the 
prediction about its status in hypothesis WME information 

accordance with the hypothesis 

hypothesis cannot be made because the confidence level is not so high or low. In 
other words, the situation is not so clear to make a decision. It is necessary to 
collect more symptoms in this case. Hence the name of hypothesis WME would 
be abstracted as the keywords utilized to search the knowledge database for a 
new plant parameter whose status would support or deny the hypothesis. 

Information Processing at LTM 

With respect the LTM processing, the main task is to search the knowledge database mod­
eled as the graphical network-structured database. The searching tasks are fundamentally 
conducted by two methods: "similarity matching" and "frequency gambling", as explained 
in the general human modeling framework. 

Table 3.10 summarizes the inputs and outputs of the information processing in LTM. 
The inputs are the four kinds of keywords. Three kinds of outputs are generated by the 
processing in LTM; (i) prediction information, (ii) hypothesis information and (iii) conduc­
tion of an active parameter reference. The first two kinds of outputs will be transferred 
into PWM where they will be registered as the new prediction and hypothesis WME, re­
spectively. The third output will generate the symptom information that is also transferred 
into PWM. The detailed information processing in LTM is conducted in accordance with 
the keywords dropped from FWM shown in Table 3.9. 

• Prediction information in accordance with the alarm keywords 
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The plant parameter together with the prediction about its status will be generated 

as the prediction information by searching LTM in accordance with the keywords 

abstracted from the alarm WME. This searching task is a kind of "similarity match-

ing". 

• Symptom information by conducting an active parameter reference 

With respect to conducting the active parameter reference, the location information 

will be first obtained from the "knowledge element object" corresponding to the plant 

parameter indicated by the keywords. The MMI operation will be then conducted 

to obtain the status of the parameter. The result of the parameter reference will 

be transferred into PWM as the new symptom information. Moreover, the rules of 

increasing or decreasing the confidence level of the hypothesis, as described in the 

"hypothesis examination object", will be also transferred into FWM through PWM, 

in order to conduct the examination of the hypothesis in FWM. This task is also a 

kind of "similarity matching". 

• Hypothesis information recalled by the first symptom 

Based on the keywords abstracted from the first symptom, a new hypothesis will be 

suggested in two steps of database processing. The first step is to collect all possible 

hypotheses recalled by the first symptom. It is a kind of "similarity matching" since 

the searching task collects only the hypotheses related to the first symptom. The 

second step is to select one of them as the hypothesis to be examined next. This 

step is a kind of "frequency gambling" that gives the reason of the diversity in the 

cognitive information processing of anomaly diagnosis. 

• Prediction information in accordance with the hypothesis 

A prediction information will be generated by searching the knowledge database 

in accordance with the hypothesis indicated by the keywords. The contents of the 

prediction information include the name of a plant parameter and its status prediction 

based on the hypothesis. The searching task is also conducted in two steps. The first 

step is to activate all the KEOs that represent the plant parameters related to the 

hypothesis. This st~p is a kind of "similarity matching". The second step is to select 

one of the plant para.Ineters whose status has not been checked, and to predict the 

prediction about its status based on the assumption that the hypothesis is correct. 

This step is a kind of "frequency gambling" that gives the reason of the variety of 

the parameter reference sequence in examining a hypothesis. 
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Figure 3.13: Internal cognitive information processing flow 

So far, the modeling methods of the internal information processing are explained 

with respect to diagnosing an abnormal transient. Figure 3.13 gives the summary of the 

information processing flow. 

3 .4.5 Human M o d e l Adjustm e n t Factor s for Diagnosing Phase 

In the context of diagnosing the root cause of the abnormal transients, the following factors 

are considered as the adjustment factors by which the individual characteristics in the 

information processing can be modeled. 

• First-Symptom-First-Hypothesis relationship 

As described previously in Chapter 2, the first symptom by which subject detects 

abnormal transient did influence almost the pattern of the following anomaly diagno­

sis. Moreover, the ~rst-symptom-first-hypothesis relationship is different from person 

to person. First-Symptom-First-Hypothesis database has been devised to define the 

examination priority and the scope of the anomaly hypotheses corresponding to the 

first symptom. Therefore, the individual characteristics in recalling hypothesis can 

be simulated by modifying the database. 
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• Thresholds of confidence level for rejecting or adopting a hypothesis 

The another human adjustment factor is the thresholds of confidence level by which 

a hypothesis is rejected or adopted. In previous description about the concept of 

confidence score and confidence level, it can be understood that the thresholds of the 

confidence level represent the degree of subjects' caution regarding the adoption or 

rejection of an anomaly hypothesis. The caution is one of the individual character­

istics that will exert an influence on the time taken to find out the root cause of an 

abnormal t ransient . A subject may reject a wrong hypothesis too late because of the 

over adherence on it. He may also adopt a correct hypothesis too late because of the 

over deep deliberation. With respect to modeling the effect of over adherence, a low 

confidence level can be set as the threshold of rejecting a hypothesis so that more 

time would be taken before a hypothesis is reject ed . Similarly, a high confidence level 

can be set as the threshold of adopting a hypothesis. Thus, the adjustment of the 

thresholds of the confidence level can simulate the effects of the individual caution 

regarding adoption or rejection of the hypothesis. 
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Human Model Simulation and Its Validation 

3.5.1 Viewpoints of Human Model Validation and Method 

Viewpoints of the human model validation 

So far, the human model has been developed to simulate the cognitive information pro­

cessing in the anomaly detection and diagnosis. In this section, we will confirm whether 

the human model achieve the objectives set forth in the beginning of this chapter or not. 

Two objectives of the total three should be achieved in this chapter, as listed below. 

• Develop a human model so that it can simulate well the subjects' cognitive activities 
observed in the laboratory experiment. 

• Develop the human model so that it can simulate the inherent diversity and vari­

ety characteristics in the cognitive activities of detecting and diagnosing abnormal 

transients. 

With respect to validate the human model , the former objective means that the devel­

oped human model should be able to simulate the general characteristics of the subjects' 

cognitive information processing observed in the laboratory experiment . On the other 
hand, the latter objective means that the individual characteristics of each subject's cogni­

tive information processing should be also simulated well by the developed human model. 

Therefore, the validation of the human model will be conducted in this section with respect 

to confirming these two viewpoints. 

Methods of the human model validation 

Since the validation of the human model is to verify whether the model can simulate 

the subjects' behaviors well or not , the simulation results by the human model should 

be compared with subjects' data obtained in the laboratory experiment. Therefore, the 

validation of the human model is conducted in two steps. 

• Step 1: Conducting nun1erical experiments in which the human model will detect 

and diagnose abnormal transients. 

• Step 2: Comparing the simulation data with the subjects' data obtained in the lab­

oratory experiment . 
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With respect to conducting the numerical experiments, the human model is connected 

to the identical NPP simulator utilized in the laboratory experiment. But, instead of 

passing through the CRT -based interface, the human model is connected directly to the 

plant simulator. The time taken to operate the CRT-based interface by the subjects (e.g., 

switching interface windows, referring to plant parameters' value or trend variation) is 

modeled as the time delay in the direct retrieval of the parameter value by the human 

model. Based on the reference time and frequency summarized as experimental data in 

Chapter 2, the tiine taken to check one parameter is calculated. Table 3.11 shows the time 

delay settings utilized in the numerical experiments in accordance with the calculation 

results. 

Detecting and diagnosing the same 12 abnormal transients utilized in the laboratory 

experiment are the content of the numerical experiments based on the human model siinula­

tion. Also, total 30 trials were conducted for each model of the subjects. The experimental 

procedures are also same with the one described in subsection 2.2.4. 

Contents of the human model validation 

Since the human model is developed separately for the monitoring and diagnosing phase, 

the contents of the human model validation are devised for both of the phases. 

With respect to the monitoring phase, the primary interests centered on when and by 

what symptom the subjects detect the occurrence of an abnormal transient. Therefore, the 

first symptom and the time taken to detect an abnormal transient are selected as verification 

items for the monitoring phase. On the other hand, the detailed diagnosis procedure plays 

an important role with respect to analyzing operators' cognitive behaviors. Therefore, the 

operation sequence history is selected for validating the human model simulation of the 

diagnosing phase. 

In the following subsections, the details of the human model validation are described 

with respect to verifying the agree1nent between the simulation results and the experimental 

data. 

Table 3.11: Time delay settings 
MMI Operation Time Dela_y 

Parameter Value Reference 2 sec. 
Parameter Trend Reference 4 sec. 
Switch MMI screen 1 sec. 
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3.5.2 Comparison of First Symptom 

With respect to 12 kinds of abnormal transients, the first sympto1ns detected by the sub­

jects in the laboratory experiments are compared with the ones detected by the correspond­

ing human model in the numerical experiments. 

Tables 3.12, 3.13 and 3.14 show the first symptoms detected by three subjects and 

the corresponding human model. In the right-end colun1n of the tables, the degree of the 

agreement between the first symptoms is represented by three kinds of marks. The double 

circle marks mean that the first symptoms detected by the human model in the numerical 

experiments agree with the subjects' data completely. The crisscross 1narks means the first 

symptoms are different completely. The normal circle marks are for the cases where the first 

symptoms detected by the human model are "similar" to the ones detected by subjects in 

the laboratory experiment. The word of "similar" has three meanings explained as follows. 

• The first symptom detected by the human model is included in the ones detected by 

the corresponding subject in the laboratory experiment. 

• The converse situation of the above case. 

• Although the first symptoms detected by the human model and the corresponding 

subject are different, they indicate the anomaly of the same sub-system of the pl~t 

system. 

From these tables, we can conclude that the first sy1nptoms detected by the models 

agree well with the ones detected by the subjects in the laboratory experiments. Moreover, 

which respect to modeling the inherent diversity and variety of human behaviors, the 

following conclusion can be obtained. 

• As described previously in Chapter 2, the first symptoms detected by the subjects are 

different even in the case of the same abnormal transient. It reflects the diversity of 

the human behaviors. From the tables, one cannotice that different first symptoms 

have been detected by the three models, even in the case of the same abnormal 

transient. Therefore, we can conclude that the models simulate the diversity well. 

• On the other hand, the variety is another inherent characteristics of human behaviors. 

With respect to detecting anomaly, the variety means that even in the case of same 

abnonnal transient, the same person would detect the different first symptoms. From 

the tables, one can also notice that such variety is also simulated well by the models. 
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Table 3. 12: The comparison of first symptom in the case of "Subject A" 

Abnormal Model of 
Subject A Agreement 

Transients Subject A 
PRZ-prs small Steam flow big 

SGTR CVCS-in big CVCS-in big 0 
PRZ.prs small 

RCS big 
CVCS-in big PRZ-lvl. small 0 

PRZi2_rs small PRZ-prs small 

RCS small PRZ-prs small 
CVCS-in big 0 

PRZ-Qrs small 
FW lvl sensor failure Warning message Wamin_g_ message @ 

FW flow cont. V. F 
FW small FWsmall @ 

SG-LVL small SG-LVL small 

PRZ. Prs.cont. F.H 
CVCS-in big PRZ-lvl. big 0 

PRZ prs small PRZ _Qrs small 
PRZ Prs.cont. F.L PRZ prs big PRZ __Qrs big @ 

PRZ. Spray V. F. S 
CVCS-in big PRZ prs small 0 

PRZ prs small 

PRZ. Spray V. F. B 
CVCS-in big PRZ prs small 0 

PRZ prs small 
PRZ lvl.cont fail low CVCS-in small CVCS-in small @ 

PRZ lvl.cont fail high CVCS-in big CVCS-in Big @ 

NIS 
PRZ prs big PRZ prs big @ 

Reactor output big Reactor outQ_ut big 

Table 3.13: The comparison of first symptom in the case of "Subject I" 

Abnormal Model of 
Subject I Agreement 

Transients Subject I 
P RZ-prs small SG-Lvl. big 

SGTR CVCS-in big FW. Flow small 0 
PRZ.prs small 

RCS big 
CVCS-in big CVCS-in big 

@ 
PRZ-prs small PRZ-prs small 
CVCS-in big PRZ-lvl. small 

0 RCS small 
PRZ-prs small PRZ-prs small 

FW lvl sensor failure Warning message Warning message @ 

FW flow cont. V. F SG-LVL small SG-LVL small @ 

PRZ. Prs.cont. F.H 
CVCS-in big CVCS-in big 

@ 
PRZ prs small P RZ prs small 

PRZ Prs.cont. F.L PRZ prs big PRZ prs big @ 

PRZ. Spray V. F. S PRZ prs small 
CVCS-in big 

0 
PRZ prs small 

PRZ. Sprav V. F. B PRZ prs small PRZ prs small @ 

PRZ lvl.cont fail low CVCS-in small CVCS-in small @ 

PRZ lvl.cont fail high CVCS-in big CVCS-in big @ 

NIS PRZ prs big Reactor output big X 
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Table 3.14: The comparison of first symptom in the case of "Subject T" 

Abnormal Model of 
Subject T Transients Subject T Agreement 

PRZ-prs small CVCS-in big 
SGTR SG-Lvl. big PRZ.prs small 0 

PRZ-lvl. small 

RCS big PRZ-lvl. small PRZ-lvl. small 
0 

PRZ-:2_rs small 
RCS small PRZ-lvl. small PRZ-prs small 0 

FW lvl sensor failure Warning messaQe Warning message @ 
FW flow cont. V. F SG-LVL small FW flow small 0 
PRZ. Prs.cont. F.H PRZ prs small PRZ.Q_rs small @ 
PRZ Prs.cont. F.L PRZprs big PRZ prs big @ 

PRZ. Spr~ V. F. S PRZ prs small PRZ prs small @ 
PRZ. S_Qrav V. F. B PRZ prs small PRZ _Qrs small @ 

PRZ lvl.cont fail low PRZ-lvl. small 
PRZ-lvl. small 0 CVCS-in small 

PRZ lvl.cont fail high PRZ-lvl. big CVCS-in big 
0 

PRZ-Ivl. bif! 

NIS PRZ prs big PRZ prs big @ 
Reactor output big Reactor output b!.g 

The agreement of the first symptoms and the simulation of the diversity and variety 

suggest that the "monitoring strategy", criteria of judging the occurrence of abnormal 

transient and the peripheral sight effect were modeled successfully for each subject. 

3.5.3 Comparison of Detection Time 

By conducting the numerical experiments, the data about the time taken to detect the 

occurrence of abnormal transients were collected for the 12 kinds of abnormal transients. 

Same as the laboratory experiments, the multiple trials were conducted for same abnormal 

transient. The data about the detection time by the human model are collected from each 

trial. The detailed data of the detection time are summarized in tables C.2 and C.1 in 

appendix C. From the tables, one would notice the followings: 

• The human model can detect same abnormal transient at different time. It reflects 

the modeling of the variety of human behaviors. 

• The average detection time of the different model will be also different . It reflects 

the modeling of the diversity of human behaviors. 

With respect to validating the appropriateness of the modeling of the variety and diversity, 

the comparison of the average detection tin1e should be conducted. 
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Figure 3.14: Comparison of det ection time between subjects and the models 

Table 3.15: Evaluation index of the agreement shown in the above figure 

Coefficient of the 
Slope of the Y -axis intersects of 

Subjects correlation 
best-fit the best-fit 

(ideal : 1.0) 
regression line regression line 

(ideal: 1.0) (Ideal: 0.0 sec.) 

Case of 
0.935 1.14 -3.8 "Subject A" 

Case of 
0.851 1.01 0.5 "Subject I" 

Case of 
0.836 1.15 -0.3 "Subject T" 
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Based on the data shown in Table C.1, the comparison of the average detection time 

between the subjects and the corresponding models is represented by Figure 3.14. In the 

figure, X-axis (the horizontal axis) represents the detection time by the subjects and Y-axis 

(the vertical axis) represents the detection time by the human models. The circle marks 

represent the pair of the detection times of "subject A" and the corresponding model. 

In the same way, the square and triangle marks are devised for the cases of "Subject 

I" and "Subject T", respectively. The line in the figure is the diagonal. Therefore, the 

distribution of the plot points around the diagonal represents the agreement of the detection 

time between subjects and the corresponding models. In order to examine the agreement 

quantitatively, the data processing is made in two steps described below. 

• Step 1: coefficient of the correlation 

The coefficients of the correlation are calculated to check whether a linear correlation 

exists between the detection time data of the subjects and the corresponding models. 

If the models simulate well the characteristics of subjects ' behaviors, the coefficients 

will approximate to 1.0. The calculation results are shown in Table 3.15. The results 

demonstrate that the detection time data of the subjects and models have a strong 

linear correlation. 

• Step 2: best-fit regression line 

Then, based on the conclusion of Step 1, the best-fit regression line is formed for 

each case to check how much the best-fit line approximates to the diagonal. Both 

the slope and the Y-axis intersects of the best-fit regression line are shown in Table 

3.15. The results turn out that both the slope and theY-axis intersects approximate 

closely to the ones of the diagonal. 

Based the above discussion, we could conclude that the detection time of the human 

model agrees well with the one of the corresponding subjects. The agreement demonstrates 

that the "monitoring strategy", criteria of judging the occurrence of abnormal transient, 

and the peripheral sight effect were modeled successfully for each subject. It also proves 

that the time delay settings are appropriate. 

So far , the validation of the human model had been conducted with respect to com­

paring the first symptoms and the detection time in monitoring phase. In the following 

subsection, the validation will be conducted by comparing the operation sequence history 

of the human model in diagnosing phase. 
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3.5.4 Comparison of Operation Seque n ce History 

In order to verify the validity of the human model simulation, the most direct method is 

to compare the OSH between simulation results and the experimental data. It is because 

the OSH reflects the overall performance of the various sub-models. In this subsection, the 

methods are shown to explain the simulation of the anomaly diagnosis process observed in 
the laboratory experiment. The validity of the developed human model will be verified by 

comparing the simulated anomaly diagnosis process with the operation sequence history 
obtained from the laboratory experiment. 

The simulation of the diagnosis process of "Subject A" in diagnosing "RCS leakage 
small" is compared with the correspondent operation sequence history, as an example of 

the validity of the human model. The comparison is shown in the tables 3.16 and 3.17. The 
left side of Table 3.16 is the operation sequence history of "Subject A" in the experimental 

trial N o.10 where "RCS leakage small" was the abnormal transient. The right side of the 
table is the simulated diagnosis process by utilizing the developed hutnan model. The 

monitoring activities are omitted in the table. The diagnosis process is divided into several 

phases indicated as A, B, · · · , G. The operation activities in each phase are explained in 
Table 3.17. 

In the rest of this subsection, we will first describe the characteristics of the diagnosis 

process of "Subject A" in this case. Then , the simulation settings for reflecting the char­

acteristics are explained. In the end, the validity of the human model will be proven by 
the comparison of the diagnosis process. 

Characterist ics of t h e d iagn osis p r ocess of "Subj ect A " 

With respect to diagnosing "RCS leakage small" in this case, the characteristics of "Subject 
A" can be sumtnarized as follows. 

• First symptom 

"Subject A" detected the occurrence of the abnormal transient by noticing the vari­

ation in the value of "PRZ.Prs.", as shown in phase A in left side of table 3.16. 

• First hypothesis 

As summarized in Table 2.6 in Chapter 2, the first symptom of "PRZ.Prs" is always 

leading to the first hypothesis of the anomaly in "PRZ.Prs. Control System". As 
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Table 3.16: The comparison of operation sequence history 
Operation Sequency of Subject A in Correspondent 

Human Model Simulation Simulation Trial No.1 0 Relation 
Time (secJ. Action Time (sec.) Action 

82 check "PRZ. Prs." and detected the anomaly 

~ ~~ 
119 check " PRZ. Prs." 

86 switch to "PRZ. Prs. Control Svstem" screen 125 detected the abnorml transient 

88 
watch trend graph of "PRZ.Prs." and "PRZ. 

129 
watch the variation-trend of 

Comp-Pres." 

~~ 
"PRZ.Prs." 

102 switch back to "Summary" screen 137 
watch the variation-trend of 

B "PRZ. Col"llQ.-Pres." 
108 switch to "FW system", and then to " RMS" ...... 

142 check " Pr~-heater" 

110 
watch radiation monitor ofCV-Gas-MNT, CV-

146 
check "Backup-heater A I" and 

Dust-MNT. SG-Blowdown-MNT, and .... " Backu_Q_-heater A2" 

114 
switch back to "FW system", then to 

c~~ 159 
watch the variation-trend of "CV-

"Summarv" screen Gas-MNT" 

119 check "PRZ. Prs." and check "PRZ. Lvl." 165 
watch the variation-trend of "CV-

.......c'_ c Dust-MNT" 
125 switch to "PRZ. Lv!. Control ~stem" screen 173 check "PRZ. Lvl." 

126 
watch trend graph " PRZ.Ivl." and "CVCS-IN F 

176 
watch the variation-trend of 

Flw." "PRZ.Prs." 

130 
switch back to "Summary" screen, and then to ......... 

182 
watch the variation-trend of 

"PRZ. Prs. Control Svstem" screen 
' "PRZ.Lvl" 

watch trend graphof " PRZ.Prs." and "PRZ. / watch the variation-trend of "SG-136 
Com_Q-Pres." 193 

Blowdown-MNT" 

140 check "PRZ. Comp-Pres." 199 
watch the variation-trend of 
'' C ondener -Gas-M NT" 

141 check "PRZ. Prs." E D 206 check "A-SG Lv!." 

147 
switch back to "Summary" screen, then to 

208 check "FW flw." "PRZ. S_]'?tem" screen 

155 check "Prop-heater" and "Backup-heater A 1" 211 
watch the variation-trend of "FW 

~ flw." 

162 switch back to "Summary" screen E 231 
watch the variation-trend of 

../ "PRZ. Col"llQ.-Pres." 

163 check "CVCS-In flw." and "CVCS-out flw." F 253 check "CVCS-In flw." 
r 

174 Check A-B- C-SG Lvl and Prz. 
F 

Warning "PRZ. Lv!. Lowll" 

186 
switch back to "FW system" screen, then to D 255 check "PRZ. Lvl." "RMS" screen 

190 watch radiation monitors 
""""" 

...__ 259 check "CVCS-IN Cont. V" 

push "Identified" Button G ~ ... G 273 
Output diagnosis result andd 191 IJIIIII""" terminate simulation 

Table 3.17: The actions in the phases shown in the above table 
Phases Operation Activities in the Phases 

A 
Detected the occurrence of the abnormal transients 
by checking PRZ.Prs. 

B Examining "PRZ.Prs Control System fail-high" 

c Examining "RCS" 

D Confirming not "SGTR" 

E Confirming "PRZ.Prs Control System" 

F Confirming "PRZ.Lvl. Control System" 

G Terminating diangosis process 
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the result, "Subject A" examine the possibility of "PRZ.Prs. Control System Fail­

high" in this case, as shown in phases B in the left side of table 3.16. After rejecting 

the hypothesis by noticing the correct response of "PRZ.Prs Control System", he 

switched his attention to the anomaly hypothesis of "RCS leakage", as shown in 

phases C in the left side of table 3.16. 

• Related diagnosis knowledge 

After identifying the root cause of the abnormal transient, "Subject A" confirmed the 

related plant sub-system such as "PRZ.Prs. Control System" and "PRZ.Lvl. Control 

System" to verify the correct response of the control system, as shown in phases E 

and F in the left side of table 3.16. Moreover, before he terminated the diagnosis 

process, "Subject A" checked the SG-related plant parameters such as "SG-Lvl" to 

assure himself that the anomaly is not "SGTR" since the two kinds of abnormal 

transients are very similar to each other, as shown in phases D in the left side of 

table 3.16. 

Settings in human model simulation 

With respect to simulating the above characteristics, the following settings are made in the 

human model. 

• The relationship of the first symptom and the first hypothesis 

As described previously in the modeling of the knowledge database, the relationship 

of the first symptom and the first hypothesis is modeled as table-type database for 

each subject, as shown in Appendix D. In the case of "Subject A", "PRZ.Prs. 

Control System failure" is the first hypothesis corresponding to the first symptom of 

''PRZ.Prs". Such relationship is implemented as one of the settings in the human 

model simulation. 

• The scope of the hypotheses and the sufficient conditions 

Besides "PRZ.Prs. Control System fail-high", the scope of the hypotheses recalled 

by the first symptom "PRZ.Prs. small" includes "RCS leakage", "SGTR" and 

"PRZ.Prs.Spray Valve failure". The probability is set same as 1/3 for examining 

these hypotheses after the rejection of the first hypothesis. That means the rest 

three hypotheses have a fair chance to be examined. 
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• The settings of the sufficient conditions 

The confirmation of the correct response of "PRZ.Prs. Control System", "PRZ.Lvl. 

Control System" is defined as the "option-examination" sufficient conditions of adopt­

ing ''RCS leakage". In addition, the verification of "not-SGTR" is defined as the 

"must-examination" sufficient condition since "SGTR" is similar to "RCS leakage" 

in the observable symptoms of the primary system. 

• The thresholds for adopting and rejecting a hypothesis 

In accordance with the initial confidence score (20 points) assigned to the active 

hypothesis, the threshold for rejecting a hypothesis is assumed as 10 points. As 

described above, "Subject A" confirmed all the sufficient conditions for adopting 

"RCS leakage". Therefore, the thresholds for adopting a hypothesis in the human 

model is set enough big (200 points) so that all the sufficient conditions can be 

confirmed. 

Simulation results 

The simulation results are shown in the right side of Table 3.16, based on the above settings 

in the human model. The model detected "PRZ.Prs small" as the first symptom, as shown 

in phase A. The hypothesis "PRZ.Prs Control System fail-high" was recalled first in 

accordance with the settings in table-type database describing the relationship of the first 

symptom and the first hypothesis. 

The model predicted the conditions of the plant parameters in accordance with the 

hypothesis and then checked the conditions of the parameters such as "PRZ.Comp-Prs" , 

"Prop-heater". The results turned out that the actual conditions of the parameters did 

not agree with the predictions. Subsequently, the confidence level of the hypothesis was 

decreased in accordance with the results of the parameter reference, as shown in the phase 

B. In the end, the confidence level of "PRZ.Prs. Control System fail-high" was decreased 

below "10 points" that was the threshold for rejecting a hypothesis. Therefore, the model 

rejected the hypothesis. 

After that, the model. selected "RCS leakage" as the second hypothesis from the scope 

of the hypotheses recalled by the first symptom. The model predicted the conditions of the 

parameters related to "RCS leakage" in the same way as in the case of the first hypothesis. 

The model then conducted parameter references to check the conditions of the parameters 

such as "CV-Gas-MNT", "PRZ.Lvl". The hypothesis was confirmed since the all the 
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Figure 3.15: The confidence-score changes during the simulation 

conditions of the parameters agreed with the predictions, as shown in the phase C. At 

this point, the confidence level of the hypothesis had been increased near to "100 points" . 

But, the model did not terminate the diagnosing process by adopting "RCS leakage" as 

the root cause of the abnormal transient. It is because the threshold of the confidence level 

for adopting a hypothesis was set big enough (200 points) so that the model can simulate 

the re-confirmation activities observed in the experimental trial No.10 of the "Subject A". 

As shown in phase D, the model first verified the "must-examination" sufficient con­

dition: "not-SGTR" by checking the states of the SG-related plant parameters, such as 

"Blowdown-MNT", "SG-Lvl". The states of those parameters indicated that "SGTR" did 

not occur. Next, "PRZ.Prs. Control System" and the "PRZ.Lvl. Control System" are 

checked as the re-confirmation of the "option-examination" sufficient conditions, as shown 

in phases E and F. The results turned out the control systems responded correctly. In the 

end, the diagnosis process is terminated since all the necessary and the sufficient conditions 

had been confirmed. 

So far, the conduction of human model simulation is described for the diagnosis process 

of "Subject A" in the experimental trial No.10. The confidence level variation during the 

human model simulation is depicted in Figure 3.15. The horizontal and the vertical axis 

represent the elapsed time and the confidence level of the hypothesis, respectively. There 

are two curves to represent the confidence level variation of the two hypotheses considered 

by the human model in the simulation of the diagnosis process. One is for "PRZ.Prs. 
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Control System fail-high" and the other one is for "RCS leakage". Corresponding to the 

operation sequence history of the human model, "PRZ.Prs Control System fail-high" was 

considered at 130 seconds after the simulation was started. The hypothesis received "20 

points" as the initial confidence level. Then, the confidence level of the hypothesis was 

decreased in accordance with the results of the parameter references in phase B of Figure 

3.16. At about 160 second, the confidence level of the hypothesis was decrease below 10 

points. Therefore, "PRZ.Prs Control System fail-high" was rejected and "RCS leakage" was 

considered at that time. After that, the confidence level of "RCS leal<age, was increasing 

constantly corresponding to the results of the parameter references in the phases C D E 
' ' ' 

and F. The diagnosis process can be understood easily by utilizing the operation sequence 

history and the confidence level variation of the anomaly hypotheses. 

The above descriptions about the simulation results demonstrate that the human model 

simulation can explain the details of the diagnosis process of "Subject A" in the exper­

imental trial No.10. The agreements between the simulation and the experimental data 

show the validity of the total performance of the individual sub-models that consist of the 

developed human model, such as model of knowledge database, model of the diagnosis 

processing flow. 
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3.6 Concluding Remarks 

In this chapter, we described in detail the methods of developing a human model to simulate 

operator's cognitive behaviors of anomaly detection and diagnosis. The development of the 

human model is based on the analysis results of the cognitive behaviors, as described in 

detail in the preceding chapter. 

The reviews are first made on the human modeling approaches and on the existing 

human modeling researches in NPP field, in order to clarify the objective of the human 

modeling in this thesis study. The objectives are summarized as follows. 

• Develop a human model so that it can well simulate well the subjects' cognitive 

behaviors of detecting and diagnosing abnormal transients. 

• Develop the human model that can simulate the inherent diversity and variety in 

human cognitive behaviors. 

• Develop the human model so that it can be applied to the practice of HRA/PSA. 

The former two ones are the objectives of this chapter. 

The human model is then developed in accordance with a general human modeling 

framework. The fundamental concepts related to the human cognitive information pro­

cessing are described by using the general human modeling framework, such as perception 

information processing, PWM, FWM and the knowledge database. 

In accordance with the framework, the concept of "working memory element" has 

been proposed to model the knowledge elements processed in PWM and FWM. A graphical 

network structured organization is adopted to model the knowledge database. Furthermore, 

the various kinds of cognitive information processing are modeled as the manipulation of 

the WME and the knowledge database. 

Based on these modeling methods, the anomaly detection and diagnosis are modeled 

separately. The modeling of anomaly detection are summarized as follows. 

• The monitoring behaviors of subjects are modeled as the random parameter reference, 

in which the individual "monitoring strategy" is reflected. 

• The anomaly detection is modeled as the process of parameter status verification by 

checking whether or not the parameters' value is deviated form the steady status. The 

interpretation of parameter values utilized the criteria of judging anomaly occurrence 

obtained in the preceding chapter. 
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The anomaly diagnosis process is modeled as a repeated procedure of recalling hy­

pothesis, collecting symptoms, examining the hypothesis, rejecting the hypothesis until a 

hypothesis is adopted as the root cause of the abnormal transient. The modeling methods 

of each step are summarized as follows. 

• The relationship of the first symptom and the first hypothesis is utilized to simulate 

the hypothesis recollection. 

• The concepts of "confidence score" and "confidence level" are introduced to model the 

degree of operator's belief on a hypothesis. The confidence level of a hypothesis will 

be increased or decreased by comparing the parameter's status with the prediction 

in accordance with the hypothesis. 

• The rejection and the adoption of hypotheses are modeled as the judgment if the 

current confidence level is beyond a certain threshold defined in advance. 

• The threshold is modeled so that it could be changed to model the individual char­

acteristics in the decision-making. 

Furthermore, the concept of human modeling adjustment factor is introduced to model the 

individual characteristics of the cognitive behaviors to detect and diagnose an abnormal 

transient. The introduced adjustment factors are (i) the reference frequency of parameter 

group, (ii) the criteria for judging the occurrence of abnormal transient, (iii) the peripheral 

sight effect for the anomaly detection; and (i) the First-Symptom-First-Hypothesis rela­

tionship, (ii) the thresholds of confidence level for rejecting or adopting a hypothesis for 

the anomaly diagnosis. 

Finally, numerical experiments are conducted to validate the human model by connect­

ing the human model to the NPP simulator utilized in the laboratory experiments. The 

inter-comparison between the simulation results and the laboratory experimental data are 

conducted in three aspects: (i) first symptoms, (ii) average anomaly detection time and 

(iii) the detailed diagnosis procedures. The results demonstrate that the human model 

could simulate well both the general and the individual characteristics in the operator's 

cognitive behaviors of the· anomaly detection and diagnosis. As the third step of this thesis 

study, an application study of the developed human model will be described in the next 

chapter. 
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Chapter 4 

Application of Hun1an Model for the 
Human Reliability Analysis in 
Probabilistic Safety Assessment 

In the preceding chapter, the development of the human 1nodel had been described in detail 

to show the modeling methods of operator's cognitive behaviors in case of an emergency 

of NPP. An application study of the developed human model is described in this chapter, 

aiming at estimating fundamental human cognitive error parameters needed for the human 

reliability analysis (HRA) which is made for probability safety assessment (PSA) of NPP. 

The developed human model in the preceding chapter is called as "human model simulation 

of plant anomaly diagnosis" (HUM OS-PAD) from this chapter for the convenience. 

4 .1 Objective of the Application Study 

In this chapter, a new approach is proposed to apply HUMOS-PAD to HRA/PSA practice 

of NPP. As described previously, the importance of the human system interactions (HSis) 

at MMI has been recognized with respect to the safety and reliability of the plant system as 

a whole. But, the study on the HSis has been difficult since the HSis would be influenced 

both by the complicated dynamic plant process and by the versatile, variable characteristics 

of the human behaviors. 

In the study field of the HSis in NPP, the examination of the operators' behaviors 

depends on the conduction of the large-scale operator experiment that requires skilled 

operators, mock-up of the real-scale man-machine interface, and the real-scale plant simu­

lator. The typical example of the large-scale experiment is the operator reliability experi-
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ment (ORE) conducted by Electric Power Research Institute (EPRI) in order to examine 
the validity of the human cognitive reliability correlation used in HRA by utilizing the 
experimental data. In ORE, a NPP simulator is utilized, and the skilled operators are 
requested to interact with the simulator for coping with various simulated anomaly situ­
ations. Although the large-scale experiments like ORE can provide valuable experimental 
data about the interactions between operator-crew and plant system, not only the large 
amount of time and considerable costs are required for conducting and analyzing the large­
scale experiments, but also the applicability of the obtained experimental results would be 
only limited within the tested condition [1]. The development of other methodologies has 
been required to supplement the large-scale experimental approach. 

The studies on the model of operators' cognitive behaviors have been conducted as one 
of the hopeful methods to supplement the conventional approach. The computer simulation 
has been expected to replace the large-scale experimen~ by utilizing the model that can 
simulate operators' behaviors in case of an emergency. Compared with the large-scale 
experiments, the computer simulation requires almost no costs. Moreover, it has much 
flexibility to cope with various situations in the human machine interactions. With respect 
to the application of the human model to HRA/PSA practice in NPP, Kirwan had pointed 
out that human modeling would become a useful tool. The application requires that the 
human model should be able to represent well the versatile human behaviors on monitoring 
and controlling the process plant, with various environmental effects surrounding human 
tasks being taken into consideration [2]. 

The objective of the study in this chapter is to conduct a pilot study to estimate the 
fundamental parameters needed in the HRA/PSA practice of NPP by applying HUMOS­
PAD developed in the preceding chapter. In the following sections, the methodology of 
HRA/ PSA of NPP is first described to summarize the required fundamental human er­
ror parameters. Then, a new simulation-based approach is proposed to estimated "time 
versus cognitive reliability (TCR)" curves that represent the trade-off relationship of the 
affordable time and the human cognitive reliability. The probabilistic factors influencing 
the relationship are clarified by anaJyzing the TCRs obtained from the laboratory experi­
mental data. Next, the modeling method of the probabilistic factors is explained to show 
the implementation of the effects of the factors into the framework of HUM OS-PAD. In the 
end, the validity of the application of HUM OS-PAD is confirmed by comparing the TCRs 
estimated by HUMOS-PAD and the ones obtained from the experimental data. 
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Probabilistic Safety Assessment and Human Re­
liability Analysis 

In this chapter, the methodology of probabilistic safety assessment and the human relia­
bility analysis is described briefly to show how they evaluate quantitatively the reliability 
of the man-machine system as a whole. In the end, a framework is proposed to summarize 
the fundamental human error parameters needed in PSA/ HRA. 

4.2.1 Probabilistic Safety Assessment 

Probabilistic Safety Assessment (PSA) had been also called as Probability Risk Assessment 
historically. It has been developed to identify potential significant risk areas and to quantify 
the overall risk from a potentially hazardous plant. 

The core contents of PSA analysis are the logical tree models of the plant and its 
functions . There are two basic trees , "fault tree' and "event tree" , as described below. 

• Fault tree is to address the question: how can a given plant failure occur? The 
starting point of a fault tree is usually a gross system failure (called as top event) . 
The possible causes are then traced back through a series of logical AND / OR gates 
to the independent root failures as shown in Figure 4.1. 

• Event tree is to address the question: what could happen if a given fault or event 
occurs? An event tree begins with an initiating fault or event and works forward in 

time considering the probabilities of failure of each of the safety systems that stand 
between the initial malfunction and some unacceptable outcmne shown as in Figure 

4.2. 

The whole procedure of PSA was first established in 1975 as U.S. Reactor Safety Study, 
which was described as WASH-1400: An Assessment of Accident Risks in U.S. Commercial 

Nuclear Power Plants [3]. 
The development of a standardized PSA was a major step forward in reliability engi­

neering although PSA ha~ been criticized on a number of aspects [4). But, PSA has a major 
drawback that was its inability to accommodate adequately the substantial contribution 
made by human failures to the accident risk. In Figure 4.1, human errors can result in 
a fault event besides the hardware failure as well. In other words, the human error can 
be one of the independent root failures of a fault event. Therefore, the quantity of the 
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Figure 4.1: An example of fault tree 

-128-

4. Application of Human Model for the Human Reliability Analysis in 
Probabilistic Safety Assessment 

Safety Systems 

Auxiliary High 
Small Reactor feed water and pressure 
LOCA Trip secondary injection 

heat removal (HP I) 

A 
Available (A) 

NA 

A 

A 
Not 

Available NA 
(NA) 

NA 

Consequece 

Potential Low pressure 
recirculation severe 
and LPR/HPI core 
cross-connect damage 

A 

J 

No 

I NA Yes 

Yes 

A 

I 
No 

I NA Yes 

Yes 

Yes 

Seq. No. 

2 

3 

4 

5 

6 

7 

Figure 4.2: An example of event tree for a small LOCA in PWR 

human error rates is necessary to calculate the failure probability of the top event shown in 

Figure 4. 1. But, the human errors were not considered in PSA. The problem had been the 

stimulus of the efforts to analyze the hu1nan errors and to convert human error rates into 

quantity needed by PSA. The efforts are summarized as the studies on human reliability 

analysis (HRA) described in the next subsection. 

4 .2.2 Huma n R e liability Analysis 

The objectives of Human reliability analysis (HRA) are as follows; 

• to point out the human errors that can influence the system safety, 

• to evaluate such influences quantitatively, and 

• to suggest improvements to prevent from such human errors. 

The subject of HRA is tq study various aspects of human behaviors (called as human fac­

tors) with respect to PSA. HRA evaluates quantitatively the probability of the deviation 

of the human actions or human action sequences from the standard procedures. THERP 

and TRC approaches are the notable ones to quantify human error rates for PSA prac­

tice. The former one has paid attention on the human errors in the external observable 
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human actions. The latter one has focused on the human errors in the high-level cognitive 

information processing. 

Technique for Human Error Rate Prediction(THERP) 

THERP [5] is probably the best known and most widely used means to provide human 

reliability data to PSA studies. The basic assumption of THERP is that the operator's 

actions can be regarded in the same way as the success or failure of given equipment such 

as a pump or a valve. Subsequently, the human reliability can be assessed essentially in 

the same way utilized in the case of the hardware equipment items. The objective of 

THERP is "to predict human error probabilities and to evaluate the degradation of a man­

machine system likely to be caused by human errors alone or in connection with equipment 

functioning, operation procedures and practices, or other system and human characteristics 

that influence system behavior" . [5] 

The attention of THERP is paid to the human errors that are observable from the 

external appearance of human actions. These human errors are further divided into the 

following two groups. 

• Omission Error: On1it the necessary operations prescribed by the operation proce­

dures. 

• Commission Error: Conduct uncalled-for operations beyond the ones prescribed by 

the operation procedures. 

The basic analytical tool is a form of event tree termed as probability tree diagram 

in THERP, as shown in Figure 4.3. The branches represent the binary decision points 

where correct or incorrect behavior is the only available choices. Each branch represents a 

combination of human activities and the presumed influences upon these activities, what is 

termed as performance shaping factors (PSFs). The event tree starts from some convenient 

point in the system and works forward in time. With the possible exception of the first 

branching, all the human task elements depicted by the tree branches are conditional 

probabilities. 

PSFs are the major concession made by THERP to consider the humanity of the 

operators. They are utilized to modify the nominal human error probabilities (REPs) in 

accordance with the analyst 's subjective judgement of various factors that likely influence 

the operator's reliability, such as the work environment, the quality of the man-machine 

interface, the skills, experience, motivation and the expectations of the individual operator. 
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Figure 4.3: An example of event tree utilized in THERP 

Thus, the operational failure probabilities can be evaluated quantitatively and provided 

to PSA studies in a relative easy way by the approach of THERP. However, THERP was 

unable to cope with the human errors resulted from the internal cognitive information 

processing since the internal activities are not observable externally, such as the anomaly 

diagnosis in case of an emergency. With respect to the cognitive human errors, TRC 

approach was proposed and THERP had introduced the concept to evaluate quantitatively 

the human cognitive reliability in anomaly diagnosis. 

Time-Reliability Curve Techniques 

Time reliability curve (TRC) techniques are concerned with quantifying post-accident hu­

man errors. The model of operator action trees (OATs) was the first TRC technique 

developed in the early 19~0s [6, 7]. OAT technique deals with the human errors occurring 

after an accident sequence has been initiated. The errors are called as cognitive errors be­

cause they involved mistakes in higher-level human cognitive information processing, such 

as reasoning, diagnosis and strategy selection. Therefore, the objective of OAT is to deal 

with operator errors during accident and abnormal transients and to provide error types 
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and their probabilities to PSA studies. 

The fundamental assumptions of OAT are described as follows. 

• Operator's behaviors after an accident can be divided into three phases called as the 
perception of the accident, the diagnosis, and the response operation. 

• The human error rates in the situation can be evaluated in quantity by applying an 
analytical tool called as the time-reliability curve, which describes the probability of 
failure as a function of the affordable time interval to perform the required tasks. 

Based on the concept of TRC, THERP proposed a nominal diagnosis model providing 
probabilities of failure to correctly diagnose an abnormal event within a given timeT. The 
model gave three TRC curves: the median curve, its upper and lower bound curve [5]. 
The utilization of the three TRC curves is committed to the subjective judgement of the 
experts in HRA. 

Late in 1984, htunan cognitive reliability (HCR) model was proposed by Hannaman and 
his co-authors [8] by relating TRCs to the three human cognitive behavior modes (skill-, 
rule-, and knowledge-based behaviors) [9]. HCR model assumed that the conduction of the 
different kinds of cognitive activities would take different time. HCR model provides sets 
of curves, each one relating to a different kind of cognitive processing (Skill-based, Rule­
based, or Knowledge-based) for a specific situation (e.g., "SGTR"). The mathematical 
representation of HCR model was approximated by three-parameter Weibull distributions 
(one distribution for each category: skill, rule, and knowledge as shown in Figure 4.4), as 
shown below. 

Where 

P(t) the probability that operator crew cannot 

complete the correct tasks successfully before t, 

termed as crew non-response probability at timet 

( 4.1) 

the median time taken to complete a task (for the normalization) 

The actual time taken by operator crew to complete a task successfully 

location, scale and shape parameters associated 

with the category of cognitive behavior. 
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Figure 4.4: Human cognitive reliability curves 

Later in 1990, Operator Reliability Experiment (ORE) [1] was carried out to validate 
the HCR 1nodel. Five hypotheses made in the HCR model were the validation objects, as 

listed below. 

1. Operator crew response, which is measured by the time taken to respond, is variable. 

2. A normalized ( unitless) measure of crew response time removes or reduces the influ­
ence of the intrinsic time characteristic of the scenario, which is hardware or plant 
dependent. 

3. Operation-crew's behavior in response to given interactions can be described by cat .. 
egories (imply the category: skill, rule, knowledge ) that are useful for predicting 
expected response time variability. 

4. The time taken by Operation-crew to response can be represented using a standard 

probability distribution. 

5. PSFs affect the average response time but not response variability; and multiple PSFs 
have a multiplication effect on the average response time. 

As the results of the validation, not all of them were supported by the experimental 
data. Especially, the experimental results did not support the category of skill rule and 
knowledge. Subsequently, a new model was proposed and is called as "human cognitive 
reliability based on operator reliability experiment (HCR/ORE)". HCR/ORE model is 
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Figure 4.5: Human error probability required in PSA/HRA 

characterized by two parameters: T1; 2 (median response time of operation-crew) and a 

(logarithmic standard deviation of normalized time). With these two parameters, the 

probability (indicated as PN R) of the non-response of the operation-crew within a given 

time Tw can be calculated by using the following equation: 

PNR = l _ <I> [ ln(Tw:Tl/2)] (4.2) 

where <I> ( ·) is the standard normal cumulative distribution. The distribution is based on 

the ORE data and is summarized into databases for various human machine interactions. 

Subjects of Human Reliability Analysis 

In view of the human modeling application for HRA/PSA, literature surveys had been 

made on the existing methodologies of HRA/PSA for NPPs [1, 5, 10, 11, 12] to clarify the 

necessary "Human Error Probability" (HEP) parameters required in HRA/PSA of NPPs. 

In the present PSA/HRA practice for NPP, there are mainly two kinds of HEP: (1) Pre­

initiator HEP (Type A), and (2) Post-initiator HEP for various Human System Interactions 

(HSI) factors (Type C) [1] . The word "initiator" indicates the occurrence of an abnormal 

event that gives rise to i~cident /accident in NPP. Because the Type C HEP is related to 

complex HSI factors at MMI, it is more important but more difficult to estimate than the 

Type A HEP. As the results of the literature survey, a comprehensive framework of Type 

C HEP parameters as related with the PSA/ HRA is illustrated in Figure 4.5. 

There are five HEP parameters in the framework. 
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• two parameters for unrecoverable failure rate in the decision-making phase indicated 

by P1 and P2, respectively 

• one parameter for unrecoverable action slip in the response phase indicated by p3 

• two recovery rates indicated as r 1 and r2 , respectively, for both phases of early 

decision-making phase and later response phase 

In the decision-making phase, P1 gives the probability of cognitive mistakes such as mis­

taken diagnosis. P2 gives the probability of failure to respond to the initiator until a certain 

crucial time. It means that operators have to finish their decision-making prior to that time, 

otherwise the plant system will fall into unrecoverable accident condition. In the response 

phase, Pa gives the probability of non-recoverable action slips during response after correct 

diagnosis. 

Therefore, by focusing mainly on the unrecoverable human error probabilities, the 

total Type C HEP during HSI can be calculated as the sum of P1 , P2 and P3 . Since the 

parameter P1 is related with "commission error" by the definition in THERP, it is very 

difficult to estimate it even from the real field data, and therefore, in the current practice, 

human reliability analysts subjectively estimate it. For the parameter P3 in the response 

phase where human error will take the form of action slip or "omission error" that can be 

normally evaluated by THERP. Finally, parameter P2 giving the non-response probability 

until the crucial time is very much t ime dependent. P2 is , therefore, normally represented 

by TRC. 

The typical example of P2 is given by the HCR model described previously. HCR model 

has been widely used in HRA/ PSA to estimate HEP for operators' diagnostic actions since 

its advantage of taking the simple Weibull function and taking into account of operators' 

cognitive modes of skill, rule, and knowledge based action. However, as described pre­

viously, the validity of the H CR model has been not confirmed by the experimental data 

obtained frotn ORE. HCR/ORE model is then proposed to describe the cognitive reliability 

of operators ' actions clas~ified by their cue-response characteristics [1, 10]. But, there are 

drawbacks in HCR/ ORE that depends on the large-scale experimental approach, such as 

the requirements for conducting the experiments and the limitation of the application of 

the experimental results. Hence new approaches to estimate P2 are required to supplement 

the existing methodologies. 
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4.2.3 Time Cognitive Reliability based on H UM OS-PAD 

A new TRC approach is proposed to estimate P2 in this section. The feature of the approach 

is to estimate TRC by HUMOS-PAD developed in this thesis study. It is called as "Time 

versus Cognitive Reliability curves based on human model simulation of plant anomaly 

diagnosis (TCR/ HUMOS-PAD)" . The comparisons between the new TRC approach and 

the existing TRC techniques are conducted to show the features of TCR/HUMOS-PAD. 

The reviews on the existing HRA approaches represented by THERP, TRC, HCR, and 

H CR/ ORE give the following conclusions. 

• The fundamental human error probabilities required in current HRA/ PSA practice 

in NPP can be summarized in the framework shown in Figure 4.5. 

• The human error probability P2 in the framework has been the research subject of 

various TRC techniques such as HCR and HCR/ORE. 

• But , there are still problems with these existing TRC techniques such as the validation 

of the model for HCR, the enormous cost and the limited application of HCR/ORE. 

Based on the background, we propose a new TRC technique by utilizing HUMOS-PAD to 

estimate P2 . The new approach pays attention on how to estimate P2 by conducting the 

computer simulation of the dynamic human machine interaction, in which the operator's 

anomaly diagnosis behaviors is simulated by HUM OS-PAD. Table 4.1 shows the features 

of TCR/HUMOS-PAD and its relationship with the existing TRC techniques: TRC in 

THERP, HCR, HCR/ORE, in order to discriminate the new TRC approach with the 

existing ones. 

The existing TRC techniques and the TCR/ HUMOS-PAD are compared in the follow­

ing aspects. 

• Methods to obtaining TRC 

In THE RP, TRC for a given anomaly diagnosis is selected from the three curves by 

the subjective judgment of experts in HRA. In case of H CR, the estimation of TRC 

is just the calculation of the equation 4.1. In the case of HCR/ORE, it is required to 

conduct large-scale operator experiment to get the experimental data for the given 

anomaly diagnosis. The new approach of TCR/HUMOS-PAD is another version 

of HCR/ ORE because only the difference between them lies in that HUMOS-PAD 

replaces the role of real operator in the case of HCR/ORE. Therefore, rather than 
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Table 4.1: Features of TRC techniques 

TRC 
Features Methods to 

techniques obtain TRC 

Three curves: the median one, its lower and Subjective 
THE RP 

upper bound Uudgement by HRA 
expterts 

1. Take the mathematical representation of 
three-parameter W eibull distribution By calculating the 

HCR 2. Each distribution corresponds to one of the equation ofWeibull 

skill-, rule-, and knowledge-based cognitive distribution 

process 

1. Take the mathematical representation of two- By conducting large-
parameter standard normal cumulative scale operator 
distribution, experiments and by 

HCR/ORE 
2. The two parameters are median response time analyzing the 
and logarithmic standard deviation of obtained 
normalized time experimental data 

3. Do not separate the time taken to detect and with statistical 

diagnose abnormal transients analysis 

1. Utilizing human model for simulating By conducting 
operator cognitive behaviors computer simulation 

2. Mathematical formulation has not yet been 
of the required. 
human machine 

TCRJHUMOS- proposed to represent the curves interactions and by 
PAD 3. Analyze the curves by focusing on the shape 

analyzing the 

of the curves and the median response time 
simulation results 
with the same 

4. Separate the time taken to detect and method utilized in 

diagnose abnormal transients HCRJORE 
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conducting the large-scale operator experiment, the necessary TRC data related to a 

given anomaly diagnosis can be obtained by conducting numerical experiments based 

on computer simulation of the man-machine interaction. 

• Representation and application of TRC 

There is no mathematical representation for three TRCs in THERP. The application 

of the TRCs to a given anomaly diagnosis is committed to the subjective judgement 

of HRA experts by taking account of the related PSF like the training (exercises) 

with respect to the abnormal transient. The three-parameter Weibull distribution is 

utilized to represent the three HCR curves, as shown in the equation 4.1. For a given 

anomaly diagnosis, the three parameters are adjusted to shape one of the three curves 

classified by the skill-, rule-, and knowledge-based operator's behaviors. In the case 

of HCR/ORE, a two-p~rameter standard normal cumulative distribution is utilized 

to represent the HCR/ORE curve for a given anomaly diagnosis, as shown in the 

equation 4.2. The application of the HCR/ORE curve depends either on adjustment 

the two parameters of the existing H CR/ 0 RE curves to cope with a new anomaly 

diagnosis, or on the conduction of the large-scale operator experiment to obtain the 

two parameters that define the H CR/ 0 RE curve. While, there is also no mathemat­

ical representation yet for TCR/HUMOS-PAD proposed in this thesis study. But, 

the time cognitive reliability curves can be derived easily by conducting the computer 

simulation of the human machine interaction at a given anomaly diagnosis. The new 

situation of the anomaly diagnosis can be easily coped with by modifying the human 

model and the MMI model utilized in the computer simulation. 

• Separation of detection and diagnosis 

TCR/HUM OS-PAD can separate easily the time taken to detect and diagnose abnor­

mal transients. The feature cannot be realized easily by the other TRC techniques. 

The separation of detection and diagnosis is important with respect to HRA in the 

following aspects. 

1. The operators' actions after an abnormal transient can be separated into anomaly 

detection and anomaly diagnosis phases. 

2. The characteristics of the human machine interaction are quite different in the 

two phases, as described in Chapter 2. Therefore, the detection and diagnosis 

are different human cognitive behaviors in view of HRA. 
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3. The affordable time before the response operation is the time limit for both 

anomaly detection and diagnosis. The quick anomaly detection will save time 

for the anomaly diagnosis, and therefore, will enhance the cognitive reliability 

of operators' decision-making. 

4. The separation can also help to specify the problems of the operators' response in 

both phases with respect to enhancing the quality of MMI for the quick anomaly 

detection, or exercising the skill of operators for a certain abnormal events. 

So far, the approach of TCR/HUMOS-PAD is described by compared with the existing 

TCR techniques. In one sentence, TCR/HUMOS-PAD is the computer simulation version 

of HCR/ORE. Therefore, the probabilistic factors shaping the different TCR curves should 

be modeled in the human modeling fra1nework developed in the preceding chapter. 
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4.3 TCR Curves Derived from Laboratory Experiment 

TCR C u rves D erived from Laboratory Experi­

m e n t 

In order to clarify the probability factors influencing the characteristics of TCR curves, 

TCR curves were first derived from the laboratory experiment described in Chapter 2. 

The data processing method and the analysis of the TCR curves are described in detail in 

this section. 

4 .3.1 D ata P r o cessing M e thod fo r D e riving TCR Curves 

Two kinds of TCR curves were obtained from the experimental data, as shown in Figure 

4.6. One is related to the subjects' anomaly detection, in the time span from ta. to tb, while, 

the other one is related to the subjects' anomaly diagnosis, in the time span from tb to tc 

of Figure 4.6, respectively. In the laboratory experiment, since the subjects were asked to 

push "Anomaly Detected" button to indicate the explicit timing that they had detected 

the occurrence of an abnormal transient, the subjects' behaviors can be easily divided into 

two phase (Anomaly Detection in MP and Anomaly Diagnosis in DP). 

The analysis of the operation sequence history can give those experimental data: de­

tection time tb - ta. and diagnosis time tc - tb needed for deriving the two kinds of TCR 

curves. The data processing procedure is listed below. 

1. Sort of response time 

The experimental data about the detection t ime and diagnosis time were sorted with 

ascending order of time. 

2. Calculation of non-response probability 

The probability of the failed response to the detection and diagnosis is then calculated 
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Figure 4.6: Two kinds of TCR curves from the laboratory experiment 
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by the equation shown below. The equation is given by the t echnical report of 

HCR/OER [1]. The detailed explanation of the equation is described in Appendix 

E. 

Pi(non- response) = Pr(response time > ti) 
2 

~1----
N+l 

i = 1, 2, ... ,N ( 4.3) 

where I{ is the non-response probability by the tin1e t i, Pr is the response probability 

for the case where response time is over t i, i is the i'th data point, t i is the i'th 

response time in the ascending sequences of response time, and N is the total number 

of samples. 

3. TCR curves before normalization 

TCR curves were then plotted as shown in Figure 4. 7. In accordance with the equa­

tion, the non-response probability would be 0.5 at the median data ((N + 1)/2) of 

the ascending response time sequence, as indicated by T1; 2 in Figure 4. 7. The median 

time therefore means that 50% operators have responded successfully to the required 

tasks (anomaly detection or diagnosis) by that time, while the other 50% operators 

do not respond yet. 

4. Normalized TCR curves 

If all the time data points t i are divided by T1; 2 , then TCR curves normalized to 

Tl/2 will be obtained, as shown in Figure 4. 7. The slope is focused to analyze the 

characteristics of the obtained TCR curves, Hence the best-fit regression line is made 

to estimate the slope of the TCR curves, as shown in Figure 4. 7. In accordance with 

the gradient of the best-fit regression line, two patterns of normalized TCR curves 

are shown in the right side of Figure 4. 7. They are TCR curves with steep slope and 

gentle slope, respectively. 

Two points are noticed from above data processing to derive TCR curves. One point is 

that deriving TCR curves is necessary to take into account of only the successful response 

of subjects in the experiments. Other cases were omitted, such as mistaken diagnosis and 

the experimental trial where the subject was helped by experimenter during experiment. 
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The other one point is that the total number of successful experimental data were needed 

to satisfy the condition N ~ 1 (practically N ~ 10) because of the assumption that the 

response probability in each time section is the same as 1/(N + 1). 

Based on the data processing methods, all TCR curves derived from the labora ory 

experiment are summarized in Appendix F for both anomaly detection and diagnosis. For 

each abnormal transient, the tables 4.2 and 4.3 summarize the valid sampling numbers, the 

estimated slope and the median time of the anomaly detection TCR curves by sorting the 

slope and median time in the right-end of the tables, respectively. Those data of anomaly 

diagnosis TCR curves are summarized in the tables 4.4 and 4.5. 

The slopes of the TCR curves are represented by the value of the gradient of the best-fit 

regression line. The bigger value means the steeper slope. The detailed analysis of the TCR 

curves is described in the following subsection with respect to examining the probabilistic 

factors that influence the characteristics of rrCR curves. 

4.3.2 Analysis of Different Slope of TCR Curves 

In order to apply HUM OS-PAD to estimate the TCR curves, the factors forming the TCR 

curves should be analyzed so that those factors could be modeled in the modeling framework 

of HUMOS-PAD. The characteristics of TCR curves can be described by the slope and the 

median response time from the viewpoint of the above data processing. Hence the analysis 

of the TCR curves is conducted from the two aspects. In this and the next subsection, 

the slope and the median response time will be analyzed respectively for both the anomaly 

detection and diagnosis TCR curves. 

First of all, the different slope of TCR curves means that there do exist some prob­

abilistic factors influencing operators' performance of detecting and diagnosing abnormal 

transients. The figures 4.9 and 4.10 show the typical cases of steep and gentle slopes of 

the TCR curves both for anomaly detection and anomaly diagnosis. The difference of the 

slope of TCR curve can be explained as follows: 

"In the case of steep slope TCR curves, the anomaly can be detected or iden­

tified by any operator at any trial of the same transient at a certain time after 

transient was initiated. In the case of gentle slope TCR curve, there are proba­

bilistic nature for detecting or identifying the anomaly which stems from either 

the human side or the abnormal transient itself." 
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Table 4.2: Anomaly sorted by the f J, -:pe of the detection TCR curves 

Types of Valid Median Degree 
Abnormal Sample time of the 
Transients Numbers (sec.) slope 

RCS M 9 46 , -1.733254 

RCS S 10 66.5 -1.148825 

NIS 11 17 -0.939669 

SGTR 12 10 -0.789474 

F\V.FL.Sen.F 14 11 -0.780628 

PRZ.Spary.V.B 12 9.5 -0.682869 i 

PRZ.Spary.V.S 12 15 -0.654327 

PRZ.Prs.H 10 9.5 -0.568763 

PRZ.Lvl.H 8 23.5 -0.565773 

FW.FL.Cont.V. ! 12 16.5 -0.533789 

PRZ.Prs.L 10 35 -0.397916 

PRZ.Lvl.L 8 21.5 -0.168108 

Table 4.3: Anmnaly sorted by the median time of the detection TCR curves 

Types of Valid Degree Median 

Abnormal Sample of the time 
Transients Numbers slope (sec.) 

PRZ.Spary.V.B 12 -0.6828688 9.5 

PRZ.Prs.H 10 -0.5687631 9.5 

SGTR 12 -0.7894737 10 

FW.FL.Sen.F 14 -0.7806278 11 

PRZ.Spary.V.S 12 -0.6543274 15 

FW.FL.Cont.V. 12 -0.5337886 16.5 

NIS 11 -0.9396692 17 

PRZ.Lvl.L 8 -0.1681075 21.5 

PRZ.Lvl.H 8 -0.5657729 23.5 

PRZ.Prs.L 10 -0.3979163 33 

RCS M 9 -1.7332536 46 

RCS S 10 -1.1488247 66.5 
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Table 4.4: Anomaly sorted by the slope of the diagnosis TCR curves 

Types of Valid Median 
Degree of 

Abnormal Sample Time 
Trasients Numbers (sec.) the slope 

FW flow Cont.V.F. 10 106 -0.91609941 
SGTR 9 67 -0.64402581 
PRZ SprayS 11 76 -0.55004614 
PRZ Prs hi g:h 10 89.5 -0.51434982 
FW lvl sensor failure 15 110 -0.48584182 
RCS small 8 60 -0.40937997 
PRZ Prs Low 9 38 -0.37381607 
RCS big 8 59 -0.30962251 
PRZ Spray B 11 64 -0.29085322 

Table 4.5: Anomaly sorted by the median time of the diagnosis TCR curves 

Types of Valid 
Degree of 

Median 
Abnormal Sample Time 
Trasients Numbers 

the slope 
(sec.) 

PRZ Prs Low 9 -0.3738 161 38 

RCS bie 8 -0.3 096225 59 

RCS small 8 ' -0.40938 60 
PRZ Spray B 11 -0.2908532 64 

SGTR 9 -0.6440258 67 

PRZ Sprav S 11 -0.5500461 1 76 

PRZ Prs hii!h 10 -0.5143498 89.5 

FW flow Cont.V.F. 
I 

10 -0.9160994 106 
I 

FW lvl sensor failure 15 -0.4858418 110 
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Figure 4.9: Anomaly detection TCR curves derived from the laboratory experiment 
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Figure 4.10: Anomaly diagnosis TCR curves derived from the laboratory experiment 

The probabilistic factors in subjects' cognitive behaviors of detecting and diagnosing 
abnormal transients are clarified by analyzing the different slope of TCR curves, as sum-

marized in Table 4.6. 
As for detecting the occurrence of an abnormal transient, there are mainly three prob-

abilistic factors in subjects' cognitive behaviors: 

1. variation degree of paran1eters to which subjects feel something wrong in the system, 

2. reference frequency of parameters, and 

3. reference sequence of parameters. 

These three factors would result in different time taken to detect an anomaly. The first 
factor reflects the different thresholds of parameter value to judge whether the variation 
in parameter value is beyond the normal status or not . The rest two factors reflect the 

differences in subjects' "monitoring strategy". 
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Table 4.6: Probabilistic factors in detection and diagnosis phases 

Anomaly Detection Anomaly Diagnosis 
Variation degree of 

parameters for judging Hypotheses recalled 
something wrong 

Reference Frequency 
Examination sequence of the 

recalled hypotheses 

Reference Sequence 
Different display type (digital 

number & trend graph) 

Belief level thresholds on which 
subjects make a final decision 

As for the probabilistic factors in diagnosing the root cause of an abnormal transient, 
there are mainly four factors. 

1. Hypothesis recall 

2. Hypothesis examination sequence 

3. Display type 

4. Belief level 

These probabilistic factors are analyzed in detail to show how they shape different anomaly 
diagnosis TCR curve. 

Probabilistic Factors in Anomaly Diagnosis 

With respect to analyzing the effects of these factors , the time taken to diagnose the root 
cause of an abnormal transient should be examined carefully because TCR curves describe 
the trade-off relationship _between the affordable time and cognitive reliability. 

The diagnosis time is defined in Figure 4. 6 as the time span from tb (the occurrence of 
an abnormal transient had been detected) to tc (the root cause of the abnormal transient 
is found out). Therefore, the diagnosis time is the total amount of time taken to conduct 
various cognitive tasks to reach final conclusion of diagnosis. The total necessary time is 
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different since the subjects would take different diagnosis methods and conduct different 

tasks to find out the root cause. The detailed diagnosis process described in the preceding 

chapter should help to understand how these factors work. 

• Hypothesis Recall Factor 

After the detection of an abnormal transient, subjects would recall one or more 

hypotheses into their mind. The task is called here as "hypothesis recall". The task 

of ''hypothesis recall" is conducted in accordance with the first symptom detected by 

the subject. The hypotheses recalled by subjects would be different from person to 

person because of the diversity of human cognitive behaviors (even in the case that the 

subjects detected identical first symptom). The difference in the span of the recalled 

hypotheses would require different time to examine them, and therefore would result 

in different time taken to identify the roGt cause of an abnormal transient. 

• Hypothesis Examination Sequence Factor 

Next, subjects will examine the recalled hypotheses by collecting sy1nptoms sup­

porting or denying the hypotheses. The matter would be simple if the subject recalls 

only a single hypothesis. But, usually a number of hypotheses are recalled. Therefore, 

there exists "hypothesis verification sequence" because it is impossible for human to 

do thing in parallel. The "hypothesis examination sequence" would be different from 

person to person since the diversity of human cognitive behaviors. For an example, 

"Subject A" and "Subject T" prefer to verify the hypothesis about control system 

firstly, compared with "Subject I". Since the root cause may exist in the recalled 

hypotheses, "hypothesis examination sequence" would result in different diagnosis 

time. 

• Display Type Factor 

To examine the recalled hypothesis, subject would conduct MMI operation to collect 

the information about plant parameters' status, which are the symptoms supporting 

or denying the hypothesis. In the laboratory experiment, both the digital numbers 

showing parameters' value and the trend graph showing parameter value changes 

with time are utilized to present plant parameters' status to subjects. The reference 

time of two types of display is different since the trend graph provides not only the 

information about the current status of parameters, but also the past trend until 

current status. The reference of trend graph usually takes more time than that in 
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the case of digital number. The selection of the display type would exert an influence 

on the tilne taken in each step of parameter reference, and therefore, would result in 

different total diagnosis time. 

• Belief Level Factor 

During subject's collecting symptoms, it has been considered that subject's belief on 

the correctness of a hypothesis would be changed in the direction of either conviction 

or negation. In other words, the belief level on the correctness of a hypothesis would 

be increased or decreased in accordance with the observed symptoms. When the 

belief level of a hypothesis is increased or decreased to a certain level, subject would 

adopt or reject the hypothesis. The level is called here as the threshold of the belief 

level, which would be different for person to person. For an example, the threshold 

may be a high for adopting the hypothesis in the case of a cautious person, while it 

may be low for others. When the belief level does not reach the threshold, operators 

will get more symptoms related to the hypothesis for increasing or decreasing the 

belief level until it reach the threshold. Therefore, the total diagnosis time will be 

changed. 

As a conclusion, all these probabilistic factors in subjects' behaviors would result in 

the different slope of anomaly diagnosis TCR curves. 

Analysis of the Obtained TCR Curves 

The reasons for the different slope of TCR curves for both phases of anomaly detection are 

analyzed by considering both the natures of abnormal transients and the above-mentioned 

human information processing characters. The analytical results are shown in Table 4. 7 

and the detailed discussions are given below for both phases. 

• Anomaly detection phase 

One reason for steep slope TCR curves is that there are so many anomaly symptoms 

in many groups of plant parameters that any operator can recognize the changes in 

parameter value very easily (e.g., in the case of "RCS leakage") . But even if not 

so many symptoms, the occurrence of anomaly is easily noticed by the peripheral 

sight effect because of the striking variation in certain parameters (e.g., in the case 

of pressurizer spray valve failure-big). The other reason would be that the operators 

would not miss a slight variation of the important parameters in a certain specific 
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Table 4 7· Analysis of the slope of T CR curves for both detection and diagnosis . . . 
Slope ofHCR Anomaly Diagnosing 

Curves Pattern Detection Root Cause 

1. Many anomaly symptoms Only a limited hypothesis can be 
Steep Slope 2. Or Peripheral Sight Effect(PSE) assumed due to only few anomaly 

3. Or check parameters severely symptoms appeared in specific system 
or frequently 

1. Difficult for PSE Many hypothesis are assumed 
2. And symptoms appear due to appearance of many anomaly 

Gentle Slope only in specific system symptoms. So probabilistic character 
3. And the system is not checked of human behavior would appear in 

severely or frequently by operators diagnosis phase 

plant subsystem monitored very severely or very frequently by the operator (e.g. , 

Power range NIS failure , Feed-water flow sensor failure) . The cases of gentle slope 

T CR curves are those where the situation does not correspond to anyone mentioned 

above. 

• Anomaly diagnosis phase 

The gentle-sloped TCR curves will be brought about when lots of anomaly symp­

toms appear in different plant sub-systems (e.g., in the case of "pressurizer spray 

valve failure-big" and "RCS leakage"). As the result, operators would recall lots of 

hypotheses, and therefore, the time required to find out the correct root cause of the 

abnormal transient would vary from case to case. On the contrary, the steep slope 

TCR cases will be generated by the situation where only a limited hypothesis can 

be considered because of the limited symptoms appearing in plant parameters (e.g. , 

in the case of pressurizer pressure controller failure). In the case, the time taken to 

identify the root cause would be not so different as that in the case of the gentle TCR 

curves. 

4. 3 .3 Analysis of Media n Time of T C R C u r v es 

The median time T1; 2 is_ defined as the time until when 50% operators respond to the 

required task (e.g. , anomaly detection or diagnosis) while the rest 50% operators do not 

yet respond. T1; 2 is considered to reflect the effects of performance shaping factors (PSFs) 

in HCR/ ORE model [1]. PSFs are defined as the environmental factors affecting operator's 

performance. Three types of factors are analyzed generally as PSFs: 
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Table 4.8: Median time of detection and diagnosis TCR curves 
Median 

Anomaly Detection Anomaly Diagnosis 
Time 

1. Few distinct 1. Unfamiliar with MMI 
abnormal symptoms 

Large 2. Small-scale 2. Harder to be identified at 
disturbance of the complex degree of 
abnormal transients abnormal transients 

1. Lots of distinct 1. Large-scale disturbance of 
abnormal symptoms abnormal transients 

2. Easier to be identified at 
the complex degree of 

Small abnormal transients 

2. Large-scale 3. Speedy propagation of 
disturbance of abnormal transients 
abnormal transients 4. Well experienced abnormal 

transients 

• internal factors such as the degree of operation skill, operators ' human character, 

etc., 

• external factors such as the quality of MMI, the nature of the required task, etc., and 

• stress factors such as operators' psychological stress and physiological stress. 

In the laboratory experiment , we would like to focus on one of the external factors: 

the nature of the required task, i.e., the nature of the abnormal transient to be detected or 

diagnosed. The experimental data of median times T112 for detecting and diagnosing each 

abnormal transients were already sorted, as shown in the tables 4.3 and 4.5, respectively. 

The analytical results for T1; 2 of both detect and diagnosis TCR curves is summarized in 

Table 4.8 with respect to the reason why T1; 2 becomes large or small, and the detailed 

discussion for both cases are given below. 

Anomaly D etection Phase 

The median time T1; 2 ranges from 9.5 to 66.5 seconds. In the laboratory experiment, the 

detection of the occurrence of abnormal transients depends largely on the awareness of the 

abnormal variation in parameter value since only very limited alarm tiles were presented 

onto the MMI. Three types of abnormal transient would be detected quickly, as described 

below. 
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• The abnormal transient causing lots of abnormal symptoms would be detected quickly 
(e.g., "SGTR") . 

• The distinct symptoms in specific sub-systems monitored frequently or severely by 
subjects would also give small T1; 2 (e.g., in the case "NIS.F"). 

• The large-scale disturbance of identical abnormal transients would be detected more 
quickly than the small-scale one (e.g., in the case of "PRZ.Spray.V.F" big and its 
small one) . 

Compared with the s1nall-scale disturbance, the abnormal symptoms are more distinct and 
propagated more quickly to the other sub-systems in the case of large-scale disturbance. 
Therefore, lots of distinct symptoms would appear in various plant sub-systems. In conclu­
sion, small T1; 2 is due to the emergence of lots of distinct abnormal symptoms. While, the 
large T1; 2 is due to relative lack of distinct abnormal symptoms in any sub-systems. 

Anomaly Diagnosis Phase 

The diagnosis time turned out almost same for the identical abnormal transients with 
different scale disturbance (e.g., in the case of "RCS leakage median" and its small on). It 
means that, the disturbance scale of the abnormal transient is not the major factor that 
determines the total diagnosis time since the diagnosis methodology is almost the same. 
However, the time taken to diagnose the big-scale disturbance of the identical abnormal 
transients is a little less than the small-scale one. It is considered because of the emotional 
pressure of speedy propagation of abnormal transients. The emotional pressure would make 
the subject not hesitate too much to make a final decision among alternatives of root cause. 

The median time is also considered to reflect the relative complexity of the abnormal 
transients. Simplicity or complexity may be defined as the possible recalled hypotheses. 
The simplicity means that the possible hypotheses is limited, while, the complexity is the 
contrary. 

Based on the above discussions about the slope and the median time of both detection 
and diagnosis TCR curves, now let us consider what the analysis results mean for the safety 
and reliability of total NPP. As for the safety of total NPP, it is appreciated to detect and 
diagnose the abnormal transients quickly as much as possible. In other words, the steep 
TCR curves having a small T1; 2 are 1nost appreciated. Since TCR curve represents the 
trade-off relationship between the affordable time and the human cognitive reliability, it 
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can be utilized as the operator performance measurement both for the evaluation of the 
MMI design and for improving the efficiency of the operator training. 

Furthermore, very limited alarm tiles and no alarm sound were utilized in the labora­
tory experiment so that the detection of the occurrence of abnormal transients depended 
mainly on subjects' active monitoring activities. The analysis results show that detect­
in (f the occurrence of the abnormal transients was not an easy job in some cases due to b 

abnormal transients' natures and human inherent probabilistic natures. Therefore, the 
laboratory experiment results can help to suggesting the alarm designing methodology and 
furthermore, the design of the operator supporting system. 
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4.4 Modeling Probabilistic Factors in Operator's Cog­
nitive Behaviors 

In the preceding section, TCR curves for both anomaly detection and diagnosis have been 
derived from laboratory experimental data. The analysis of the different slope of the TCR 
curves turned out that the different TCR curves are the result of the combination effects 
of the probabilistic factors in human cognitive information processing and the dynamic 
natures of the abnormal transients. 

As described previously, the new approach TCR/HUMOS-PAD proposed in this thesis 
study is the computer simulation version of HCR/ORE. HUMOS-PAD replaces the role 
of operators in HCR/ORE. In order to derive TCR curves by the computer simulation, 
the probabilistic factors in operator cognitive information processing should be modeled in 
the human modeling framework utilized in the preceding chapter. This section gives the 
description about the method of modeling the probabilistic factors that would generate 
different TCR curves. 

4.4.1 Modeling Methods of Probabilistic Factors 

In the preceding chapter, three models have been developed, corresponding to the three 
subjects in the laboratory experiment. Although the three models were developed in the 
same modeling framework, the individual characteristics of the three subjects were sim­
ulated well by applying the concept of the human model adjustment factors proposed in 
subsection 3.3.2 to model the inherent diversity and variety in human behaviors. 

On the other hand, TCR curves describe the statistical characteristics of operators' 
the cognitive information processing in detecting and diagnosing abnormal transients. In 
the preceding section, the probabilistic factors influencing the statistical characteristics 
had been clarified by analyzing the TCR curves derived from the laboratory experiment. 
Therefore, the subject of the application of HUM OS-PAD to HRA/PSA is substantially the 
subject of modeling those probabilistic factors with the human model adjustment factors. 

A concept of "unified model" is proposed to estilnate TCR curves by computer simula­
tion, rather than the three models developed in the preceding chapter. The unified model 
is really the prototype of the three models corresponding to the three subjects. In other 
words the three models are just specific cases of the unified model. Besides those models, 
various other individual models would be also derived from the unified model by modifying 
the hu1nan model adjustment factors. 
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The procedure steps can be summarized as follows for the estimation of TCR curves 
by HUMOS-PAD . 

• Decide how to model the effects of the probabilistic factors in human cognitive be­
haviors and to select human model adjustment factors. 

• Decide the plausible span of the variation of selected human model adjustment factors. 

• Conduct a numerical experiments by setting a set of human model adjustment factors 
in HUMOS-PAD to obtain the response time of diangosing abnormal transient . 

• Repeat the same simulaiton with changing human model adjustment factors 

• Finally, the anomaly diagnosis TCR curves could be derived from the numerical 
experimental data on the response time of a large number of simulation. 

Since the application of HUM OS-PAD to derived TCR curves will be validated by compar­
ing to the TCR curves derived from the laboratory experiment with the TCR/HUMOS­
PAD, the settings throughout all the above steps will take a reference to the analytical 
results of the laboratory experiment, as described in detail in Chapter 2. 

The first two steps are described in the following subsections. The conduction of the 
numerical experiments and the derived TCR/HUM OS-PAD will be explained in the next 
section. 

4.4.2, Modeling Probabilistic Factors in Anomaly Detection Phase 

There are mainly three probabilistic factors in accordance with the analysis results of 
anomaly detection TCR curves derived from the experimental data. 

1. The variation degree of parameters to which subjects feel something wrong in the 
system, 

2. The reference frequency of parameters, and 

3. The reference sequence of parameters in the display. 
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Figure 4.11: Fuzzy membership function for interpreting parameters' value 

Fuzzy Membership Function of Interpretation 

The effects of the first factor have been modeled by the fuzzy membership function in 

the preceding chapter, as shown here , again in Figure 4.11. The settings of the fuzzy 

membership function were made for each subject in accordance with the characteristics 

of interpreting parameter value, such as the membership factor a, the upper and lower 

thresholds of parameter variation in the figure. 

With respect to deriving TCR/ HUMOS-PAD, the settings of the fuzzy membership 

function in the unified model should be made so that it can reflect all the characteristics of 

interpreting parameter values. Therefore, the upper and lower thresholds of parameter val­

ues are set as the maximum and the minimum thresholds of the three subjects, respectively. 

Furthermore, the membership factor a is set so that it would fluctuate from 0.1 to 0.9 in 

the computer simulation. The setting is based on the assumption that the variation of the 

cognitive behaviors of interpreting parameter value should be within the scope defined by 

the upper and lower thresholds. 

Monitoring Strategy 

As for the rest two factors, they are substantially operator's "monitoring strategy". The 

"monitoring strategy" has been modeled in two steps, as described in detail in the preceding 

chapter. First step is to classify plant parameters into five groups in accordance with the 

plant sub-systems ( "Reac~or" , "PRZ", "Steam Generator", "Turbine", "CVCS"). The next 

step is to set the reference frequency for each group in accordance with the analytical results 

of subject's monitoring behaviors recorded in OSH, as shown in Figure 2.16. The parameter 

reference is then modeled by two kinds of selection: (i) random selection of the parameter 

group based on the reference frequency (ii) sequent selection of a specific parameter in the 
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selected parameter group . 

With respect to deriving TCR/ HUM OS-PAD curves, the reference frequency of each 

group in the unified model is set to the average values of the reference frequency of the 

three subjects. The settings are based on the consideration that the charact eristics of the 

reference frequency of the three subjects are similar with each other. 

4.4.3 Modeling Probabilistic Factors in Anomaly Diagnosis Phase 

Four probabilistic factors would influence the characteristics of anomaly diagnosis T CR 

curves, as listed again below. 

1. Hypothesis recall 

2. Hypothesis examination sequence 

3. Display type 

4. Belief level 

The detailed settings of these factors are described in follows . 

Hypothesis Recall 

Two types of settings are made to model the probabilistic effects generated by "Hypothesis 

Recall". 

• The scope of the recalled hypotheses 

We had summarized the relationships between the first hypothesis and the first symp­

tom in the preceding chapter. The recalled hypotheses are different from person to 

person even the subjects detect the identical first symptom. The settings of the rela­

tionship in the unified human model are shown in Table 4. 9 that summarizes the first 

sympto1ns and all corresponding possible hypotheses. The possible hypotheses is the 

set of the hypotheses considered by subjects in their anomaly diagnosis process. 

• The first hypothesis 

One of the hypotheses is then selected as the first hypothesis from the scope of the 

recalled hypothesizes. The uniform distribution is used to set the selection probability 

of each hypothesis since all the hypotheses have a chance to be the first hypothesis. 
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Table 4.9: All possible hypotheses by the first symptom 

First Symptom Scope of the Possible Hypothese 

SG-Lvl big 
SGTR 

FW control failure 
SG-Lvl small FW control failure 

FW. Flow small 
SGTR 

FW control failure 
Steam-flow big FW control failure 

PRZ-prs big 
PRZ. Prs. Control fail-low 

Reactor related 
PRZ. Prs. Control fail-high 

PRZ-prs small 
RCS 

SGTR 
PRZ.Spary.V fail 

PRZ-lvl big PRZ. Lvl. Control fail-high 
RCS 

PRZ-lvl small SGTR 
PRZ. Lvl. Control fail-low 

RCS 

CVCS-in big 
SGTR 

PRZ. Lvl. Control fail-low 
PRZ. Prs. Control fail-high 

CVCS-in small 
PRZ. Prs. Control fail-low 
PRZ. Lvl. Control fail-low 

Reactor-output big Reactor related 

Hypothesis Examin ation Sequ en ce 

The selection of the hypothesis to be examined next would be made if a hypothesis were 

rejected. In this case, the probability of the selection is also set in accordance with uniform 

distribution. The settings are based on the assumption that the chance to be selected as 

the next hypothesis is equal for all the un-examined hypotheses in the scope defined by 

Table 4.9. 

Display Type 

The two types of display (digital number and trend graph) give the operator a chance to 

select one of them to check the status of plant parameter. The reference proportion of 

digital numbers type display vs. the trend graph type display are assumed to be 40% vs. 

60% since there was a tendency that the three subjects would like to refer to the trend 

graph for the detailed information about the parameter variation presented in the trend 

graph. 
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Figure 4.12: Fuzzy membership function for decision-making of a hypothesis 

Belief Level 

There are two types of belief level corresponding to adopting and rejecting a hypothesis, 

respectively. The belief level had been modeled by the concept of confidence score and 

confidence level defined in the description of "Hypothesis Examination Object" in the 

section 3.4.3. The confidence scores are assigned to the plant parameter~ whose status 

is predicted in accordance with the hypothesis under the examination. The confidence 

level is the result of the accumulation of the confidence scores. It will be increased if the 

actual condition of the parameters agrees with the prediction made in accordance with the 

hypothesis. On the other hand, The confidence level will be decreased if the actual condition 

of the parameters disagrees with the prediction. The degrees of increase or decrease are 

defined by the confidence score of the plant parameter with respect to examining the 

hypothesis. The hypothesis will be adopted if the confidence level is increased/ decreased 

over / below a certain threshold. The thresholds would be different from person to person 

since the diversity of human cognitive behaviors. 

Fuzzy membership functions are devised to model the diversity in the decision-making 

of adopting or rejecting a hypothesis , as shown in Figure 4.12. There are two member­

ship functions in the figure for rejecting and adopting a hypothesis, respectively. In the 

membership functions, the following assumptions are made. 

• A hypothesis would be adopted/rejected by all operators if its confidence level is 

bigger/ smaller than 100/5 points. 

• The anomaly diagnosis would be continued by all operators if the confidence level is 

between 15 and 80 points. 

• The diversity in the hypothesis adoption and rejection is then modeled by the mem­

bership factors a and f3 defining the decision-making thresholds that would vary in 
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the scopes of 80""'"' 100 points and 5""'"' 15 points, respectively. 

• The variation of those thresholds is assumed as the uniform distribution in the cor­

responding variation scopes. 
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TCR/ HUMOS-PAD Curves and Validation 

Numerical experiments are conducted by utilizing the human model for simulating the 
subjects' behaviors of diagnosis, in order to validate the application of human model sim­
ulation application for the HRA/PSA practice. TCR/HUMOS-PAD curves for diagnosing 
an abnormal transient are deriv.ed from the calculated data of diagnosis time obtained by 
human model simulation. These curves are then compared with the TCR curves derived 
from the laboratory experiment. 

4.5.1 Conduction of Human Model Simulation 

Like the previous laboratory experiment, where PWR-type NPP simulator, MMI simulator 
and subjects were utilized, the same PWR-type NPP simulator is also used in the numerical 
experiments. But, the human model with interaction models to MMI is connected to 
the plant simulator directly. The time taken to operate the MMI simulator used in the 
laboratory experiment, e.g., switching interface screens, referring to plant parameters' value 
or trend graph, is estimated from the experimental data, and utilized in HUMOS-PAD as 
the time delay effects. Table 4.10 shows the settings of time delay effects used in the human 
model. 

Anomaly Detection TCR/HUMOS-PAD. Curves 

Two cases of "SGTR" and "PRZ.Lvl.F.High" are selected as the abnormal transients to be 
detected by HUMOS-PAD, because they are the typical cases where the anomaly detection 
TCR/HUMOS-PAD curves would exhibit either steep or gentle slope. By the same way in 
the laboratory experiments, the data of anomaly detection time were obtained by conduct­
ing 20 cases of numerical experiments for each abnormal transient, and by the same data 
processing methods as shown in the figure 4.6 and the equation 4.3. Two anomaly detection 

Table 4.10: Settings of time taken to operate MMI in HUMOS-PAD 

MMI Operation Time Delay 
Parameter Value Reference 2 sec. 
Parameter Trend Reference 4 sec. 
Switch MMI screen 1 sec. 
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TCR/ HUMOS-PAD curves were obtained for the cases of "SGTR" and "PRZ.Lvl.F.High", 
as shown in Figure 4.13, where the TCR curves derived from the laboratory experiment 
are also depicted for an inter-comparison. 

Anomaly Diagnosis TCR/HUMOS-PAD Curves 

In the case of the human model simulation for diagnosis phase, the settings of the thresholds 
of confidence level are necessary, besides the time delay effects in the detection phase. With 
respect to deriving the TCR/HUMOS-PAD, the initial confidence level (20 points) would 
be assigned to the hypothesis recalled by the first syn1ptom. The confidence level would be 
increased or decreased in accordance with the results of the hypothesis examination. Three 
thresholds (80,90,100 points) are devised to simulate the cognitive diversity in adopting a 
hypothesis. The hypothesis rejection threshold is assumed as "10 points". 

"SGTR" and "RCS leakage" are diagnosed by HUMOS-PAD to estimate the anomaly 
diagnosis TCR curves. Ten numerical experiments were conducted for each of the three 
thresholds of confidence level. The obtained anomaly diagnosis TCR/HUM OS-PAD curves 
are shown in the figures 4.14 and 4.15, together with the corresponding diagnosis TCR 
curves derived from the laboratory experiment. 

From the inter-comparisons shown in the figures 4.13, 4.14 and 4.15, the detection 
and diagnosis TCR curves by HUM 0 D-PAD agree well with the ones derived from the 
experimental data well. The detailed discussions about the inter-comparison are given in 
the next section. 

4.5.2 Validation of Human Model Simulation 

As shown in Figure 4.13, the slope of the TCR/HUMOS-PAD curves agree well with the 
two typical anomaly detection TCR curves derived from the laboratory experiment. It 
suggests that the appropriateness of the settings of the "monitoring strategy" and the 
fuzzy membership function for interpreting parameter values. On the other hand, some 
differences can be noticed from the inter-comparison of the median time. The median time 
of the simulation results i_s a little bigger than that of laboratory experiment in case of the 
detection of "SGTR", while the converse situation is found in the case of the detection of 
"PRZ.Lvl.Cont. fail-high". We consider that the differences are normal since the median 
time is defined as the median data in the ascending response time sequence. In other 
words the median time may vary along with the increase of the sampling numbers. Hence 
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Figure 4.14: Anomaly diagnosis TCR/ HUMOS-PAD curves before normalization 
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Figure 4.15: Anomaly diagnosis T CR/ HUMOS-PAD curves after normalization 

-165-



4.5 TCR/HUMOS-PAD Curves and Validat ion 

the similar results of the median time demonstrate the appropriateness of the time delay 

setting for modeling the MMI operation. 

The figures 4.14 and 4.15 show the inter-comparisons of the anomaly diagnosis TCR 

curves before and after the normalization data processing, respectively. The results shown 

in Figure 4.14 demonstrate that the tendency of the curves agrees well with each other . It 

suggests that the anomlay diagnosis has been modeled properly. Moreover, the probabilistic 

factors and their variation characteristics are also modeled well in HUM OS-PAD. The data 

of the median time confirms the conclusion as well. However, there is common problem 

that the differences are shown in the tail end of the normalized TCR curves, as shown in 

4.15. 

The experimental trial represented by the point "A" in Figure 4.15 has been re-analyzed 

to explain these differences by focusing on the operation history sequence and the interview 

records of this case. The results turn out that the differences are generated because of an 

adherence effect, as explained in detail below by utilizing the operation history sequence 

shown in Figure 4.16. 

In this experimental trial, the subject doubted "FW cont. system failure" after he 

noticed the parameter variation in the secondary system of NPP. The parameter 'Feed 

Water Flow" was checked repeatedly since he insisted that the root cause should be "FW 

cont. system failure". The examination of the hypothesis took about 50 seconds (the third 

of the total time taken to identify the real root cause). After t hat, the subject changed his 

mind and took a reference to "RMS monitor". The reference made him find the real root 

cause in a short time (about 30 seconds). 

The characteristics of the adherence effect can be described as the repeat reference to 

same or similar plant parameters. The modeling of the adherence effect would be one of 

the subjects of the further study. 

So far , we have described the application of HUMOS-PAD to estimate TCR curves. 

The following subsection will give a further study on estimating the anomaly diagnosis TCR 

curves in a real-scale simulation environment of NPP where a real-scale MMI simulator of 

the central control room is used rather than the simple CRT-based used in the laboratory 

experiment. 

4 .5.3 Estimat ing TCR Curves by SEAMAID / HUMOS-PAD 

In order to estimate the anomaly diagnosis TCR curves in the environment of real central 

control room of NPP, HUMOS-PAD had been incorporated into a real-scale man-machine 

-166-

4. Application of H uman Model for the Human Reliability Analysis in 
Probabilistic Safety Assessment 

Time(sec.) Operation 
53 A-Tavg. 
57 CVCS-Out 
59 until now 
63 to PRZ.Lvl. Cont. System 
64 Trend Graph 

c:i~ ~=e}:ph =:, 
73 until now 
74 PRZ.Lvl. 
77 Coolant Tavg 
79 PRZ. Standard Lvl. 
79 CVCS-In 
80 until now 
81 Trend Graph 

A 1 82 until now 
fl 0 m a Y 84 Trend Graph 

D t t · 8 9 until now e e C 1 0 n 91 to Summary Window 
93 PRZ.Prs. 
93 

l 00 until now 
104 to FW.Control System 
105 Trend Graph 
111 until now 
112 to Summary Window 
117 to Feed Water System 
121 A-SG Trend Graph 
122 Trend Graph 
132 until now 
133 A-Feed.Water.Flow 
134 until now 
136 to Feed Water System 
13 9 to Summary Window 
140 A-SG.Lvl. 
140 until now 
141 B-Feed.Water.Flow 
142 A-SG.Lvl. 

Time(sec.) Operation 
148 PRZ.Lvl. 
150 until now 
156 B-Cold.Temp. 
157 until now 
158 C-SG.Lvl. 
160 until now 
161 A-SG.Lvl. 

9 until now 
172 to Feed Water Sysk 
174 to RMS monitor 
175 Trend Graph 
I 79 until now 
182 to Feed Water System 
184 to Summary Window 
187 A-Feed.Water.Flow 
188 until now 
191 to Feed Water System 
193 A-SG Trend Graph 
194 Trend Graph 
197 until now 

Find o!}the real 
~oot cause "SGTR" 

Insisted on the 
hypothesis of 
"FW. control 
system failure" 

Figure 4.16: Adherence effect in anomlay diagnosis of "SGTR" 

-167-



4.5 TCR/HUMOS-PAD Curves and Validation 

~---- Distributed Simulation System -------: ~-- MMI Design Information Evaluation System --
I I 
I 

Knowledge -------
Database for 

• 0 erator : 
~----- -------------------------------- · 

._._System Control 

Data Flow 

Database 
Access 

I 
I 

I ·----- ----- ------------ --- ------- --------· 

Figure 4.17: Configuration of SEAMAID 

interaction simulation system SEAMAID which has been developed by MITSUBISHI Elec­
tric Corporation under the sponsorship of Ministry International Trade and Industry and 
Nuclear Engineering Corporation [13]. 

SEAM A ID 

Simulation based Evaluation and Analysis Support System for Man-Machine Interface De­
sign (SEAMAID) is composed of two sub-systems, as shown in Figure 4.17, distributed sim­
ulation system and MMI design evaluation system. The functions of the two sub-systems 
are summarized as follows. 

• The distributed simulation system includes three simulator that simulate the be­
haviors of NPP, MMI, and operator in case of an emergency, respectively. The man­
machine interactions are then simulated by the interactions between the three simula­
tion systems in real time. Therefore SEAMAID can simulate not only the individual 
behavior of the components of NPP but also the interactions between them. 

• MMI design evaluation system is an analysis support system for evaluating a given 
MMI design from the viewpoints of human factors. With SEMAID, an analyst can 
set various abnormal transient situations for the evaluation of the MMI design by 
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utilizing "Total System Manager" shown in Figure 4.17 to communicate with the three 
simulators. The evaluation of the MMI design can be then conducted by utilizing 
"Interaction Analyzer" to analyze the recorded interactions between the MMI and 
operators. 

To compare different given MMI designs for a NPP, a standard for evaluating the MMis 
is necessary. The operator's standard operations following the operation procedures are 
selected as the evaluation standard in SEAMAID. But, operator's behaviors of the anomaly 
diagnosis are not considered in detail by the operator simulator in SEAMAID since there 
is no operation procedures guiding operator's behaviors. Therefore, it is necessary to 
implement HUMOS-PAD into SEAMAID as a diagnosis engine, in order to estimate the 
TCR curves by SEAMAID . 

Incorporation of HUMOS-PAD into SEAMAID 

Figure 4.18 shows the system architecture of the operator simulator in SEAMAID, together 
with the incorporated HUMOS-PAD. Prior to explain the methods of the incorporating 
HUMOS-PAD into SEMAID, the original operator simulator in SEAMAID should be de­
scribed. 

The operator simulator in SEAMAID has been developed in accordance with the gen­
eral human modeling framework described in the preceding chapter. The functions of main 
units shown in Figure 4.18 are summarized as follows. 

• Shared Memory 1: the communication area from "MMI Simulator" to "Operator 
Simulator" . There are two types of information; (i) alarm information , (ii) the 
focused MMI information. 

• Shared Memory 2: the communication area form "Operator Simulator" to "MMI 
Si1nulator". There are two types of information; (i) information on how the operator 
manipulates; (ii) MMI information on which the operator is focusing. 

• Perception P rocess: this process receives all the information from around the 
operator through "Shared Memory 1" , transforms it into information elements and ' 
further sends each element to PWM. 

• PWM: it is a temporary area holding information elements from "MMI Simula­
tor" or the knowledge base (KB) database. The information in PWM is processed 
unconsciously. 
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• FWM Process: this process conducts four types of data processing; (i) transport­
ing information elements from PWM to FWM, (ii) prioritizing information elements 
in FWM, by assigning an "Important Index" which is calculated from a "saliency" 
or index of similarity with focal information, (iii) chtmking function of the informa­
tion elements in FWM, and (iv) inference function at FWM with interaction to KB 
database to maintain the context. 

• FWM: it is a limited space where the information is processed consciously. 

• KB Retrieval Process: it retrieves information elements from the KB database 
using keywords coinciding with the information having highest "Important Index". 

• KB Database: it corresponds to the long-term memory. A Petri-net model is 
utilized to model the KB database that stores the real-scale MMI information and 
the detailed operation procedures. 

The further detailed information about the operator simulator is given by the developers 
of SEAMAID [13]. From the above brief description, one would notice that the modeling 
methods have lots of siinilarities to the methods used in HUM OS-PAD since both models 
are developed in accordance with the general human modeling framework. 

By incorporating HUMOS-PAD into SEAMAID, operator's rule-based behaviors are 
simulated by SEAM AID, such as the response operation based on the operation procedures, 
and the knowledge-based behaviors, i.e., anomaly diagnosis, will be simulated by HUMOS­
PAD. The new version of SEAMAID is called here as SEAMAID combined with HUMOS­
PAD (SEAMAID/HUMOUS-PAD). 

The detailed simulation procedures of SEAMAID /HUM OS-PAD are summarized as 
follows, with respect to simulating operator's behaviors in case of an emergency. 

1. SEAMAID will detect the occurrence of an abnormal transient by the alarm in­
formation received from "Share Memory 1" just after the abnormal. Through the 
processing conducted in PWM and FWM, SEAMAID will transfer the alarm infor­
mation to HUMOS-PAD for diagnosing the anomaly, as indicated by the arrow "A" 
in Figure 4.18. 

2. HUM OS-PAD will then diagnose the abnormal transient by applying the anomaly di­
agnosis knowledge summarized as the knowledge database, which has been described 
in detail in the preceding chapter. 

-170-

4. Application of Human Model for the Human Reliability Analysis in 
Probabilistic Safety Assessment 

~---------------------------------------------------------, I 
I I 
I I 

I 
I 

Shared Memory 1 
Alarm information 
Instruments information 

SEAMAID 

PWM 
Unconscious 

World 

FWM 
Conscious World 

Shared Memory 2 
Operator action 
Operator1s position 

'---------------------------------------------------------~ 

SEAMAID/HUM 0 S-PAD 

Figure 4.18: Modeling architecture of operator simulator in SEAMAID /HUM OS-PAD 

3. HU:NIOS-PAD will request to SEAMAID for the symptoms supporting or denying 
the hypotheses recalled in the process of diagnosing abnormal transients, in order to 
examine the hypotheses. The request will be written in PWM and will be transferred 
into FWM afterwards, as indicated by the arrow "B" in Figure 4.18. 

4. As the processing results of the request came from HUMOS-PAD, "KB Retrieval 
Process" will write necessary information to "Share Memory 2" for conducting a pa­
rameter reference. The necessary information will be retrieved from "KB Database" 
that stores the real-scale MMI information and the operation procedures represented 
by Petri-net. 

5. The results of the parameter reference will be then written to "Shared Memory 1" as 
the symptoms required by the anomaly diagnosis in HUMOS-PAD. Through the data 
processing in PWM and FWM, the symptoms will be transferred into HUMOS-PAD 
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for the anomaly diagnosis, as indicated by the arrow "A" in Figure 4.18. So far, one 

processing cycle is completed for the anomaly diagnosis. 

6. Aft er a numbers of processing cycles of anomaly diagnosis, HUMOS-PAD will give 

the diagnosis result to SEAMAID by writing the result to PWM, as indicated by the 

arrow Bin Figure 4.18. SEAMAID will then simulate operator's appropriate response 

operation in accordance with the operation procedures modeled by the Petri-net 

model. 

Anomaly Diagnosis TCR Curves by SEAMAID/HUMOS-PAD 

Five hypotheses have been made by HCR models as described previously. One of them 

states that the technique of normalization will remove the influence of the intrinsic time 

characteristic of the experimental scenario, which is hardware or plant dependent. Further­

more, it is said that the normalization of HCR/ORE curves by the median response time 

had demonstrated the validity of the hypothesis in ORE technical report [1]. Therefore, the 

hypothesis suggests that operator's same cognitive behaviors would generate same pattern 

of normalized TCR curves even in the different MMI environment, and all the differences 

in the MMI environment would be reflected by the median response time. 

The methods are derived from the hypothesis to estimate and validate the anomaly 

diagnosis TCR curves by utilizing SEAMAID / HUMOS-PAD, as described in follows. 

• Conducting numerical experiments in which SEAMAID/HUMOS-PAD will simulate 

operator's cognitive behaviors of anomaly diagnosis. 

• Deriving the anomaly diagnosis TCR curves from the simulation results of the above 

numerical experiments. 

• Comparing the anomaly diagnosis TCR curves obtained by SEAM AID / HUM OS­

PAD with the ones derived from the laboratory experiment. 

To explain the above validation method of the application of SEAMAID/ HUMOS-PAD 

to estimate TCR curves, we give a discussion on the among the three experiments: the 

laboratory experiment the numerical experiments by HUM OS-PAD and the numerical 

experiments by SEAMAID/ HUMOS-PAD, as summarized in Table 4.11. 

First of all, the laboratory experiment is a subject experiment in which the human is 

the examination subject. The rest two experiments are numerical experiments conducted 
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Table 4.11: Differences between the three experiments 

Experiments Laboratory Experiments Numerical Experiments by Numerical Experiments by New 
Human Model Simulation Version SEAMAID Simulation 

Natu re of the 
Subject Experiments Experiments Numerical Experiments Numerical Experiments 

Subject of 
Human beings 

Diagnosis Engine 
the Behaviors Human Model ( the left one introduced 

into SEAMAID) 

Simple one Model of the left 
based on real-scale MMI, 16-screen-configuration Mmodel ofreal-scale 

Utilized MMI MMI in SEAMAID and has a configuration MMI 
of 16 screen displays 

!.Database of information 
!.Database of information about !.Making parameter eference about parameter location 

and switching screen display in the MMI parameter location in the real-

Characteristics by mouse operation, scale MMI 

of the MMI 2.Setting the delay time to 
2. Do not involve physical simulate MMI operation 2. Require physical action such as 

movements such as walking such as parameter reference walking and set the walk 

or screen disolav switch speed to 11 1 m/sec. 11 

Utilized NPP PWR-type training 
Simulator NPP simulator Same as left Same as left 

by computer simulation. The examination subject of the numerical experiments 1s the 

performance of the human models developed to simulate operator's behaviors. 

Next, the most important differences are in the MMI used in those experiments, with 

respect to validate the application of SEAMAID/HUMOS-PAD. A simple 16-window­

configured CRT-based MMI was used in the laboratory experiment. The mouse operation 

is the characteristics of the CRT-based MMI. Therefore, the CRT-based M:NII almost does 

not require the physical actions such as working. The model of the simple CRT-based 

MMI is used in the numerical experiment by HUM OS-PAD. The time delay settings are 

used to model the mouse operation time. The MMI design information is modeled as a 

database storing the location information of parameters. On the other hand, SEAMAID 

provides a MMI model of the real-scale first generation central control room where CRT 

is not utilized. The Petri-net KB database is devised to storing the real-scale MMI design 

information and the oper~tion procedures. Moreover, the working is required to conduct a 

parameter reference in the MMI model used in SEAMAID. The walking speed is set to "1 

meter/ sec." as a standard. 

In the end, all the experiments utilize the same PWR-type NPP simulator to simulate 

the dynamic characteristics of the plant in case of an emergency. 

-173-



0.1 

0.01 

4.5 TCR/HUMOS-PAD Curves and Validation 

Comparison ofHCR curves for diagnosing SGTR 
between SEAMAID simulation and experimental data 
1 " ~ 

m ~ 1 

0.1 

~~ 1 

o~ I 
~:.0 ~ 

~~ I 
z~ . I 

Median Time 
SEAMAID Simulation Data: 137 sec. 
Experimental Data: 67 sec. 

Solid line: HCR curves by SEAMAID Simulation 
Dotted line: HCR curves by Experimental Data 

Normalized Time 
by Median Time 10 

Figure 4.19: Validation of human model by SEAMAID simulation 

The following assumption can be then derived by combining the above comparison of 

the three experiments with the hypothesis about the normalization effect of TCR curves. 

• The normalized TCR curves derived from the three experiments should have the 

same characteristic in the slope of TCR curves, with respect to diagnosing the same 

abnormal transient. 

• The median response ti1ne given by SEAMAID/HUMOS-PAD should be longer than 

the one given by the two other experiments, since the parameter reference requires 

more time in the MMI of SEAMAID than the one in the CRT-based MMI. 

The preceding subsection has conducted the comparisons between the TCR/HUMOS­

PAD and the TCR curves derived from the laboratory experiment, as the validation of 

the application of HUM OS-PAD to HRA/PSA practice. In the rest of this section, the 

discussions are made to clarify the application of SEAMAID/HUMOS-PAD to estimate 

TCR curves in the real-scale simulation environment of NPP. 

Discussions about TCR curves by SEAMAID/HUMOS-PAD 

TCR curve about diagnosing "SGTR" was estimated from the numerical experiments by 

SEAMIAD/HUMOS-PAD, as shown in Figure 4.19 where the corresponding TCR curves 
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derived from the laboratory experiment are also depicted to show the inter-comparison 

between them. From the inter-comparison, one cannotice that the slope of the normalized 

TCR curves of diagnosing "SGTR" agrees well with each other. The results confirmed 

the normalization effect hypothesis of HCR model. Consequently, the validation of the 

application of the human model approach to the HRA/PSA practice is further confirmed 

in the real-scale simulation environment of NPP. 

On the other hand, the median response time reflects the effects of the different MMI 

used in the experiments. One cannotice that the median time in the case of the laboratory 

experiment is almost half of that in the case of SEAMAID/HUMOS-PAD. The difference 

suggests that the CRT-based MMI would give a better response time than the first genera­

tion MMI where one parameter corresponds to one instrument. In fact, the most advanced 

MMis in the NPP industry have reflected the above conclusion, such as the MMI used in 

Advanced Boiling Water Reactor (ABWR) [14] where large display is utilized in the central 

control room, together with the CRT terminals for each operators. 

Suggestions of the future HRA/PSA methods 

The future PSA/HRA methods could be suggested from the application study of HUMOS­

PAD in this chapter, as summarized in Figure 4.20 and explained below. 

1. First to specify the abnormal transient to be analyzed. 

2. If there exists a validated HUMOS-PAD coping with the abnormal transient in the 

HUMOS-PAD database, proceed to step 8. 

3. Conducting small-scale laboratory experiments to analyze the cognitive behaviors of 

the skilled operators of NPP in diagnosing the abnormal transient. The MMI used 

in the laboratory can be a simple CRT-based interface. 

4. Analyzing the experimental data to find out the probabilistic factors and the variation 

distribution. 

5. IVIodeling those probabilistic factors in the modeling framework so that HUMOS­

PAD could simulate well the characteristics of the operators' cognitive activities in 

diagnosing the abnormal transient. 

6. Applying modified HUMOS-PAD to simulate operators' cognitive activities in the 

small-scale experiments and comparing the simulation results with the experimental 
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results. If the simulation results do not agree well with the experimental data, repeat 

step 4 to step 5 until the HUM OS-PAD could reflect well the characteristics of the 

cognitive behaviors of the skilled operators. 

7. Storing the validated HUM OS-PAD in the database of validated HUMOS-PAD cat­

egorized by the type of the abnormal transients. 

8. Utilizing the validated HUM OS-PAD as the diagnosis engine of SEAMAID to conduct 

the real-scale simulation of the man-machine interaction in diagnosing the abnormal 

transient. The MMI design data and operation procedures of a specific given NPP 

can be also modeled by modifying the Petri-net database in SEAMAID. 

9. TCR curves could be then derived from the large numbers of numerical experiments 

by SEAMAID/HOMUS-PAD. The human error probability P2 could be then esti­
mated. 
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4.6 Concluding Remarks 

In this chapter, a new approach is proposed for PSA/HRA in NPP by applying the human 

model simulation methodology. A description about PSA and HRA is given first to ex­

plain the existing human reliability quantification techniques, such as THERP and TRCs 

(Time Reliability Curves). As the results of the review on the methods of HRA, a frame­

work is proposed to describe fundamental human error probability parameters required in 

HRA/PSA. The attention of the study in this chapter is then paid to the human cogni­

tive reliability probability in the framework. The probability is represented generally by 

TRCs which have been estimated by conducting large-scale operator experiments, which 

have some drawbacks such as the necessary large amount of time and considerable cost, 

the limitation in the application of the experimental data. Hence the objective of the 

study in this chapter is set as to estimate the "time versus cognitive reliability (TCR)" 

curves for anomaly detectioin and diagnosis by conducting computer simulations based on 

HUMOS-PAD, called as TCR/HUMOS-PAD. 

Two types of TCR curves have been first derived from the laboratory experiment to 

clarify the probabilistic factors influencing operator's performance of anomlay detection and 

diagnosis, respectively. The probabilistic factors in the anomaly detection are summarized 

as (i) the variation degree of parameters to which subjects feel something wrong and (ii) the 

reference frequency and sequency. Four probabilistic factors are summarized concerning 

the anomaly diagnosis; (i) hypothesis recall, (ii) hypothesis examination sequence, (iii) 

display type of parameter values, and (iv) belief level for decision-making. The effects 

of the probabilistic factors are modeled by the human model adjustment factors in the 

modeling framework of HUMOS-PAD. TCR/HUMOS-PAD curves were then derived in 

following two cases. 

1. TCR/HUMOS-PAD curves for anomaly detection and diagnosis corresponding to the 

ones derived in the laboratory experiment. 

2. TCR curves for anomaly diagnosis in the simulation environment of real-scale central 

control room of NPP by incorporating HUM OS-PAD into SEAMAID as a diagnosing 

engine. 

The validity of the application study of HUMOS-PAD to HRA/PSA is confirmed by con­

ducting inter-comparisons between the former TCR curves (TCR/HUMOS-PAD) curves 

derived by computer simulation and the ones derived from the laboratory experiment. 
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Furthermore, the inter-comparison is also conducted between the TCR curves derived 

from the laboratory experiment and the TCR curves derived from the computer simulation 

based on the SEAMAID combined with HUMOS-PAD. The agreement in the slope of 

the two curves suggests the promising possibility that the computer simulation utilizing 

HUM OS-PAD would be usable for obtaining TCR curves, efficiently, in stead of conducting 

the large-scale experiment with the NPP training simulator. In the end, a procedure is 

suggested to derive TCR curves by the computer simulation based on SEAMAID/HUMOS­

PAD in the future HRA/PSA approach in NPP. 
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Chapter 5 

Conclusion 

In this thesis study, a basic research was conducted on modeling operators' cognitive be­
haviors of detecting and diagnosing abnormal transients in case of an emergency in NPP, 
~iming at contributing to improve the safety and reliability of the total man machine sys­
tem. 

The thesis study was conducted in three steps, as described below. 
In Chapter 2, a laboratory experiment was conducted to examine operators' cognitive 

behaviors of detecting and diagnosing abnormal transients. The obtained experimental 
data from the subjects participated in the laboratory experiment were analyzed to derive 
the following characteristics of human cognitive behaviors at man-machine interface to 
detect and diagnose plant anomalies. 

• Monitoring Strategy 

• Criteria for judging anomaly occurrence 

• Relationship of the first symptom and the first hypothesis 

• The way of recalling, diagnosing, accepting and rejecting a hypothesis during the 
diagnosis process 

• Sets of knowledge for diagnosing abnormal transients 

All these results were ap~lied to develop a human model for simulating subjects' cognitive 
behaviors in this laboratory experiment. 

In Chapter 3, the modeling methods were described in detail for developing the human 
model. The human model was developed in accordance with a general human modeling 
framework where the anomaly detection and diagnosis were modeled separately. 
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The anomaly detection was modeled as the parameter status reference verifying whether 

or not the parameters' value would deviate from the steady status. The employed param­

eter reference model is in accordance with the "monitoring strategy" by grouping plant 

parameters and by setting the reference frequency of the parameter groups. 

The anomaly diagnosis process was modeled as a repeating procedure of recalling 

hypothesis, collecting symptoms, examining the hypothesis, rejecting the hypothesis until 

a hypothesis would be adopted as the root cause of the abnormal transient . The modeling 

methods of each above step are summarized as follows. 

• The relationship of the first symptom and the first hypothesis is utilized to simulate 

the hypothesis recollection. 

• The concepts of "confidence score" and "confidence level" are introduced to model the 

degree of operator 's belief on a hypothesis. The confidence level of a hypothesis will 

be increased or decreased by comparing the parameter's status with the prediction 

whether or not it is in accordance with the hypothesis. 

• The rejection and the adoption of hypotheses will depend on the judgment whether 

or not the current confidence level is beyond a certain threshold defined in advance. 

• The threshold is modeled so that it could be changed to reflect the individual variation 

of human decision-maldng. 

Furthermore, the concept of human modeling adjustment factor is introduced to model the 

individual characteristics of the cognitive behaviors to detect and diagnose an abnormal 

transient. The introduced adjustment factors are (i) the reference frequency of parameter 

group, (ii) the criteria for judging the occurrence of abnormal transient, (iii) the peripheral 

sight effect for the anomaly detection; and (i) the First-Symptom-First-Hypothesis rela­

tionship, (ii) the thresholds of confidence level for rejecting or adopting a hypothesis for 

the anomaly diagnosis. 

Finally, numerical experiments were conducted to validate the human model by con­

necting the human model to the NPP simulator utilized in the laboratory experiments. The 

inter-comparison between the simulation results and the laboratory experimental data were 

made from three aspects: (i) first symptoms, (ii) average anomaly detection time and (iii) 

the detailed diagnosis procedures. The results demonstrated that the human model could 

simulate well both the general and the individual characteristics in the anomaly detection 

and diagnosis. 
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In Chapter 4, an application of the human model for HRA/PSA was conducted. The 

developed human model (named as HUM OS-PAD) was utilized to estimate the "time 

versus cognitive reliability (TCR)" curves which is one of the important REPs required in 

HRA/ PSA. 

TCR curves were firstly derived from the laboratory experiment to clarify the proba­

bilistic factors influencing the performance of anomaly detection and diagnosis, respectively. 

The effects of the probabilistic factors were modeled by the human model adjustment fac­

tors in the modeling framework of HUMOS-PAD. TCR/HUMOS-PAD curves were then 

derived for the following two cases: 

1. TCR/HUMOS-PAD curves for anomaly detection and diagnosis corresponding to the 

ones derived in the laboratory experiment. 

2. TCR curves for anomaly diagnosis in the simulation environment of real-scale central 

control room of NPP by incorporating HUM OS-PAD into SEAM AID as a diagnosing 
engine. 

The validity of the HUMOS-PAD application to HRA/ PSA was confirmed by conduct­

ing inter-comparisons between the TCR curves (TCR/HUMOS-PAD) derived from the 

computer simulation and the ones derived from the laboratory experiment . 

Furthermore, the inter-comparison was also conducted between the TCR curves derived 

from the laboratory experiment and the TCR curves derived from the computer simula­

tion based on SEAMAID/HUMOS-PAD. The good agreement of both curves suggested a 

plausible possibility that the computer simulation utilizing HUMOS-PAD would be usable 

for obtaining TCR curves efficiently, in stead of conducting the large-scale experiment with 

the NPP training simulator. In the end of chapter 4, a procedure was also suggested to 

derive TCR curves by the computer simulation based on SEAMAID/HUMOS-PAD in the 

future HRA/ PSA approach in NPP. 

So far, the findings are summarized for the three study steps. The conclusions of the 

thesis study can be then summrized as follows ; 

• With respect to the human 1node ing approach, the thesis study showed the methods 

to model the inherent variety and diversity in the human cognitive behaviors by 

computer simulation t echnology. 

• With respect to the application of the human modeling approach, the thesis study 

demonstrated the promising prospect for applying the computer simulation technol-
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ogy to estimate the fundamental human cognitive reliability parameters needed in 

HRA/PSA. 

• The thesis study established an innovative methodology for improving and designing 

the man machine interface for the central control room of NPP. 

Moreover, with respect to the general researches on human behaviors in other study fields , 

the thesis study suggested a new methodology to anlayze human behaviors by following the 

three study steps of small-scale experiments, human model developement and application. 

Finally, the following subjects of HUMOS-PAD are remaining for the further study. 

• Improvement of HUMOS-PAD 

The improvements are necessary with respect to applying HUMOS-PAD to estimate 

various anomaly diagnosis TCR curves, in order to establish a new methodology to 

replace the large-scale experiment. 

• Modeling of Operation Crew 

As described previously in Chapter 3, the modeling of operation crew is one of the 

subjects remaining in the human model study. The human-human communication 

function is necessary to model the behaviors of the operation crew, especially the 

verbal communication. In fact, the study on visualization of the diagnosis process of 

HUMOS-PAD by synthesis voice has been started [1] as the first step of the human­

human con1munication. 

• Contribution to the next generation MMI 

As one of the application of HUMOS-PAD, it has been utilized as the brain of a 

virtual collaborator: an innovative interface agent system between human and plant 

[2, 3, 4]. The virtual collaborator is proposed as the next generation MMI of NPP. 

As the collaborator of human beings, the various aspects of human behaviors are 

required to model, such as en1otion, verbal communication, learning effects. 
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Figure A.13: Pressurizer pressure control monitor system 
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Appendix B 

Discussion on the 
OSH-Auto-Recording Function 

In order to record the subjects' operation information more exactly, the function of the 
MMI simulator utilized in this laboratory experiment is expanded so that it can record 
subject's operation automatically. Since the most of the subjects' MMI operation in the 
laboratory experiment is through moving or clicking the mouse input device, the recording 
method is fundamentally based on recording subjects' mouse operation. 

By recording the mouse operation of clicking buttons shown on the CRT -based in­
terface, switching interface window and detecting/identifying an abnormal transient can 
recorded easily. However, the method cannot record subject's parameter reference since 
the parameter reference may not involve a mouse operation. Therefore, to record subject's 
behaviors of parameter reference exactly, a solution is proposed. The solution requires sub­
jects to move the mouse point when he makes a parameter reference. The detail description 
is given by Figure B.l and is discussed as follows. 

• First of all, such solution is derived from the conventional researches. It had been 
confirmed by the conventional study that when the subjects make a parameter ref­
erence, they are likely to move the mouse pointer to the region around the target 
parameter. 

• As described previo~sly, the subjects' behaviors can be divided into monitoring phase 
and diagnosing phase. In MP, since the information on "Summary" window gives a 
general overview of the total plant system, the subjects' monitoring operation is 
concentrated in "Summary" window. In "Summary" window, all parameter values 
are shown in the correspondent "parameter frame" , as shown in Figure B .1. In 
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Parts ofMMI 

Prz.Prs~G 
Prz.Lvl c==j~ 

Figure B.l: Show and hide parameter value by movement of mouse pointer 

order to record subjects' monitoring operation, they wereasked explicitly to move 

the mouse pointer onto the frame corresponding to the parameter he want to check. 

• After the detection of an abnormal transient, that is in the diagnosis phase, not only 

the "summary" window, the subjects also switch to the sub-windows to get more 

detail information about the plant sub-systems. In such sub-windows, as shown in 

Figure B.l, the value of parameters and the trend graphs demonstrating parameters' 

value variation will not be shown in the correspondent frame unless the mouse pointer 

is moved onto the frame. Thus, the subjects "have to" move the mouse pointer. 

• The reason why make such restriction to subjects' operation is that the operators' 

behaviors in DP are considered as a kind of "target-parameter-driven" behaviors. 

"Target-parameter-driven" means here that before the reference activities, what pa­

rameters should be checked are specified by the subject based on the anomaly hy­

pothesis recalled into his mind. It is the main difference between the parameter 

reference activities in MP and DP. Such features can be also considered as one of 

the differences between experts (e.g. skilled operators) and amateurs (e.g. students). 

Rather than randomly searching abnormal symptoms in the case of students, skilled 

operators tend to check parameters' status based on a hypothesis. Therefore, hiding 

out parameters' value or trend curves from subjects' view will not disturb subjects' 

diagnosis task. 

However, by such recording method, it is possible to get wrong information when the 

subject moves the mouse pointer just to pass through a parameter frame. Therefore, in 
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order to avoid such wrong record, only if the mouse pointer is put on the corespondent 

frame more than 0.3 seconds, the correspondent parameter value will be shown in the 

frame. 
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Appendix C 

Detailed Data on Detection Time by 
Human Models 

Table C.l: The comparison of the average detection time 
Type of 

Subject A Model A Subject I Model I Subject T Model T Abnormal 
Transient 

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) 
SGTR 11 8.25 11.67 16.7 12.8 11.3 

RCS BIG 59 48 44.8 57.5 62.5 32.5 
RCS SMALL 69.5 61.5 87 65 78 57.5 

FW Cnt V 18 18.5 23 .5 14 21 15 
PRZ.Prs H 7.5 14.7 16.7 13 11 11 
PRZ.Prs L 24.5 30.5 42 32 45 53.5 

Spary S 14.7 25.3 26.25 18 26 36 
Spary B 7 20.7 13 15.7 11 11.7 

PRZ.Lvl L 14.7 8.7 23 34.7 83 57.5 
PRZ.Lvl H 12.5 8 25 40 29.5 47.5 

NIS 10 10.7 16 15 14.25 13.3 
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Table C.2: The detailed data about the detection time by human models 

Type of 
Time by 

Average 
Time by 

Average 
Time by 

Average Model of Model of Model of Abnormal 
"Subject A" 

Time 
"Subject I" 

Time 
"Subject T" Time 

transient (sec.) 
(sec.) 

(sec.) 
(sec.) 

(sec.) 
(sec.) 

8.0 19.0 16.0 
14.0 

8.3 
20.0 

16.3 
12.0 

11.3 SGTR 
5.0 10.0 4.0 
6.0 13.0 

RCS Middle 
45 .0 

48.0 
46.0 

57.5 39.0 
32.5 51.0 69.0 26.0 

RCS Small 
56.0 

61.5 
62.0 

65.0 37.0 57.5 
67.0 68.0 78.0 
32.0 

18.5 
17.0 

14.0 10.0 15.0 FW_Cnt_V 
5.0 11.0 20.0 

27.0 17.0 19.0 11.0 
PRZ.Prs_H 10.0 14.7 17.0 13.0 6.0 

7.0 5.0 8.0 
PRZ.Prs_L 19.0 

30.5 
42.0 32.0 63.0 53.5 

42.0 22.0 44.0 
25.0 27.0 18.0 28.0 36.0 

Spary_S 23 .0 25 .3 17.0 72.0 
28.0 10.0 8.0 
15.0 21.0 15.7 14.0 11.7 

Spary_B 24.0 20.7 16.0 15.0 
23 .0 10.0 6.0 
4.0 51.0 34.7 29.0 57.5 
5.0 21.0 56.0 
17.0 

8.7 
32.0 10.0 PRZ.Lvl_L 

14.0 
85.0 
151.0 

5.0 54.0 40.0 36.0 47.5 
PRZ.Lvl_H 12.0 8.0 20.0 59.0 

7.0 46.0 
6.0 12.0 15.0 17.0 13.3 

NIS 15.0 10.7 9.0 14.0 
11 .'0 24.0 9.0 
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Appendix D 

Modeling of First Hypothesis 
Recalled by Subjects 

Table D.l: Modeling of recalling the first hypothesis in the case of "Subject I" 

First Symptom 
First hypothesis of Settings in Model 

Subject I of Subject I 
SG-Lvl FW related ( 1 OOo/o) FW related 

PRZ.Cont.F (10%), 

PRZ-prs Small RCS/SGTR(80% ), 
RCS Leakge in Gas phase of 

PRZ.(10%) 
PRZ-prs Big Reactor related ( 100%) Reactor related 

PRZ-lvl small. RCS (100%) RCS 
CVCS-in Bi_g RCS (100%) RCS 

CVCS-in Small 
PRZ. Lvl. Cont. F. 

PRZ. Lvl. Cont. F. ( 100%) 
FW. Lvl. Bi_g_ FW related ( 1 OOo/o) FW related 

Reactor Out.Q_ut Reactor related ( 1 00%) Reactor related 
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Appendix D: Modeling of First Hypothesis Recalled by Subjects 

Table D.2: Modeling of recalling the first hypothesis in the case of "Subject A" 

First Symptom 
First hypothesis of Settings in Model 

Subject A of Subject A 

SG-Lvl small FW control failure( 1 OOo/o) FW contra 1 failure 

PRZ-prs big or small PRZ. Prs. Control failure(lOOo/o) 
PRZ. Prs. Control 

failure 

PRZ-lvl small. 
PRZ. Lvl. Control PRZ. Lvl. Control 

failure( 1 00%) failure 
CVCS-in big or PRZ. Lvl. Control PRZ. Lvl. Control 

small failure( 100%) failure 
FW small FW control failure( 1 OOo/o} FW control failure 

Reactor-out}:)ut big Reactor related_( 1 00% l Reactor related 
Steam-flow big FW control fai lure(100%) FW control failure 

Table D.3: Modeling of recalling the first hypothesis in the case of "Subject T" 

First Symptom 
First hypothesis of Settings in Model 

Subject T of Subject T 

FW. Flow small 
FW control system failure FW control system 

(100%) failure 
PRZ.Cont.F (93%) PRz. Prs.control 

PRZ-prs Small 
RCS(7%) s_ystem failure 

PRZ. prs control system 
PRz. Prs.control 

PRZ-prs Big failure(? 5%) 
system failure 

Reactor related (25%) 

PRZ-lvl big or small 
PRZ. Lvl. Control system PRZ. Lvl. Control 

failure ( 1 00%) system failure 
RCS_(50%) 

CVCS-in big PRZ. Prs control system RCS 
failure( 50%} 

Reactor related( 1 00%) 
PRz. Prs.control 

Reactor output 
system failure 
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Appendix E 

Methods to Derive TCR Curves in 
HCR/ ORE 

Figure E.1 illustrates the procedure to derive time cognitive reliability in HCR/ORE. TCR 

curves were derived by the methods as well from the laboratory experimental data. 

In the upper graph of Figure E.1, the horizontal axis represents the time taken to 

response to the required event, and the vertical axis represents the number of experimental 

trials in which operator had successfully responded to the event until the required time. In 

other words, if an abnormal transient occurs at t0 , then it means that until t1 including tt, 
the number of the experimental trials in which operator successfully detected/ diagnosed the 

abnormal transient is 1, until t 2 including t 2 the number is 2, ... , and until t.;, including t 1 

the number is i. From the upper graph, it is demonstrated that when an abnormal transient 

occurs, since the incapability of understanding the situation well, only few operators can 

respond to the event immediately just after the initiation of the event. However, as time 

goes by, the number of trials in which operators can respond to the event successfully will 

increase. 

As the experiment data processing, the whole time span after the beginning of the 

even is divided into (N + 1) time sections, which are t 0 rv t1, ... , tN-l rv tN, tN I"V oo. to 
represents the time when an abnormal transient occurs. Provided the simulation trials are 

independent and do not exert any influence to each other, the response probability in each 

time section could be assumed same as N~l. Hence the response probability by the time 

ti would be given by [i x (N~l )] and the response probability will be 1 by the time oo. 

Finally, by [1 - i x (N~l )], the non-response probability at time i will be obtained. Until 

now, the data processing can be summarized by the following equation. 

Pi(non- response) == Pr(response time> ti) 

-209-



Appendix E: Methods to Derive TCR Curves in HCR/ORE 
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Figure E.1: Method of calculating non-response probability 
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'L 
~1--­

N+1 
i = 1, 2, .. . , N (E.1) 

where Pi is the non-response probability by the time ti, Pr is the response probability for 

the case where response time is over ti, i is the i'th data point, t, is the i 'th response time 

in the ascending sequences of response time, and N is the total nu1nber of samples. 

Based on the equation, the curve describing the relationship of non-responsibility and 

time is shown in the lower graph of Figure E.1. 
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Appendix F 

All TCR Curves Derived from 
Laboratory Experiment 

Anomaly Dete"ction TCR Curves 

Total 12 types of anomlay diagnosis TCR curves derived from the laboratory, as shown 

in the figures F.1 ,..._, F.12 from next page. The figures show the normalized TCR curves 
together with the valid sampling numbers and the median time. 
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Figure F.1: TCR curves for detecting "PRZ.Spray V. Fail small" 
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Figure F.3: TCR curves for det ecting "RCS leakage middle-scale" 
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Figure F.4: TCR curves for detecting "FW . flow sensor failure" 
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Figure F. 7: TCR curves for detecting "PRZ.Lvl. Cont. Fail-low" 
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Figure F.8: TCR curves for detecting "PRZ.Lvl. Cont. Fail-high" 
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Figure F .12: TCR curves for det ecting "PRZ.Prs. Cont. fail-high" 
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Anomaly Diagnosis TCR Curves 

Total 9 types of anomlay diagnosis TCR curves derived from the laboratory, as shown in 
the figures F.l3 "" F.21 from next page. The figures show the normalized TCR curves 
together with the valid sampling numbers and the median time. 
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Figure F.l3: TCR curves for diagnosing "PRZ.Prs. Cont. fail-high" 
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Figure F.l4: TCR curves for diagnosing "PRZ. Spray V. Fail big" 
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Figure F.l6: TCR curves for diagnosing "PRZ.Lvl. Cont. Fail-low" 
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Figure F .18: TCR curves for diagnosing "FW. flow sensor failure" 
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