<table>
<thead>
<tr>
<th>Title</th>
<th>The initial value problem for semilinear Schrödinger equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chihara, Hiroyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-05-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3125004</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
</tbody>
</table>

Kyoto University

京都大学
The initial value problem for semilinear Schrödinger equations

Hiroyuki CHIHARA

1997
Contents

1 Introduction

2 Linear estimates
 2.1 Theory of linear Schrödinger-type equations
 2.2 Linear estimates in one space dimension
 2.3 Linear estimates in general space dimensions

3 Preliminaries
 3.1 Gagliardo–Nirenberg–Moser estimates
 3.2 Decay estimates for cubic semilinear equations
 3.3 L^p-L^q estimates and quadratic semilinear equations
 3.4 Parabolic regularization

4 Local existence for semilinear Schrödinger equations
 4.1 Introduction to local existence theorems
 4.2 Local existence for semilinear Schrödinger equations in one space dimension
 4.3 Local existence for semilinear Schrödinger equations in general space dimensions

5 Global existence for semilinear Schrödinger equations
 5.1 Introduction to global existence theorems
 5.2 Proof of Part (i)
 5.3 Proof of Part (ii)
 5.4 Proof of Part (iii)

6 The initial value problem for the elliptic–hyperbolic Davey–Stewartson equation
 6.1 Introduction to the Davey–Stewartson equation
 6.2 Linear Estimates for the Davey–Stewartson equation
 6.3 Preliminaries for the Davey–Stewartson equation
 6.4 Proof of local existence theorem
 6.5 Proof of global existence theorem

1
Chapter 1

Introduction

The present thesis is concerned with the initial value problem for semilinear Schrödinger equations of the form:

\[\begin{align*}
 \partial_t u - i \Delta u &= F(u, \nabla u) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N, \\
 u(0, x) &= u_0(x) \quad \text{in} \quad \mathbb{R}^N,
\end{align*} \tag{1.1, 1.2} \]

where \(u(t, x) \) is \(\mathbb{C} \)-valued, \(\partial_t = \partial/\partial t, \partial_j = \partial/\partial x_j \quad (j = 1, \ldots, N), \nabla \cdot (\partial_1, \ldots, \partial_N), \Delta = \partial_1^2 + \cdots + \partial_N^2, i = \sqrt{-1} \) and \(N \in \mathbb{N} \) is the spatial dimension. Throughout the present thesis, we deal with the power nonlinearity. More precisely, we assume that the nonlinear term \(F(u, q) : \mathbb{C} \times \mathbb{C}^N \to \mathbb{C} \) satisfies

\[F(u, q) \in C^\infty(\mathbb{R}^2 \times \mathbb{R}^{2N}; \mathbb{C}), \]

\[F(u, q) = O(|u|^\rho + |q|^\rho) \quad \text{near} \quad (u, q) = 0 \]

with some integer \(\rho \geq 2 \). The variable \(q \) corresponds to \(\nabla u = (\partial_1 u, \ldots, \partial_N u) \). In the same way as the complex analysis, we define \(\partial/\partial u, \partial/\partial \bar{u}, \partial/\partial q_j \) and \(\partial/\partial \bar{q}_j \) by

\[\begin{align*}
 \frac{\partial}{\partial u} &= \frac{1}{2} \left(\frac{\partial}{\partial v_0} - i \frac{\partial}{\partial w_0} \right), & \frac{\partial}{\partial \bar{u}} &= \frac{1}{2} \left(\frac{\partial}{\partial \bar{v}_0} + i \frac{\partial}{\partial \bar{w}_0} \right), \\
 \frac{\partial}{\partial q_j} &= \frac{1}{2} \left(\frac{\partial}{\partial v_j} - i \frac{\partial}{\partial w_j} \right), & \frac{\partial}{\partial \bar{q}_j} &= \frac{1}{2} \left(\frac{\partial}{\partial \bar{v}_j} + i \frac{\partial}{\partial \bar{w}_j} \right),
\end{align*} \]

where \(v_0 = \text{Re} \, u, w_0 = \text{Im} \, u, v_j = \text{Re} \, q_j, w_j = \text{Im} \, q_j, \quad j = 1, \ldots, N. \)

Now we will give a few remarks on the technical terms. In the theory of partial differential equations, we usually call the nonlinearity of the equation (1.2) and the problem (1.1)-(1.2) semilinear and the initial value problem respectively. Someone calls (1.1) nonlinear Schrödinger equation and another one calls (1.1)-(1.2) the Cauchy problem. In mathematical physics, the word "nonlinear Schrödinger equation" means semilinear
Chapter 1. Introduction

Schroedinger equation whose nonlinear term $F(u, q)$ is independent of q. Especially, in the soliton theory, the nonlinear term of nonlinear Schrodinger equation is $F(u, q) = \rho|u|^2u$, where $\gamma \in \mathbb{R} \setminus \{0\}$. On the other hand, the word “Cauchy problem” means sometimes the initial value problem for kowalewskian-type of partial differential equation:

$$\partial_t^m u = \sum_{|\alpha| + j = m} a_{\alpha,j}(t, x) \partial^\alpha \partial_x^j u = f(t, x) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N.$$

Here ν is a positive integer. Kowalewskian-type of partial differential operators requires that $|\alpha| + j$ is less than or equal to the highest order of the differentiation with respect to the time variable t.

The past two decades, studies on the completely integrable systems have been very popular in mathematical physics. Someone presented or obtained new integrable systems and another one proved that certain systems were completely integrable formally or mathematically. Most of partial differential equations and systems appearing in this subject model the phenomena of the propagation of dispersive waves. Roughly speaking, the dispersive wave means that its propagation speed changes in accordance with its frequency.

As typical examples of such equations and systems, we cite the Korteweg-de Vries equation

$$\partial_t u + \partial_x^3 u + iv \partial_x u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

the Benjamin-Ono equation

$$\partial_t u + |D| \partial_x u + iv \partial_x u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

the Boussinesq equation

$$\partial_t^2 u + \partial_x^3 u + i \partial_x \partial_x^2 u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

the nonlinear Schrodinger equation

$$\partial_t u - i \partial_x^2 u \pm i|u|^2 u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

and the elliptic elliptic Davey-Stewartson equation

$$\partial_t u - i \Delta u - i |u|^2 u + i R_{ij} |u|^{2j} u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R}^2,$$

where c is \mathbb{R}-valued, w is \mathbb{C}-valued, $|D| = (-\partial_x^2)^{1/2}$ and $R_{ij} = \partial_{ij}/|D|$ is the Riesz transformation.

The above equations can be seen as

$$\left(I, \partial_t + i \rho(D) \right) U = F(U, \partial U, \cdots, \partial^{m-1} U) \quad \text{in} \quad \mathbb{R} \times \mathbb{R}^N.$$

where $U(t, x)$ is \mathbb{R}^n or \mathbb{C}^n-valued ($n = 1, 2, 3, \cdots$). I_n is the $n \times n$ identity matrix, $p(\xi)$ is a $n \times n$ matrix-valued symbol satisfying $p(\xi) \in (S^m)^{n \times n}$ and $\rho(\xi)^{-1} p(\xi) \in (S^{m-1})^{n \times n}$.

For the definition of the class S^m, see Section 2.3

To illustrate the dispersive property. We consider the simplest Schroedinger equation in one space dimension

$$\partial_t u - i \partial_x^2 u = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

and we will find the plane-wave solution to (1.5). The substitution of

$$u(t, x) = e^{i(\xi t + \xi^2)} \quad (\xi \in \mathbb{C}, \xi \in \mathbb{R})$$

into (1.5) implies the relationship between the propagation speed c and the frequency ξ:

$$c(\xi) = -\xi^2.$$

This asserts that c must be a real number and that the larger the frequency ξ is, the larger the propagation speed c becomes. In mathematical physics a relationship like (1.6) is called the dispersion relation. Then, let us call equations and systems like (1.4) nonlinear dispersive equations and systems respectively.

Some of nonlinear dispersive equations and systems cannot allow the classical energy estimates. In other words, the regularity of solutions to these equations and systems cannot follow from the usual L^2-type estimates. This means that it is difficult to solve the initial value problems for these equations and systems in C^{∞}-category. We remark here that we can always get analytic solutions to such problems by means of so-called abstract Cauchy-Kowalewski theorem. More precisely, if the nonlinear term is real-analytic with respect to all variables, and if the initial data is analytic in some product domain of strips containing real lines, then we can get a unique solution which is analytic with respect to the spatial variables in the product domain of small strips.

To explain this situation, let us consider the initial value problem for linear Schroedinger equations with constant coefficient:

$$\partial_t w - i \partial_x^2 w + i \alpha \partial_x w = 0 \quad \text{in} \quad \mathbb{R} \times \mathbb{R},$$

$$w_0(x) = 0 \quad \text{in} \quad \mathbb{R},$$

where α is a positive constant. Let $\phi(\xi)$ satisfy

$$\phi(\xi) = \begin{cases} 1, & \xi \in (0, 1), \\ 0, & \text{otherwise}. \end{cases}$$

We put $\phi_n(\xi) = \phi(\xi - n), n = 1, 2, 3, \cdots$. Formally, the solution to (1.7)–(1.8) is written as

$$w(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{it\xi + \alpha t^2} \phi(\xi) \, d\xi,$$

$$w_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{it\xi} w_0(x) \, d\xi.$$
If we put \(n_0(\xi) = \phi_0(\xi) \), then the Plancherel-Parseval formula implies
\[
\left\| u(t) \right\|_{L^2}^2 = \left\| \hat{u}(t) \right\|_{L^2}^2 = \int_{\mathbb{R}} e^{2\pi i \xi t} \left| \phi_0(\xi) \right|^2 d\xi = \int_{\mathbb{R}} e^{2\pi i \xi t} \left| n_0(\xi) \right|^2 d\xi = \left\| n_0 \right\|_{L^2}^2 \geq \left\| n \right\|_{L^2}^2 = 2 \, \frac{n}{1 + |n|^2} \sum_{j=1}^N (\partial_j u)^2 \text{ in } \mathbb{R} \times \mathbb{R}^N, \tag{1.10}
\]
(1.10) asserts that for any large constant \(R > 0 \) and for any short time \(t > 0 \), there exists an entire function \(n_0(x) \) such that \(\left\| n_0 \right\|_{L^2} = 1 \) and \(\left\| \hat{n}(t) \right\|_{L^2} \geq R \). When either \(\alpha \) or \(t \) is a negative number, the same is true provided that \(n \in \mathbb{Z} \) is negative and \(|n| \) is sufficiently large. This example shows that if the imaginary part of the coefficient of the first order term \(\alpha \) does not vanish, then the initial value problem (1.7)-(1.8) is not \(L^2 \)-well-posed. Namely, we can solve (1.7) (1.8) only in some analytic function space unless \(\alpha = 0 \). This fact is very close to the method of the abstract Cauchy-Kowalewski theorem.

In mathematical physics, there are some nonlinear dispersive equations which do not allow the classical energy estimates. As examples, we cite the (generalized) Heisenberg ferromagnetic model
\[
\partial_t u - i \Delta u = \frac{-2in}{1 + |n|^2} \sum_{j=1}^N (\partial_j u)^2 \text{ in } \mathbb{R} \times \mathbb{R}^N, \tag{1.11}
\]
the Zakharov equation
\[
\partial_t u - i \Delta u = \left(\int_0^t \left[\left| \partial_t \right| \left| \Delta \right| \right] a \, |u|^2 \right) u + |u|^2 u \text{ in } \mathbb{R} \times \mathbb{R}^N, \tag{1.12}
\]
the long wave-short wave resonance equation
\[
\partial_t u - i \partial^2_x u = \left(\int_0^t \partial_x u(\tau)^2 d\tau \right) a + |u|^2 u \text{ in } \mathbb{R} \times \mathbb{R}, \tag{1.13}
\]
and the elliptic hyperbolic Davey-Stewartson equation
\[
\partial_t u - i \partial^2_y u = \frac{2i \alpha}{1 + |n|^2} \sum_{j=1}^N (\partial_j v_j)^2 \text{ in } \mathbb{R} \times \mathbb{R}^N, \tag{1.14}
\]
where \(\alpha, \alpha_1, \alpha_2 \in \mathbb{R} \) are constants. We remark here that the original Heisenberg ferromagnetic model is formulated by
\[
\partial_t S = S \wedge \Delta S \text{ in } \mathbb{R} \times \mathbb{R}^N. \tag{1.15}
\]
Acknowledgement

The author would like to express his sincere gratitude to Professor Yujiro Ohya for his constant encouragement and valuable advice from when the author was his student of master course. In particular, when the author was his student of doctor course, he recommended the author to study A. Soyeur’s paper [44]. This is the beginning of the author’s study on this subject. The author is also grateful to Professor Shigeo Tarama for his helpful comments and valuable advice. Finally, the author thanks to Dr. Soichiro Katayama for his helpful comments and conversations.

Chapter 1. Introduction

Here we summarize notations used throughout this thesis except for Chapter 6, where we make use of another notations.

\[
\begin{align*}
\mathbb{N} &= \{1, 2, 3, \ldots\}, \quad \mathbb{Z} = \{0, 1, 2, \ldots\}, \quad D_j = -i \partial_j, \quad D = (D_1, \ldots, D_N) = -i \nabla, \quad \partial_k = \partial_{(k_1, \ldots, k_N)}, \quad \partial_k = (\partial_{k_1}, \ldots, \partial_{k_N}), \quad \text{for } j = 1, \ldots, N, \\
J_k u &= e^{-(1/4 + i)t} u (1 + t) \partial_k \left(e^{-1/4 + i} u \right) = (x_k + i(1 + t) \partial_k) u, \\
J'_k u &= e^{-(1/2 + i) t} 2it \partial_k \left(e^{-1/2 + i} u \right) = \left(x_k + i(1 + t) \partial_k \right) u,
\end{align*}
\]

for \(k = 1, \ldots, N \), where \(\theta(t, x_k) = x_k^2 / 4(1 + t) \). \(J = (J_1, \ldots, J_N) \), \(x^\alpha = x_1^{\alpha_1} \cdots x_N^{\alpha_N} \), \(\partial^\alpha = \partial_1^{\alpha_1} \cdots \partial_N^{\alpha_N} \), \(D^\alpha = D_1^{\alpha_1} \cdots D_N^{\alpha_N} \), \(\partial_k^\alpha = \partial_{k_1}^{\alpha_1} \cdots \partial_{k_N}^{\alpha_N} \), \(J^\alpha = J_1^{\alpha_1} \cdots J_N^{\alpha_N} \), \(\alpha! = \alpha_1! \cdots \alpha_N! \), \(|\alpha| = \alpha_1 + \cdots + \alpha_N \), for any multi index \(\alpha = (\alpha_1, \ldots, \alpha_N) \in (\mathbb{Z}_+)_N \).

\[
\begin{align*}
W^{s,r} &= W^{s,r}(\mathbb{R}^N) = \left\{ u \in S(\mathbb{R}^N) \mid \|u\|_{W^{s,r}} = \left(\int \|D^{\alpha} u(x)\|_{L^r}^{s} \right)^{1/r} < \infty \right\}, \\
L^s &= W^{0,s}, \quad L^r = W^{0,s} \text{ for } s \in \mathbb{R} \text{ and } 1 \leq r < \infty, \\
W^{s,\infty} &= W^{s,\infty}(\mathbb{R}^N) = \left\{ u \in S(\mathbb{R}^N) \mid \|u\|_{W^{s,\infty}} = \text{ess}\sup \|D^{\alpha} u\|_s < \infty \right\}, \\
L^\infty &= W^{0,\infty}, \text{ for } s \in \mathbb{R}, \\
H^{s,s'} &= H^{s,s'}(\mathbb{R}^N) = \left\{ u \in S'(\mathbb{R}^N) \mid \|\langle x \rangle^{s} (D^s)^{1/2} u\|_{L^2} < \infty \right\}
\end{align*}
\]

for \(s, s' \in \mathbb{R} \). \(\|\cdot\| \) means \((H^s)^2\)-norm. In particular, \(\|\cdot\| \) and \(\langle \cdot, \cdot \rangle \) mean \((L^2)^2\)-norm and \((L^2)^2\)-inner product respectively. \(D' = D' (\mathbb{R}^N) \) is the set of all distributions on \(\mathbb{R}^N \). \(S = S(\mathbb{R}^N) \) and \(S' = S'(\mathbb{R}^N) \) denote the Schwartz class and its topological dual respectively.

The operator \((D)^s\) is defined by

\[
(D)^s u = (2\pi)^{-N} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{e^{i(x-y)\xi}}{\|\xi\|^s} u(y) dy d\xi \quad \text{for } u \in S,
\]

and is extended on \(S' \) via the duality. \(B^s = B^s(\mathbb{R}^N) \) is the set of all \(C^s \)-functions on \(\mathbb{R}^N \), whose derivatives of any order are all bounded. When \(X \) and \(Y \) are normed vector spaces, \(\mathcal{L}(X,Y) \) and \(\mathcal{L}(X) \) are the set of all bounded linear operators from \(X \) to \(Y \) and from \(X \) to \(X \) respectively. \((x_1, \ldots, x_j, \ldots, x_N) \) for \(x \in \mathbb{R}^N \) and \(j = 1, \ldots, N \). \(\delta_{jk} \) is Kronecker's delta; i.e., \(\delta_{jk} = 1 \) if \(j = k \), \(\delta_{jk} = 0 \) otherwise. \([s] \) means the largest integer less than or equal to \(s \geq 0 \). Different positive constants might be denoted by the same letter C.
Chapter 2

Linear estimates

2.1 Theory of linear Schrödinger-type equations

In this section we introduce the theory of linear Schrödinger-type equations. This theory plays an essential role to obtain the energy estimates of solutions to semilinear equations. We start with the initial value problem of the form:

\[Su = \left(\partial_t - i \Delta + \sum_{j=1}^{N} b_j(x) \partial_j + r(x) \right) u = f(t, x) \quad \text{in} \quad \mathbb{R} \times \mathbb{R}^N, \tag{2.1} \]

\[u(0, x) = u_0(x) \quad \text{in} \quad \mathbb{R}^N, \tag{2.2} \]

where the coefficients \(b_1(x), \ldots, b_N(x) \) belong to \(\mathcal{B}_0(\mathbb{R}^N) \).

The purpose of the linear theory is to characterize Schrödinger-type operators. To explain the detail, we introduce the notion of well-posedness. Let \(X \) be a Fréchet space contained in \(\mathcal{D}'(\mathbb{R}^N) \). We say that the initial value problem (2.1)-(2.2) is \(X \)-well-posed in the both direction of \(t \in \mathbb{R} \) if and only if for any \(u_0(x) \in X \) and for any \(f(t, x) \in L^1_{\text{loc}}(\mathbb{R}; X) \), there exists a unique solution \(u \in C(\mathbb{R}; X) \) to (2.1)-(2.2). In view of Banach’s closed graph theorem, this is equivalent to the apparently stronger condition, that is for any \(u_0(x) \in X \) and for any \(f(t, x) \in L^1_{\text{loc}}(\mathbb{R}; X) \), there exists a unique solution \(u \in C(\mathbb{R}; X) \) to (2.1)-(2.2) and the map \((u_0, f) \mapsto u \) is continuous linear operator from \(X \times L^1_{\text{loc}}(\mathbb{R}; X) \) to \(C(\mathbb{R}; X) \). According to S. Mizohata ([35]), \(S \) is a Schrödinger-type operator if and only if (2.1)-(2.2) is \(H^N \)-well-posed in the both direction of \(t \in \mathbb{R} \).

Historically, first J. Takeuchi ([47], [48]) studied the necessary condition of \(L^2 \)-well-posedness. After some improvement of S. Mizohata ([36], see also [35]), the necessary condition is

\[\sup_{x \in \mathbb{R}^N} \left| \int_{\mathbb{R}} \sum_{j=1}^{N} b_j(x + \omega \tau) \omega_j d\tau \right| < +\infty. \tag{2.3} \]
Chapter 2. Linear estimates

We note here that when $N = 1$, (2.3) becomes

$$\sup_{x \in \mathbb{R}} \left| \text{Im} \int_0^x b(y)dy \right| < +\infty, \quad (2.4)$$

where $b(x) = b_1(x)$. Roughly speaking, (2.3) means that $\text{Im} b_1(x), \ldots, \text{Im} b_N(x)$ must be improperly Riemann integrable for any line in \mathbb{R}^N. In particular, (2.4) is the necessary and sufficient condition for L^2-well-posedness. In fact, if we assume (2.4), then a gauge transformation

$$u(x) \mapsto v(x) = u(x)k_0(x), \quad (2.5)$$

$$k_0(x) = \exp \left(\frac{i}{2} \int_0^x b(y)dy \right)$$

is an automorphism in $L^2(\mathbb{R})$, and (2.1)-(2.2) becomes

$$\left(i\partial_t - i\partial^2 + c(x) \right)v = k_0(x)f(t,x) \quad \text{in} \quad \mathbb{R} \times \mathbb{R}, \quad (2.6)$$

$$v(0,x) = u_0(x)k_0(x) \quad \text{in} \quad \mathbb{R}, \quad (2.7)$$

Since the first order term $b_1(x)\partial_t$ is canceled out by the commutator $[k_0(x), -i\partial^2]/k_0(x)$, one can easily solve (2.6)-(2.7). Thus, this shows that (2.4) is also the sufficient condition of L^2-well-posedness.

Secondly, S. Mizohata ([36], see also [35]) studied the sufficient condition of L^2-well-posedness with general space dimensions. He developed the above idea directly. Under the appropriate condition which is stronger than the necessary condition (2.3), he constructed a transformation $u \mapsto K(t)u$ such that this was an automorphism in $L^2(\mathbb{R}^N)$ and the commutator $[K(t), -i\Delta]K^{-1}$ coincided with $\sum_j b_j(x)\partial_j$. In this case, $K(t)$ is a pseudo-differential operator which belongs to $\text{OPS}_{\text{reg}}(\mathbb{R}^N \times \mathbb{R}^N)$ (see [33]).

Thirdly, developing the ideas of J. Takeuchi and S. Mizohata, W. Ichinohe ([24] and [25]) studied H^∞-well-posedness. His results are natural extension of L^2-well-posedness in a sense.

We remark here that if $\text{Im} b_1(x), \ldots, \text{Im} b_N(x)$ satisfy

$$i\partial^j_1(\text{Im} b_1(x)) - i\partial^k_j(\text{Im} b_j(x)) = 0 \quad \text{for} \quad x \in \mathbb{R}^N, j, k = 1, \ldots, N, \quad (2.8)$$

then a gauge transformation

$$u(x) \mapsto v(x) = u(x) \exp \left(\frac{1}{2} \int_0^x \sum_j b_j(sx_1)ds \right) \quad (2.9)$$

is also available in the same way as (2.6)-(2.7). When $N = 1$, (2.8) is satisfied automatically. S. Tarama ([46]) obtained the necessary and sufficient condition for H^∞-well-posedness under the condition (2.8) by using the gauge transformation (2.9). In the same way, we can prove that (2.3) is the necessary and sufficient condition for L^2-well-posedness under the condition (2.8). Some of semilinear Schrödinger equations satisfy (2.8). In terms of semilinear equations, (2.8) becomes

$$i\partial_t \left(\text{Im} \frac{\partial F}{\partial b_k}(u, \nabla u) \right) - i\partial^k_j \left(\text{Im} \frac{\partial F}{\partial b_j}(u, \nabla u) \right) = 0 \quad \text{for} \quad u \in C^1(\mathbb{R}^N), j, k = 1, \ldots, N, \quad (2.10)$$

which is equivalent to the condition: there exists an \mathbb{R}-valued function $F(u)$ such that

$$i\partial_j F(u) = \text{Im} \frac{\partial F}{\partial b_j}(u, \nabla u) \quad \text{for} \quad u \in C^1(\mathbb{R}^N), j = 1, \ldots, N. \quad (2.11)$$

In this case, (2.9) becomes

$$u(x) \mapsto v(x) = u(x) \exp \left(\frac{1}{2} F(u(x)) \right) \quad (2.12)$$

Using (2.12), A. Soyeur ([44]) and T. Ozawa ([39]) studied local and global existence theorems for such semilinear Schrödinger equations.

As we have seen before, the basic idea for linear Schrödinger-type equations is to find an automorphism $u \mapsto K(t)u$ in L^2 or H^∞ such that the commutator $[K(t), -i\Delta]K^{-1}$ eliminates the first order term $\sum_j b_j(x)\partial_j$ in a sense. We remark here that $[K(t), -i\Delta]K^{-1}$ does not have to coincide with $\sum_j b_j(x)\partial_j$ or $\sum_j b_j(x)\partial_j$ necessarily.

Recently, S. Doi ([11], [12]) developed new method to solve linear Schrödinger-type equations. His method requires only the integrability of $\text{Im} b_1(x), \ldots, \text{Im} b_N(x)$ in any line in x, which is slightly stronger the condition (2.3). His idea is to find an automorphism $u \mapsto K(t)u$ in $L^2(\mathbb{R}^N)$ such that $[K(t), -i\Delta]K^{-1}$ is a first order elliptic pseudodifferential operator which is stronger than the first order partial differential operator $\sum_j b_j(x)\partial_j$. We remark here that his transformation operator belongs to the class $\text{OPS}_{\text{reg}}(\mathbb{R}^N \times \mathbb{R}^N)$. In general, (1,0)-type operators are easier to handle than (0,1)-type ones. As we will show later, his idea is very useful to solve semilinear equations. There are two advantage of his method. One is the simplicity of the condition on $\text{Im} b_1(x), \ldots, \text{Im} b_N(x)$, and another is the type of transformation operator.

When we apply the linear theory to solving semilinear equations, we treat (1.1) as a system for (u, \bar{u}) because the nonlinear term $F(u, \nabla u)$ contains not only ∇u but also $\nabla \bar{u}$. Then, in Sections 2.2 and 2.3 we study the initial value problem for some 2×2 linear systems, which correspond to the couple of equations (1.1) and its complex conjugate. Section 2.2 is devoted to one dimensional case, which can be treated by the gauge transformation. In Section 2.3 we study the case of general space dimensions. There, the diadonalization technique and S. Doi’s method play essential role. The former is well-known in the theory of regularity hyperbolic systems.
2.2 Linear estimates in one space dimension

In this section we study the initial value problem for 2×2 linear systems of the form:

$$L_1u \equiv (i\partial_t + iH_1(t))u = f(t,x) \quad \text{in} \quad (0,T) \times \mathbb{R}, \quad (2.13)$$
$$u(0,x) = \psi_0(x) \quad \text{in} \quad \mathbb{R}, \quad (2.14)$$

where $u = (u_1, u_2)$ is \mathbb{C}^2-valued, $f = f(t, f_1, f_2)$, I is the 2×2 identity matrix and $H_1(t)$ is defined as

$$H_1(t) = \begin{bmatrix} -\partial^2_t & 0 \\ 0 & \partial^2_t \end{bmatrix} - i \begin{bmatrix} b_1(t,x) & b_2(t,x) \\ b_2(t,x) & b_1(t,x) \end{bmatrix} \partial$$

where $b_1(t,x), b_2(t,x) \in \mathcal{C}^1([0,T]; \mathbb{R}^{m}(\mathbb{R})].$

We remark here that it is sufficient to study the forward initial value problem.

The purpose of the present section is to mention the well-posedness of the initial value problem (2.13)-(2.14). More precisely, we present a certain sufficient condition on well-posedness. We do not investigate the necessary and sufficient condition on L^2-well-posedness. However, it is enough to apply to solving semilinear equations. In general, the necessary and sufficient condition for well-posedness in the linear theory is not enough to apply to nonlinear problems, because the nonlinearity gives very complex structure as a partial differential operator. We keep a semilinear equation and its complex conjugate

$$\frac{\partial}{\partial t} u - i\Delta u + b_1(t,x)\partial u + b_2(t,x)\overline{\partial u} = f_1(t,x) \quad \text{in} \quad (0,T) \times \mathbb{R},$$

$$\frac{\partial}{\partial t} \overline{u} + i\Delta \overline{u} - b_1(t,x)\partial \overline{u} + b_2(t,x)\overline{\partial u} = \overline{f_1(t,x)} \quad \text{in} \quad (0,T) \times \mathbb{R},$$
in mind. In view of (2.4), we assume

$$M_1 \equiv \sup_{x \in \mathbb{R} \times [0,T]} \left| \int_0^T \Im b_1(t,y)dy \right| < +\infty, \quad (2.15)$$

$$M_2 \equiv \sup_{x \in \mathbb{R} \times [0,T]} \left| \int_0^T \Im \partial_t b_1(t,y)dy \right| < +\infty. \quad (2.16)$$

Because the coefficients $b_1(t,x)$ and $b_2(t,x)$ depend not only on the spatial variable x but also on the time variable t, we require the second condition (2.16) for the sake of the boundedness of the coefficients of the transformed system. In the same way as (2.5) we define the gauge transformation

$$v(t,x) \rightarrow w(t,x) \equiv k_1(t,x)v(t,x),$$
$$k_1(t,x) = e^{-p_1(t,x)I},$$
$$p_1(t,x) = \frac{1}{2} \int_0^T \Im b_1(t,y)dy.$$

2.2 Linear estimates in one space dimension

It is easy to see

$$e^{-M_1\|f(t)\|} \leq \|f(t)\| \leq e^{M_1\|f(t)\|}$$

for any $f(t,x) \in \left(\mathcal{C}^1([0,T]; L^2(\mathbb{R}))\right)^2, t \in [0,T]. \quad (2.17)$

Multiplying L_1 by $k_1(t,x)$, we have

$$\tilde{L}_1v \equiv \left(i\partial_t + i\tilde{H}_1(t)\right)v = g(t,x) \quad \text{in} \quad (0,T) \times \mathbb{R}, \quad (2.18)$$

$$\psi(0,x) = \psi_0(x) \quad \text{in} \quad \mathbb{R}, \quad (2.19)$$

where

$$g(t,x) = k_1(t,x)f(t,x),$$
$$\psi_0(x) = k_1(0,x)\psi_0(x),$$
$$\tilde{H}_1(t) = A_1(\partial) - iB_1(t,x)\partial + C_1(t,x),$$
$$A_1(\partial) = \begin{bmatrix} -\partial^2_t & 0 \\ 0 & \partial^2_t \end{bmatrix},$$
$$B_1(t,x) = \begin{bmatrix} \Re b_1(t,x) & b_2(t,x) \\ b_2(t,x) & \Re b_1(t,x) \end{bmatrix},$$
$$C_1(t,x) = \begin{bmatrix} c_{11}(t,x) & c_{12}(t,x) \\ c_{21}(t,x) & c_{22}(t,x) \end{bmatrix},$$
$$c_{11}(t,x) = -i \int_0^T \Im \partial_t b_1(t,y)dy$$
$$+ \frac{i}{2} \Im b_1(t,x)b_1(t,x)$$
$$+ \frac{1}{4} \frac{1}{2} \Im \partial_h b_1(t,x),$$
$$c_{12}(t,x) = -i b_2(t,x)\Im b_1(t,x),$$
$$c_{21}(t,x) = -i b_2(t,x)\Im b_1(t,x),$$
$$c_{22}(t,x) = -i \int_0^T \Im \partial_t b_1(t,y)dy$$
$$+ \frac{i}{2} \Im b_1(t,x)b_1(t,x)$$
$$+ \frac{1}{4} \frac{1}{2} \Im \partial_h b_1(t,x).$$
Proposition 2.2.1 We assume (2.15) and (2.16). Then (2.13)-(2.14) is H^1-well-posed for any $s \in \mathbb{R}$.

To prove Proposition 2.2.1, we employ the duality type argument, which is based on the energy inequalities (see [23]).

Lemma 2.2.2 There exists a constant $C_T > 0$ such that for any $v \in \left(C([0,T]; H^2(\mathbb{R})) \cap C([0,T]; L^2(\mathbb{R})) \right)^2$ and $t \in [0,T]$, we have:

$$\|v(t)\| \leq C_T \left(\|v(0)\| + \int_0^t \|L_1v(r)\|dr\right), \quad (2.20)$$

$$\|v(t)\| \leq C_T \left(\|v(T)\| + \int_0^t \|L_2v(r)\|dr\right), \quad (2.21)$$

where L_1^* is the formally adjoint operator of L_1, that is written as

$$L_1^* = -i\partial_t - i\begin{bmatrix} -\partial^2 & 0 \\ 0 & \partial^2 \end{bmatrix} - \begin{bmatrix} b_2(t,x) & b_1(t,x) \\ b_1(t,x) & b_2(t,x) \end{bmatrix} \partial \begin{bmatrix} \partial_2v(t,x) \\ \partial_1v(t,x) \end{bmatrix}.

Proof. It suffices to prove (2.20). We put $w(t,x) = k_1(t,x)v(t,x), f(t,x) = (L_1v)(t,x)$ and $g(t,x) = k_1(t,x)f(t,x)$. Then we have

$$w(t,x) \in \left(C([0,T]; H^2(\mathbb{R})) \cap C([0,T]; L^2(\mathbb{R})) \right)^2,$$

$$f(t,x), g(t,x) \in \left(C([0,T]; L^2(\mathbb{R})) \right)^2,$$

$w(t,x)$ satisfies

$$\begin{cases} & \mathcal{L}_1w = g(t,x) \quad \text{in} \quad (0,T) \times \mathbb{R}, \\
& w(0,x) = k_1(0,x)v(0,x) \quad \text{in} \quad \mathbb{R}. \end{cases}$$

Then we have

$$\frac{d}{dt}\|w(t)\|^2 = 2\Re \left(i\partial_t w(t), w(t) \right) - 2\Re \left(i\mathcal{H}_1(t)w(t), w(t) \right) + 2\Re \left(g(t), w(t) \right) - 2\Re \left(a(t)v(t), w(t) \right) + 2\Re \left(\mathcal{B}_1(t,x)v(t), w(t) \right) + 2\Re \left(g(t), w(t) \right) \leq 2\Re \left(\mathcal{B}_1(t,x)\partial w(t), w(t) \right) + \mathcal{C}B_n(t)\|w(t)\|^2 + 2\|w(t)\|\|g(t)\| \quad (2.22)$$

$$\mathcal{B}_n(t) = \sup_{x \in \mathbb{R}} \left| \int_0^t \Im \partial_y b_1(t,y)dy \right| + \sum_{j=1}^2 \sum_{\alpha=1}^2 \left(\sup_{x \in \mathbb{R}} |\partial^\alpha b_j(t,x)| + \sup_{x \in \mathbb{R}} |\partial^\alpha b_j(t,x)|^2 \right).$$

We remark here that $B_1(t,x)$ is a hermitian matrix, that is $B_1(t,x) = B_1(t,x)$. The integration by parts yields

$$2\Re \left(\mathcal{B}_1(t,x)\partial w(t), w(t) \right) = \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt + \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt$$

$$= \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt + \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt$$

$$= \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt + \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt$$

$$= \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt + \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt$$

$$= \int_{-\infty}^{\infty} i\partial_t w(t)\mathcal{B}_1(t,x)\partial w(t)dt \leq \mathcal{C}B_n(t)\|w(t)\|^2 \quad (2.23)$$

Substitution of (2.23) into (2.22) gives

$$\frac{d}{dt}\|w(t)\|^2 \leq \mathcal{C}B_n(t)\|w(t)\|^2 + \|g(t)\|. \quad (2.24)$$

(2.24) plays an essential role when we solve semilinear equations. Integrating (2.24) on $[0,t]$, we get

$$\|w(t)\| \leq C\mathcal{C}t\|w(0)\| + \int_0^t e^{C(t-s)}\|g(r)\|dr \quad \text{for} \quad t \in [0,T]. \quad (2.25)$$

Combining (2.17) and (2.25), we obtain (2.20). \(\square \)

We can prove Proposition 2.2.1 by Lemma 2.2.2. The rigorous proof of it is omitted here. See the proof of Proposition 2.3.2.
2.3 Linear estimates in general space dimensions

In this section we study the initial value problem for the following linear Schrödinger-type systems

\[i\dot{v} + H(t)v = f(t, x) \quad \text{in} \quad (0, T) \times \mathbb{R}^N, \quad (2.26) \]
\[v(0, x) = v_0(x) \quad \text{in} \quad \mathbb{R}^N, \quad (2.27) \]

where \(v(t, x) \) is \(L^2 \)-valued, \(H \) is the \(2 \times 2 \) identity matrix and the operator \(H(t) = h(t, x, D) \) is defined by

\[
h(t, x, \xi) = a(\xi) + b(t, x, \xi), \quad a(\xi) = \begin{bmatrix} |\xi|^2 & 0 \\ 0 & -|\xi|^2 \end{bmatrix},
\]
\[
b(t, x, \xi) = \begin{bmatrix} b_{11}(t, x, \xi) & b_{12}(t, x, \xi) \\ b_{21}(t, x, \xi) & b_{22}(t, x, \xi) \end{bmatrix} = \sum_{j=1}^{N} \begin{bmatrix} b_{11j}(t, x) & b_{12j}(t, x) \\ b_{21j}(t, x) & b_{22j}(t, x) \end{bmatrix} \xi_j,
\]
\[
b_{\min}(t, x) \in C^1([0, T]; \mathbb{R}^\infty), \quad m, n = 1, 2 \quad \text{and} \quad j = 1, \ldots, N.
\]

For the sake of the convenience, we put

\[
h_{\text{diag}}(t, x, \xi) = \begin{bmatrix} b_{11}(t, x, \xi) & 0 \\ 0 & b_{22}(t, x, \xi) \end{bmatrix}, \quad h_{\text{off}}(t, x, \xi) = \begin{bmatrix} 0 & b_{12}(t, x, \xi) \\ b_{21}(t, x, \xi) & 0 \end{bmatrix}.
\]

When we apply the linear estimates in this section to (1.1)–(1.2), we see \(v \) as \(v = v^\prime(n, u) \).

For the sake of the convenience, we put

\[
\Phi_j(t, x) \in C([0, T]; L^\infty(\mathbb{R})) \cap C^1([0, T]; L^1(\mathbb{R})), \quad j = 1, \ldots, N
\]

such that

\[
|\Phi_j(t, x)| \leq \phi_j(t, x, \xi), \quad \text{for} \quad (t, x) \in [0, T] \times \mathbb{R}^N, \quad u = 1, \ldots, N, \quad (2.28)
\]

Since our analysis is based on the symbolic calculus for pseudo-differential operators, we quote the minimum fundamentals on them from H. Kumano-go’s textbook [33]. Let \(m \in \mathbb{R} \) and let \(S^m \) be a class of symbols defined by

\[
S^m = S^m(\mathbb{R}^N \times \mathbb{R}^N) = \left\{ \phi(x, \xi) \in C^\infty(\mathbb{R}^N \times \mathbb{R}^N) \left| \left| \phi^{(m)} \right| \right| < +\infty, \quad l \in \mathbb{Z} \right\},
\]

where

\[
\left| \phi^{(m)} \right| = \sup_{\xi \in \mathbb{R}^N} \left| \phi^{(m)}(x, \xi) \right|, \quad \phi^{(m)}(x, \xi) = \partial_x^\alpha \partial_\xi^\beta \phi(x, \xi), \quad \alpha, \beta \in \mathbb{Z}_+^N.
\]

2.3. Linear estimates in general space dimensions

\(S^m \) is a Fréchet space with respect to the family of seminorms
\[
\left| \left| \phi \right| \right|_l = \sup_{\xi \in \mathbb{R}^N} \left| \phi^{(l)}(x, \xi) \right|, \quad l \in \mathbb{N}_0.
\]

If \(p(x, \xi) \in S^m \) is given, then \(p(x, \xi) \) defines the operator \(P \) by

\[
P u(x) = p(x, D) u(x)
\]

\[
= (2\pi)^{-N} \int_\mathbb{R}^N e^{-i(y \cdot \xi)} p(x, \xi) u(y) dy \xi
\]

\[
= (2\pi)^{-N/2} \int_\mathbb{R}^N e^{i\xi \cdot x} p(\xi, u) u(\xi) d\xi, \quad \text{for} \quad u \in \mathcal{S}.
\]

Conversely, if the operator \(P \) is given, then its symbol \(\sigma(P)(x, \xi) \) is calculated by

\[
\sigma(P)(x, \xi) = e^{-i\xi \cdot x} P(e^{i\xi} \cdot)
\]

The properties of pseudo-differential operators are the following.

Lemma 2.3.1 (1) Let \(p(x, \xi) \in S^m \). Then \(P = p(x, D) \in L(\mathcal{H}^m, \mathcal{H}^s) \) for any \(s \in \mathbb{R} \) and there exist \(m = (m, s, N) \in \mathbb{N} \) and \(C = C(s, N) > 0 \) such that

\[
\|Pu\| \leq C \|p^{(m)}\| \|u\|_s, \quad \text{for} \quad u \in \mathcal{H}^m.
\]

(2) Let \(p(x, \xi) \in S^m \) and \(p'(x, \xi) \in S^{m'} \). and let \(\alpha, \alpha', \beta, \beta' \in (\mathbb{Z}_+)^N \). We define

\[
r_p(x, \xi) = (2\pi)^{-N} \int_\mathbb{R}^N e^{-i(y \cdot \xi)} p(x, \xi + \eta)p'(x, \xi + \eta) dy \xi
\]

Then \(\{r_p\}_{p \in (\mathbb{Z}_+)^N} \) is bounded in \(S^{m+\alpha'-\alpha} \) and for any \(l \in \mathbb{Z}_+ \), there exist \(l' \in \mathbb{Z}_+ \) and \(C_l > 0 \), which are independent of \(\theta \in [0, 1] \), such that

\[
|r_p|^{m+\alpha'-\alpha+|l'|} \leq C \|p^{(m)}\| \|p'^{(m')}\|.
\]

(3) Let \(p(x, \xi) \in S^m \) and \(p'(x, \xi) \in S^{m'} \). and let \(P = p(x, D) \) and \(P' = p'(x, D) \). Then \(\sigma(PP')(x, \xi) \in S^{m+m'} \) and

\[
\sigma(PP')(x, \xi) = (2\pi)^{-N} \int_\mathbb{R}^N e^{-i(y \cdot \xi)} p(x, \xi + \eta)p'(x + y, \xi + \eta) dy \xi.
\]

(4) (The Sharp Garding inequality) For any \(p(x, \xi) \in S^1 \) satisfying

\[
Re p(x, \xi) \geq 0 \quad \text{for} \quad |\xi| \geq H \geq 0 \quad \text{with some} \quad H \geq 0,
\]

there exist \(l \in \mathbb{N} \) and \(C = C(l, N) > 0 \) such that

\[
Re (Pu, u)_l \geq -C \|p^{(1)}\| \|u\|_l^2, \quad \text{for} \quad u \in \mathcal{S}.
\]

In this section we prove
Proposition 2.3.2 We assume (2.3). Then the initial value problem (2.26)-(2.27) is H^r-well-posed for any $s \in \mathbb{R}$, that is to say, for any $v_0(x) \in H^r$ and for any $f(t, x) \in \left(L^2_{loc}(0, T; H^s)\right)^2$, (2.26) - (2.27) possesses a unique solution $v \in \left(C^0([0, T]; H^s)\right)^2$.

We have only to prove Proposition 2.3.2 with $s = 0$. Our strategy divides into two steps. At the first step we diagonalize the operator $H(t)$ modulo bounded operators. Roughly speaking, its symbol has two distinct eigen values provided that $|\xi|$ is sufficiently large. Thus we can easily diagonalize $h(l, x) = \lambda(l, x)$ and therefore this system becomes a couple of single Schrödinger-type equations essentially. At the second step we apply S. Doi’s method ([11], [12]) to the diagonalized system.

To prove Proposition 2.3.2, we introduce some pseudo-differential operators. The diagonalization is carried out by

$$A(t) = I + \lambda(t), \quad A'(t) = I - \lambda(t), \quad \lambda(t, x) = \frac{1}{2} \sum_{j=1}^{N} \begin{bmatrix} 0 & b_{2j}(t, x) \\ -b_{2j}(t, x) & 0 \end{bmatrix} \xi_j(\xi)^{-2}.$$

The loss of derivatives is resolved by

$$K(t) = \begin{bmatrix} e^{-\lambda(t)\xi^2} & 0 \\ 0 & e^{\lambda(t)\xi^2} \end{bmatrix}, \quad K'(t) = \begin{bmatrix} 0 & 0 \\ 0 & k_0(t, x, \xi) \end{bmatrix}.$$

Then it is easy to see (2.29) and (2.30).

We diagonalize L modulo bounded operators by $A(t)$ and $A'(t)$. Here we note

$$A(t)H(t)A'(t) = (I + \lambda(t))(a(l) + b(t, x))AT(t) \lambda(t) \lambda(t) + \lambda(t)\lambda(t) - \lambda(t)\lambda(t) A(t) H(t) A(t).$$

Then it is easy to see (2.29) and (2.30).
Chapter 2. Linear estimates

Noting \(|D|^{-2}|D|^2 = 1 - |D|^2\), we get

\[
\hat{a}(t) \eta(t) = -\frac{1}{2} \rho(t) + \frac{1}{2} \rho(t),
\]

\[
-\alpha(t) \hat{a}(t) = -\frac{1}{2} \rho(t) + \frac{1}{2} \rho(t) + R_3(t),
\]

\[
\sigma(R_3(t)(\xi, x, \eta) = -2\pi \sum_{j=1}^{\infty} I \int_{\mathbb{R}^4} e^{-i\eta_j} a(t) a(t + \eta_j) d\eta d\theta.
\]

Substituting (2.33) and (2.34) into (2.32), we have

\[
A(t) H(t) A(t) = a(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = b \text{diag}(t, x, D)^{-2}.
\]

Combining (2.31) and (2.35), we obtain

\[
A(t) L v = \alpha(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = -iA(t)' + b \text{diag}(t, x, D) + R_0(t) + R_0(t) + A(t) R_0(t), A(t).
\]

It is easy to see

\[
\sigma(R_0(t)(\xi, x, \eta) \in (S^0)^2, \|R_0(t)\|_{\mathcal{L}(S^0)} \leq C B_K(t)(1 + B_0(t))^3.
\]

2.3. Linear estimates in general space dimensions

Now we will calculate the commutator

\[
i[K(t), a(D)] = \begin{bmatrix}
i[K(t), a(D)] & (|D|^2)
0 & -i[K(t), a(D)]
\end{bmatrix}.
\]

The simple calculation gives

\[
\sigma(\epsilon^{-p(t,x,D)}|D|^2)(x, \eta) = 2 \sum_{j=1}^{\infty} \phi_j(t, x) \epsilon_j^2 (\xi, \eta) - \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}.
\]

Combing (2.31) and (2.35), we obtain

\[
K(t) A(t) = \alpha(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = b \text{diag}(t, x, D)^{-2}.
\]

It is easy to see

\[
\sigma(K(t)(\xi, x, \eta) \in (S^0)^2, \|K(t)\|_{\mathcal{L}(S^0)} \leq C B_K(t)(1 + B_0(t))^3.
\]

Our diagonalization is completed.

We resolve i[K(t), a(D)]K(t)(\xi, x, \eta) gives a elliptic term which is stronger than Im b diag(t, x, D). Since k(t, x, \xi, a(D)) and b diag(t, x, D) are diagonal matrices, we can deal with them as if they were scalar-valued symbols. Operating K(t) on A(t) L v, we have

\[
K(t) A(t) L v = \alpha(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = b \text{diag}(t, x, D)^{-2}.
\]

In the same way we get

\[
\sigma(-i[K(t), a(D)](\xi, x, \eta) \in (S^0)^2, \|K(t)\|_{\mathcal{L}(S^0)} \leq C B_K(t)(1 + B_0(t))^3.
\]

where

\[
\phi_j(t, x) \epsilon_j^2 (\xi, \eta) = \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}
\]

and

\[
\phi_j(t, x) \epsilon_j^2 (\xi, \eta) = \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}
\]

are the similar symbols to \(\phi_j(t, x) \epsilon_j^2 (\xi, \eta)\) and \(\phi_j(t, x) \epsilon_j^2 (\xi, \eta)\) respectively. Then we have

\[
i[K(t), a(D)] = 2 \sum_{j=1}^{\infty} \phi_j(t, x) \epsilon_j^2 (\xi, \eta) + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}.
\]

Substituting (2.40) into (2.37), we obtain

\[
K(t) A(t) L v = \alpha(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = b \text{diag}(t, x, D)^{-2}.
\]

where

\[
\phi_j(t, x) \epsilon_j^2 (\xi, \eta) = \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}
\]

are the similar symbols to \(\phi_j(t, x) \epsilon_j^2 (\xi, \eta)\) and \(\phi_j(t, x) \epsilon_j^2 (\xi, \eta)\) respectively. Then we have

\[
i[K(t), a(D)] = 2 \sum_{j=1}^{\infty} \phi_j(t, x) \epsilon_j^2 (\xi, \eta) + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)} + \epsilon^{-p(t,x,D)}.
\]

Substituting (2.40) into (2.37), we obtain

\[
K(t) A(t) L v = \alpha(D) + b \text{diag}(t, x, D) + b \text{diag}(t, x, D) + R_4(t),
\]

\[
R_0(t) = b \text{diag}(t, x, D)^{-2}.
\]
Chapter 2. Linear estimates

\[2\sum_{j=1}^{\infty} \phi_j(t, x_j) \xi_j^2(\xi_j)^{-1} + \theta^\text{diag}(t, x, \xi) \]
\[= \sum_{j=1}^{\infty} \left[2\phi_j(t, x_j) \xi_j^2(\xi_j)^{-1} + \theta^\text{diag}(t, x, \xi) \right] \]
\[R_{\text{vol}}(t) = - (\partial_t K(t) + R_0(t)A(t) + R_0(t)A(t) + K(t)R_0(t). \]

With (2.36), (2.38), (2.39) and (2.41), we have
\[\| R_{\text{vol}}(t) \|_{L_{-1}^2(\Omega)} \leq C \left(\| b_0(t) + B_0^0(t) + B_0^1(t) \right) \left(1 + B_0^0(t) \right) \left(1 + B_0^1(t) \right) \left(1 + B_0^1(t) \right) \left(1 + B_0^1(t) \right) B_K(t). \] (2.43)

Our deformation of the operator \(L \) is finished.

To complete the proof of Proposition 2.3.2, we have only to show the following energy inequalities. More precisely, Proposition 2.3.2 follows from the duality type arguments for the forward and the backward initial value problems. The energy inequalities play an essential role in these arguments.

Lemma 2.3.4 There exists a constant \(C_T \geq 0 \) such that
\[
\| v(t) \| \leq C_T \left(\| v(0) \| + \int_0^T \| (Lv)(\tau) \| d\tau \right), \quad (2.44)
\]
\[
\| v(t) \| \leq C_T \left(\| v(T) \| + \int_0^T \| (L^*v)(\tau) \| d\tau \right), \quad (2.45)
\]
for \(v \in \left(C([0, T]; H^2) \cap C^1([0, T]; L^2) \right)^2 , \quad t \in [0, T]. \)

Here \(L^* \) is the formally adjoint operator of \(L \) that is
\[
L^* = -i\partial_t - i(a(D) + b(t, x, D))^*, \quad \sigma(b(t, x, D)^*)(x, \xi) = b(t, x, \xi) - i \sum_{j=1}^{\infty} \left[\partial_{\xi_j} \phi_j(t, x_j) - \partial_{x_j} \phi_j(t, x_j) \right].
\]

Proof. We put \(w = K(t)v, f(t, x) = (Lv)(t, x) \) and \(g = K(t)A(t)f \). Then (2.42) implies
\[
(\partial_t + ia(D) + q(t, x, D))w + R_{\text{vol}}(t)v = g.
\]
We have
\[
\frac{d}{dt} \| v(t) \|^2 = 2\text{Re} \left(i\partial_t w(t), w(t) \right) + 2\text{Re} \left(g(t), w(t) \right) \leq -2\text{Re} \left((g(t, x, D)w(t), w(t)) \right) + 2\left(\| R_{\text{vol}}(t) \|_{L_{-1}^2(\Omega)} \right) \| v(t) \|^2.
\] (2.46)

Here we remark that (2.28) yields
\[
\text{Re} \left(g_0(t, x, \xi) \right) \geq 0 \quad \text{for} \quad (t, x) \in [0, T] \times \mathbb{R}^N, \quad |\xi| \geq 1, \quad n = 1, 2.
\]

Then the sharp Gårding inequality implies
\[
-2\text{Re} \left((g_0(t, x, D)w(t), w(t)) \right) \leq C \left(b_0(t) + B_0^1(t) \right) \| v(t) \|^2.
\] (2.47)

Substituting (2.29), (2.43) and (2.47) into (2.46), we get
\[
\frac{d}{dt} \| v(t) \|^2 \leq C \left(b_0(t) + B_0^1(t) + B_0^0(t) \right) B_{\text{etc}}(t) N_1(v(t)) + \| g(t) \|, \quad (2.48)
\]
\[
B_{\text{etc}}(t) = (1 + B_0(t)) \left(1 + B_0^0(t) \right) \left(1 + B_0^1(t) \right) \left(1 + B_0^1(t) \right) B_K(t)^2.
\]

On the other hand, we have
\[
\frac{d}{dt} \| v(t) \|_{-1} \leq C b_0(t) B_{\text{etc}}(t) N_1(v(t)) + \| f(t) \|. \quad (2.49)
\]

Combining (2.48) and (2.49), we obtain
\[
\frac{d}{dt} \| v(t) \|_{-1} \leq C b_0(t) B_{\text{etc}}(t) N_1(v(t)) + \| f(t) \|, \quad (2.50)
\]
(2.29), (2.30) and (2.50) implies (2.44). In the same way we can get (2.45). This completes the proof of Lemma 2.3.4.

We will prove Proposition 2.3.2. As we mentioned before, we prove it by using Lemma 2.3.4. Basically, we follow L. Hörmander’s text book [23, Section 23.1], where he applied such argument to proving \(H^s \)-well-posedness of the Cauchy problem for the first order pseudo-differential equations. Of course, such argument is also applicable to the Cauchy problem for the strictly hyperbolic systems and the initial value problem for our systems.

Proof of Proposition 2.3.2. Uniqueness. Let \(v \in \left(C([0, T]; H^s) \right)^2 \) be a solution to (2.26)-(2.27) with \(v_0 = 0 \) and \(f = 0 \).

Because
\[
Lv(\cdot = 0) \in \left(C([0, T]; H^{s-2}^\ast) \right)^2, \quad H(t)v \in \left(C([0, T]; H^{s-2}^\ast) \right)^2,
\]
we obtain
\[\partial_t u = -iH(t) \in C([0,T]; H^{s-2}). \]

Then we can use the energy inequality (2.44) and we get \(\|v(t)\|_{s-2} = 0 \) for any \(t \in [0,T] \).

Existence. If there exists a solution \(v \) to the initial value problem (2.25)-(2.26), then we have
\[
\int_0^T (Lv, w) dt = \int_0^T (f, w) dt + (v_0, w(0)).
\]

Using the integration by parts, we get
\[
\int_0^T (v, L^*w) dt = \int_0^T (f, w) dt + (v_0, w(0)). \tag{2.51}
\]

We remark here that the energy inequality (2.45) implies
\[
\sup_{t \in [0,T]} \|w(t)\|_{s-2} \leq C_T \int_0^T \|L^*w(t)\|_{s-2} dt
\]
for any \(w \in C_0^\infty([0,T] \times \mathbb{R}^N) \).

Applying the energy inequality (2.52) to (2.51), we obtain
\[
\left| \int_0^T (f, w) dt + (v_0, w(0)) \right| \leq C_T \int_0^T \|f(t)\|_{s} dt + \|v_0\|_s \sup_{t \in [0,T]} \|w(t)\|_{s-2}
\leq C_T \left(\int_0^T \|f(t)\|_{s} dt + \|v_0\|_s \right) \int_0^T \|L^*w(t)\|_{s-2} dt
= C_T \left(\|f\|_{L^1(0,T; H^s)} + \|v_0\|_s \right) \|L^*w\|_{L^1(0,T; H^{s-2})}. \tag{2.53}
\]

Now we define the vector space \(X_T^s \) by
\[X_T^s = \left\{ L^*w \mid w \in C_0^\infty([0,T] \times \mathbb{R}^N) \right\}. \]

Clearly, \(X_T^s \) is a subspace of \(L^1(0,T; H^{s-2}) \).

For given \(f \in L^1(0,T; H^s)^2 \) and \(v_0 \in H^s \), we see
\[
\int_0^T (f, w) dt + (v_0, w(0))
\]
as an anti-linear form on \(X_T^s \). The estimate (2.53) asserts that this is a bounded anti-linear form on \(X_T^s \) under the \((L^1(0,T; H^{s-2}))^2 \)-topology. Then the Hahn–Banach theorem (see, e.g., [40, Theorem III.6]) implies that there exists a bounded anti-linear form \(\psi \) defined on \((L^1(0,T; H^{s-2}))^2 \) such that
\[
(\psi, z) \leq C_T \left(\int_0^T \|f(t)\|_{s} dt + \|v_0\|_s \right) \int_0^T \|z(t)\|_{s-2} dt
\]
for any \(z \in L^1(0,T; H^{s-2})^2 \), and
\[
(\psi, L^*w) = \int_0^T (f, w) dt + (v_0, w(0))
\]
for any \(w \in C_0^\infty([0,T] \times \mathbb{R}^N) \). Then the theorem of the representation of the duality implies that there exists \(v \in L^\infty(0,T; H^s) \) such that
\[
(\psi, z) = \int_0^T (v, z) dt
\]
for any \(z \in L^1(0,T; H^{s-2})^2 \). In particular,
\[
\int_0^T (v, L^*w) dt = \int_0^T (f, w) dt + (v_0, w(0))
\]
for any \(w \in C_0^\infty([0,T] \times \mathbb{R}^N) \). This means that \(v \) is a solution to
\[
Lu = f \quad \text{in} \quad (D'(0,T) \times \mathbb{R}^N)^2 \tag{2.54}
\]
\[
v(0,.) = v_0 \quad \text{in} \quad (D'(\mathbb{R}^N))^2. \tag{2.55}
\]

Regularity. We prove the continuity of \(v \) in the time-variable \(t \). We take sequences
\[
\{v_n^0\}_{n \geq 1} \subset C_0^\infty(\mathbb{R}^N), \quad \{f^n\}_{n \geq 1} \subset C_0^\infty((0,T); S(\mathbb{R}^N))^2,
\]
which satisfy
\[
v_n^0 \rightharpoonup v_0 \quad \text{in} \quad (H^s)^2 \quad \text{as} \quad n \to \infty,
\]
\[
f^n \rightharpoonup f \quad \text{in} \quad L^1(0,T; H^s)^2 \quad \text{as} \quad n \to \infty.
\]
We suppose that \(e \in L^\infty(0, T; H^s) \) is a unique solution to (2.54)\textendash(2.55). Let \({v^n} \) be a unique solution to
\[
\begin{align*}
L{v^n} - f^n & \quad \text{in } \left(B'(0, T) \times \mathbb{R}^N \right)^2, \\
v^n(0, \cdot) & \quad \text{in } \left(B'(\mathbb{R}^N) \right)^2.
\end{align*}
\]
Clearly, each \({v^n} \) belongs to \(\left(C^\infty([0, T]; H^s) \right)^2 \). The energy inequality (2.44) yields
\[
\|v^n(t) - v^m(t)\| \leq C_T \left(\|v^n_0 - v^m_0\|_s + \int_0^t \|f^n(\tau) - f^m(\tau)\|_s d\tau \right).
\]
Then, it follows that \(\{v^n\}_{n \geq 1} \) is a Cauchy sequence in \(\left(C^\infty([0, T]; H^s) \right)^2 \). The uniqueness of the solution implies that \(v \in \left(C^\infty([0, T]; H^s) \right)^2 \) and
\[
v^n \longrightarrow v \quad \text{in } \left(C^\infty([0, T]; H^s) \right)^2 \quad \text{as } n \to \infty.
\]
This completes the proof of Proposition 2.3.2.

Remark 2.3.1 When we apply Proposition 2.3.2 or Lemma 2.3.4 to (1.1)\textendash(1.2), we take \(\phi_j(t, x_j) \) satisfying
\[
\sup_{x_j \in \mathbb{R}^N} \left| \frac{\partial}{\partial x_j} \psi_j(t, x_j) \right| \leq \phi_j(t, x_j), \quad j = 1, \ldots, N. \tag{2.56}
\]
Then we choose \(\phi_j(t, x_j) \) as
\[
\phi_j(t, x_j) = M \int_{\mathbb{R}^N} \left| \left(D \right)^{\left((N-1)/2 \right) + 2} u(t, x) \right|^2 dx_j \tag{2.57}
\]
or
\[
\phi_j(t, x_j) = M(1 + t)^{-d} \int_{\mathbb{R}^N} \left| \left(D \right)^{\left((N-1)/2 \right) + 1} Ju(t, x) \right|^2 dx_j \tag{2.58}
\]
with some constants \(M > 0 \) and \(d > 0 \). On the other hand, in [3], [4] and [5] we chose \(\phi_j(t, x_j) \) as
\[
\phi_j(t, x_j) = \psi(x_j) = M(x_j)^{-1-b} \tag{2.59}
\]
or
\[
\phi_j(t, x_j) = M(1 + t)^{-d} (x_j)^{-1-b} \tag{2.60}
\]
with some constants \(M > 0 \), \(b > 0 \) and \(d > 0 \). (2.57) or (2.59) is applied to the local existence. To use (2.59), we need the spatial decay of the solution and then we have to introduce the weighted Sobolev spaces. On the other hand, we make use of (2.58) or (2.60) to obtain the global existence results. (2.60) causes generally loss of time-decay and (2.58)
Chapter 3

Preliminaries

This chapter is devoted to the preliminaries: the estimates of nonlinear term, the time-decay estimates, and the parabolic regularization.

3.1 Gagliardo–Nirenberg–Moser estimates

In this section we obtain the estimates of nonlinear term $F(u, \nabla u)$ in the usual Sobolev spaces H^m ($m \in \mathbb{N}$), in order to prove the local existence theorems. In general, such nonlinear estimates follow from the Sobolev embedding theorems. Throughout of the present chapter, the Gagliardo–Nirenberg inequalities play an important role. These inequalities should be called "the sharp Sobolev embeddings". Historically, L. Nirenberg ([38]) and E. Gagliardo ([15]) first obtained these inequalities and applied to studying nonlinear problems. Now, such application is one of the standard technique in the studies on nonlinear partial differential equations (see e.g., [37, §2] or [31]). By this technique, we can see nonlinear term $f(u)$ as if it were coefficient λu from a viewpoint of estimates. And then, we can treat nonlinear partial differential equations by the theory of linear partial differential equations.

Now, we introduce the Gagliardo–Nirenberg inequalities.

Lemma 3.1.1 (The Gagliardo–Nirenberg inequality) Let r_0, r_1 and r_2 satisfy $1 \leq r_0, r_1, r_2 \leq \infty$ and let j_1 and j_2 be integers satisfying $0 \leq j_1 < j_2$. Then there exists a constant $C_0 = C_0(N, j_1, j_2, r_0, r_2, a) > 0$ such that for any $u \in L^{r_0}$ satisfying $\partial^\alpha u \in L^{r_2}$, $|\alpha| = j_2$, the following inequalities hold

$$
\sum_{|\alpha| = j_2} \|\partial^\alpha u\|_{L^{r_2}} \leq C_0 \sum_{|\alpha| = j_1} \|\partial^\alpha u\|_{L^{r_0}}^{\frac{1}{r_1}} \|u\|_{L^{r_0}}^{\frac{1}{r_0}},
$$

where

$$
\frac{1}{r_1} = \frac{j_1}{N} + a \left(\frac{1}{r_2} - \frac{j_2}{N} \right) + (1 - a) \frac{1}{r_0},
$$
for all u in the interval $j_1 \leq a \leq j_2$.

with the following exceptional cases

i) If $j_1 = 0$, $r_2 < N$, $r_1 = \infty$, then we make the additional assumption that $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

ii) If $1 < r_2 < \infty$ and $j_2 - j_1 - N/r_2 \in \mathbb{Z}_+$, then (3.1) holds only for a satisfying $j_1, j_2 < a < 1$.

Following J. Moser’s [37] or S. Klainerman’s [31], we obtain the estimates on nonlinear term $F(u, \nabla u)$ to prove the local existence theorem.

Lemma 3.1.2 We assume $F(u, u) \in C^\infty(\mathbb{R}^2 \times \mathbb{R}^N; \mathbb{C})$. Let m be an integer $> N/2 + 1$. Then there exists a non-decreasing function $A_m(\cdot)$ on $[0, \infty)$ such that for any $u, v \in H^m$,

$$
||F(u, \nabla u)||_{H^{m-1}} \leq A_m(||u||_{L^{\infty}}) ||u||_{H^m},
$$

(3.2)

$$
\sum_{i=m}^{m+1} ||\partial_i F(u, \nabla u) - \partial_i F(u, \nabla u, \partial^m u) ||_{L^2} \leq A_m(||u||_{L^{\infty}}) ||u||_{H^m},
$$

(3.3)

$$
||F(u, \nabla u) - F(v, \nabla v)||_{H^{m-1}} \leq A_m(||u||_{H^m} + ||v||_{H^m}) ||u - v||_{H^m},
$$

(3.4)

where

$$
P(u, \nabla u, \partial^m u) = \sum_{j} \partial_j F(u, \nabla u) \partial^m u + \sum_{j} \partial_j F(u, \nabla u) \partial^m u.
$$

Proof. Making strong use of the Gagliardo–Nirenberg inequalities, we prove Lemma 3.1.2. Since $C^\infty_c(\mathbb{R}^N)$ is densely embedded in $H^m(\mathbb{R}^N)$, the following calculations are valid via the smooth approximation.

First we show (3.2). We note here that

$$
||F(u, \nabla u)||_{H^{m-1}} \leq \epsilon(||F(u, \nabla u)||_{L^2} + \sum_{m} \||\partial^m F(u, \nabla u)||_{L^2}||.
$$

(3.5)

Because $F(0,0) = 0$, the mean value theorem gives

$$
P(u, \nabla u) = \left(\int_0^1 \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right) u + \left(\int_0^1 \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right) u.
$$

3.1. Gagliardo–Nirenberg–Moser estimates

$$
\begin{align*}
\sum_{j=1}^{N} \left(\int_0^1 \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right) j \partial_j u \\
+ \sum_{j=1}^{N} \left(\int_0^1 \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right) j \partial_j u
\end{align*}
$$

Then, there exists a non-decreasing function $A(\cdot)$ on $[0, 1 \infty)$ such that

$$
||F(u, \nabla u)||_{L^2} \leq \left\{ \sup_{\theta \in (0,1]} \left| \int \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right| \right\} ||u||_{L^\infty}
$$

$$
+ \sum_{j=1}^{N} \left(\int_0^1 \frac{\partial F}{\partial \theta} (\theta u, \theta \nabla u) d\theta \right) j \partial_j u
$$

$$
A(||u||_{L^{\infty}})||u||_{H^m},
$$

(3.6)

Let α be a multi-index with $|\alpha| = m - 1$. Using the Leibniz' formula, we have

$$
\partial^\alpha F(u, \nabla u) = \sum_{j} \partial_j F(u, \nabla u) \partial^\alpha u + \sum_{j} \partial_j F(u, \nabla u) \partial^\alpha u.
$$

where β, $\tilde{\beta}, m(\alpha_0), m(\tilde{\alpha}_0) \in \mathbb{Z}_+ (n = 0, 1, \ldots, N)$, $\beta, \tilde{\beta}, \alpha_n, \tilde{\alpha}_n \in \mathbb{Z}_+(n = 0, 1, \ldots, N)$, and \sum means summing up on $1 \leq \beta + \tilde{\beta} + |\beta| + |\tilde{\beta}| \leq |\alpha|$ restricted to

$$
\sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\alpha_0) = \beta_0, \sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\alpha_n) = |\beta|,
$$

$$
\sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\tilde{\alpha}_0) = \tilde{\beta}_0, \sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\tilde{\alpha}_n) = |\tilde{\beta}|,
$$

$$
\sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\alpha_0) + \sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\alpha_n) |\alpha_0| + \sum_{\beta \leq \tilde{\beta}, \alpha_n \geq \beta} m(\alpha_n) |\alpha_n| = \alpha.
$$
Chapter 3. Preliminaries

By the Hörder inequality, we have

\[
\|D^\alpha F(u, \nabla u)\|_{L^2} \leq A\left(\|u\|_{L^{1+m}}\right) \sum_{\alpha_0 \leq \alpha} \prod_{\alpha_0} \|u\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0} \|\nabla u\|_{L^{1+m}}^{|\alpha_0|}
\]

\[
\times \prod_{\alpha_0 \leq \alpha} \|\nabla F(u, \nabla u)\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0 \leq \alpha} \|\nabla^2 F(u, \nabla u)\|_{L^{1+m}}^{|\alpha_0|}
\]

\[
\times \sum_{j=1}^N \prod_{\alpha_0 \leq \alpha} \|\partial_j u\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0 \leq \alpha} \|\nabla \partial_j u\|_{L^{1+m}}^{|\alpha_0|}
\]

The Gagliardo–Nirenberg inequalities imply

\[
\|D^\alpha F(u, \nabla u)\|_{L^2} \leq A\left(\|u\|_{L^{1+m}}\right) \sum_{\alpha_0 \leq \alpha} \prod_{\alpha_0} \|u\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0} \|\nabla u\|_{L^{1+m}}^{|\alpha_0|}
\]

\[
\times \prod_{\alpha_0 \leq \alpha} \|\nabla F(u, \nabla u)\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0 \leq \alpha} \|\nabla^2 F(u, \nabla u)\|_{L^{1+m}}^{|\alpha_0|}
\]

\[
\times \sum_{j=1}^N \prod_{\alpha_0 \leq \alpha} \|\partial_j u\|_{L^{1+m}}^{|\alpha_0|} \prod_{\alpha_0 \leq \alpha} \|\nabla \partial_j u\|_{L^{1+m}}^{|\alpha_0|}
\]

Combining (3.6) and (3.7), we obtain (3.2).

Secondly we give the outline of the proof of (3.3) and (3.4). The Leibniz formula and the mean value theorem imply

\[
\partial^\alpha F(u, \nabla u) - F(u, \nabla u, \partial F)
\]

\[
= \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \partial^\beta F(u, \nabla u) \partial^\alpha - \partial F
\]

\[
= \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \partial^\beta F(u, \nabla u) \partial^\alpha - \partial F
\]

\[
\times \partial^{\alpha - \beta} \partial^\beta u(u, \nabla u) \partial^{\alpha - \beta} \partial^\beta u
\]

\[
\times \prod_{\beta_0 \leq \beta} \|\nabla F(u, \nabla u)\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla^2 F(u, \nabla u)\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \sum_{j=1}^N \prod_{\beta_0 \leq \beta} \|\partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \sum_{j=1}^N \prod_{\beta_0 \leq \beta} \|\partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \prod_{\beta_0 \leq \beta} \|\nabla \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla^2 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \prod_{\beta_0 \leq \beta} \|\nabla^2 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla^3 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \prod_{\beta_0 \leq \beta} \|\nabla^3 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla^4 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

\[
\times \prod_{\beta_0 \leq \beta} \|\nabla^4 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|} \prod_{\beta_0 \leq \beta} \|\nabla^5 \partial_j \partial_j u\|_{L^{1+m}}^{|\beta_0|}
\]

where \(\alpha' \in \mathbb{Z}_+^N\) satisfies \(|\alpha - \alpha'| = 1\). Using the above formulae, we can obtain (3.3) and (3.4) in the same way as (3.2).

3.2 Decay estimates for cubic semilinear equations

The present section is concerned with the decay estimates of solutions to cubic semilinear Schrödinger equations. Throughout the present section, we assume the cubic nonlinearity:

\[F(u, q) = O(|u|^3 + |q|^3) \text{ near } (u, q) = 0. \]

Combining the local existence theorem and the decay estimates, we prove the global existence theorem. The later come from the decay estimates of the fundamental solution \(\psi^{\alpha, \beta}\) essentially. In fact, we can express the operator \(\psi^{\alpha, \beta}\) by the explicit formula

\[
\psi^{\alpha, \beta}(x) = (4\pi t)^{-N/2} \int \frac{e^{-|y|^2/4t}}{N(x)} dy, \quad \psi^{\alpha, \beta}(x) = 0. \]

Immediately we get

\[
\|\psi^{\alpha, \beta}\|_{L^\infty} \leq C|t|^{-N/2} \|\psi\|_{L^1} \quad \text{for } t \in \mathbb{R} \setminus \{0\}. \]

In the next section we make strong use of (3.9) to get the decay estimates of solutions to quadratic semilinear Schrödinger equations. On the other hand, we employ another
method which consists of the Gagliardo-Nirenberg inequalities and the operator $J = (J_1, \ldots, J_N)$ defined by
\[
J_k u (x_k + 2 r (1 + t) \xi_k) u - e^{\sigma_0 |x_k + 2 r (1 + t) \xi_k|} 2 i \xi_k \left(e^{2 \sigma_0 |x_k + 2 r (1 + t) \xi_k|} u \right)
\]
for $a \in \mathbb{S}(\mathbb{R}^N)$. Such decay estimates are well-known in the studies on the global existence of small solutions to semilinear Schrödinger equations. This method suits with our energy estimates when we treat cubic semilinear Schrödinger equations. We note here the important commutation relations:
\[
\left[J_k, \partial_t - i \Delta \right] = 0, \quad \left[J_k, J_l \right] = 0, \quad \left[\partial_t, J_l \right] = \delta_{kl} (k, l = 1, \ldots, N),
\]
where δ_{kl} is Kronecker’s delta.

To get the decay estimates we prepare

Lemma 3.2.1 (1) Let $N = 1$. For any $u \in H^1 \cap H^3$,\n\[
\|u\|_{L^\infty} \leq C (1 + t)^{-1/2} \|J_1 u\|_{L^2}^{1/2} \|u\|_{L^2}^{1/2}, \tag{3.10}
\]

(2) Let $N = 2$. For any $v \in H^2 \cap H^3$,\n\[
\|v\|_{L^\infty} \leq C (1 + t)^{-1} \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^2 u\|_{L^2}^{1/2} \|v\|_{L^2}^{1/2}, \tag{3.11}
\]

(3) Let $N = 3$. For any $w \in H^3 \cap H^4$,\n\[
\|w\|_{L^\infty} \leq C (1 + t)^{-3/2} \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^3 u\|_{L^2}^{1/2} \|w\|_{L^2}^{1/2}, \tag{3.12}
\]
\[
\sum_{|\alpha| = 1} \|J_1^\alpha w\|_{L^\infty} \leq C (1 + t)^{-1} \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^3 u\|_{L^2}. \tag{3.13}
\]

Proof. Let \(\theta(t, r) = \theta(t, x_1) + \cdots + \theta(t, x_N) - |x|^2/4(1 + t) \).

To show (3.10), we use (3.1) with $N = 1$, $r_0 = 0$, $r_1 = \infty$, $r_2 = 2$, $j_1 = 0$, $j_2 = 1$ and $a = 1/2$. Then we have
\[
\|u\|_{L^\infty} \leq \|e^{-\sigma_0 r} u\|_{L^\infty} \leq C \|\partial_t (e^{-\sigma_0 r} u)\|_{L^2}^{1/2} \|e^{-\sigma_0 r} u\|_{L^2}^{1/2}
\]
\[
= C \|\partial^\alpha J_1^2 u\|_{L^2}^{1/2} \|w\|_{L^2}^{1/2},
\]
\[
\leq C (1 + t)^{-1/2} \|J_1 u\|_{L^2}^{1/2} \|u\|_{L^2}^{1/2}.
\]

3.2. Decay estimates for cubic semilinear equations

Next we show (3.11). By (3.1) with $N = 2$, $r_0 = 4$, $r_1 = \infty$, $r_2 = 4$, $j_1 = 0$, $j_2 = 1$ and $a = 1/2$, we get
\[
\|v\|_{L^\infty} \leq C (1 + t)^{-1} \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^3 u\|_{L^2}^{1/2} \|v\|_{L^2}^{1/2}, \tag{3.14}
\]

Making use of (3.1) again with $N = 2$, $r_0 = 2$, $r_1 = 4$, $r_2 = 2$, $j_1 = 0$, $j_2 = 1$ and $a = 1/2$, we have
\[
\|v\|_{L^\infty} \leq \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^3 u\|_{L^2}^{1/2} \|v\|_{L^2}^{1/2}. \tag{3.15}
\]

Combining (3.14), (3.15) and (3.16), we obtain (3.11).

For (3.12), by (3.1) with $N = 3$, $r_0 = 6$, $r_1 = \infty$, $r_2 = 6$, $j_1 = 0$, $j_2 = 1$ and $a = 1/2$, we have
\[
\|w\|_{L^\infty} \leq C (1 + t)^{-3/2} \sum_{|\alpha| \leq 1} \|\partial^\alpha J_1^3 u\|_{L^2}^{1/2} \|w\|_{L^2}^{1/2}.
\]

Making use of (3.1) with $N = 3$, $r_0 = 2$, $r_1 = 6$, $r_2 = 2$, $j_1 = 0$, $j_2 = 1$ and $a = 1$ once again, we can obtain (3.12). Similarly we can show (3.13).

Let $F(u, q)$ be a homogeneous cubic part of $F(u, q)$ near $(u, q) = 0$. We put $F_1(u, q) = F(u, q) - F_2(u, q)$. When the spatial dimension N is equal to 2, we make use of this decomposition. For the sake of convenience, we introduce the following notations
\[
N_m (t) = \sum_{|\alpha| \leq m} \|\partial^\alpha J_1^3 u(t)\|_{L^2} + \|J_1^m F_1 u(t)\|_{L^2}, \tag{3.16}
\]
\[
= \sum_{|\alpha| \leq m} \|\partial^\alpha u(t)\|_{L^2} + \sum_{|\alpha| = m} \|\partial^\alpha u(t)\|_{L^2}, \tag{3.17}
\]
where $m = \left\lceil \frac{N + 1}{2} \right\rceil + 6$, if $N \geq 3$, \(m = 7\), if $N = 2$.

\[
F_n = P(u, \nabla u, \partial_t^2 u) = \sum_{j = 0}^N \partial_j^2 \mathcal{F}_j (u, \nabla u, \partial_t^2 u), \tag{3.18}
\]
\[
P_{n, u} = P(u, \nabla u, \partial_t^2 u) = \sum_{j = 0}^N \partial_j^2 \mathcal{F}_j (u, \nabla u, \partial_t^2 u). \tag{3.19}
\]
\[\sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j}^{p} J^{j} u + \sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j}^{p} J^{j} u, \quad \text{if } N = 3. \]

\[\sum_{j=1}^{N} \frac{\partial F_j(u, \nabla u) \partial_{j} J^{j} u}{J^{j}} + (-1)^{\frac{1}{3}} \sum_{j=1}^{N} \frac{\partial F_j(u, \nabla u) \partial_{j}^{p} J^{j} u}{J^{j}}, \quad \text{if } N = 2. \]

\[G_d(u, \nabla u) = \int_{0}^{1} \frac{\partial F_d(u, \nabla u)}{J^{d}} \, dt \]

for \(j = 1, \ldots, N \). Using Lemma 3.2.1 and the Sobolev embedding \(H^{n/2+1}(\mathbb{R}^n) \hookrightarrow L^\infty(\mathbb{N}) \), we have

\[\|u(t)\|_{W^{n, \infty}} \leq C(1 + t)^{-3/4} X_{n}^{3}(t), \]

\[\|Jn(t)\|_{W^{n, \infty}} \leq C X_{n}^{2}(t), \]

for \(N = 2, \ t \in [0, T] \) and \(u \in C([0, T]; H^{2}) \cap C([0, T]; H^{3}) \), and

\[\|u(t)\|_{W^{m, \infty}} \leq C(1 + t)^{-\frac{n}{3}} X_{n}^{m}(t), \]

\[\|J(t)\|_{W^{m, \infty}} \leq C(1 + t)^{-1/2} X_{n}^{m}(t), \]

\[\|F(t)\|_{W^{m, \infty}} \leq C(1 + t)^{-1/2} X_{n}^{m}(t), \]

\[\|F(t)\|_{W^{m, \infty}} \leq C(1 + t)^{-1/2} X_{n}^{m}(t), \]

for \(N \geq 3, \ t \in [0, T] \) and \(u \in \bigcap_{m=0}^{2} C([0, T]; H^{m-2/3}) \).

We use the abridged notations of the nonlinear terms, i.e., we abbreviate \(F(u(t), \nabla u(t)) \) as \(F(t) \) for instance. The properties of the nonlinear term \(F(u, \nabla u) \) are the following.

Lemma 3.2.2 (1) Let \(N \geq 3, \ m \geq m_{0}, \ p \geq 3 \) and \(R \) be an arbitrary constant. Then there exists a constant \(C = C(R) > 0 \) such that

\[\|F(t)\|_{H^{m}} + \|J(t)\|_{H^{m}} + \|F(t)\|_{H^{m}} \leq C(1 + t)^{-1/4} X_{n}^{m}(t)^{3/4}, \]

(2) Let \(N = 2, \ m \geq 7, \ p \geq 3 \), \(F(u, q) \) satisfy the gauge invariance

\[F_{d}(u, q) = F_{d}(\pm u, q) \]

for \((u, q) \in C \times C \), \(\theta \in \mathbb{R} \),

and \(R \) be an arbitrary positive constant. Then there exists a constant \(C = C(R) > 0 \) such that

\[\|F(t)\|_{H^{m}} + \sum_{m=1}^{\infty} \|\partial^{\ell} F - P_{\alpha}(t)\|_{L^{2}} \leq C(1 + t)^{-3/4} X_{n}^{m}(t)^{3}, \]

\[\|F(t)\|_{H^{m}} + \sum_{m=1}^{\infty} \|\partial^{\ell} F - P_{\alpha}(t)\|_{L^{2}} \leq C(1 + t)^{-3/4} X_{n}^{m}(t)^{3}, \]

\[\|F(t)\|_{H^{m}} + \sum_{m=1}^{\infty} \|\partial^{\ell} F - P_{\alpha}(t)\|_{L^{2}} \leq C(1 + t)^{-3/4} X_{n}^{m}(t)^{3}, \]

\[\|F(t)\|_{H^{m}} + \sum_{m=1}^{\infty} \|\partial^{\ell} F - P_{\alpha}(t)\|_{L^{2}} \leq C(1 + t)^{-3/4} X_{n}^{m}(t)^{3}, \]

for \(u \in C([0, T]; H^{m}) \cap C([0, T]; H^{3}) \) satisfying \(\sup_{t \in [0, T]} X_{n}^{2}(t) \leq R \).

Proof. Let us consider the part (1). In the same way as in Lemma 3.1.2 we have

\[\|F(t)\|_{H^{m}} + \sum_{m=1}^{\infty} \|\partial^{\ell} F - P_{\alpha}(t)\|_{L^{2}} \leq C\|u(t)\|_{W^{m}} + \|u(t)\|_{H^{m}}. \]

Then (3.19) yields (3.22).

To show (3.23) and (3.24), we need the accurate forms of \(JF(t) \) and \(JF(t) \) such as

\[JF(t) = \sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j} J u + \sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j} J u, \]

\[+ F_{d}(u, \nabla u, J u) + (1 + t)^{3/4} F_{d}(u, \nabla u, \nabla^{2} u), \]

\[+ (1 + t)^{3/4} F_{d}(u, \nabla u, \nabla^{2} u), \]

where

\[F_{d}(u, \nabla u, J u) = \sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j} J u + \sum_{j=1}^{N} G_j(u, \nabla u) \partial_{j} J u. \]
\[- G_k(u, \nabla u) - G'_k(u, \nabla u) u, \\
F_k(u, \nabla u, \nabla^2 u) = 2\left\{ i\partial_k G_0(u, \nabla u) u + \partial_k G'_0(u, \nabla u) \bar{u} \right. \\
+ \sum_{j=1}^N \partial_k G_j(u, \nabla u) \bar{\partial}_j \bar{k} u + \sum_{j=1}^N \partial_k G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right\} \\
+ i\left\{ G'_0(u, \nabla u) \partial_k u + \sum_{j=1}^N G'_j(u, \nabla u) \partial_j \bar{k} u \right\}. \\
F_{ik}(u, \nabla u, J_iu) = 2\left\{ i\partial_k G_0(u, \nabla u) J_k u + \partial_k G'_0(u, \nabla u) \bar{J}_k \bar{u} \right. \\
+ \sum_{j=1}^N \partial_k G_j(u, \nabla u) \bar{J}_j \bar{u} + \sum_{j=1}^N \partial_k G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right\} \\
+ i\left\{ G'_0(u, \nabla u) \bar{J}_k u - G'_0(u, \nabla u) \bar{u} \right. \\
- \partial_k G_i(u, \nabla u) u - \partial_k G'_i(u, \nabla u) \bar{u} \left. \right\}. \\
F_{ik}(u, \nabla u, \nabla^2 u, J_iu, \nabla J_iu) = 2\left\{ i\partial_k G_0(u, \nabla u) J_k u + \partial_k G'_0(u, \nabla u) \bar{J}_k \bar{u} \right. \\
+ \sum_{j=1}^N \partial_k G_j(u, \nabla u) \bar{J}_j \bar{u} + \sum_{j=1}^N \partial_k G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right\} \\
+ i\left\{ G'_0(u, \nabla u) \bar{J}_k u - G'_0(u, \nabla u) \bar{u} \right. \\
- \partial_k G_i(u, \nabla u) u - \partial_k G'_i(u, \nabla u) \bar{u} \left. \right\}. \\
F_{ik}(u, \nabla u, \nabla^2 u, \nabla^3 u) = -4\left\{ i\partial_k G_0(u, \nabla u) u + \partial_k G'_0(u, \nabla u) \bar{u} \right. \\
+ \sum_{j=1}^N \partial_k G_j(u, \nabla u) \bar{\partial}_j \bar{k} u + \sum_{j=1}^N \partial_k G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right\} \\
- 8\left\{ i\partial_k G_0(u, \nabla u) \bar{J}_k u + \sum_{j=1}^N \partial_k G_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right. \\
+ \partial_k G'_0(u, \nabla u) \bar{J}_k \bar{u} + \sum_{j=1}^N \partial_k G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right\} \\
- 16\left\{ G'_0(u, \nabla u) \bar{J}_k u + \sum_{j=1}^N G'_j(u, \nabla u) \bar{\partial}_j \bar{k} \bar{u} \right. \\
\left. \right\}. \\
\text{for } k, l = 1, \ldots, N.
\]

We have only to see \(JF \) as

\[JF = Q_0(u, \nabla u, J_iu, \nabla J_iu) + (1 + t)C_0(u, \nabla u, \nabla^2 u), \]
\[Q_0 = \text{quadratic term of } (u, \nabla u) \times (u, \nabla u, J_iu, \nabla J_iu), \]
\[C_0 = \text{cubic term of } (u, \nabla u, \nabla^2 u). \]

In the same manner as in Lemma 3.1.2, we have

\[\|Q_0(t)\|_{H^{m-1}} \leq C \sum_{n=0}^{m-3} \|u(t)\|_{W^{n, \infty}}^2 \|u(t)\|_{H^{m-3}}^2 \|J_0(t)\|_{W^{n-1, \infty}} \|J_0(t)\|_{H^{m-3}}^2 \leq C(1 + t)^{-15/8} X_m(t)^3, \]
\[\|(1 + t)C_0(t)\|_{H^{m-1}} \leq C(1 + t)^{-7/4} X_m(t)^3. \]

Then we get

\[\|JF(t)\|_{H^{m-1}} \leq C(1 + t)^{-7/4} X_m(t)^3. \tag{3.28} \]

Let \(\alpha, \beta \in (\mathbb{Z}_+)^N \) satisfy \(|\alpha| = m - 2 \) and \(|\beta| = 1 \) respectively. The simple calculation gives

\[\partial^\alpha F_1 F - P_{\alpha+3} = (\partial^\beta F_{\alpha+3} - P_{\alpha+3}) \sum_{\alpha' = 1}^m \left(\partial^\beta Q_{\alpha+3} + (1 + t) \partial^\beta C_{\alpha+3} \right). \]

We remark that the structures of \(Q_{\alpha+3} \) and \(C_{\alpha+3} \) are the same as those of \(Q_0 \) and \(C_0 \) respectively, and furthermore \(Q_{\alpha+3} \) does not contain \(\nabla J_iu \). Then we obtain

\[\sum_{\alpha, \beta} \|i(\partial^\beta F - P_{\alpha+3})(t)\|_{H^{m/2}} \leq C(1 + t)^{-7/4} X_m(t)^3. \tag{3.29} \]

(3.28)-(3.29) shows (3.23).

Next we obtain (3.24). We can see \(J^2 F \) as

\[J^2 F = Q_3(u, \nabla u, J_iu, J^2 u, \nabla J_iu, \nabla^2 u) \]

Then we have

\[
\| Q_1(t) \|_{H^{m-1}} \leq C \sum_{n=0}^{m-2} \| \psi(t) \|_{L^2} \| \psi(t) \|_{H^{m-1}}^N \times \sum_{k=1,2} \| J_{\psi}(u(t)) \|_{H^{m-1}} \| J_{\psi}(u(t)) \|_{H^{m-1}}^N \leq C (1 + t)^{3/4} X^N_{m}(t)^3.
\]

Then we get

\[
\| J^2 F(t) \|_{H^{m-1}} \leq C (1 + t)^{-3/4} X^N_{m}(t)^3. \tag{3.30}
\]

For any \(\alpha \) and \(\beta \in (Z, Z) \) satisfy |\(\alpha \)| \(= m - 2 \) and |\(\beta \)| \(= 1 \), we have

\[
\partial^\alpha J^2 F - P_{\alpha\beta} = (\partial^\beta P_{\alpha\beta} - P_{\alpha\beta}) + \sum_{\gamma \in N} \left(\partial^\gamma Q_{\alpha\beta} + (1 + t) \partial^\gamma C_{2m} + (1 + t)^2 \partial^\gamma C_1 \right).
\]

The structures of \(Q_{1\alpha} \), \(Q_{2\alpha} \) and \(C_{1\alpha} \) are the same as those of \(Q_1 \), \(Q_2 \) and \(C_1 \) respectively, and \(Q_{1\alpha} \) does not contain \(\nabla J^2 u \). We then obtain

\[
\sum_{\gamma \in N} \left(\partial^\gamma J^2 F - P_{\alpha\beta} \right)(t) \|_{L^2} \leq C (1 + t)^{-3/4} X^N_{m}(t)^3. \tag{3.31}
\]

(3.30) and (3.31) shows (3.24).

Now we consider the part (2). Let the spatial dimension \(N \) be equal to 2. We make use of the estimates (3.16) and (3.18). In the same way as (3.22), we can show (3.26). But there are some differences between the proofs of (3.23) and (3.27). First we remark that because \(F_3(u, a, q) \) satisfies (3.25), the loss of decay does not take place in \(F_3(u, a, q) \), because \(J \) acts on \(F_3(u, a) \) as if it were a usual differentiation \(\partial \) in a sense. More precisely, the formula like the Leibniz' one holds

\[
J F_3(a, \nabla u) = \frac{\partial F_3}{\partial a} (a, \nabla u) J_1 a - \frac{\partial F_3}{\partial a} (a, \nabla u) J_1 a
\]

\[
+ \sum_{j \neq 1} \frac{\partial F_3}{\partial a} (a, \nabla u) J_1 j a \sum_{j \neq 1} \frac{\partial F_3}{\partial a} (a, \nabla u) J_1 j a.
\]

3.2. Decay estimates for cubic semilinear equations

Then the simple calculation gives

\[
J F = Q_3(a, \nabla u, a, \nabla u) + (1 + t) Q_2(a, \nabla u, \nabla u), \]

\[
Q_3 = Q_4(a, \nabla u, a, \nabla u),
\]

\[
Q_4 = \text{quadratic term of } (a, \nabla u),
\]

\[
C_4 = \text{the forth order term of } (a, \nabla u, \nabla u).
\]

In the same way as the evaluation to \(C_0(t) \) we can estimate \(C_3(t) \). On the other hand, if we try to get the bound of \(Q_4(t) \) by the same technique used for \(Q_3(t) \), then the lack of decay occurs. To avoid this difficulty we make use of another estimates. We have

\[
\| Q_3(t) \|_{H^m} \leq C \| Q_4(t) \|_{W^{3,\infty}} \left(\| u(t) \|_{H^m} + \| J u(t) \|_{H^m} \right). \tag{3.32}
\]

Similarly when we try to obtain

\[
\| Q_3(t) \|_{W^{3,\infty}} \leq C (1 + t)^{-21/20} X^N_{m}(t)^3, \tag{3.33}
\]

we need the bound which is like \(\| \nabla J Q_4(t) \|_{W^{3,\infty}} \). In the same way as (3.2), we get

\[
\| Q_4(t) \|_{W^{3,\infty}} \leq C \sum_{\gamma \in N} \| \nabla \gamma (n(t)) \|_{H^m}^N \| J u(t) \|_{H^m}^N \leq C (1 + t)^{-21/20} X^N_{m}(t)^2. \tag{3.34}
\]

Substituting (3.34) into (3.32), we obtain

\[
\| Q_3(t) \|_{H^m} \leq C (1 + t)^{-21/20} X^N_{m}(t)^3. \tag{3.35}
\]

Similarly we can obtain (3.33). (3.33)–(3.35) shows (3.27). Proof of Lemma 3.2.2 is finished.

Remark 3.2.1 Let the spatial dimension \(N \) be equal to 2. In general, if \(m > 3l/2 + 2 \), \(l \in \mathbb{N} \), then we can obtain

\[
\| J F(t) \|_{H^{m-1}} + \sum_{i \geq -1} \| \partial^i J^2 F - P_{\alpha\beta}(t) \|_{L^2} \leq C (1 + t)^{(1-4l)} \left(\| u(t) \|_{H^m} + \| J u(t) \|_{H^m} \right)^3 \tag{3.36}
\]

for \((a, t) = C [0, T] \times H^m \), \(C' \) satisfying

\[
\sup_{a \in C} \left(\| u(t) \|_{H^m} + \| J u(t) \|_{H^m} \right) \leq R \text{ with some } R > 0,
\]

where \(\varepsilon_1 = m - 3l/2 - 2 > 0 \).
3.3 \(L^p - L^q \) estimates and quadratic semilinear equations

In this section we prepare the decay estimates to prove the global existence theorem for quadratic semilinear Schrödinger equations. In this section we make strong use of the \(L^1 - L^\infty \) estimate (3.8) of the fundamental solution \(e^{it\Delta} \). It is easy to see that \(e^{it\Delta} \) is a unitary group on \(H^s(\mathbb{R}^N) \) (\(s \in \mathbb{R} \)), that is

\[
\|e^{it\Delta}\phi\|_{L^s} = \|\phi\|_{L^s} \quad \text{for} \quad t \in \mathbb{R},
\]

(3.37)

Applying the Reisz–Thorin interpolation theorem (sec. e.g., M. Reed and B. Simon textbook [41]) to (3.9) and (3.37), we obtain the \(L^p - L^q \) estimates

\[
\|e^{it\Delta}\phi\|_{L^p} \leq C_{p,q} |t|^{-N(1/p-1/2)} \|\phi\|_{L^q} \quad \text{for} \quad t \in \mathbb{R}\backslash\{0\},
\]

(3.38)

where \((p, q)\) satisfies \(1/p + 1/q = 1\) and \(1 \leq p \leq 2\). On the other hand, making use of the Sobolev embeddings and (3.37), we have

\[
\|e^{it\Delta}\phi\|_{L^p} \leq C_{p,q} \|e^{it\Delta}\phi\|_{H^N} = C_{p,q} \|\phi\|_{H^N} \leq C_{p,q} \|\phi\|_{W^{2s,p}}
\]

(3.39)

for \(t \in \mathbb{R} \), where \(s_1 = N(1/2 - 1/q) \) and \(s_2 = [N(2/p - 1)] + 1 \). Combining (3.38) and (3.39), we obtain

\[
\|e^{it\Delta}\phi\|_{L^p} \leq C_{p,q}(1 + |t|)^{-N(1/p-1/2)} \|\phi\|_{W^{2s,p}} \quad \text{for} \quad t \in \mathbb{R},
\]

(3.40)

where \(p, q\) and \(s_2 \) satisfy \(1/p + 1/q = 1\), \(1 \leq p \leq 2\), and \(s_2 = [N(2/p - 1)] + 1 \).

We assume that \(F(u, q) \) is quadratic. In this case, our time-decay estimates in the previous section is not suited to our method. The cubic nonlinear term has a structural nice property. In other words, a cubic nonlinear term is easy to treat in the sense that it is naturally adapted to our symbolic calculus. See Remark 2.3.1. In the present section we employ another time-decay estimates which can be available for the quadratic case. It was developed by S. Klainerman and G. Ponce ([32]), and J. Shatah ([43]) independently. Now it is a standard method to study the global existence of small solutions to a lot of evolutoinal semilinear partial differential equations, in which all of the coefficients of their principal parts are constant. Using their method, one can make effective use of the time-decay of fundamental solutions of various evolutoinal partial differential equations with constant coefficients. It is basically depends on the degree of the power of nonlinearity. In which class we obtain the time-decay estimates is decided by the power. For instance, to put \(p - 1 \) would be the best choice in (3.40). The integral equation which is equivalent to (1.1)–(1.2), is written as

\[
u(t) = e^{it\Delta}u_0 + \int_0^t e^{i(t-\tau)\Delta} F(u(\tau), \nabla u(\tau)) d\tau.
\]

(3.41)

If we apply \(L^1 - L^\infty \) estimate to (3.41), then we have

\[
\|u(t)\|_{L^\infty} \leq C(1 + t)^{-N/2} \|u_0\|_{W^{2s+1}} + C \int_0^t (1 + |t - \tau|)^{-N/2} \|F(u(\tau), \nabla u(\tau))\|_{W^{2s+1}} d\tau,
\]

(3.42)

for \(t \geq 0 \). Even if \(\|u(t)\|_{W^{2s+1}} \) is bounded for \(t \geq 0 \), we cannot get the time-decay of solution \(u \). Certainly, we could choose the exponent \(p \) as small as possible. But if \(p \) is smaller than some number decided by the power of nonlinearity, it is difficult to make good use of the time-decay of the fundamental solution \(e^{it\Delta} \). According to [32] or [43], \(p = 3/4 \) and \(q = 4 \) is the best choice of the exponents in the above case. Namely we employ the estimate

\[
\|e^{it\Delta}\phi\|_{L^p} \leq C(1 + |t|)^{-N/4} \|\phi\|_{W^{2s+1/4, 3/4}} \quad \text{for} \quad t \in \mathbb{R},
\]

(3.43)

for the quadratic semilinear equations. More precisely, we have

\[
(3.44)
\]

Lemma 3.3.1 We assume that the nonlinear term \(F(u, q) \) is quadratic:

\[
F(u, q) = O(|u|^2 + |q|^2) \quad \text{near} \quad (u, q) = 0.
\]

Let \(m \) be a sufficiently large integer. Then

\[
\|F(t)\|_{H^{m-1/4, 3/4}} + \|F(t)\|_{H^{m-1/2}} + \sum_{|\alpha| = m} \|\partial^\alpha F - \partial^\alpha P_\alpha(t)\|_{L^2},
\]

(3.46)

\[
\|F(t)\|_{H^{m-3/4, 1/4}} + \|F(t)\|_{H^{m-1}} + \sum_{|\alpha| = m-2} \|\partial^\alpha F - \partial^\alpha P_\alpha(t)\|_{L^2}
\]

(3.47)

\[
\|F(t)\|_{H^{m-3/4, 1/4}} + \|F(t)\|_{H^{m-1}} + \sum_{|\alpha| = m-2} \|\partial^\alpha F - \partial^\alpha P_\alpha(t)\|_{L^2}
\]

(3.48)

\[
\|F(t)\|_{H^{m-3/4, 1/4}} + \|F(t)\|_{H^{m-1}} + \sum_{|\alpha| = m-2} \|\partial^\alpha F - \partial^\alpha P_\alpha(t)\|_{L^2}
\]

(3.49)

\[
\|F(t)\|_{H^{m-3/4, 1/4}} + \|F(t)\|_{H^{m-1}} + \sum_{|\alpha| = m-2} \|\partial^\alpha F - \partial^\alpha P_\alpha(t)\|_{L^2}
\]

(3.45)

for \(u \in \mathbb{R}^2 \) (C([0, T]; H^{m-2s/2})) and \(t \in [0, T] \).
where $\varepsilon \in (0, 1)$. We remark here that the initial data u_0 is independent of $\varepsilon \in (0, 1)$. As far as we consider (3.47)–(3.48) in the Sobolev space H^m, it is the same as the initial value problem for semilinear heat equations.

$$
\begin{align*}
\partial_t u - \varepsilon \Delta u &= F(u', \nabla u') \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N, \\
u'(0, x) &= \nu_0(x) \quad \text{in} \quad \mathbb{R}^N.
\end{align*}
$$

3.4 Parabolic regularization

In this section we are concerned with the parabolic regularization of our semilinear Schrödinger equations. More precisely, we present the parabolic regularization of (1.1)–(1.2) and the existence theorem of it. This is one of the preliminary lemmas to prove the local existence theorem for (1.1)–(1.2). Let us consider the initial value problem

$$
\begin{align*}
\partial_t u' - (i + \varepsilon) \Delta u' &= F(u', \nabla u') \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N, \\
u'(0, x) &= \nu_0(x) \quad \text{in} \quad \mathbb{R}^N.
\end{align*}
$$

Proof. We remark here that the Sobolev embedding

$$
\|u\|_{L^p} \leq C \|u\|_{W^{N/2 + 1/4, 1} \cap L^2} \quad \text{for} \quad u \in W^{N/2 + 1/4, 1} \cap L^2, \quad 3.46
$$

In the same way as Lemma 3.2.1, we can obtain the estimates of nonlinear term in L^2-type spaces. For instance, using the Gagliardo-Nirenberg inequality (3.1) and the Sobolev embeddings (3.46), we get

$$
\|u(t)^2\|_{H^m} \leq C \|u(t)\|_{L^2} \|D^m u(t)\|_{L^2} \leq C \|u(t)\|_{W^{N/2 + 1/4, 1} \cap L^2} \|D^m u(t)\|_{L^2} \leq C \|u(t)\|_{W^{N/2 + 1/4, 1} \cap L^2}^2 \leq C \|u(t)\|_{L^4}^2,
$$

Applying the calculation like the above one to $F(t), JF(t)$ and $J^2 F(t)$, we can obtain the L^2-type estimates in (3.43), (3.44) and (3.15).

On the other hand, we get the estimates in $L^{1, \infty}$-L^1-type spaces by the Hölder inequality with the exponents $3, 4 = 1, 2 + 1/4$. For instance, we have

$$
\|u(t)^2\|_{L^{1, \infty}} \leq \|u(t)\|_{L^1} \|u(t)\|_{L^2} \leq (1 + t)^{-N/2} \|u(t)\|_{L^2} \|u(t)\|_{L^2} \leq (1 + t)^{-N/2} \|u(t)\|_{L^2}^2.
$$

Applying the calculation like the above one to $F(t), JF(t)$ and $J^2 F(t)$, we can obtain the $L^{1, \infty}$-L^1-type estimates in (3.43), (3.44) and (3.15).

3.4 Parabolic regularization

In this section we are concerned with the parabolic regularization of our semilinear Schrödinger equations. More precisely, we present the parabolic regularization of (1.1)–(1.2) and the existence theorem of it. This is one of the preliminary lemmas to prove the local existence theorem for (1.1)–(1.2). Let us consider the initial value problem

$$
\begin{align*}
\partial_t u' - (i + \varepsilon) \Delta u' &= F(u', \nabla u') \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N, \\
u'(0, x) &= \nu_0(x) \quad \text{in} \quad \mathbb{R}^N.
\end{align*}
$$

where $\varepsilon \in (0, 1)$. As far as we consider (3.47)–(3.48) in the Sobolev space H^m, it is the same as the initial value problem for semilinear heat equations.

$$
\begin{align*}
\partial_t u - \varepsilon \Delta u &= F(u, \nabla u) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N, \\
u(0, x) &= \nu_0(x) \quad \text{in} \quad \mathbb{R}^N.
\end{align*}
$$

Proof. Let $S(t)$ be a semigroup generated by $i\partial_t - (i + \varepsilon)\Delta$. (3.47)–(3.48) is equivalent to

$$
\begin{align*}
u'(t) &= S(t)u_0 + \int_0^t S(t - \tau) F(u(\tau), \nabla u(\tau)) d\tau.
\end{align*}
$$

Then, we consider the nonlinear map $u \mapsto \Phi(u)$ defined by

$$
\begin{align*}
\Phi(u)(t) &= S(t)u_0 + \int_0^t S(t - \tau) F(u(\tau), \nabla u(\tau)) d\tau.
\end{align*}
$$

To solve (3.47)–(3.48), we have only to find a unique fixed point of the map Φ in

$$
B^p_\infty \left\{ u \in C \left([0, T] \times H^m \right) \left| \max_{t \in [0, T]} \|u(t)\|_{H^m} \leq 2 \|u_0\|_{H^m} \right. \right\}
$$

with some $T > 0$. Clearly B^p_∞ is a closed subset of $C \left([0, T] \times H^m \right)$ and then it is a complete metric space. Lemma 3.1.2 yields

$$
\|F(u(t), \nabla u(t))\|_{H^{m-1}} \leq A_m \left(\|u(t)\|_{H^m} \|u(t)\|_{H^m} \right)
$$

$$
\|F(u(t), \nabla u(t))\|_{H^{m-1}} \leq A_m \left(\|u(t)\|_{H^m} \|u(t)\|_{H^m} \right)
$$

for $u, v \in B^p_\infty$ and $t \in [0, T]$, where $A_m(\cdot)$ is a non-decreasing function on $[0, \infty)$. Using the Plancherel formula, we have

$$
\|\Phi(u)(t)\|_{H^m} \leq \|u_0\|_{H^m} + \int_0^t \|S(t - \tau) F(u(\tau), \nabla u(\tau))\|_{H^{m-1}} d\tau.
$$
Chapter 4

Local existence for semilinear Schrödinger equations

4.1 Introduction to local existence theorems

This chapter is devoted to studying local existence for semilinear Schrödinger equations. As we mentioned in Chapter 1, these equations cannot allow the classical energy estimates of solutions. In other words, the loss of derivatives occurs. Then we have to resolve it in order to solve the initial value problem (1.1)–(1.2). For this purpose, we make strong use of the modification of the theory of linear Schrödinger-type equations developed in Chapter 2.

In the present section we will introduce the history of the studies on the initial value problem for semilinear Schrödinger equations or nonlinear dispersive-type equations. But we omit here the history of the studies on the global existence of small solutions to semilinear Schrödinger equations (see the next chapter). This subject began with the study on the initial value problem for Korteweg–de Vries equation in the middle of 1970s (see [1], [42] and [28] for instance), because the dispersive property (see, e.g., (1.6)) attracts a lot of attention of scientists. After these works, this subject developed into the studies on the initial value problems for nonlinear dispersive-type equations appearing in mathematical physics. These equations allow the classical energy estimates of solutions, and then a lot of researchers have been studying these problems from a viewpoint of the theory of evolution equations. More precisely, they studied local and global existence theorems, blow-up theorems, scattering, stability of solitary waves and etc (see, e.g., W. A. Strauss' lecture note [45] and its references).

Because "nonlinear Schrödinger equations" in mathematical physics is one of the typical examples of nonlinear dispersive-type partial differential equations, many authors studied the initial value problem for semilinear Schrödinger equations of the form

$$\partial_t u - i\Delta u = f(u) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^N,$$

(4.1)
where the nonlinear term \(f(u) \) is independent of \(\nabla u \) and satisfies \(f(u) = -ig(|u|^2)u \).

Then we have

\[
\int_{\mathbb{R}^N} u(t)^2 \, dx = 0.
\]

Let \(G(s) \) be the primitive of \(g(t) \) and satisfy \(G(0) = 0 \). Namely we define \(G(s) \) by

\[
G(s) = \int_0^s g(t') \, dt' \quad s \in [0, +\infty).
\]

Then we have

\[
\frac{\partial}{\partial t} G(|u|^2) = \frac{dg}{ds} (|u|^2) \frac{\partial}{\partial u} |u|^2 = g(|u|^2)u = if(u).
\]

We multiply (4.1) by \(\partial_t u \). Its twice imaginary part is

\[
-\Delta \partial_t u - \Delta u \partial_t u + g(|u|^2)(\partial_t u + \overline{\partial_t u}).
\]

Integrating (4.3) over \(\mathbb{R}^N \), We have

\[
\frac{d}{dt} |u(t)|^2 = 0, \quad \text{where} \quad E(u) = \int_{\mathbb{R}^N} |\nabla u|^2 + G(|u|^2) \, dx.
\]

\(E(u(t)) \) is called a energy function.

Local existence theorem for (4.1)-(4.2) is proved by the contraction mapping theorem (see, e.g., [29] or [45, Chapter 3, Existence]). Using \(E(u(t)) \), many authors studied global existence or blow-up of \(H^1 \) or \(H^2 \)-solutions to (4.1)-(4.2) ([12], [49], [29] and [18]). Roughly speaking, these results assert that the initial value problem (4.1)-(4.2) has a unique global solution only if the conservation law \(\|u(t)\|_{L^2} = \|u_0\|_{L^2} \) and \(E(u(t)) = E(u_0) \) give the \textit{a priori} estimates of solution via the Sobolev embeddings. In other words, if \(G(|u|^2) \) is negative and its absolute value is large, then one cannot get the \textit{a priori} estimates of solution. Moreover, when the global existence of solutions was ensured under some assumption on the nonlinear term \(f(u) \), some authors studied the scattering problem. In this subject, the solution \(u(t) \) is approximated by \(\alpha \Delta u_0 \), and \(\alpha \Delta u_0 \) as \(t \to \pm \infty \) respectively. They call the mapping from \(u_0 \) to \(u_0 \), the scattering operator. In all of the above works, they dealt with the initial value problem (4.1)-(4.2) as that of ordinary differential equations which were valued some infinite dimensional Hilbert spaces. We can say that the above-mentioned works are based on the theory of evolution equations and are some branches of studies on nonlinear evolution equations: nonlinear wave equations.

4.1 Introduction to local existence theorems

The initial value problem for linear Klein–Gordon equations, Yang Mills equations, and etc. In other words, the theory of partial differential equations is not very applicable to these works.

Recently, however, some authors studied the initial value problem (1.1) (4.2) or some semilinear Schrödinger equations and systems appearing in mathematical physics. As we mentioned in Chapter 1, these equations cannot be treated by the theory of evolution equations because they cause the loss of derivatives.

In [30], first, C. E. Kenig, Ponce and Vega analyzed the sharp smoothing effect (which they called) of \(e^{it\Delta} \) and applied it to solving (1.1) (1.2). Their analysis is based on the Fourier analysis. Let \((\tau, \xi) \) be the dual variable of \((t, x) \) under the Fourier transformation. They proved that the operators whose symbols are \(\xi^a (\tau - |\xi|^2)^j \) \((j = 1, \cdots, N)\), are bounded in a sense. Using this fact and the method of the Neumann series, they constructed the inverse of Schrödinger-type operators

\[
S = \partial_t - i\Delta + \sum_j b_j(t, x) \partial_{\xi_j}.
\]

Clearly, in their work, the smallness of the coefficients \(b_j(t, x) \) \((j = 1, \cdots, N)\) is essential to construct the inverse of \(S \). In terms of semilinear equations, the smallness of the coefficients \(f \) means that of the solutions to semilinear equations, because \(b_j(t, x), \cdots, b_N(t, x) \) correspond to \(-\frac{1}{2} \nabla u, -\nabla u, \cdots, \partial_x u \). Then they proved the local existence of small solutions to (1.1)-(1.2). Moreover, F. Lineres and G. Ponce ([34]) applied this sharp smoothing estimates to solving the elliptic–hyperbolic and hyperbolic–hyperbolic Davey–Stewartson equations. In general, such a method like the above gives only the local existence of \textit{small} solutions (see also [10]).

Secondly, A. Soyeur ([44]) studied the local and the global existence for the Ishimori equation.

\[
\partial_t u - i(\partial_x^2 - \partial_y^2) u = f_1(u, \partial_x u, \partial_y u) + f_2(u, \partial_x u, \partial_y u) \quad \text{in} \ (0, \infty) \times \mathbb{R}^2, \quad (4.4)
\]

\[
\frac{1}{1 + |u|^2} \left((\partial_x u)^2 - (\partial_y u)^2 \right),
\]

\[
b \left(\partial_x \varphi - \partial_y \varphi \right) = \frac{\partial_x u \partial_y \varphi - \partial_y u \partial_x \varphi}{(1 + |u|^2)^2},
\]

where \(b \) is a real constant. Because \(f_2(u, \partial_x u, \partial_y u) \) does not give the loss of derivatives, (4.4) can be seen the same as the Heisenberg ferro-magnetic model (1.11) from our viewpoint. These equations are the typical examples of (2.10). Then he solved the initial value problem for (4.4) by means of some quantity which played a role of \(H^s \)-norm and corresponded to the gauge transformation with (2.12) (see [44, Section 2]).

In this chapter we present usual local existence theorems for the initial value problem (1.1)-(1.2) by using the linear estimates developed in Chapter 2 and well-known technique.
for nonlinear partial differential equations, which is prepared in Chapter 3. Section 4.2 is devoted to studying (1.1) (1.2) in one space dimension. In Section 4.3 we prove the local existence theorem in general space dimensions. Section 4.2 can be seen as a part of Section 4.1. In Section 4.2, however, we make good use of the speciality of one dimensional case. More precisely, the loss of derivatives can be overcome by the gauge transformation developed in Section 2.2. On the other hand, in general dimensional case, we need the symbolic calculus of pseudo-differential operators appeared in Section 2.3. Then, one dimensional case is simpler than the general dimensional case.

4.2 Local existence for semilinear Schrödinger equations in one space dimension

In this section, we present the local existence theorem for (1.1) (1.2) in one space dimension. Throughout of the present section, we assume \(N = 1 \). Our strategy consists of parabolic regularization in Section 3.1 and the uniform estimates of solutions to these equations. The later is obtained by the linear estimates developed in Section 2.2. Then the standard compactness argument implies the local existence theorem. In view of the necessity condition of \(L^2 \)-wellposedness for linear Schrödinger-type equations, our results deviate into the quadratic case (\(p = 2 \)) and the cubic case (\(p \geq 3 \)). Our results are the following.

Theorem 4.2.1 We assume the spatial dimension \(N \) is equal to 1.

(i) Let \(p \geq 3 \) and let \(m \) be an integer which is greater than 3. Then, for any \(u_0 \in H^m \), there exists a time \(T = T(\|u_0\|_{H^m}) > 0 \) such that the initial value problem (1.1)-(1.2) possesses a unique solution

\[a \in C^1([0,T); H^m). \]

(ii) Let \(p = 2 \) and let \(m \) be an integer which is greater than 3. Then, for any \(u_0 \in H^m \cap H^{m+1} \), there exists a time \(T = T(\|u_0\|_{H^m} + \|u_0\|_{H^{m+1}}) > 0 \) such that the initial value problem (1.1) (1.2) possesses a unique solution

\[a \in C^1([0,T); H^m \cap H^{m+1}). \]

Proof of Part (i) of Theorem 4.2.1. We assume that \(N = 1 \) and \(p \geq 3 \). We remark here that

\[\frac{\partial F}{\partial a}(u,q), \frac{\partial F}{\partial \dot{a}}(u,q), \frac{\partial F}{\partial q}(u,q), \frac{\partial F}{\partial \dot{q}}(u,q) \quad O(|u|^2 + |q|^2) \quad \text{near} \quad (u,q) = 0. \]

Existence. Let \(\{u^\varepsilon\}_{\varepsilon \in (0,1)} \) be solutions to (3.47)-(3.48). We will show that there exists a common time \(T = T(\|u_0\|_{H^m}) > 0 \) such that \(\{u^\varepsilon\}_{\varepsilon \in (0,1)} \) is bounded in \(L^\infty(0,T; H^m) \). We evaluate the following quantity

\[N^m_3(u'(t)) = \|u'(t)\|_{H^{m-1}}^2 + \|k_1(t, u') \|_{H^{m-1}}^2, \]

where

\[k_1(t, x; u') = \exp\left(\int_0^t \frac{1}{2} \frac{\partial F}{\partial q}(u(t), \dot{u}(t), y) dy \right), \]

\[u_n(t) = \int (\partial^m \dot{u}(t), \partial^m u(t)). \]

It is easy to see that

\[|p_1(t, x; u')| \leq C_1 \|u(t)\|_{H^m}^2 \]

for any \(u \in C^1([0,T]; H^1) \). We remark here that the positive constant \(C_1 \) is independent of \(\varepsilon \in (0,1) \). It is easy to see that

\[\|u_0\|_{H^m} \leq C_{\varepsilon} \|u_0\|_{H^m} \leq C_{\varepsilon} \|u_0\|_{H^m} \leq C_{\varepsilon} \|u_0\|_{H^m}. \]

We put \(a_m = N^m(u_0) = N^m_3(u_0) \). (4.5) implies

\[e^{C_{\varepsilon}|u_0|_{H^m}} \leq a_m \leq 2 e^{C_{\varepsilon}|u_0|_{H^m}}. \]

Let \(T_m \) be a positive time defined by

\[T_m = \sup \left\{ T > 0 \middle| N^m(u(t)) \leq 2a_m \text{ for } t \in [0, T] \right\}. \]

The positivity of \(T_m \) is ensured by Lemma 3.4.1.

Operating \((D)^{m-1} \) on the equation (3.47), we have

\[\partial_t^{(D)^{m-1}} + (1 + \varepsilon) \partial^2 (D)^{m-1} u = (D)^{m-1} F(u, \dot{u}). \]

Multiplying \((D)^{m-1} u_n \) and integrating the real part over \(\mathbb{R} \), we get

\[\frac{d}{dt} \|u_n(t)\|_{H^{m-1}}^2 + 2 \|\partial^2 u(t)\|_{H^{m-1}}^2 \leq 2 \|F(u(t), \dot{u}(t))\|_{H^{m-1}}^2 + 2a_m \|u_n(t)\|_{H^{m+1}}^2 \]

where we used (3.2) and the Sobolev embedding \(H^2(\mathbb{R}) \hookrightarrow W^{1,\infty}(\mathbb{R}) \). Then we obtain

\[\frac{d}{dt} \|u_n(t)\|_{H^{m-1}} \leq A_m \|u_n(t)\|_{H^{m}} \]

and

\[\|u_n(t)\|_{H^{m+1}} \leq A_m \|u_n(t)\|_{H^{m}}. \]

(4.6)
Chapter 4. Local existence

where we made use of (4.5). \(A_m(\cdot) \) means a increasing function on \([0, \infty)\) which depends only on \(m \) and \(F(u, \eta) \). We express such functions by the same notation \(A_m(\cdot) \).

Next we estimate \(\{ w_n \} \). Simple calculation implies that \(w_n \) satisfies the 2 \(\times \) 2-system

\[
(i \partial_t - \epsilon t \Delta + i H^*_1(t)) \psi_n = f_{\psi, n}, \tag{4.7}
\]

\[
H^*_1(t) = \begin{bmatrix}
-i \partial^2 & 0 \\
0 & \partial^2
\end{bmatrix} - i \begin{bmatrix}
\text{Re} b^*_1(t, x) & b^*_2(t, x) \\
\text{Im} b^*_1(t, x) & -\text{Re} b^*_2(t, x)
\end{bmatrix} \partial_t,
\]

\[
b^*_1(t, x) = -\frac{\partial F}{\partial \eta}(u', \partial u') (t, x), \quad b^*_2(t, x) = -\frac{\partial F}{\partial \eta} (u', \partial u')(t, x),
\]

\[
f_{\psi, n}(t, x) = i \left(f_{\psi, n, 1}(t, x), f_{\psi, n, 1}(t, x) \right),
\]

\[
f_{\psi, 2}(t, x) = \left((i \partial^2 F(u', \partial u') - P(u', \partial u', \partial \eta^0 u'))(t, x) \right).
\]

We put \(u^* \equiv k_1(t, x; u') \psi_n(t, x) \) and \(g^* \equiv k_2(t, x) \psi_n(t, x) \). Multiplying (4.7) by \(k_1(t, x; u') \), we have

\[
(i \partial_t - \epsilon t \Delta + i \hat{H}^*_1(t)) \psi_n = g^*,
\]

where

\[
\hat{H}^*_1(t) = \begin{bmatrix}
-i \partial^2 & 0 \\
0 & \partial^2
\end{bmatrix} + \begin{bmatrix}
\text{Re} b^*_1(t, x) - \epsilon \text{Im} b^*_1(t, x) & b^*_2(t, x) \\
\text{Im} b^*_1(t, x) & -\text{Re} b^*_2(t, x) - \epsilon \text{Im} b^*_2(t, x)
\end{bmatrix} \partial_t,
\]

\[
c^*_1(t, x) = -(i + \varepsilon) \left(\frac{1}{2} b^*_1(t, x) x + \frac{1}{4} (\text{Im} b^*_1(t, x))^2 \right)
\]

\[
c^*_2(t, x) = \frac{1}{2} b^*_2(t, x) \text{Im} b^*_1(t, x) + \frac{1}{2} \int_0^t \text{Im} b^*_1(t, y) dy,
\]

\[
c^*_3(t, x) = \frac{1}{2} c^*_1(t, x) b^*_2(t, x).
\]

In the same way as (2.24), we have

\[
\frac{d}{dt} \| u^*_n(t) \| \leq C_2 \| b^*_n(t) \| \| u^*_n(t) \| + \| g^*_n(t) \|,
\]

where

\[
b^*_n(t) = \sup_{r \in \mathbb{R}} \left| \int_0^t \text{Im} \partial_t b^*_1(t, y) dy \right| + \sum_{j=1}^2 \left(\sup_{r \in \mathbb{R}} | b_j^*(t, x) | + \sum_{j=1}^2 | b_j^*(t, x) |^2 \right).
\]

4.2. One dimensional case

We remark here that \(C_2 \) is a positive constant and is independent of \(\varepsilon \in (0, 1) \). Since \(b_1^*(t, x) \) and \(b_2^*(t, x) \) are quadratic terms of \(u', \partial u' \), \(\partial^0 u' \) and \(\partial \eta^0 u' \), the Sobolev embedding yields

\[
\sum_{j=1}^2 \left(\sup_{r \in \mathbb{R}} | b_j^*(t, x) | + \sum_{j=1}^2 | b_j^*(t, x) |^2 \right) \leq A_3 \| u^*(t) \|_{H^2},
\]

On the other hand, using the equation (3.47), we get

\[
\int_0^t \text{Im} \partial_t b_1^*(t, y) dy = \int_0^t \text{Im} \partial_t \left(b'_1(u', \partial u') (t, y) \right) dy
\]

\[
= \int_0^t \text{Im} \left(\frac{\partial F}{\partial \eta} (u', \partial u') \partial \eta u' \right) dy
\]

\[
+ \int_0^t \text{Im} \left(\frac{\partial F}{\partial \partial \eta} (u', \partial u') \partial \partial u' \right) dy
\]

\[
+ \int_0^t \text{Im} \left(\frac{\partial F}{\partial \partial ^2 \eta} (u', \partial u') \partial \partial ^2 u' \right) dy
\]

\[
+ \int_0^t \text{Im} \left(\frac{\partial F}{\partial \partial ^2 \partial \eta} (u', \partial u') \partial \partial ^2 \partial u' \right) dy.
\]

Then we have

\[
\sup_{r \in \mathbb{R}} \left| \int_0^t \text{Im} \partial_t b_1^*(t, y) dy \right| \leq A_3 \| u^*(t) \|_{H^3}.
\]

(3.3) gives

\[
\| g^*_n(t) \| \leq A_m \| u^*(t) \|_{H^3} \| u^*(t) \|_{H^m}.
\]

Noting (4.5), we obtain

\[
\frac{d}{dt} \| u^*_n(t) \| \leq A_m \left(\| N^*_1(u^*(t)) \| \right) \| u^*(t) \| \text{ for } t \in [0, T_m] \tag{4.9}
\]
Combining (4.6) and (14.9), we have
\[\frac{d}{dt} N_m^0(u'(t)) \leq C(\alpha) N_m^0(u'(t)) \quad \text{for} \quad t \in [0, T_m^*]. \]
where \(C(\alpha) \) is a positive constant depending only on \(m \) and \(\alpha \). The Gronwall inequality yields
\[N_m^0(u'(t)) \leq \alpha m e^{C(\alpha) t} \quad \text{for} \quad t \in [0, T_m^*]. \]
This implies
\[2 \leq \exp\left(C(\alpha) T_m^* \right) \quad \text{i.e.} \quad T_m^* \geq \frac{\log 2}{C(\alpha)} \equiv T > 0. \]
Then \(\{u'(t)\}_{t \in (0, T]} \) is bounded in \(L^\infty(0, T; H^m) \).
In view of the equation \(\partial_t u' = (i + \varepsilon)\partial_x^2 u' + F(u', \partial_x u') \), \(\{u'(t)\}_{t \in (0, T]} \) is bounded in \(L^\infty(0, T; H^m) \). Then \(\{u'(t)\}_{t \in (0, T]} \) is bounded in \(C^{0, \beta}(0, T; H^m) \). The simple interpolation implies that \(\{u'(t)\}_{t \in (0, T]} \) is bounded in \(C^{0, \beta}(0, T; H^m) \) for any \(\beta \in (0, 1] \). The Rellich theorem and the Ascoli-Arzela theorem show that there exists a subsequence \(\{u'(t)\}_{t \in (0, T]} \) and \(u \in L^\infty(0, T; H^m) \) such that
\[u' \rightharpoonup u \quad \text{in} \quad L^\infty(0, T; H^m) \quad \text{(as} \quad \varepsilon \downarrow 0), \]
\[u' \rightarrow u \quad \text{in} \quad C^0([0, T], H^m_{loc}) \quad \text{(as} \quad \varepsilon \downarrow 0) \quad \text{for any} \quad \beta > 0. \]
It is easy to see that \(u \) is a solution to (1.1)-(1.2).

Uniqueness. Let \(u \) and \(u' \) belong to \(L^\infty(0, T; H^m) \) and be solutions to (1.1)-(1.2). We put \(v = t(u - u'; u - u') \) satisfies the initial value problem
\[\begin{cases} (i\partial_t + IH(t; u, u')) v = 0 & \text{in} \quad (0, T) \times \mathbb{R}, \\ v(0, x) = 0 & \text{in} \quad \mathbb{R}, \end{cases} \]
where
\[H(t; u, u') = \begin{bmatrix} -\partial_x^2 & 0 \\ 0 & \partial_x^2 \end{bmatrix} - i \begin{bmatrix} b_2(t, x; u', \partial_x u') & b_1(t, x; u) \\ b_1(t, x; u, \partial_x u') & b_2(t, x; u', \partial_x u') \end{bmatrix} \partial_x. \]
\[b_1(t, x; u, u') = -\frac{1}{2} \int_0^1 \frac{d}{du'} (\partial_x (1-\theta) u' + (1-\theta) \partial_x u') d\theta, \]
\[b_2(t, x; u, u') = -\frac{1}{2} \int_0^1 \frac{d}{du'} (\partial_x (1-\theta) u' + (1-\theta) \partial_x u') d\theta, \]
\[c_1(t, x; u, u') = \frac{1}{2} \int_0^1 \frac{d}{du'} (\partial_x (1-\theta) u' + (1-\theta) \partial_x u') d\theta, \]
\[c_2(t, x; u, u') = \frac{1}{2} \int_0^1 \frac{d}{du'} (\partial_x (1-\theta) u' + (1-\theta) \partial_x u') d\theta. \]

Since
\[u \in L^\infty(0, T; H^m) \cap C([0, T]; H^m) \quad \text{for any} \quad \beta > 0, \]
it follows that
\[b_1(t, x; u, u') \in C([0, T]; B^{m-1}) \cap C([0, T]; B^m), \]
\[f(t, x; u) \in \left(L^\infty(0, T; H^1) \right)^2. \]
Then Proposition 2.2.2 implies (4.10).

Proof of Part (ii) of Theorem 4.2.1. Let the spatial dimension \(N \) equal to 1 and let the power of nonlinearity \(p \) equal to 2. In the same way as the proof of Part (i), we can prove Part (ii). But there are a few differences because of \(p = 2 \). In Part (i) the boundedness of the gauge transformation \(c_n \rightarrow k_1(t; u) c_n \) follows from the boundedness of \(\|u'(t)\|_H \). In Part (ii), however, this does not hold. To overcome this point, we introduce the weighted Sobolev space \(H^{p, 1} \). This seems to be quite natural from a viewpoint of the necessary condition for \(L^p \)-well-posedness for linear Schrödinger-type equations (see 2.3). It is not clear whether the weighted Sobolev space is necessary to solve the initial value problem.
Chapter 4. Local existence

for quadratic semilinear Schrödinger equation or not (see Remark 4.2.1). We will show
mainly the differences between the proofs.

Let \{\psi\} be solutions to (3.47)-(3.48). We estimate the following quantity

\[N_2^\psi(\psi'(t)) = \|\psi'(t)\|_{H^{m-1}} + \|k_1(t, \cdot, \psi')\psi_1'(t)\| + \|k_2(t, \cdot, \psi')\psi_0'(t)\|, \]

where

\[
\begin{align*}
 k_1(t, x, \psi') &= \exp\left(-p_1(t, x; \psi')\right) I,
 p_1(t, x; \psi') = -\int_0^1 \Im \frac{\partial F}{\partial q}(u', \psi')(t, y)dy, \\
 \psi_1'(t, x) &= \left(\frac{\partial^n}{\partial q^n}(u'(t, x), \psi')(t, x)\right), \\
 k_2(t, x, \psi') &= \exp\left(-p_2(t, x; \psi')\right) I, \\
 p_2(t, x; \psi') = -\int_0^1 \Im \frac{\partial F}{\partial q}(u', \psi')(t, y)dy, \\
 \psi_0'(t, x) &= \left(\frac{\partial^n}{\partial q^n}(u'(t, x), \psi')(t, x)\right).
\end{align*}
\]

We remark here that there exist two constants \(\gamma_1, \gamma_2 \in \mathbb{C}\) such that

\[
\Im \frac{\partial F}{\partial q}(u, q) = \frac{1}{2i} \left(\gamma_1 u - \gamma_2 q + \gamma_2 \bar{q} \right) + \text{real valued quadratic term of } (u, q).
\]

Then, we have

\[
\begin{align*}
 \|p_1(t, x, u')\|, \quad \|p_2(t, x, u')\| &\leq C \left(\|u(t)\|_{L^\infty} + \int_{-\infty}^{\infty} |u(t, x)|dx + \|u(t)\|_{L^2}\right) \\
 &\leq C \left(\|u(t)\|_{H^m} + \left(\int_{-\infty}^{\infty} (x)^2 dx\right)^{1/2} \|u(t)\|_{L^2} + \|u(t)\|_{H^m}\right) \\
 &\leq C \left(\|u(t)\|_{H^m} + \|xu(t)\|_{L^2} + \|u(t)\|_{H^m}\right).
\end{align*}
\]

In view of (2.17), \(N_2^\psi(\psi'(t))\) is equivalent to \(\|\psi'(t)\|_{H^m} + |x\psi'(t)|_{L^2}\), that is

\[
\exp\left(-C_1 \left(\|u(t)\|_{H^m} + \|xu(t)\|_{L^2} + \|u(t)\|_{H^m}\right)\right) \left(\|\psi'(t)\|_{H^m} + |x\psi'(t)|_{L^2}\right) \\
\leq \quad \}
Chapter 4. Local existence

\[H'_1(t; u') = \begin{bmatrix} -\partial_x^2 & 0 \\ 0 & -\partial^2 \\ \end{bmatrix} i \begin{bmatrix} b'_1(t; x; u') \\ b'_0(t; x; u') \\ \end{bmatrix} \partial_t , \]

\[b'_1(t; x; u') = -\int_0^t \frac{\partial F}{\partial \theta}(\theta u', \theta u')(t, x) d\theta , \]

\[b'_0(t; x; u') = -\int_0^t \frac{\partial F}{\partial \theta}(\theta u', \theta u')(t, x) d\theta , \]

\[c'_1(t; x; u') = -\int_0^t \frac{\partial F}{\partial u}(\theta u', \theta u')(t, x) d\theta , \]

\[c'_0(t; x; u') = -\int_0^t \frac{\partial F}{\partial u}(\theta u', \theta u')(t, x) d\theta , \]

\[f'_{0,1}(t; x) = \left(f'_{0,1}(t; x), f'_{0,1}(t; x) \right) , \]

\[f'_{0,1}(t; x) = -2i\partial u + b'_1(t; x; u') u + b'_2(t; x; u') \bar{u} . \]

In the same way as (4.15), we get

\[\frac{d}{dt} \| k(t; u') \|_0^2(t) \leq A_m(N^2_3(u'(t)))N^2_2(u'(t)) \text{ for } t \in [0, T_m] . \]

Combining (4.14), (4.15) and (4.17), we obtain

\[\frac{d}{dt} N^2_2(u'(t)) \leq A_m(N^2_3(u'(t)))N^2_2(u'(t)) \text{ for } t \in [0, T_m] . \]

This implies that there exists a common time

\[T = T \left(||u_0||_{H^2} + ||xu_0||_{L^2} \right) > 0 \]

such that \{ u(t) \} is bounded in \(L^\infty(0, T; H^m \cap H^{0,1}) \). Then, we can get a solution \(u \in L^\infty(0, T; H^m \cap H^{0,1}) \) to (1.1)–(1.2) provided that \(\varepsilon > 0 \).

The uniqueness and the continuity in the time variable can be proved by the same energy method. We omit the detail of the proofs of them.

Remark 4.2.1 As we mentioned at the beginning of the proof of Part (ii) of Theorem 4.2.1, it is not known whether the weighted Sobolev space is needed to solve the initial value problem for the quadratic semilinear equations. We expect that the local existence theorem for it does not hold in the usual Sobolev space \(H^m \). Let us consider the following initial value problem

\[\partial_t u - i\partial^2 u + i\partial(|u|^2) = 0 \text{ in } (0, \infty) \times \mathbb{R} , \]

\[u(0, x) = u_0(x) \text{ in } \mathbb{R} . \]

Integrating (4.18) on \(\mathbb{R} \), we have

\[\int_{-\infty}^{\infty} u(t, x) dx = 0 , \text{ i.e. } \int_{-\infty}^{\infty} u(t, x) dx = \int_{-\infty}^{\infty} u_0(x) dx . \]

4.3. The case of general space dimensions

On the other hand, the gauge transformation related to (4.18)–(4.19) is

\[u(t, x) \longmapsto v(t, x) = u(t, x) \exp \left(\frac{1}{2} \int_{-\infty}^{x} \text{Re} u(t, y) dy \right) \]

If the initial data \(u_0 \) belong to \(H^3 \) and satisfy

\[\int_{-\infty}^{\infty} \text{Re} u_0(x) = +\infty \]

(e.g., \(u_0(x) = (1 + i)(x)^{-1/2} \)), then (4.20) implies that

\[\int_{-\infty}^{\infty} \text{Re} u(t, y) dy \longrightarrow +\infty \text{ as } x \to +\infty . \]

Therefore the gauge transformation (4.21) cannot be an automorphic in \(L^2 \). Combining the idea of the necessary condition of \(L^2 \)-wellposedness and the above, we want to prove non-existence results in the usual Sobolev space. Unfortunately, however, we do not yet make sure this. For this purpose, we seem to need to know the pointwise behavior of \(\text{Im} \partial u(t, x) \) in detail, because

\[\frac{d}{dt} \int_{-\infty}^{\infty} \text{Re} u(t, y) dy = \int_{-\infty}^{\infty} \partial_x \text{Re} u(t, y) dy \]

\[= \int_{-\infty}^{\infty} \text{Re} \left(i\partial^2 u(t, y) - i\partial(|u(t, y)|^2) \right) dy \]

\[= -\text{Im} \partial u(t, x) . \]

Remark 4.2.2 In the quadratic case (i.e. \(\rho = 2 \)), we can replace \(T = T \left(||u_0||_{H^2} + ||xu_0||_{L^2} \right) \) by \(T = T \left(||u_0||_{H^2} + ||J(t_0)u_0||_{L^2} \right) \), if the initial time is \(t_0 \in \mathbb{R} \). We remark here that \(J(0) = x + 2it\partial \). This is very important when we consider the global existence theorem for quadratic semilinear equations.

4.3. Local existence for semilinear Schrödinger equations in general space dimensions

This section is concerned with the local existence of solutions to (1.1)–(1.2) in general space dimensions. Our strategy is basically same as that of the previous section which consists of the parabolic regularization and the uniform estimates. In the present section, however, we make strong use of pseudo-differential operators to get the uniform estimates. This is quite natural from the viewpoint of the theory of linear Schrödinger-type equations. In the same way as the previous section, our results devide in two parts according to the power of nonlinearity \(\rho \). More precisely, we solve (1.1)–(1.2) in the usual Sobolev space \(H^m \) if \(\rho \geq 3 \), and in the weighted Sobolev space \(H^m \cap H^{0,2} \) if \(\rho = 2 \). Our results are the following.
Theorem 4.3.1 Let N be an arbitrary positive integer.

(i) We assume \(p \geq 3 \). Let \(m_1 \) be a sufficiently large integer. Then, for any \(u_0 \in H^m \) \((m \in \mathbb{N} \geq m_1)\), there exists a time \(T = T([\|u_0\|_{H^m}]) > 0 \) such that the initial value problem (1.1)-(1.2) possesses a unique solution

\[
u \in C([0, T]; H^m).
\]

(ii) We assume \(p = 2 \). Let \(m_2 \) be a sufficiently large integer. Then, for any \(u_0 \in H^m \cap H^{m-2} \), \((m \in \mathbb{N} \geq m_2)\), there exists a time \(T = T([\|u_0\|_{H^m}, \|u_0\|_{H^{m-2}}]) > 0 \) such that the initial value problem (1.1)-(1.2) possesses a unique solution

\[
u \in C([0, T]; H^m \cap H^{m-2}).
\]

Remark 4.3.1 Since our analysis is based on the symbolic calculus of pseudo-differential operators, it is very troublesome to determine the minimum of \(m_1 \) and \(m_2 \) concretely.

Proof of Part (i) of Theorem 4.3.1

Existence. Let \(\{\nu^k\}_{k \in \mathbb{N}} \) be solutions to (3.47)-(3.48). We show that there exists a common time \(T > 0 \) such that \(\{\nu^k\}_{k \in \mathbb{N}} \) is bounded in \(L^\infty(0, T; H^m) \). For this purpose, we use the linear estimates developed in Section 2.3. For the sake of convenience, we introduce the following notations:

\[
v^k \equiv \nu^k(Pw^k, P^*w^k), \quad v_{0,0}^k \equiv \nu_0(Pw^k, P_0w^k), \quad \text{for } |\alpha| = m,
\]

\[
\begin{align*}
 b_{11}(t, x) &= -\frac{\partial F}{\partial \eta_j}(w^k, \nabla w^k), \quad b_{12}(t, x) = -\frac{\partial F}{\partial \xi_j}(w^k, \nabla w^k), \\
 b_{21}(t, x) &= \frac{\partial F}{\partial \eta_j}(w^k, \nabla w^k), \quad b_{22}(t, x) = \frac{\partial F}{\partial \xi_j}(w^k, \nabla w^k), \\
 b^k(t, x, \xi) &= \sum_{j=1}^{N} \begin{bmatrix} b_{11}(t, x) & b_{12}(t, x) \\ b_{21}(t, x) & b_{22}(t, x) \end{bmatrix} \xi_j, \\
 b^k_{\text{diag}}(t, x, \xi) &= \sum_{j=1}^{N} \begin{bmatrix} b_{11}(t, x) & 0 \\ 0 & b_{22}(t, x) \end{bmatrix} \xi_j, \\
 K^k(t) &= b^k(t, x, D), \\
 \hat{K}^k(t, x, \xi) &= \begin{bmatrix} e^{-\phi^k(t, x, \xi)} & 0 \\ 0 & e^{-\phi^k(t, x, \xi)} \end{bmatrix}, \\
 \phi^k(t, x, \xi) &= \sum_{j=1}^{N} \int_{0}^{t_j} \phi^k_j(t, s) ds \xi_j(\xi_j)^{-1}.
\end{align*}
\]

1.3. The case of general space dimensions

\[
\phi^k_j(t, x, y) = M \sum_{|\alpha| \leq N} \left(\int_{R} \left| P^\alpha u^k(t, x, y) \right|^2 dx \right)^{1/2}, \quad \text{with some } M > 0.
\]

\[
A^k(t) = I + \hat{K}^k(t), \quad \hat{Y}^k(t) = \hat{K}^k(t, x, D).
\]

\[
\hat{X}^k(t, x, \xi) = \frac{1}{2} \sum_{j=1}^{N} \left[\begin{array}{c} b_{11}^k(t, x) \\ b_{12}^k(t, x) \\ -b_{21}^k(t, x) \\ 0 \end{array} \right] \xi_j(\xi_j)^{-1},
\]

\[
\mathcal{N}^k_n(u^k(t)) = \sum_{|\alpha| < n} \|K^k(t)A^k(t)^\alpha u^k(t)\| + \|A^k(t)^\alpha u^k(t)\|_{H^{m-1}},
\]

\[
\alpha_m = \mathcal{N}^k_n(u^k(0)) = \sum_{|\alpha| < n} \|K^k(0)A^k(0)^\alpha u^k(0)\| + \|u^k(0)\|_{H^{m-1}}, \quad \text{ind. of } \varepsilon \in (0, 1).
\]

\[
f^k_{a,1} = \nu_{a,0}^k = \nu_0^{k}(x, \nabla u^k, \partial P u^k).
\]

In the same way as in Section 2.3, we introduce

\[
\begin{align*}
\mathcal{B}_{K}^k(t) &= \|e^{-\phi^k(t, x, \xi)}\|_{L^\infty} + \|e^{-\phi^k(t, x, \xi)}\|_{L^1} \\
\mathcal{B}_{K}^k(t) &= \sum_{m=1}^{N} \sum_{|\alpha| < m} \left(\sup_{x \in R} \|P^\alpha \nu_{a,0}^k(t, x)\| + \sup_{x \in R} \|P^\alpha \nu_{a,0}^k(t, x)\| \right), \\
\mathcal{B}_{K}^{P}^k(t) &= \sum_{j=1}^{N} \int_{-\infty}^{+\infty} \phi^k_j(t, x, y) dy, \\
\mathcal{B}_{K}^{P}_{a,1}^k(t) &= \sum_{j=1}^{N} \left(\sup_{x \in R} \|\phi^k_j(t, x, y)\| \right).
\end{align*}
\]

We estimate \(\mathcal{N}^k_n(u^k(t)) \). Let \(T_{m}^k \) be a positive time defined by

\[
T_{m}^k = \sup \left\{ T > 0 : \mathcal{N}^k_n(u^k(t)) \leq 2 \alpha_m \text{ for } t \in [0, T] \right\}.
\]

Lemma 3.4.1 ensures \(T_{m}^k > 0 \). In view of the Sobolev embedding, there exists a constant \(R = R(\alpha_m, m) > 0 \) such that \(\|u^k(t)\|_{W^{1, \infty}} \leq R \) for \(t \in [0, T_{m}^k] \) and \(\varepsilon \in (0, 1) \). Moreover there exists a constant \(C(m, \alpha_m) > 0 \) such that

\[
\mathcal{B}_{K}^k(t, B_{K}^{P}^k(t), B_{K}^{P}_{a,1}^k(t), B_{K}^{P}_{a,1}^k(t), B_{K}^{P}_{a,1}^k(t)) \leq C(m, \alpha_m),
\]

\[
C^{(m, \alpha_m)} \mathcal{N}^k_n(u^k(t)) \leq \|u^k(t)\|_{H^{m-1}} \leq C(m, \alpha_m) \mathcal{N}^k_n(u^k(t)).
\]

for \(t \in [0, T_{m}^k] \) and \(\varepsilon \in (0, 1) \), where we made use of (2.29), (2.30), (3.2) and (3.3). In the same way as (4.8), we obtain here only the estimates of \(B_{K}^{P}^k(t) \). Simple calculation yields

\[
\int_{0}^{T_{m}^k} \partial_t \phi^k_j(t, y) dy.
\]
Chapter 4. Local existence

\[R'_{11}(t) = \tilde{A}'(t)D^2 - D^2 \tilde{A}'(t), \quad \|R'_{11}(t)\|_{L^2(D')} \leq C(m, \alpha_m) \text{ for } t \in [0, T_m]. \]

(2.42) implies

\[(\partial_t + c I)|D|^2 + i\alpha(D)\tilde{A}'(t))v_0^\alpha + R_{12}(t)v_0^\alpha = K^\alpha(t)A'(t)f_0^\alpha, \]

\[\|R_{12}(t)\|_{L^2(D')} \leq C(m, \alpha_m), \text{ for } t \in [0, T_m]. \]

In the same way as (2.48), we get

\[\frac{d}{dt}\|K(t)\|_{H^{m-1}} \leq \|F(u'(t), \nabla u'(t))\|_{H^{m-1}}. \]

Combining (4.23), (4.24) and (4.25), we obtain

\[\frac{d}{dt}\|N^m(t)\|_{H^m} \leq C(m, \alpha_m)N^m(u(t)) + \|K'(t)A'(t)f(t)\|. \]

The Gronwall inequality yields

\[N^m(t) \leq C(m, \alpha_m)e^{C(m, \alpha_m)t} \text{ for } t \in [0, T_m]. \]

If we put \(m = m_1 \) and \(t = T_m \) in (4.26), then we have

\[T_m \geq (\log 2)C(m, \alpha_m)^{-1} > 0. \]

Hence \(\{u^\varepsilon\}_{\varepsilon \in [0,1]} \) is bounded in \(L^\infty(0,T;H^m) \) and then there exist a subsequence \(\{u^\varepsilon\}_{\varepsilon \in [0,1]} \) and \(u \in L^\infty(0,T;H^m) \) such that

\[u^\varepsilon \rightharpoonup u \text{ in } L^\infty(0,T;H^m) \text{ as } \varepsilon \downarrow 0. \]

The standard compactness argument implies that \(u \) is a solution to (1.1)-(1.2).

Uniqueness. Let \(u, u' \in L^\infty(0,T;H^m) \) be solutions to (1.1)-(1.2) with \(u(0) = u'(0) \) and let \(w = u - u' \). Then \(w \) is a solution to

\[\partial_t w - i\Delta w + \sum_{j=1}^N b_j(t,x)\partial_j w + \sum_{j=1}^N b_j(t,x)\partial_j w + c_1(t,x)w + c_0(t,x)w = 0, \]

(4.27)
Chapter 4. Local existence

\[w(0, x) = 0, \quad (4.28) \]

where

\[
\begin{align*}
\frac{\partial F}{\partial \theta} (\theta u + (1 - \theta)u') d\theta, \\
\frac{\partial F}{\partial \theta} (\theta u + (1 - \theta)u') d\theta, \\
\frac{\partial F}{\partial \theta} (\theta u + (1 - \theta)u') d\theta, \\
\frac{\partial F}{\partial \theta} (\theta u + (1 - \theta)u') d\theta.
\end{align*}
\]

It is easy to see

\[|\text{Im} b_j(t, x)| \leq \phi_j(t, x; u, u'), \]

\[\phi_j(t, x; u, u') = M \sum_{|\alpha| \leq \frac{2}{2}} \int_{\mathbb{R}^N} \left(|\partial^\alpha u(t, x)|^2 + |\partial^\alpha u'(t, x)|^2 \right) dx. \]

with some large constant \(M > 0 \). We see (4.27)-(4.28) as an initial value problem for the 2 x 2 linear system of \(t(w, w) \). Using \(\phi_j(t, x; u, u') \), we can show that the initial value problem for this system is \(L^2 \)-well-posed by the same arguments in Proposition 2.3.2. This implies that \(w(t) = 0 \) for \(t \in [0, T] \).

Continuity in the time variable. Finally we prove the continuity of solutions in the time variable. Let \(u \in L^\infty(0, T; H^m) \) be a unique solution to (1.1)-(1.2). Then (1.1) means \(\partial_t u \in L^\infty(0, T; H^{m-2}) \) and therefore \(u \in C^{0,1}([0, T]; H^{m-2}) \). The simple interpolation yields \(u \in C^{0,a}([0, T]; H^{m-a}) \) for \(a > 0 \). Thus we have only to verify \(\partial^\alpha u \in C([0, T]; H^1) \) for all \(\alpha \in (\mathbb{Z}^+)^N \) satisfying \(|\alpha| = m - 1 \). We put \(u_\alpha = \partial^\alpha u, u_{\alpha,0} = \partial^\alpha u_0 \) and \(g_\alpha = \partial^\alpha F - P_\alpha \), \(u_\alpha \) is a solution to

\[\partial_t u_\alpha - i \Delta u_\alpha - \sum_{|\alpha| \leq m} \partial^\alpha F_{\alpha,0} \partial_{\alpha} u_\alpha = g_\alpha, \]

\[w_\alpha(0, x) = w_{\alpha,0}(x). \]

Clearly \(w_{\alpha,0} \in H^1 \) and (3.3) shows \(g_\alpha \in L^\infty(0, T; H^1) \). With the same arguments used for the uniqueness, we can show that the initial value problem for the 2 x 2 linear system of \(t(w_\alpha, w_\alpha) \) is \(H^1 \)-wellposed. This implies \(\partial^\alpha u = u_\alpha \in C([0, T]; H^1) \). This completes the proof of the continuity in the time variable and then the proof of Part (i) of Theorem 4.3.1 has been finished.

Proof of Part (ii) of Theorem 4.3.1. We give the outline of the proof of the quadratic case. To make the coefficient of the first order terms to be integrable on any line in \(\mathbb{R}^N \), we introduce the weighted Sobolev space \(H^m \cap H^{m-2} \). Let \(\delta \) be a constant satisfying \(0 < \delta \leq 1 \) and we have here that

\[\left| \frac{\partial F}{\partial \theta} (u(t), \nabla u(t)) \right| \leq C_R |(D) u(t, x)| \]

\[\leq C_R (x_j)^{-((1+\delta)(x_j)} + |D(D) u(t, x)| \]

\[\leq C_R (x_j)^{-((1+\delta))} \]

for \(t \in [0, T] \) and for

\[u \in C([0, T]; H^m \cap H^{m-2}) \]

satisfying \(\max_{t \in [0, T]} \left(\|u(t)\|_{H^1} + \|u(t)\|_{H^{m-2}} \right) \leq R. \)

We introduce the same notations in the previous part except for \(\phi_j^\delta (j = 1, \ldots, N) \), which are here defined by

\[\phi_j^\delta(t, x) = M(s)^{-((1+\delta))} \]

with some positive constant \(M \). Then, we estimate the following quantity

\[N_\alpha^\delta (u)^2(t) = \sum_{|\alpha| = m} \|K^\alpha(t) A^\alpha(t) v_\alpha(t)\| \]

where

\[v_{\alpha,\beta} = (x^\beta \partial^\alpha u, \overline{x^\beta \partial^\alpha u}), \quad v_\alpha = v_{0,\alpha}, \quad \alpha, \beta \in (\mathbb{Z}^+)^N. \]

Similarly, we can prove the Part (ii) of Theorem 4.3.1. We omit here the detail.

Remark 4.3.2 Remark 4.2.2 holds for the case of general spatial dimensions.
Chapter 5

Global existence for semilinear Schrödinger equations

5.1 Introduction to global existence theorems

This chapter is devoted to studying the global existence theorems. In other words, we investigate when the time-local solution studied in the previous chapter can be extended globally. In general, there are two types of existence theorems of the time-global solutions to nonlinear evolution equations. One seems to be the straightforward conversion of such a theorem for ordinary differential equations to that of partial differential equations, another can be seen as the stability theory of small perturbations of steady solution which is often 0-solution. The former follows from some conservation laws or something like them, which imply the a priori estimate of solutions in certain functional space. In the theory of ordinary differential equations, the global existence theorems hold when these equations and systems are Hamiltonian systems or dissipative systems. In these cases, the theorems are independent of the size of initial data. In the same way, one can obtain the a priori estimate of solutions when the partial differential equations are like Hamiltonian systems or dissipative systems. Such technique is usually available only to such partial differential equations. Almost of them are very simple. More complex equations or simple equations without useful conservation laws often have solutions blowing up in finite time. In such a case, we usually consider small perturbations of steady solution. This corresponds to the stability of constant solution of ordinary differential equations, in which the comparison theorem for single equations or the invariant region for systems play essential roles. The straightforward extension of this technique is available to getting the a priori estimate of solutions to some semilinear parabolic equations and systems (see [8]). For other equations and systems, however, such technique does not work well. For various nonlinear evolution equations which can be seen as perturbations of simple linear equations, one makes strong use of the time-decay of the fundamental solution to linear equations to get the a priori estimate of solutions (see e.g., [32] and [43]). With the help of such time-decay, one can
obtain some invariant region in the sense of norm. In the present chapter we study the global existence of small solutions to (1.1)–(1.2) by such method. Because (1.1) has the steady solution of \(u(t, x) \equiv 0 \), our analysis can be called the analysis of the stability of 0-solution.

Before presenting our results, we introduce the history of the studies on the global existence of the initial value problem for semilinear Schrödinger equations. Up to recently, most of the studies on this subject were concerned with the initial value problem (4.1)–(4.2). The nonlinear term has special structure (so-called gauge invariance) and does not contain \(\nabla u \). Then (4.1) has conservation laws

\[
J(t) + \int_{\mathbb{R}^2} |\nabla u(t)|^2 \, dx = J(0) \quad \text{for any} \quad u_0 \in H^3.
\]

Now we assume (5.1) has conservation laws

\[
\int_{\mathbb{R}^2} |\nabla u(t)|^2 \, dx = \int_{\mathbb{R}^2} |\nabla u_0|^2 \, dx,
\]

which implies that a smooth solution to (5.5) satisfies the pseudo-conformal identity

\[
\frac{d}{dt} \int_{\mathbb{R}^2} |u(t)|^2 \, dx = -2E.
\]

The above identities imply

\[
\frac{d^2}{dt^2} \int_{\mathbb{R}^2} x^2|u(t)|^2 \, dx = -2E.
\]
Chapter 5. Global existence

We choose the initial data \(u_0(x) = e^{i\theta}e^{-\varepsilon x^2} \) with some \(\theta \in \mathbb{R} \). Then we have

\[
E = \int_{\mathbb{R}} \left(4e^{2x^2}e^{-2\varepsilon x^2} - \frac{1}{3}e^{-6\varepsilon x^2} \right) dx
\]

\[
= \int_{\mathbb{R}} \left(4e^{2x^2}e^{-\varepsilon x^2} - \frac{1}{3\sqrt{6}} \right) e^{-\varepsilon x^2} dx
\]

\[
\leq \int_{\mathbb{R}} \left(4e^{-\frac{1}{3\sqrt{6}}} \right) e^{-\varepsilon x^2} dx < 0
\]

provided that \(\varepsilon < \varepsilon/12\sqrt{6} \). Then, (5.8) implies that there exists a finite time \(T_0 > 0 \) such that

\[
\int_{\mathbb{R}} x^2|u(t)|^2 dx = 4Et^2 + c_1t + c_2 < 0 \quad \text{for} \quad t > T_0,
\]

which is impossible. This shows that some smooth solution to (5.5)–(5.6) cannot exist globally in time.

The above arguments assert that for a power \(f(u) = -i|u|^{p-1}u \), the global existence theorem holds if and only if \(p < 1+4/N \). In this case, many authors studied the scattering theory for (4.1)–(4.2). See [45, Chapter 5] and its references.

Next we introduce the history of studies on the case that the nonlinear term contains \(\nabla u \). There are few works on this case because of the difficulty of the loss of derivatives. We cannot expect global existence and blow-up theorems like the above ones, because the nonlinear term \(F(u, \nabla u) \) is far more complicated than \(f(u) \). We cannot usually get conservation laws. In general, this is true in the studies on various complicated nonlinear evolution equations. It seems to be natural to study small perturbation of the global solutions to complicated nonlinear evolution equations (see e.g., [32], [43], [26] and [44]). The basic idea of these studies is as follows. First one sees the original solution in the sense of norm, by using the time-decay and the smallness of the initial data. This gives the a priori estimate and one can prove the global existence theorems.

5.1. Introduction to global existence theorems

Theorems are often given as the form of the lower bounds of some relationship between \(N \) and \(p \).

Under the condition (5.9), the classical energy estimates are valid and then they do not have to take care of the loss of derivatives. They proved

Theorem 5.1.1 (S. Klainerman and G. Ponce ([32]), J. Shatah ([43])) Assume (5.9) and

\[
\frac{N(p-1)^2}{2} > 1.
\]

Let \(m \) be an integer \(\geq m_0 = \lceil N/2 \rceil + 2 \). Then there exists \(\delta > 0 \) such that if \(u_0 \in H^m \cap W^{m,p} \) \((p = 2p/(2p-1)) \) and \(u_0 \) satisfies

\[
\|u_0\|_{H^m} + \|u_0\|_{W^{m,p}} \leq \delta,
\]

then the initial value problem (1.1)–(1.2) admits a unique solution \(u \in C([0, \infty); H^m) \).

Moreover, we have

\[
\|u(t)\|_{W^{m,p}} \leq C(1 + t)^{-N(p-1)/2p},
\]

\[
\|u(t)\|_{W^{m,p}} \leq C(1 + t)^{-N(p-1)/2p},
\]

\[
\|u(t)\|_{H^m} \leq C,
\]

for \(t \in [0, \infty) \).

We remark here that in [32] or [43] they studied global existence of small amplitude solutions to various nonlinear evolution equations by the same idea. Their results are now regarded as the standard ones or the criterion on these subjects.

Secondly A. Soyeur ([44]) studied the global existence of small amplitude solutions to the initial value problem for the Ishimori equation (4.4). As we mentioned in Section 4.1, he succeeded in resolving the loss of derivatives by the gauge transformation. Combining this idea and the \(L^p-L^q \) method, he proved the global existence of small amplitude solutions to the Ishimori equation. One can easily extend his results and prove

Theorem 5.1.2 The condition (5.9) in Theorem 5.1.1 can be replaced by the condition (2.10)–(2.11).

As we studied in Section 4.2, the gauge transformation is always available when the spatial dimension is one. Recently, in view of this fact, S. Katayama and Y. Tsutsumi ([27]) proved

Theorem 5.1.3 (S. Katayama and Y. Tsutsumi ([27])) Let \(N = 1 \) and let \(m \) be an integer \(\geq 6 \). Assume that the nonlinear term satisfies

1. (Gauge Invariance) \(F(e^{i\theta}u, e^{i\theta}q) = e^{i\theta}F(u, q) \) for any \((u, q) \in \mathbb{C} \times \mathbb{C} \) and \(\theta \in \mathbb{R} \).

2. The "null gauge condition of order 3" holds for the cubic term of the Taylor expansion.
near \((u, q) = 0\) (see [49]).

Then, there exists a constant \(\delta > 0\) such that if
\[
v_0 \in \bigcap_{j=0}^{5} H^{m-j,j} \quad \text{and} \quad \sum_{j=0}^{5} \|v_0\|_{H^{m-j,j}} \leq \delta,
\]
then the initial value problem (1.1)--(1.2) admits a unique solution
\[
u \in \bigcap_{j=0}^{5} C([0, \infty); H^{m-j,j}).
\]

We remark here that the conditions (1) and (2) require that
\[
F(u, \partial u) \text{ is written by}
\]
\[
F(u, q) = \partial(|u|^2)(\alpha u + \beta \partial u) + F_3(u, \partial u) + \frac{1}{2i(1 + t)} (J(u \partial u - u J u) (\alpha u + \beta \partial u) + F_3(u, \partial u), \tag{5.11}
\]
where \(\alpha, \beta \in \mathbb{C}\) and \(F_3(u, q) = O(|u|^5 + |q|^5)\) near \((u, q) = 0\). [27] is the first paper which investigated the global existence theorem for general semilinear Schrödinger equations. In view of (5.10), the cubic term of \(F(u, \partial u)\) causes the lack of time-decay when \(N = 1\). Then it prevents one from proving the global existence theorem. In ([27]) they resolve this difficulty by the extra time-decay gained in (5.11).

In this chapter we present the global existence of small solutions to (1.1)--(1.2) without the restrictions on the structure of nonlinearity (like (2.10)--(2.11) in Theorem 5.1.2) and on the spatial dimension (like \(N = 1\) in Theorem 5.1.3). Our strategy consists of the local existence theorems studied in Chapter 4 and the \textit{a priori} estimates obtained by the time-decay estimates developed in Chapter 3. Depending on the spatial dimension and the power of the nonlinearity, our results devide in three parts. That is

Theorem 5.1.4 (Global existence)

(i) We assume \(N \geq 3\) and \(\rho \geq 3\). Let \(m_3\) be a sufficiently large integer. Then there exists a small constant \(\delta_3 > 0\) such that for any
\[
u_0 \in \bigcap_{j=0}^{2} H^{m_3-2j,j} \quad (m \geq m_3 + 2) \quad \text{satisfying} \quad \sum_{j=0}^{2} \|\nu_0\|_{H^{m_3-2j,j}} \leq \delta_3,
\]
the initial value problem (1.1)--(1.2) possesses a unique solution
\[
u \in \bigcap_{j=0}^{2} C([0, \infty); H^{m_3-2j,j}).
\]

(ii) We assume that \(N = 2\), \(\rho \geq 3\) and
\[
F_3(e^{i\theta} u, e^{i\theta} q) = e^{i\theta} F_3(u, q) \quad \text{for} \quad (u, q) \in \mathbb{C} \times \mathbb{C}^N, \quad \theta \in \mathbb{R}\tag{5.12}
\]

We prove (i), (ii), (iii) in Sections 5.2, 5.3, 5.4 respectively.

5.2 Proof of Part (i)

where \(F_3(u, q)\) is a homogeneous cubic part of \(F(u, q)\) near \((u, q) = 0\). Let \(m_4\) be a sufficiently large integer. Then there exists a small constant \(\delta_4 > 0\) such that for any
\[
u_0 \in \bigcap_{j=0}^{4} H^{m_4-2j,j} \quad (m \geq m_4 + 2) \quad \text{satisfying} \quad \sum_{j=0}^{4} \|\nu_0\|_{H^{m_4-2j,j}} \leq \delta_4,
\]
the initial value problem (1.1)--(1.2) possesses a unique solution
\[
u \in \bigcap_{j=0}^{4} C([0, \infty); H^{m_4-2j,j}).
\]

(iii) We assume \(N \geq 13\) and \(\rho = 2\). Let \(m_5\) be a sufficiently large integer. Then there exists a small constant \(\delta_5 > 0\) such that for any
\[
u_0 \in \bigcap_{j=0}^{5} H^{m_5-2j,j} \quad (m \geq m_5 + 2) \quad \text{satisfying} \quad \sum_{j=0}^{5} \|\nu_0\|_{H^{m_5-2j,j}} \leq \delta_5,
\]
the initial value problem (1.1)--(1.2) possesses a unique solution
\[
u \in \bigcap_{j=0}^{5} C([0, \infty); H^{m_5-2j,j}).
\]

Remark 5.1.1 Since our analysis is based on the symbolic calculus of pseudo-differential operators, it is very troublesome to determine the minimum of \(m_3, m_4\) and \(m_5\).

Remark 5.1.2 (5.10) yields
\[\rho \geq \begin{cases} 2 & (N \geq 5), \\ 3 & (N \geq 2), \\ 4 & (N \geq 1). \end{cases}\]

Our condition on the relationship between the spatial dimension \(N\) and the power of nonlinearity \(\rho\) is somewhat stronger (5.10). This is basically due to the loss of time-decay associated to our transformation. The condition on the case of the cubic nonlinearity in Theorem 5.1.4 is slightly stronger than that of (5.10). On the other hand, however, that of quadratic case is far stronger than (5.10).

We prove (i), (ii), (iii) in Sections 5.2, 5.3, 5.4 respectively.

5.2 Proof of Part (i)

In this section we prove Part (i) of Theorem 5.1.4. In view of Part (i) of Theorem 4.3.1, we have only to obtain the \textit{a priori} estimate on \(\|u(t)\|_{H^{m_4}}\). Let \(l\) be the same integer as
Chapter 5. Global existence

in Section 2.3. We take \(m_3 \) as \(m_3 = \lfloor (N + 1)/2 \rfloor + l + 5 \geq m + 1 \). Then it is sufficient to get the a priori estimate on \(\|u(t)\|_{H^{m_3}} \). Since we assume \(u_0 \in H^{m_3+2} \), Theorem 4.3.1 and Lemma 2.3.4 ensure the validity of the energy estimates in \(H^{m_2} \).

Let \(u \) be a solution to (1.1)-(1.2) satisfying

\[
u \in \bigcap_{j=0}^2 C([0,T];H^{m_3-2,2,j}), \quad \sup_{t \in [0,T]} \|u(t)\|_{W^{1,\infty}} \leq R_0
\]

with some \(T, R_0 > 0 \) and some \(m \in \mathbb{N} \geq m_3 + 2 \). The local existence in this weighted Sobolev space is proved by the same method proving Theorem 4.3.1 or by [3]. To carry out the energy estimates, we introduce some notations

\[
b_{11j}(t,x) = \frac{\partial F(u, \nabla u)}{\partial q_j}, \quad b_{12j}(t,x) = -\frac{\partial F(u, \nabla u)}{\partial q_j},
\]

\[
b_{21j}(t,x) = \frac{\partial F(u, \nabla u)}{\partial q_j}, \quad b_{22j}(t,x) = \frac{\partial F(u, \nabla u)}{\partial q_j},
\]

\[
b_{11j}^n(t,x) = -G_j(u, \nabla u), \quad b_{12j}^n(t,x) = -G_j(u, \nabla u),
\]

\[
b_{21j}^n(t,x) = G_j(u, \nabla u), \quad b_{22j}^n(t,x) = G_j(u, \nabla u),
\]

\[
b^n(t,x,\xi) = \sum_{j=1}^N \left[b_{11j}^n(t,x) b_{22j}^n(t,x) - b_{12j}^n(t,x) b_{21j}^n(t,x) \right] \xi_j, \quad n = 1, 2.
\]

In the same way as in Section 2.3, we define \(B_{kn}(t) \), \(n = 1, 2 \), and we put \(B_k(t) = B_k(t) + B_0(t) \). By the Gagliardo-Nirenberg inequality (the interpolation between \(W^{1,\infty} \) and \(H^{m_3-1} \) for \(W^{4,\infty} \) and (3.19), we have

\[
B_k(t) \leq C_{R_0} (1+t)^{-3/2} X_{m_3-1}(t)^2 \quad \text{for} \quad t \in [0,T],
\]

\[
\varepsilon = \frac{7 m_3 - N/2 - 2I/7 - 4}{4 m_3 - N/2 - 4} > 0.
\]

Using (3.11), in the same way as Section 4.3, we have

\[
|\text{Im} \, b_{knj}(t,x)| \leq \phi_j(t,x), \quad \text{for} \quad (t,x) \in [0,T] \times \mathbb{R}^N, \quad n, h = 1, 2, \quad j = 1, \ldots, N,
\]

5.2. Proof of Part (i)

\[
\phi_j(t,x) = M(1+t)^{-3/2} \sum_{|\alpha|=l+5} \int_{\mathbb{R}^N} |\partial^\alpha J^j u(x) t|^2 \, dx, \quad j = 1, \ldots, N,
\]

where \(M = M(R_0,F) > 0 \) is a sufficiently large constant. We introduce the pseudo-differential operators defined as follows.

\[
K(t) = k(t,x,D), \quad k(t,x,\xi) = \begin{bmatrix} e^{-\pi(t,x,\xi)} & 0 \\ 0 & e^{\pi(t,x,\xi)} \end{bmatrix},
\]

\[
p(t,x,\xi) = -\sum_{j=1}^N \int_0^t \phi_j(x,s) \xi_j e^{-\pi(t,x,\xi)} \, ds \xi_j (\xi_j)^{-1},
\]

\[
\Lambda^n(t) = I + \Lambda^n(t), \quad \Lambda^n(t) = \Lambda^n(t,x,D),
\]

\[
\Lambda^n(t,x,\xi) = \frac{1}{2} \sum_{j=1}^N \left[-b_{12j}^n(t,x) b_{21j}^n(t,x) \xi_j (\xi_j)^{-1} \right], \quad n = 1, 2.
\]

We also define \(B_k(t), B_k^0(t), B_k^2(t) \) and \(B_k^0(t) \). Simple calculation yields

\[
B_k(t), B_k^0(t) \leq A(X_{m_3-1}(t)), \quad B_k^0(t), B_k^0(t) \leq C_{R_0} (1+t)^{-3/2} X_{m_3-1}(t)^2,
\]

where \(A(\cdot) \) is a non-decreasing function on \([0,\infty)\) depending on \(R_0 \). We put

\[
u_0 = \frac{1}{2} (\partial^\alpha u, \partial^\alpha u), \quad \nu_{0,0} = \frac{1}{2} (\partial^\alpha u_0, \partial^\alpha u_0),
\]

\[
f_0 = \frac{1}{2} (f_{0,1}, f_{0,2}), \quad f_{0,0} = \frac{1}{2} f_{0,0}^2, \quad f_{0,1} = \frac{1}{2} f_{0,2}^2,
\]

\[
f_{0,0} = \partial^\alpha F - P_{\alpha}, \quad \text{for} \quad |\alpha| = m_3,
\]

and

\[
u_{0,\beta} = \frac{1}{2} (\partial^\alpha J^j u, \partial^\alpha J^j u), \quad \nu_{0,\beta} = \frac{1}{2} (\partial^\alpha u_0, \partial^\alpha u_0), \quad \nu_{0,\beta} = \frac{1}{2} (\partial^\alpha (x^2 u_0), \partial^\alpha (x^2 u_0)),
\]

\[
f_{0,\beta} = \frac{1}{2} (f_{0,1}, f_{0,2}), \quad f_{0,0,0} = \frac{1}{2} f_{0,0}^2, \quad f_{0,0,1} = \frac{1}{2} f_{0,2}^2,
\]

\[
f_{0,\beta} = \partial^\alpha J^j F - P_{\alpha}, \quad \text{for} \quad |\alpha| = m_3, |\beta| = 1, 2.
\]

We evaluate \(Y_{m_3}^N(t) \) which is defined by

\[
Y_{m_3}^N(t) = X_{m_3-1}(t) + \sum_{|\alpha|=m_3} \|K(t) A_1(t) u_0(t)\| + \sum_{|\alpha|=m_3-2, |\beta|=1} \|K(t) A_2(t) u_0(t)\| + (1+t)^{-1/4} \sum_{|\alpha|=m_3-4, |\beta|=2} \|K(t) A_2(t) u_0(t)\|.
\]

We suppose that there exists a constant \(R > 0 \) such that

\[
\sup_{t \in [0,T]} Y_{m_3}^N(t) \leq R.
\]
In view of (2.29), (2.30), (5.13), (5.15) and (5.16), we have

\[C_R Y_{m_3}^N(t) \leq X_{m_3}^N(t) \leq C_R Y_{m_3}^N(t), \quad Y_{m_3}^N(0) \leq C_R \delta, \tag{5.17} \]

with some constant \(C_R > 0 \). Using (3.22), (3.23), (3.24) and (5.17), we get

\[\| F(t) \|_{H^{m_3+1}} + \sum_{|\alpha|=m_3} \| K(t) A^1(t)f_0(t) \| \leq C_R (1 + t)^{-1/4} R^3, \tag{5.18} \]

\[\| JF(t) \|_{H^{m_3+2}} + \sum_{|\alpha|=m_3-2} \| K(t) A^2(t)f_0(t) \| \leq C_R (1 + t)^{-7/4} R^3, \tag{5.19} \]

\[\| J^2 F(t) \|_{H^{m_3+3}} + \sum_{|\alpha|=m_3-4} \| K(t) A^3(t)f_0(t) \| \leq C_R (1 + t)^{-3/4} R^3, \tag{5.20} \]

By (5.13), (5.15) and (5.16), we have

\[(B_4(t) + B_5(t) + B_6(t)) B_{etc}(t) \leq C_R (1 + t)^{-1/4} R^2. \tag{5.21} \]

\(v_a \) and \(v_{\alpha\beta} \) satisfy

\[\begin{align*}
(1 \partial_t + i(a(D) + b^1(t, x, D))) v_a &= f_\alpha, \\
(1 \partial_t + i(a(D) + b^2(t, x, D))) v_{\alpha\beta} &= f_\alpha + f_\beta,
\end{align*} \]

respectively. Using (2.47), (5.14), (5.18), (5.19), (5.20) and (5.21), we obtain

\[\begin{align*}
\frac{d}{dt} \sum_{|\alpha|=m_3} \| K(t) A^1(t)v_\alpha(t) \| &\leq C_R (1 + t)^{-1/4} R^3, \\
\frac{d}{dt} \sum_{|\alpha|=m_3-2} \| K(t) A^2(t)v_\alpha(t) \| &\leq C_R (1 + t)^{-7/4} R^3, \\
\frac{d}{dt} \sum_{|\alpha|=m_3-4} \| K(t) A^3(t)v_\alpha(t) \| &\leq C_R (1 + t)^{-3/4} R^3.
\end{align*} \]

The integration on \([0, t]\) implies

\[\begin{align*}
\sum_{|\alpha|=m_3} \| K(t) A^1(t)v_\alpha(t) \| &+ \sum_{|\alpha|=m_3-2} \| K(t) A^2(t)v_\alpha(t) \| \\
+ (1 + t)^{1/4} \sum_{|\alpha|=m_3-4} \| K(t) A^3(t)v_\alpha(t) \| &\leq C_R (\delta + R^3). \tag{5.22}
\end{align*} \]

Noting \(|J, \partial_t - i\Delta| = 0\) we have

\[(\partial_t - i\Delta)^{n} J^2 u = \partial^n J^2 F, \quad \text{with} \quad |\alpha + 2\beta| \leq m_3 - 1, |\beta| \leq 2. \]

5.3. Proof of Part (ii)

Making use of (5.18), (5.19) and (5.20), we obtain

\[X_{m_3}^N(t) \leq C_R (\delta + R^3). \tag{5.23} \]

Combining (5.22) and (5.23), we get

\[\sup_{t \in [0, T]} Y_{m_3}^N(t) \leq C_R (\delta + R^3), \quad \text{if} \quad R \leq R_1. \]

If we choose \(R_1 \) as \(C_R R_1^2 \leq R_1 / 4 \) at the beginning, then we have

\[\sup_{t \in [0, T]} Y_{m_3}^N(t) \leq R/2 \quad \text{if} \quad R \leq R_1 \]

provided that \(\delta \) is sufficiently small. This completes the proof of Part (i) of Theorem 5.1.4.

5.3 Proof of Part (ii)

In this section we prove Part (ii) of Theorem 5.1.4. The outline of its proof is basically the same as that of Part (i). Let \(l \) be the same integer as in Section 2.3. We take \(m_4 = \left\lceil (3l + 1) / 2 \right\rceil + 7 \geq m_3 + 1 \). We obtain the \textit{a priori} estimate in \(H^{m_4} \cap H^{l+1} \). Let \(m \) be an integer \(\geq m_4 + 2 \) and let \(u \) be a solution to (1.1)-(1.2) satisfying

\[u \in \bigcap_{j=0}^{2} C \left([0, T]; H^{m_4 - 2j} \right). \]

We define \(\phi_j(t, x_j) \) by

\[\phi_j(t, x_j) = M(1 + t)^{-1} \sum_{|\alpha|=j+1} \int_{\mathbb{R}} |\partial_\alpha J^2 u(t, x)|^2 dx, \quad j = 1, 2, \]

with some large constant \(M > 0 \). We introduce \(K(t), A^\alpha(t), b^{\alpha}(t, x, D), n = 1, 2, B_k(t), B_k(t), B_k(t), B_k(t) \) and \(B_k(t) \) in the same way as in the previous section. We put

\[Z(t) = Z_1(t) + (1 + t)^{-e} Z_2(t), \]

\[Z_1(t) = \sum_{|\alpha|=m_4} \| J^\alpha u(t) \|_{H^{m_4 - 1}} + \| J^\alpha u(t) \|_{H^{l+1}}, \]

\[Z_2(t) = \sum_{|\alpha|=m_4} \| K(t) A^\alpha(t) u(t) \| + \sum_{|\alpha|=m_4} \| K(t) A^\alpha(t) u(t) \|, \]

\[\varepsilon = \frac{m_4 - (3l + 1) / 2 - 6}{8(m_4 - 2)} > 0. \]
5. Global existence

We suppose that there exists a constant $R > 0$ such that

$$
\sup_{t \in [0,T]} Z(t) \leq R.
$$

Then we have

$$
|\text{Im} \, b_{j,i}(t, x)| \leq \phi_j(t, x_j),
$$

for $(t, x) \in [0, T] \times \mathbb{R}^N$, $n, h, j = 1, 2, \ldots, N$, (5.24)

$$
B_R(t), B_R^0(t) \leq C_R R,
$$

$$
B^0_R(t), B^0_R(t) \leq C_R (1 + t)^{-1} R^2,
$$

$$
B_R^0(t) \leq C_R (1 + t)^{-1} R^2,
$$

(5.25)

$$(5.26)$$

$$(5.27)$$

$$(5.28)$$

$$
\|F(t)\|_{H^{N-1}} + \sum_{|\alpha| = 0} \|K(t) A^0(t) f_{\alpha 0}(t)\| + \sum_{|\alpha| = 1} \|K(t) A^1(t) f_{\alpha 0}(t)\| \leq C_R (1 + t)^{-1} R^3.
$$

$$(5.29)$$

Here we used (3.26), (3.27) and (3.36) to get (5.27) and (5.28). We here show the estimate of $B_R^0(t)$ actually, because its bound is delicate.

$$
(1 + t) \left| \int_0^t \partial_t \phi_j(t, y_j) \, dy_j \right|
$$

$$
= -M(1 + t)^{-1} \sum_{|\alpha| = 1} \int_0^t \int_{\mathbb{R}^N} |\partial^\alpha J^3 u(t, y_j, x_j)|^2 \, dx \, dy_j + \sum_{|\alpha| = 0} \int_0^t \int_{\mathbb{R}^N} \partial_0 |\partial^\alpha J^3 u(t, y_j, x_j)|^2 \, dx \, dy_j \right|
$$

$$
\leq C(1 + t)^{-1} Z_1(t) + \sum_{|\alpha| = 1} \int_0^t \int_{\mathbb{R}^N} \partial_0 |\partial^\alpha J^3 u(t, y_j, x_j)|^2 \, dx \, dy_j + \sum_{|\alpha| = 0} \int_0^t \int_{\mathbb{R}^N} |\partial^\alpha J^3 u(t, y_j, x_j)|^2 \, dx \, dy_j
$$

We have only to show that the last term is $O(1)$ for any $t \geq 0$. In the same way as (4.8), we have

$$
\sum_{|\alpha| = 0} \int_0^t \int_{\mathbb{R}^N} \partial_0 |\partial^\alpha J^3 u(t, y_j, x_j)|^2 \, dx \, dy_j
$$

We remark here that

$$
\text{th degree term of } (u, \partial u, J_0 u, \partial J_0 u) + (1 + t)\text{fifth degree term of } u, \partial u, J_0 u, \partial J_0 u.
$$

By (3.20), the last term is estimated by $C_R R$. $B_R^0(t)$ does not cause the loss of time-decay. Unless \bar{F}_3 satisfies the gauge invariance (5.12), $B_R^0(t)$ gives the loss of time-decay, which prevent us from proving the global existence theorems. This property was first pointed out by S. Katayama and Y. Tsutsumi ([27]).

For \bar{v}_0 and $\bar{v}_{\alpha 0}$ satisfy

$$
(I \partial_0 + i(a(D) + b^1(t, x, D))) \bar{v}_0 = f_0,
$$

$$
(I \partial_0 + i(a(D) + b^2(t, x, D))) \bar{v}_{\alpha 0} = f_{\alpha 0},
$$

respectively. Using (2.47) (5.24), (5.25), (5.26), (5.27), (5.28) and (5.29), we obtain

$$
\frac{d}{dt} Z_2(t) \leq C_R (1 + t)^{-1} R^3.
$$

The integration on $[0, t]$ yields

$$
(1 + t)^{-\varepsilon} Z_2(t) \leq C_R (1 + R^3).
$$

$$(5.30)$$
In the same way as (5.23) we have
\[Z_l(t) \leq C_R(\delta + R^3). \]
(5.31)

Combining (5.30) and (5.31), we get
\[\sup_{t \in [0,T]} Z(t) \leq C_R(\delta + R^3), \]
if \(R \leq R_1 \).

If we choose \(R_1 \) as \(R_1 = C_R / 4 \), then we have
\[\sup_{t \in [0,T]} Z(t) \leq R / 2, \]
if \(R_1 \neq R_1 \).

Then there exist constants \(R_1 > 0 \) and \(C_R \) which are independent of \(T > 0 \), such that
\[\sup_{t \in [0,T]} Z(t) \leq C_R(b + R^3), \]
if \(R_1 \neq R_1 \).

If we choose \(R_1 \) as \(CR_1 RT \), then we have
\[\sup_{t \in [0,T]} Z(t) \leq R / 2 \]
provided that \(\delta \) is sufficiently small. This completes the proof of Part (ii) of Theorem 5.1.4.

5.4 Proof of Part (iii)

Finally, in this section we prove Part (iii) of Theorem 5.1.4. According to Theorem 4.3.1 and Remark 4.3.2, we have only to get the a priori estimate of
\[\| J^p J^q u(t) \|_{L^2}. \]
with \(m_B = \lfloor (N + 1)/2 \rfloor + 1 > m_2 + 1 \). In the previous two sections we got the time-decay estimates by using the operator \(J \) and the Gagliardo–Nirenberg inequality. In the present section, however, we employ the \(L^p-L^q \) estimate developed in Section 3.3, because the quadratic nonlinearity is not suited to the previous method.

Similarly, we make use of the convenient notations \(b^p(t, x, \xi) \), \(A^p(t) = \lambda^n(t, x, D) \) \((n = 1, 2)\), \(B_0(t), v_0, v_0 \), \(f_0, f_{1,2} \) and etc. In this section we put \(\phi_0(t, s) = M(1 + t)^2(1 + s)^{-(1 + \eta)} \) with some constants \(M, \eta > 0 \). \(\epsilon \) and \(\eta \) are arbitrary small constants. \(M \) is determined as follows.

Simple calculation yields
\[\left| \Im \frac{\partial F}{\partial q_k}(u(t), \nabla u(t)) \right| \leq C \left(\| u(t, x) \| + \| \nabla u(t, x) \| \right) \]
\[\leq C(x_k)^{-(1 + \eta)} \left(\| (1 + x_k^2)^{-(1 + \eta)/2} u(t, x) \| + \| (1 + x_k^2)^{-(1 + \eta)/2} \nabla u(t, x) \| \right) \]
\[\leq C(x_k)^{-(1 + \eta)} \left\{ \| u(t) \|_{W^{1,\infty}} \right. \]
\[+ \left. \| u(t) \|_{W^{1,\infty}}^{1 + \eta/2} \left[|x_k u(t, x)| + |x_k u(t, x)| + |\nabla (x_k^2 u(t, x))| \right]^{(1 + \eta)/2} \right\}. \]

Let \(R_1 \) be some positive constant. We choose \(M \) as \(M = CR_1 \).

We estimate
\[\bar{Y}_{m_0}^N(t) = \sum_{|\alpha| = m_0} \| K(t) A^\alpha v_0(t) \| \]
\[+ \sum_{|\alpha| = m_0} \| K(t) A^\alpha v_0(t) \| \]
\[+ \sum_{|\alpha| = m_0} \| \partial^\alpha J^p u(t) \|_{L^2} \]
\[+ \sum_{|\alpha| = m_0} \| \partial^\alpha J^p u(t) \|_{L^1}. \]

We suppose
\[\sup_{t \in [0,T]} \bar{Y}_{m_0}^N(t) \leq R \]
with some constant \(R \leq R_1 \). Then (5.32) implies that
\[\left| \Im \frac{\partial F}{\partial q_k}(u(t), \nabla u(t)) \right| \leq \phi_0(t, s) = M(1 + t)^{-(1 + \epsilon)/2}(1 + s)^{-(1 + \eta)} \]
Chapter 5. Global existence

for \(t \in [0, T] \). It is easy to see

\[
B_K(t) \leq C_{R_1},
\]
\[
B^2(t), B^3(t), B^4(t), B(t) \leq C_{R_1}(1 + t)^{-N/4 + 2} R
\]

In view of (2.29), (2.30), (5.33) and (5.34), we have

\[
 C_{R_1} \| \widehat{X}_{m_0}^N(t) \| \leq C_{R_1} \| \widehat{Y}_{m_0}^N(t) \|, \quad \| \widehat{Y}_{m_0}^N(t) \| \leq C_{R_1}.
\]

Then, (3.43), (3.44) and (3.45) become

\[
\| F(t) \|_{W^{m_0-1,4/3}} + \| F(t) \|_{H^{m_0-1}} + \sum_{|\alpha| = m_5} \| f_\alpha(t) \|
\]
\[
\leq C_{R_1}(1 + t)^{-N/4} R^2,
\]
\[
\| JF(t) \|_{W^{m_0-3,4/3}} + \| JF(t) \|_{H^{m_0-3}} + \sum_{|\alpha| = m_5, |\beta| = 1} \| f_{\alpha\beta}(t) \|
\]
\[
\leq C_{R_1}(1 + t)^{-N/4 + 1} R^2,
\]
\[
\| J^2 F(t) \|_{W^{m_0-5,4/3}} + \| J^2 F(t) \|_{H^{m_0-5}} + \sum_{|\alpha| = m_5, |\beta| = 2} \| f_{\alpha\beta}(t) \|
\]
\[
\leq C_{R_1}(1 + t)^{-N/4 + 2} R^2.
\]

\(v_\alpha \) and \(v_{\alpha\beta} \) satisfy

\[
(\partial_t + i(\alpha(D) + b^1(t, x, D))) v_\alpha = f_\alpha,
\]
\[
(\partial_t + i(\alpha(D) + b^2(t, x, D))) v_{\alpha\beta} = f_{\alpha\beta},
\]

respectively. Using (2.47), (5.33), (5.34), (5.35), (5.36) and (5.37), we obtain

\[
\frac{d}{dt} \sum_{|\alpha| = m_5} \| K(t) A^1(t) v_\alpha(t) \| \leq C_{R_1}(1 + t)^{-N/4} R^2,
\]
\[
\frac{d}{dt} \sum_{|\alpha| = m_5, |\beta| = 1} \| K(t) A^2(t) v_{\alpha\beta}(t) \| \leq C_{R_1}(1 + t)^{-N/4} R^2,
\]
\[
\frac{d}{dt} \sum_{|\alpha| = m_5, |\beta| = 2} \| K(t) A^2(t) v_{\alpha\beta}(t) \| \leq C_{R_1}(1 + t)^{-3/4} R^2.
\]

The integration on \([0, t]\) implies

\[
\sum_{|\alpha| = m_5} \| K(t) A^1(t) v_\alpha(t) \| + \sum_{|\alpha| = m_5, |\beta| = 1} \| K(t) A^2(t) v_{\alpha\beta}(t) \|
\]
\[
+ \sum_{|\alpha| = m_5, |\beta| = 2} \| K(t) A^2(t) v_{\alpha\beta}(t) \| \leq C_{R_1}(\delta + R^2).
\]

5.4. Proof of Part (iii)

On the other hand, using

\[
(\partial_t - i\Delta) \partial^\alpha J^\beta u = \partial^\alpha J^\beta F,
\]
(5.35), (5.36) and (5.37), we have

\[
\sum_{|\alpha| = m_5, \beta + \gamma + \delta = \alpha_0} \| \partial^\alpha J^\beta u(t) \|_{L^s}^s
\]
\[
\leq \delta + \sum_{\gamma + \delta = \alpha_0} \int_0^t \| \partial^\gamma J^\delta F(\tau) \|_{L^s}^s d\tau
\]
\[
\leq C_{R_1}(\delta + R^2),
\]
\[
\sum_{|\alpha| = m_5, \beta + \gamma + \delta = \alpha_0} \int_0^t (1 + t - \tau)^{-N/4} (1 + t)^{N/4} \| \partial^\gamma J^\delta F(\tau) \|_{L^s}^s d\tau
\]
\[
\leq C_{R_1}(\delta + R^2).
\]
Combining (5.38), (5.39) and (5.40), we obtain

\[
\| \widehat{Y}_{m_0}^N(t) \| C_{R_1}(\delta + R^2).
\]

Similarly, we can get the a priori estimate provided that \(\delta > 0 \) is sufficiently small. This completes the proof of Theorem 5.1.4.
Chapter 6

The initial value problem for the elliptic–hyperbolic Davey–Stewartson equation

6.1 Introduction to the Davey–Stewartson equation

In this chapter we study the initial value problem for the elliptic–hyperbolic Davey–Stewartson equation of the form

\[\partial_t u - i(\partial_x^2 + \partial_y^2)u = f(u, \partial_x u, \partial_y u) \quad \text{in} \quad (0, \infty) \times \mathbb{R}^2, \tag{6.1} \]

\[u(0, x, y) = u_0(x, y) \quad \text{in} \quad \mathbb{R}^2, \tag{6.2} \]

where \(u(t, x, y) \) is \(\mathbb{C} \)-valued, \(i = \sqrt{-1} \), \(\partial_t = \partial/\partial t \), \(\partial_x = \partial/\partial x \), \(\partial_y = \partial/\partial y \), and the nonlinear term \(f(u) \) is defined by

\[
\begin{align*}
 f(u, \partial_x u, \partial_y u) &= \sum_{j=0}^{2} a_j f_j(u, \partial_x u, \partial_y u), \\
 f_0(u, \partial_x u, \partial_y u) &= |u|^2 u, \\
 f_1(u, \partial_x u, \partial_y u) &= \int_{-\infty}^{\infty} \partial_x \left(|u(x, y)|^2 \right) dy u(x, y), \\
 f_2(u, \partial_x u, \partial_y u) &= \int_{-\infty}^{\infty} \partial_y \left(|u(x', y)|^2 \right) dx u(x, y),
\end{align*}
\]

\(a_0, a_1, a_2, \in \mathbb{C} \) are constants.

We use the following notations. \((\xi, \zeta) \in \mathbb{R}^2 \) means the dual variable of \((x, y) \in \mathbb{R}^2 \) under the Fourier transformation. \(\partial_t = \partial/\partial \xi \) and \(\partial_x = \partial/\partial \zeta \). \(J_x \) and \(J_y \) are defined by

\[
\begin{align*}
 J_x u &= e^{ix^2/(4(1+t))} 2i(1+t) \partial_x \left(e^{-ix^2/(4(1+t))} u \right) = (x + (1+t) \partial_x) u, \\
 J_y u &= e^{iy^2/(4(1+t))} 2i(1+t) \partial_y \left(e^{-iy^2/(4(1+t))} u \right) = (y + (1+t) \partial_y) u.
\end{align*}
\]
Chapter 6. Davey–Stewartson equation

\[
(D_x) = (1 - \partial_x^2)^{1/2}, \quad (D_y) = (1 - \partial_y^2)^{1/2}, \quad (D_x; D_y) = (1 - \partial_x^2 - \partial_y^2)^{1/2}, \quad (x) = \sqrt{1 + x^2},
\]
\[
(y) = \sqrt{1 + y^2}, \quad (x,y) = \sqrt{1 + x^2 + y^2}.
\]

\[
W_{m,p} = W_{m,p}(\mathbb{R}^2) = \left\{ u \in S'(\mathbb{R}^2) \mid \| u \|_{W_{m,p}} = \left(\int_{\mathbb{R}^2} |(D_x; D_y)^m u|^p dx dy \right)^{1/p} < +\infty \right\},
\]

where \(S'(\mathbb{R}^2) \) is the Schwartz class and its topological dual respectively. Let \(S = S(\mathbb{R}^2) \) and \(\mathcal{C}_0^\infty(\mathbb{R}^2) \) denote the Schwartz class and its topological dual respectively. Let \(\mathcal{D}(\mathbb{R}^2) \) and \(\mathcal{D}'(\mathbb{R}^2) \) be the dual pair of the class of test functions \(\mathcal{C}_0^\infty(\mathbb{R}^2) \) and the class of distributions on \(\mathbb{R}^2 \). \(B^m(\mathbb{R}^2) \) is the Fréchet space of all \(C^m \) functions on \(\mathbb{R}^2 \) whose derivatives of any order are all bounded. Let \(\mathcal{F} \) be Fréchet spaces. \(L^p(E) \) denotes the set of all bounded linear operators of \(E \) to \(F \). \(L(E) = L(E, E) \). Let \((X, Y) \) be a dual pair of locally convex spaces \(X \) and \(Y \). \((y, x)\) means the operation of \(y \in Y \) on \(x \in X \). \(C([0, T]; E) \) and \(C_w([0, T]; E) \) denote the sets of all strongly and weakly continuous \(E \)-valued functions on \([0, T]\) respectively. \(|s| \) denotes the greatest integer less than or equal to \(s \in \mathbb{R} \). \(N = \{1, 2, 3, \ldots \} \) and \(\mathbb{Z}_+ = \mathbb{Z} \cup \{0\} \). We denote the positive constants by the same letter.

Originally the Davey–Stewartson systems are written as

\[
\partial_t u - i(\delta \partial_x^2 + \partial_y^2) u = i\gamma |u|^2 u + ib(\partial_x \rho) u, \tag{6.3}
\]
\[
(\delta \partial_x^2 + \partial_y^2) \rho = \partial_x^2 |u|^2, \tag{6.4}
\]
where \(\delta, \gamma = \pm 1, b \in \mathbb{R} \) and \(c \in \mathbb{R} \setminus \{0\} \). In [16] J.-M. Ghidaglia and J.-C. Saut classified (6.3)-(6.4) as elliptic–elliptic, hyperbolic–elliptic, elliptic–hyperbolic and hyperbolic–hyperbolic according to the respective sign of \((\delta, c) = (+, +), (-, +), (+, -) \) and \((-, -) \), and studied the initial value problem for (6.3)-(6.4).

For the cases of the elliptic–elliptic and the hyperbolic–elliptic (i.e. \(c > 0 \)), (6.3)-(6.4) becomes

\[
\partial_t u - i(\delta \partial_x^2 + \partial_y^2) u = i\gamma |u|^2 u + ib(\partial_x \rho) u, \tag{6.5}
\]
where \(\rho_c \) is a singular integral operator whose symbol is \(\delta^2 / (\xi^2 + \alpha^2) \). Since \(\rho_c \) is a bounded linear operator from \(L^p(\mathbb{R}^2; \mathbb{R}) \) to \(L^p(\mathbb{R}^2; \mathbb{R}) \) for any \(1 < p < +\infty \), (6.5) is similar to

\[
\partial_t u - i(\delta \partial_x^2 + \partial_y^2) u = i\gamma |u|^2 u, \quad \gamma \in \mathbb{R} \setminus \{0\}.
\]

6.1. Introduction to the DS equation

Then J.-M. Ghidaglia and J.-C. Saut ([16]) obtained the complete results on the local existence, the global existence and the blow-up of the initial value problem for (6.5) under the condition \(\delta = +1 \). If \(\delta = -1 \), the global existence is an open problem even for small initial data.

On the other hand, in the cases of the elliptic–hyperbolic and the hyperbolic–hyperbolic (i.e. \(c < 0 \)), one assumes the radiation condition

\[
\varphi(t, x, y) \rightarrow 0 \quad \text{as} \quad x + y, x - y \rightarrow +\infty \tag{6.6}
\]

in order that (6.4) is solvable. Here we put \(c = -1 \) for simplicity. With the transformation \(x := (x + y)/2, y := (x - y)/2 \), (6.3)-(6.4)-(6.6) becomes

\[
\partial_t u - i(\delta \partial_x^2 + \partial_y^2) u = f(u, \partial_x u, \partial_y u) \quad \text{if} \quad \delta = 1, \tag{6.7}
\]
or

\[
\partial_t u + 2i\partial_x \partial_y u = f(u, \partial_x u, \partial_y u) \quad \text{if} \quad \delta = -1,
\]

where

\[
f(u, \partial_x u, \partial_y u) = i\left(\gamma \frac{b}{2} \right) f_0(u, \partial_x u, \partial_y u) + i\frac{b}{4} f_1(u, \partial_x u, \partial_y u) + i\frac{b}{4} f_2(u, \partial_x u, \partial_y u).
\]

Thus we consider the nonlinear term \(f(u, \partial_x u, \partial_y u) \) as in (6.1). Because \(f(u, \partial_x u, \partial_y u) \) contains \(\partial_x u, \partial_y u, \partial_x \partial_y u, \) and \(\partial_y u, \) the classical energy estimates are not available for the cases of the elliptic–hyperbolic and the hyperbolic–hyperbolic. Moreover, our method developed in Chapter 2 is not applicable. More precisely, the diagonalization technique does not work well, because of the non-locality of \(f_1(u, \partial_x u, \partial_y u) \) and \(f_2(u, \partial_x u, \partial_y u) \).

Up to recently, there is no mathematical result on the initial value problem for (6.7)-(6.8). First, F. Linares and G. Ponce ([34]) proved the local existence of small solutions to the initial value problems for the cases of the elliptic–hyperbolic and the hyperbolic–hyperbolic by the sharp smoothing estimates on \(e^{i(\delta \partial_x^2 + \partial_y^2)} \) and \(e^{-2ib\partial_x \partial_y} \), which are basically due to C. E. Kenig, G. Ponce and L. Vega ([30]). Recently, using so-called abstract Cauchy–Kowalewski theorem, N. Hayashi and J.-C. Saut ([22]) have shown the local and the global existence of analytic solutions to the initial value problems for the cases of the elliptic–hyperbolic and the hyperbolic–hyperbolic.

The purpose of this chapter is to show the global existence of small amplitude solutions to (6.1)-(6.2). The main results are the following.

Theorem 6.1.1 (Local Existence) Let \(m_0 \) be a sufficiently large integer. We put \(a = \max(|a_1|, |a_2|) \). Then for any

\[
\| u_0 \|_{H^m} (m \in \mathbb{N} \geq m_0) \quad \text{satisfying} \quad \| u_0 \|_{L^2} < \frac{1}{2\sqrt{\alpha \varepsilon}}, \tag{6.8}
\]

there exists a time \(T = T(\| u_0 \|_{L^2}) > 0 \) such that the initial value problem (6.1)-(6.2) possesses a unique solution

\[
u_0 \in C_0([0, T); H^m) \cap C([0, T); H^{m-1}).
\]
Chapter 6. Davey–Stewartson equation

Theorem 6.1.2 (Global existence) Let $m >$ be a sufficiently large integer $\geq m_0 + 1$. Then there exists a constant $\delta > 0$ such that for any

$$u_0 \in \bigcap_{j=0}^{b} H^{m-j} \quad (m \in \mathbb{N} \geq m_0 + 3) \quad \text{satisfying} \quad \sum_{j=0}^{b} ||u_0||_{H^{m-j}} \leq \delta,$$

the initial value problem (6.1)-(6.2) possesses a unique solution

$$u \in \bigcap_{j=0}^{b} \left(C\left(0, \infty; H^{m-j}\right) \cap C\left(0, \infty; H^{m-1-j}\right)\right).$$

Remark 6.1.1 Since our analysis is based on the symbolic calculus of pseudo-differential operators, it is troublesome to determine the minimum of m_0 and m_1.

Remark 6.1.2 Our method is useless for the global existence of solutions to the case of the hyperbolic-hyperbolic.

Remark 6.1.3 In [13], using the inverse scattering technique, A. S. Fokas and L. Y. Sung proved the global existence for (6.3)-(6.4)-(6.6) with large initial data under the conditions $\delta = +1$, $c = -1$ and $2 \gamma + b = 0$.

Now we explain the idea of the proofs. Theorem 6.1.1 follows from the energy inequality. Theorem 6.1.2 is proved by the a priori estimates which consist of the energy and the decay estimates.

For the energy estimates, we make use of S. Doi’s method ([11]) for linear Schrödinger type equations

$$\partial_t u - i \Delta u + \sum_{j=1}^{N} b_j(t, x) \partial_j u + c(t, x) u = f(t, x) \quad (0, T) \times \mathbb{R}^N,$$

where $\partial_j = \partial/\partial x_j$ ($j = 1, \ldots, N$), $\nabla = (\partial = 1, \ldots, \partial_N)$, $\Delta = \nabla \cdot \nabla = \partial_1^2 + \cdots + \partial_N^2$ and $b_j(t, x), c(t, x) \in C\left([0, T]; B^\infty(\mathbb{R}^N)\right)$. Roughly speaking, under the appropriate condition on $\text{Im } b_j(t, x)$, there exists an automorphic $u \rightarrow K u$ in $L^2(\mathbb{R}^N)$ such that $[K, -i \Delta] K^{-1}$ is elliptic which is stronger than $\sum_{j=1}^{N} \text{Im } b_j(t, x) \partial_j$. Because one can choose $[K, -i \Delta] K^{-1}$ as sufficiently strong, $([K, -i \Delta] K^{-1} + \sum_{j=1}^{N} \text{Im } b_j(t, x) \partial_j)^{-1/2}$ gives the smoothing estimates of order $1/2$. We use this property to get the energy estimates for (6.1)-(6.2).

We explain the outline of the decay estimates. Because $f(u, \partial_t u, \partial_x u)$ satisfies the gauge invariance in a sense, J_2 and J_3 act well on $f(u, \partial_t u, \partial_x u)$. Then we can use J_2 and J_3 positively. Combining them and the Gagliardo–Nirenberg inequalities, we get the decay estimates. $f_1(u, \partial_t u, \partial_x u)$ and $f_2(u, \partial_t u, \partial_x u)$ behave as if they were cubic terms in one space dimension because of their nonlocality. This implies

$$f_1(u, \partial_t u, \partial_x u), f_2(u, \partial_t u, \partial_x u) = O\left(1 + t^{-1}\right)$$

as $t \to +\infty$. Then we need an extra time-decay. Fortunately we can use the null gauge condition of Y. Tsutsumi ([50])

$$\partial_u ||u||^2 = \frac{1}{2(1 + t)} \left(J_2 u \cdot u - u J_2 u \right)$$

and we can get the extra time-decay. (see also [27]).

The organizations of this chapter is as follows. Section 6.2 is devoted to obtain the smoothing effect of $e^{it(\partial_x^2 + \partial_y^2)}$. Section 6.3 contains preliminary results. In Sections 6.4 and 6.5 we prove Theorems 6.1.1 and 6.1.2 respectively.

6.2 Linear Estimates for the Davey–Stewartson equation

In this section, following S. Doi [11], we obtain the smoothing effect of $e^{it(\partial_x^2 + \partial_y^2)}$. We use the symbolic calculus of pseudo-differential operators on \mathbb{R} and not on \mathbb{R}^2. We suppose $t \in [0, T]$ with some constant time $T > 0$. We define the pseudo-differential operators $K(t) = k(t, x, D_x)$ and $H(t) = h(t, y, D_y)$ by

$$k(t, x, \xi) = \exp \left(-\int_0^t \phi(t, s) ds \xi(\xi^-)\right), \quad k'(t, x, \xi) = k(t, x, \xi)^{-1},$$

$$h(t, y, \zeta) = \exp \left(-\int_0^t \psi(t, s) ds \zeta(\zeta^-)\right), \quad h'(t, y, \zeta) = h(t, y, \zeta)^{-1},$$

$$\phi(t, s), \psi(t, s) \in C^1\left([0, T]; L^1(\mathbb{R})\right) \cap C\left([0, T]; B^\infty(\mathbb{R})\right),$$

$$\phi(t, s), \psi(t, s) \geq 0 \quad \text{for} \quad (s, t) \in [0, T] \times \mathbb{R}.$$

For the sake of convenience, we put

$$B_K(t) = \sup_{(x, \xi) \in \mathbb{R}^N} \left(\left|\partial^{a_1}_x \partial^{a_2}_\xi k(t, x, \xi)\right| + \left|\partial^{b_1}_x \partial^{b_2}_\xi k'(t, x, \xi)\right|\right),$$

$$B_H(t) = \sup_{(y, \zeta) \in \mathbb{R}^N} \left(\left|\partial^{a_1}_y \partial^{a_2}_\zeta h(t, y, \zeta)\right| + \left|\partial^{b_1}_y \partial^{b_2}_\zeta h'(t, y, \zeta)\right|\right),$$

$$B_\phi(t) = \int_{-\infty}^{\infty} \phi(t, s) ds, \quad B_\psi(t) = \int_{-\infty}^{\infty} \psi(t, s) ds,$$

$$B_\phi^t(t) = \sup_{\forall \sigma \in \mathbb{R}} \int_{0}^{\infty} \partial_t \phi(t, s) ds, \quad B_\psi^t(t) = \sup_{\forall \sigma \in \mathbb{R}} \int_{0}^{\infty} \partial_t \psi(t, s) ds,$$

$$B_\phi \psi^t(t) = \sup_{\forall \sigma \in \mathbb{R}} \left(\left|\partial^{a_1}_x \psi(t, y)\right| + \left|\partial^{b_1}_y \psi(t, y)\right|\right).$$
Chapter 6. Davey-Stewartson equation

where \(l \in \mathbb{N} \) is some large integer (see Remark 6.1.1). \(K(t) \) and \(H(t) \) are the automorphic on \(L^2(\mathbb{R}^2) \) in some sense.

Lemma 6.2.1

\[
\|u\| \leq C_B K(t) \left(1 + B_1^s(t) \right) \left(1 + B_2^s(t) \right)
\]

\[
\times \left(\|K(t)u(t)\| + \|u\|_{-1} \right),
\]

\[
\left(\|K(t)u\| + \|u\|_{-1} \right) \leq C_B \|K(t)u\|,
\]

\[
\|u\| \leq C_B H(t) \left(1 + B_1^s(t) \right) \left(1 + B_2^s(t) \right)
\]

\[
\times \left(\|H(t)u(t)\| + \|u\|_{-1} \right),
\]

\[
\left(\|H(t)u\| + \|u\|_{-1} \right) \leq C_B \|H(t)u\|,
\]

for \(u \in L^2(\mathbb{R}^2) \) and \(t \in [0, T] \).

Proof. See Lemma 2.3.3

Now we obtain the smoothing estimates.

Lemma 6.2.2 We put \(f^s = \partial_x u - (i + \varepsilon)(\partial_x^2 + \partial_y^2) u \), \((\varepsilon \in [0, 1]) \). Then there exists a constant \(C_1 \) which is independent of \(\varepsilon \in [0, 1] \), such that

\[
\frac{d}{dt} \|K(t)u(t)\|^2 \leq -4 \left(\phi(t, x)(D_x) K(t)u(t), (D_x)^{1/2} K(t)u(t) \right)
\]

\[
- 2 \varepsilon \left(\|\partial_x K(t)u(t)\|^2 + \|\partial_y K(t)u(t)\|^2 \right)
\]

\[
+ C_1 \left(B_1^s(t) + B_2^s(t) \right) B_{etc}(t) \left(\|K(t)u(t)\| + \|u\|_{-1} \right)^2
\]

\[
+ 2 R e \left(K(t)f^s(t), K(t)u(t) \right),
\]

\[
\frac{d}{dt} \|H(t)u(t)\|^2 \leq -4 \left(\psi(t, y)(D_y) H(t)u(t), (D_y)^{1/2} H(t)u(t) \right)
\]

\[
- 2 \varepsilon \left(\|\partial_x H(t)u(t)\|^2 + \|\partial_y H(t)u(t)\|^2 \right)
\]

\[
+ C_1 \left(B_1^s(t) + B_2^s(t) \right) B_{etc}(t) \left(\|H(t)u(t)\| + \|u\|_{-1} \right)^2
\]

\[
+ 2 R e \left(H(t)f^s(t), H(t)u(t) \right),
\]

for \(u \in C^1(0, T); H^2 \) \(\cap C^0(0, T); L^2 \) and \(t \in [0, T] \), where

\[
B_{etc}(t) = \frac{B_1^s(t) + B_2^s(t)}{2},
\]

\[
B_{etc}(t) = \frac{B_1^s(t) + B_2^s(t)}{2}.
\]

Proof. We show (6.14). The simple calculations yield

\[
K(t)f^s = \partial_x (K(t)u) - (i + \varepsilon)(\partial_x^2 + \partial_y^2) (K(t)u)
\]

\[
+ 2(1 - i\varepsilon)(D_x)^{1/2} \phi(t, x)(D_y)^{1/2} (K(t)u) + R_1(t)u,
\]

\[
R_1(t) = R_0(t) - (i + \varepsilon) R_0(t),
\]

\[
\sigma(t, \xi) = -\partial_x k(t, x, \xi) = \int_0^1 \partial_x \phi(t, x, \xi) (\xi^2)^{-1} k(t, x, \xi),
\]

\[
R_0(t) = \left[K(t), \partial_x^2 \right] - 2i(D_x)^{1/2} \phi(t, x)(D_y)^{1/2},
\]

\[
R_0(t) = R_0(t) + R_0(t) + R_0(t),
\]

\[
\sigma(t, \xi) = \left(2t \phi(t, x)(\xi^2)^{-1} - \phi(t, x)(\xi^2)^{-1} \right) k(t, x, \xi),
\]

\[
\sigma(t, \xi) = \frac{i}{2\pi} \xi^3 (t) \int_0^1 \int_{\mathbb{R}^2} e^{-i\xi(t, \eta)} k(t, x + z, \eta) dz d\eta,
\]

\[
\sigma(t, \xi) = \frac{1}{2\pi} \xi^3 (t) \int_0^1 \int_{\mathbb{R}^2} e^{-i\xi(t, \eta)} k(t, x + z, \eta) dz d\eta.
\]

It is easy to see that there exists a constant \(C_1^* > 0 \) which is independent of \(\varepsilon \in [0, 1] \) such that

\[
\|R_1(t)\| \leq C_1^* \left(B_1^s(t) + B_2^s(t) \right) B_{etc}(t)
\]

for \(t \in [0, T] \) and \(\varepsilon \in [0, 1] \). (6.10), (6.16) and (6.17) imply (6.14). In the same way we can get (6.15).

6.3 Preliminaries for the Davey–Stewartson equation

This section is devoted to the estimates of the nonlinear term \(f(u, \partial_x u, \partial_y u) \). In particular, the Gagliardo–Nirenberg inequalities

\[
\|u\|_{L^p(\mathbb{R}^2)} \leq C \|\partial_x u\|^{\alpha} \|u\|^{1/2} \|\partial_y u\|^{\beta} \|\partial_y u\|^{1/2}
\]

for \(u \in L^2(\mathbb{R}^2) \),

\[
\|u\|_{L^p(\mathbb{R}^2)} \leq C \sum_{\alpha + \beta = 2} \|\partial_x^\alpha u\|^{\alpha} \|\partial_y^\beta u\|^{\beta} \|\partial_y u\|^{1/2} \|\partial_y u\|^{1/2}
\]

for \(u \in L^2(\mathbb{R}^2) \),

play important roles to get the decay estimates of solutions.

Let \(l \) be the same integer as in the previous section. We put

\[
\phi(x) = M \int_{-\infty}^{\infty} |u(x, y)|^2 dy, \quad \psi(y) = M \int_{-\infty}^{\infty} |u(x, y)|^2 dx,
\]

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x, y)|^2 dx dy.
\]
with some constant $M > 0$. Similarly we define $K = k(x, D_x)$, $K' = k'(x, D_x)$, $H = h(x, D_x)$ and $H' = h'(x, D_x)$ by

$$k(x, \xi) = \exp \left(-\int_0^x \phi'(z) dz \xi(\xi)\right)^{-1}, \quad k'(x, \xi) = k(x, \xi)^{-1},$$

$$h(y, \zeta) = \exp \left(-\int_0^y \psi'(z') dz' \zeta(\zeta)\right)^{-1}, \quad h'(y, \zeta) = h(y, \zeta)^{-1}.$$

We put $R_0 = K'K^{-1}$ and we introduce B_K, B_H, B_K^∞ and B_H^∞. To resolve the loss of derivatives, we prepare

Lemma 6.3.1 Let m be an integer $\geq l + 1$. Then we have

$$\left| \left(K \left\{ \int_{-\infty}^{+\infty} u' \partial_y P u dy \right\}, Kw \right) \right| \leq \frac{1}{2M} \left(1 + \sup_{(x, \xi) \in \mathbb{R}^2} \left| h(x, \xi) p(x, \xi) \right| \right) \left(\phi(x) (D_x)^{1/2} Kw, (D_x)^{1/2} Kw \right)$$

$$+ CB_K \int_{-\infty}^{+\infty} \sup_{x \in \mathbb{R}} \left| (D_x)^{1/2} u(x, y) \right|^2 dy \|Kw\|^2$$

for $u \in H^m$ and $w \in H^1$, where

$$u' = u, P = K', v = Kw \quad \text{or} \quad u' = u, P = K, v = Kw,$$

and

$$\left| \left(H \left\{ \int_{-\infty}^{+\infty} u' \partial_y Q u dy \right\}, Hw \right) \right| \leq \frac{1}{2M} \left(1 + \sup_{(y, \zeta) \in \mathbb{R}^2} \left| h(y, \zeta) q(y, \zeta) \right| \right) \left(\psi(x) (D_x)^{1/2} Hw, (D_x)^{1/2} Hw \right)$$

$$+ CB_H \int_{-\infty}^{+\infty} \sup_{x \in \mathbb{R}} \left| (D_x)^{1/2} u(x, y) \right|^2 dx \|Hw\|^2$$

for $u \in H^m$ and $w \in H^1$, where

$$u' = u, P = H', v = Hw \quad \text{or} \quad u' = u, P = H, v = Hw,$$

Proof. We have only to show (6.20). The simple calculation yields

$$\left| \left(K \left\{ \int_{-\infty}^{+\infty} u' \partial_y P u dy \right\}, Kw \right) \right| \leq \left| \left(\int_{-\infty}^{+\infty} r_{\delta}(y, x', x, D_x) u dy, Kw \right) \right|$$

$$+ \left| \left(\int_{-\infty}^{+\infty} r_{\delta}(y, x, D_x) (D_x)^{1/2} u, Kw \right) \right|,$$

for $u \in H^m$ and $w \in H^1$.

6.3. Preliminaries for the DS equation

$$r_{\delta}(y, x', x, D_x) = \left[K, u(x, y) u'(x, y) \right] \partial_x P$$

$$+ \left[u(x, y) u'(x, y) K \partial_x P, (D_x)^{1/2} (D_x)^{-1/2} \right]$$

$$+ \left((D_x)^{1/2} u(x, y) u'(x, y) \right) \left(K \partial_x P (D_x)^{-1/2} - r_{\delta}(x, D_x) (D_x)^{1/2} \right),$$

$$\left| r_{\delta}(y, x, \zeta) \right| = ik(x, \xi) p(x, \xi) \zeta(\zeta)^{-1}.$$

It is easy to see

$$\|r_{\delta}(y, x', x, D_x)\|_{L_2(\mathbb{R})} \leq CB_K \left(\sup_{x \in \mathbb{R}} \left| (D_x)^{1/2} u(x, y) \right| \right) \left(\sup_{x \in \mathbb{R}} \left| (D_x)^{1/2} u(x, y') \right| \right).$$

Then we have

$$\left| \left(\int_{-\infty}^{+\infty} r_{\delta}(y, x', x, D_x) u dy, Kw \right) \right| \leq \left(\int_{-\infty}^{+\infty} \left| (D_x)^{1/2} u(x, y) \right|^2 dx \right)^{1/2} \left(\int_{-\infty}^{+\infty} \left| K\partial_x P (D_x)^{-1/2} - r_{\delta}(x, D_x) (D_x)^{1/2} \right|^2 dx \right)^{1/2}$$

$$\leq CB_K \left(\int_{-\infty}^{+\infty} \sup_{x \in \mathbb{R}} \left| (D_x)^{1/2} u(x, y) \right|^2 dx \right)^{1/2} \left(\int_{-\infty}^{+\infty} \left| (D_x)^{1/2} u(x, y') \right|^2 dy \right)^{1/2}.$$

On the other hand, we get

$$\left| \left(\int u' r_{\delta}(x, D_x) (D_x)^{1/2} u dy, \tilde{u} (D_x)^{1/2} Kw \right) \right| \leq \left(\int \left| u(x, y') \right|^2 dy \right)^{1/2} \left(\int \left| r_{\delta}(x, D_x) (D_x)^{1/2} u(x, y') \right|^2 dy \right)^{1/2}$$

$$\times \left(\int \left| (D_x)^{1/2} K\partial_x P (D_x)^{-1/2} - r_{\delta}(x, D_x) (D_x)^{1/2} \right|^2 dx \right)^{1/2}$$

$$= \frac{1}{M} \int \phi(x) \left(\int \left| r_{\delta}(x, D_x) (D_x)^{1/2} u(x, y') \right|^2 dy \right)^{1/2} \left(\int \left| (D_x)^{1/2} K\partial_x P (D_x)^{-1/2} - r_{\delta}(x, D_x) (D_x)^{1/2} \right|^2 dx \right)^{1/2}$$

$$\leq \frac{1}{M} \left(\int \phi(x)^{1/2} r_{\delta}(x, D_x) (D_x)^{1/2} u \right)^2 + \left(\int \phi(x)^{1/2} (D_x)^{1/2} Kw \right)^2.$$
Chapter 6. Davey-Stewartson equation

\[\frac{1}{2M} \{ \text{Re} \left[r_0(x, D_x) \phi(x) r_0(x, D_x) \right] \} \]
\[+ \left\{ \phi(x) (D_x)^{1/2} K \omega, (D_x)^{1/2} K \omega \right\} \leq \left\{ \left(\int_{\mathbb{R}} |u_x r_0(x, D_x) (D_x) x + u_x D_x \right| \right\} + C B^\infty \| K \omega \|^2, \]

where

\[r_{10}(x, \xi) = |k(x, \xi) p(x, \xi)|^2 \xi^2(\xi)^2. \]

Then the sharp Garding inequality implies

\[\left| \left(\int_{\mathbb{R}} u r_0(x, D_x) (D_x) x, D_x \right| \right| \right\} + C B^\infty \| K \omega \|^2 \]
\[\left. \left(1 + \sup_{(x, \xi) \in \mathbb{R}} \left| k(x, \xi) p(x, \xi) \right|^2 \right) \phi(x) (D_x)^{1/2} K \omega, (D_x)^{1/2} K \omega \right\} \]
\[+ C \left(\int_{\mathbb{R}} \| D_x x + D_x \| B^\infty \| K \omega \|^2. \right. \]

Substituting (6.23) and (6.24) into (6.22), we obtain (6.20).

To prove Theorem 6.1.1, we prepare the following two lemmata.

Lemma 6.3.2 Let \(m \) be an integer \(\geq 2 \). Then there exists a constant \(C > 0 \) depending only on \(m \) such that

\[\| f_0(u, \partial_x u, \partial_y u) \|_{m} + \sum_{a+b+m=2} \| \text{c}_{a}\text{c}_{b} f_1(u, \partial_x u, \partial_y u) \| \]
\[+ \sum_{a+b+m=2} \| \text{c}_{a}\text{c}_{b} f_2(u, \partial_x u, \partial_y u) \| \leq C \| u \|_{m+1} \| u \|_{m}, \]

(6.25)

\[\sum_{j=2} \| f_j(u, \partial_x u, \partial_y u) - f_j(v, \partial_x v, \partial_y v) \| \leq C \left(\| u \|_{m} + \| v \|_{m} \right)^2 \| u - v \|_{m}. \]

(6.26)

6.3. Preliminaries for the DS equation

for \(u, v \in H^m \), and

\[\left\{ \partial_x^m (f_1(u, \partial_x u, \partial_y u) - \left(\int_{y} u \omega^{m+1} \partial_y u \right) u - \left(\int_{y} u \omega^{m+1} \partial_y u \right) u \right\} + \partial_y^m (f_2(u, \partial_x u, \partial_y u) - \left(\int_{y} u \omega^{m+1} \partial_x u \right) u - \left(\int_{y} u \omega^{m+1} \partial_x u \right) u \right\} \leq C \| u \|_{m+1} \| u \|_{m}. \]

(6.27)

Lemma 6.3.3 Let \(m \) be an integer \(\geq l + 1 \). Then

\[\left(K \left\{ \left(\int_{y} u \omega^{m+1} u + u \omega^{m+1} u \right) dy \right\} u, K \omega^m u \right) \]
\[\leq \frac{1}{2M} \left(3 + e^{4M |x|^{2}} \right) \left(\phi(x) (D_x)^{1/2} K \omega^m u, (D_x)^{1/2} K \omega^m u \right) \]
\[+ C B^\infty \| u \|_{m+1} \| K \omega^m u \| \left(\| K \omega^m u \| + \| u \|_{m+1} \right), \]

(6.28)

\[\left(H \left\{ \left(\int_{y} u \omega^{m+1} u + u \omega^{m+1} u \right) dy \right\} u, H \omega^m u \right) \]
\[\leq \frac{1}{2M} \left(3 + e^{4M |x|^{2}} \right) \left(\phi(x) (D_x)^{1/2} H \omega^m u, (D_x)^{1/2} H \omega^m u \right) \]
\[+ C B^\infty \| u \|_{m+1} \| H \omega^m u \| \left(\| H \omega^m u \| + \| u \|_{m+1} \right), \]

(6.29)

for any \(u \in H^{m+1} \).

Proof of Lemma 6.3.2. The Gagliardo-Nirenberg inequality implies

\[\| f_0(u, \partial_x u, \partial_y u) \|_{m} \leq C \| u \|_{m+1} \| u \|_{m}. \]

(6.30)

Let \(\alpha \) and \(\beta \) be non-negative integers satisfying \(\alpha + \beta \leq m \) and \(\alpha \leq m - 1 \). We have

\[\partial_x^\alpha \partial_y^\beta (f_1(u, \partial_x u, \partial_y u)) = \partial_x^\alpha \partial_y^\beta \left(f_1(u, \partial_x u, \partial_y u) \right) \]
\[= - \sum_{a+b+m=2} \sum_{a+b+m=2} \alpha^a_{1+\beta} \beta^b_{1+\alpha} \alpha_1 \alpha_2 \beta_{1+\alpha} \beta_{1+\beta} \]
\[\times \partial_x^\alpha \partial_y^\beta \left(\partial_x^\alpha \partial_y^\beta \right) u \]

and

\[\partial_x^\alpha \partial_y^\beta (f_2(u, \partial_x u, \partial_y u)) = \partial_x^\alpha \partial_y^\beta \left(f_2(u, \partial_x u, \partial_y u) \right) \]
\[= \sum_{a+b+m=2} \sum_{a+b+m=2} \alpha^a_{1+\beta} \beta^b_{1+\alpha} \alpha_1 \alpha_2 \beta_{1+\alpha} \beta_{1+\beta} \]
\[\times \left(\int_{y} u \omega^{m+1} \partial_y u \right) \partial_x^\alpha \partial_y^\beta u. \]
In the same way as (6.30), we get
\[\| \partial_x^m \partial_y^n \partial_x^j \partial_y^k u \| \leq C \| u \|_{H^m}^j \| u \|_{H^k}. \]

(6.31)

Using the Schwarz inequality with respect to \(y' \), we have
\[\| g_{x^m} \| \leq \sum_{\alpha + \beta = m+1} \alpha! \beta! (\sum_{\alpha'} (\sum_{\beta'} \| \partial_x^{\alpha'} \partial_y^{\beta'} u \|)^2)^{1/2} \]
\[\leq C \sup_{y' \in \mathbb{R}} \left\{ \left(\int (\partial_x^m \partial_y^n \partial_x^j \partial_y^k u)^2 \, dy \right) \right\}^{1/2} \leq C \| u \|_{H^m}^j \| u \|_{H^k}. \]

(6.32)

Combining (6.31) and (6.32), we obtain
\[\sum_{\alpha + \beta = m+1} \| g_{x^m} \| \leq C \| u \|_{H^m}^j \| u \|_{H^k}. \]

(6.33)

In the same way, we have
\[\sum_{\alpha + \beta = m+1} \| g_{x^m} \| \leq C \| u \|_{H^m}^j \| u \|_{H^k}. \]

(6.34)

(6.30), (6.33) and (6.34) show (6.25). Similarly we can obtain (6.26) and (6.27).

Proof of Lemma 6.3.3. We here note
\[\partial_x^{m+1} u = \partial_x K \partial_x^m u = \partial_x R_0 \partial_x^m u, \quad \partial_y^{m+1} u = \partial_y K \partial_y^m u = \partial_y R_0 \partial_y^m u, \]
where \(R_0 = K' K^* - 1 \in \mathcal{L}(H^{-3}, L^2) \). Using (6.20), we obtain (6.28). Similarly we get (6.29) by (6.21).

Now we obtain the estimates on the nonlinear term \(f(u, \partial_x u, \partial_y u) \) in order to prove Theorem 6.1.2. Using (6.19), we have
\[\| u \|_{L^\infty} \leq C (1 + t)^{-1} \sum_{\alpha' + \beta' \geq 2} \| J_{x'}^\alpha J_{y'}^\beta u \|^{1/2} \| u \|^{1/2} \]

(6.35)

for \(u \in H^2 \cap H^{0.2} \). Let us introduce
\[X_{m,n}(t) = \sum_{\alpha + \beta = m, \alpha' + \beta' = n} \| J_{x'}^\alpha J_{y'}^\beta f(u(t)) \|, \quad m, n \in \mathbb{Z}_+. \]

(6.36)
Lemma 6.3.5 Let \(m \) be an integer \(\geq \max(t + 1, 6) \). Then we have
\[
\sum_{a+b \leq m-1} \left| \left(\frac{\partial^a \partial^b J^x(u(t))}{\partial x^a \partial u^b} \right) f_1(u(t), \partial_x u(t), \partial_u u(t)) \right| \leq \frac{1}{2M} (3 + e^{4M|u(0)|^2})
\]
\[
\times \left(\phi(t, x) (D_x)^{1/2} K(t) \left(\partial^a J^x(u(t)) \right), (D_x)^{1/2} H(t) \left(\partial^a J^y(u(t)) \right) \right),
\]
\[
+ C B_K(t)^4 (1 + t)^{-1} \left(\sum_{j=0}^4 X_{m-j-1,j}(t) \right)^2 \left(\| K(t) \partial^a J^x(u(t)) \|^2 + \| H(t) \partial^a J^y(u(t)) \|^2 \right),
\]
\[
+ C B_K(t)^3 B_{20}(t)(1 + t)^{-1}
\]
\[
\times \left(\sum_{j=0}^4 X_{m-j-1,j}(t) \right)^2 \left(\| H(t) \partial^a J^y(u(t)) \|^2 \right),
\]
(6.38)

for \(t \in [0, T], \ u \in \bigcap_{j=0}^5 C([0, T]; H^{m+1-j,d}) \).

Proof of Lemma 6.3.4. It is easy to see
\[
\sum_{a+b+c+d \leq m} \left(\| \partial_x^a \partial^b \partial^c J^y u^d \right) f_0(u(t), \partial_x u(t), \partial_u u(t)) \left\| \leq C(1 + t)^{-2} \left(\sum_{j=0}^4 X_{m-j-1,j}(t) \right)^2 \sum_{j=0}^4 X_{m-j,j}(t).
\]
(6.41)

Let \(\alpha, \beta, \alpha' \) and \(\beta' \) be non-negative integers satisfying \(\alpha + \beta + \alpha' + \beta' \leq m, \alpha' + \beta' \leq 5, \alpha + \alpha' \leq m - 1 \) and \(\alpha' \leq 4 \). We have
\[
\partial_x^a \partial^b \partial^c J^y u^d \left(f_1(u(t), \partial_x u(t), \partial_u u(t)) \right) = g_{3}^{\alpha \beta \alpha' \beta'}(u(t)) + g_{4}^{\alpha \beta \alpha' \beta'}(u(t)),
\]
(6.42)
We here remark that (6.18) implies
\[\int_{\mathbb{R}} \sup_{x \in \mathbb{R}} |u(t, x, y)|^2 \, dy \leq C(1 + t)^{-1} \sum_{\alpha + \beta \leq 1} \| \partial_x^\alpha \partial_y^\beta u(t) \|^2. \] (6.43)
and the same calculations in (6.32) give
\[\sum_{\alpha + \beta \leq 1, \alpha + \beta \leq m} \| \partial_x^\alpha \partial_y^\beta \{ f_1(u(t), \partial_x u(t), \partial_y u(t)) \} \| \leq C(1 + t)^{-2} \left(\sum_{j=0}^{2} \sum_{j=0}^{2} X_{m-j,j}(t) \right) \] (6.44)
(6.42) and (6.44) show
\[\sum_{\alpha + \beta \leq 1, \alpha + \beta \leq m} \| \partial_x^\alpha \partial_y^\beta \{ f_2(u(t), \partial_x u(t), \partial_y u(t)) \} \| \leq C(1 + t)^{-2} \left(\sum_{j=0}^{2} \sum_{j=0}^{2} X_{m-j,j}(t) \right). \] (6.45)
Similarly we can get
\[\sum_{\alpha + \beta \leq 1, \alpha + \beta \leq m} \| \partial_x^\alpha \partial_y^\beta \{ f_3(u(t), \partial_x u(t), \partial_y u(t)) \} \| \leq C(1 + t)^{-2} \left(\sum_{j=0}^{2} \sum_{j=0}^{2} X_{m-j,j}(t) \right). \] (6.46)
Combining (6.41), (6.45) and (6.46), we obtain (6.36). The proof of (6.37) is almost same as that of (6.36). We here remark that we do not use the null gauge condition (6.9) to get (6.37).

Proof of Lemma 6.3.5. The proof of is basically same as that of Lemma 6.3.3. Lemma 6.3.1 and (6.43) imply (6.38) and (6.40).

6.4 Proof of local existence theorem

We prove Theorem 6.1.1 by the parabolic regularization and the uniform estimates which follow from Lemma 6.2.2. First we consider
\[\partial_t u^\varepsilon - (i + \varepsilon)(\partial_x^2 + \partial_y^2) u^\varepsilon = f(u^\varepsilon, \partial_x u^\varepsilon, \partial_y u^\varepsilon) \text{ in } (0, \infty) \times \mathbb{R}^2, \] (6.47)
\[u^\varepsilon(0, x, y) = u_0(x, y) \text{ in } \mathbb{R}^2, \] (6.48)
where \(\varepsilon \in (0, 1) \). We remark that the initial data \(u_0 \) is independent of \(\varepsilon \in (0, 1) \). Since the elliptic term \(-\partial_x^2 - \partial_y^2\) resolve the loss of derivatives, we obtain

Lemma 6.4.1 Let \(m \) be an integer \(\geq 2 \). For any \(u_0 \in H^m \), there exists a time \(T_\varepsilon = T(\varepsilon, \| u_0 \|_2) > 0 \) such that the initial value problem (6.47)–(6.48) possesses a unique solution \(u \in C([0, T_\varepsilon); H^m) \). Moreover the mapping \(u_0 \mapsto u \) is continuous between the above spaces.

Proof. It is easy to show Lemma 6.4.1 by using (6.25) and (6.26). We omit the rigorous proof.

Secondly we prove the existence of a solution to (6.1)–(6.2) by the uniform estimates on \(\{ u^\varepsilon \}_{\varepsilon \in (0, 1]} \). More precisely, we show that there exists a time \(T > 0 \) which is independent of \(\varepsilon \in (0, 1] \) such that \(\{ u^\varepsilon \}_{\varepsilon \in (0, 1]} \) is bounded in \(L^\infty(0, T; H^m) \). Let \(m_0 = l + 3 \) where \(l \) is the same integer as in Section 6.2, and let \(m \) be an integer \(\geq m_0 \). We define
\[K^\varepsilon(t) = k^\varepsilon(t, x, D_x), \]
\[k^\varepsilon(t, x, \xi) = \exp \left(- \int_0^t \phi^\varepsilon(s, x, y) \, dy \right), \]
\[\phi^\varepsilon(t, x, y) = M \int u^\varepsilon(t, x, y) \, dy, \]
\[H^\varepsilon(t) = h^\varepsilon(t, y, D_y), \]
\[h^\varepsilon(t, x, \xi) = \exp \left(- \int_0^t \psi^\varepsilon(s, y, y') \, dy' \right), \]
\[\psi^\varepsilon(t, y, y') = M \int u^\varepsilon(t, x, y') \, dy. \]

\[N^m_\varepsilon(t) = \sum_{\alpha + \beta = m} \left\| \partial_x^\alpha \partial_y^\beta u^\varepsilon(t) \right\| + \left\| K^\varepsilon(t) \partial_x^\alpha u^\varepsilon(t) \right\| + \left\| H^\varepsilon(t) \partial_y^\beta u^\varepsilon(t) \right\|. \]

Since the initial data \(u_0 \) is independent of \(\varepsilon \in (0, 1] \), \(N^m_\varepsilon(0) \) are also independent of \(\varepsilon \in (0, 1] \) and then we denote them by the same notation \(N^m(0) \). It is easy to see that there exists an increasing function \(A(\cdot) \) on \([0, +\infty)\) such that
\[B_{K^\varepsilon}(t), B_{H^\varepsilon}(t), B_{\phi^\varepsilon}(t), B_{\psi^\varepsilon}(t), B_{L^\varepsilon}(t), B_{C^\varepsilon}(t), B_{\bar{C}^\varepsilon}(t) \leq A \left(\| u^\varepsilon(t) \|_{m_0-1} \right) \leq A(N^m_\varepsilon(t)). \]

We define
\[T^\varepsilon_\varepsilon = \left\{ 0 \leq T < \frac{1}{8C_2(N^m_\varepsilon)^3} \left| A(N^m_\varepsilon(t)) < 2N^m_\varepsilon, 0 \leq t < T \right. \right\}. \]
where C_2 is a positive constant appearing in the estimate $\|f(u, \partial_x u, \partial_y u)\| \leq C_2\|u\|_2^3$. Lemma 6.4.1 shows $T^*_e > 0$. It is easy to see

\[\|u'(t)\| \leq \|u_0\| + \int_0^t \left\| f\left(u'(\tau), \partial_x u'(\tau), \partial_y u'(\tau)\right)\right\| d\tau \]
\[\leq \|u_0\| + C_2 \int_0^t \|u'(\tau)\|_2^3 d\tau \]
\[\leq \|u_0\| + 8C_2(N_{m_6})^3 t < \frac{1}{2\sqrt{ae}} \quad \text{for} \quad 0 \leq t < T^*_e. \]

We here note that the local well-posedness ensures the validity of the energy estimates. Let n be an integer which ranges in $m_6 \leq n \leq m$. Using (6.25), we get

\[\frac{d}{dt} \sum_{n \geq n_0, n \geq 0} \|\partial_x^n \partial_y^n u'(t)\| \]
\[\leq 2 \sum_{n \geq n_0, n \geq 0} \left\| \partial_x^n \partial_y^n \left\{ f\left(u'(t), \partial_x u'(t), \partial_y u'(t)\right)\right\}\right\| \|\partial_x^n \partial_y^n u'(t)\| \]
\[\leq C\|u'(t)\|_n^{-1} N_{n_0}(t)^2. \]

(6.14) implies

\[\frac{d}{dt} \|K'(t)\partial_x^n u'(t)\| \]
\[\leq -4\left(\phi'(t, x)(D_{x}^{1/2}K(t)\partial_x^n u'(t), (D_{x}^{1/2}K(t)\partial_x^n u'(t)\right) \]
\[+ C\|u'(t)\|_n^{-1} N_{n_0}(t)^2 \]
\[+ 2Re \left\{ K'(t)\partial_x^n \left\{ f\left(u'(t), \partial_x u'(t), \partial_y u'(t)\right)\right\}, K'(t)\partial_x^n u'(t)\right\}. \]

(6.50)

We here decompose the last term of the right hand side of (6.50) as

\[\partial_x^n \left\{ f\left(u'(t), \partial_x u'(t), \partial_y u'(t)\right)\right\} = g_0^n(u'(t)) + g_1^n(u'(t)), \]
\[g_0^n(u'(t)) = \partial_x^n \left\{ f_0(u'(t), \partial_x u'(t), \partial_y u'(t))\right\} \]
\[+ \partial_x^n \left\{ f_1(u'(t), \partial_x u'(t), \partial_y u'(t))\right\} \]
\[+ \partial_x^n \left\{ f_2(u'(t), \partial_x u'(t), \partial_y u'(t))\right\} \]
\[+ a_1 \left\{ \partial_x^n \left\{ f_3(u'(t), \partial_x u'(t), \partial_y u'(t))\right\}\right\} \]
\[- \int_y^{y+1} \left\{ \partial_x^{n+1} u'(t)\right\} dy' \left\{ \partial_x^n (u'(t) - u'(t))\right\} dy' \]
\[\partial_x^n (u'(t)) \]
\[= a_1 \left\{ \int_y^{y+1} \left\{ \partial_x^{n+1} u'(t)\right\} dy' \right\} dy' \left\{ \partial_x^n (u'(t))\right\} dy' \]
\[\left\{ \partial_x^n (u'(t))\right\} dy'. \]

Using (6.27) and (6.28), we have

\[\frac{d}{dt} \|H'(t)\partial_x^n u'(t)\| \leq C\|u'(t)\|_n^{-1} N_{n_0}(t)^2. \]

(6.53)

Combining (6.49), (6.52) and (6.53), we obtain

\[\frac{d}{dt} N_{n_0}(t) \leq C\|u'(t)\|_n^{-1} N_{n_0}(t) \quad \text{for} \quad t \in [0, T^*_e). \]

The Gronwall inequality implies

\[N_{n_0}(t) \leq N_n \exp \left(C \int_0^t \|u'(r)\|_n^{-1} dr \right) \quad \text{for} \quad t \in [0, T^*_e). \]

(6.54)

When $n = n_0$ and $t = T^*_e$, (6.54) becomes $2 \leq \exp \left(4CT^*_e(N_{m_6})^2 \right)$. Noting the definition of T^*_e, we obtain

\[T^*_e \geq T \equiv \min \left(\frac{\log 2}{4C(N_{m_6})^2}, \frac{1/2\sqrt{ae} - \|u_0\|}{8C_2(N_{m_6})^3} \right) > 0. \]

This means that $\{u'(t)\}_{t \in [0,1]}$ is bounded in $L^\infty(0, T; H^{m_6})$. Using (6.54) successively, we show that $\{u'(t)\}_{t \in [0,1]}$ is bounded in $L^\infty(0, T; H^{m_6})$. Then the standard compactness arguments imply that there exist a subsequence $\{u'(t)\}_{t \in [0,1]}$ and $u \in L^\infty(0, T; H^{m_6})$ such that

\[u' \rightharpoonup u \quad \text{in} \quad L^\infty(0, T; H^{m_6}) \quad \text{as} \quad \varepsilon \downarrow 0, \]
\[u' \longrightarrow u \quad \text{in} \quad C([0, T]; H^{m_6}_{loc}) \quad \text{as} \quad \varepsilon \downarrow 0. \]
It is easy to see $u \in C_W([0, T]; H^m)$. To see u is a solution to (1.1)-(1.2), we have only to check

$$f_j(u^r, \partial_t u^r, \partial_x u^r) \rightarrow f_j(u, \partial_t u, \partial_x u) \quad \text{in} \quad D'(\mathbb{R}^2)$$

as $\epsilon \downarrow 0$, $j = 0, 1, 2$.

(6.55)

It is easy to see the case of $j = 0$ in (6.55). We show the cases of $j = 1$. For this purpose, we introduce some classes of finite Radon measures as follows.

$$\mathcal{B}_0^0 = C_0(\mathbb{R}^2)$$

equipped with \mathcal{B}_0^0 norm,

$$\mathcal{B}_0^0 = \left\{ (v(t, x, y) \in \mathcal{B}_0^0(\mathbb{R}^2) \mid \exists u > 0, \exists w(t, x) \in C_0(\mathbb{R}^2) \times (1, R + R) \text{ s.t. supp}[w] \subset (0, T) \times (1, R + R) \right\}$$

Then Lemma 6.4.2 implies $\mathcal{M} \subset \mathcal{D}'$. Clearly, \mathcal{B}_0^0 and \mathcal{B}_0^0 are separable and not complete. $\mathcal{B}_0^0 \subset \mathcal{B}_0^0$ implies $\mathcal{M} \subset \mathcal{M}$.

Lemma 6.4.2 We assume that μ and ν belong to \mathcal{M} and that $\mu = \nu$ in $\mathcal{M}(\mathbb{R}^2)$. Then $\mu = \nu$ in \mathcal{M}.

Proof. Lemma 6.4.2 is well known if we replace \mathcal{M} by $L^1_{loc}(\mathbb{R}^2)$. Since \mathcal{D} is dense in \mathcal{B}_0^0, $\mu = \nu$ in \mathcal{D}' implies $\mu = \nu$ in \mathcal{M}. It is enough to consider the case of $\mu, \nu \geq 0$ and to prove

(6.56)

Let $\{\gamma_n\}_{n \geq 1} \subset C_0(\mathbb{R})$ satisfies $\gamma_n \geq 0$ and

$$\gamma_n(y) = \begin{cases} 1 & \text{if } |y| \leq n, \\ 0 & \text{if } |y| \geq n + 1. \end{cases}$$

It is easy to see $\gamma_n(y) v(t, x, y) \in \mathcal{B}_0^0$ and

$$0 \leq \gamma_n(y) v(t, x, y) \leq \gamma_n(y) v(t, x, y) \leq \cdots \leq \gamma_n(y) v(t, x, y) \rightarrow v(t, x, y)$$

for any $v \in \mathcal{B}_0^0$ satisfying $v \geq 0$. We here note that we can see μ and ν as positive finite measures on Borel sets of \mathbb{R}^2. Then $\mu = \nu$ in \mathcal{M} means

$$\int_{\mathbb{R}^2} \gamma_n(y) v(t, x, y) d\mu = \int_{\mathbb{R}^2} \gamma_n(y) v(t, x, y) d\nu$$

for all $n \in \mathbb{N}$. Using the Beppo-Levi theorem, we obtain (6.55).

Now we return to the proof of (6.55). Clearly

$$|u|^2 \rightarrow |u|^2 \quad \text{in} \quad D'(\mathbb{R}^2)$$

as $\epsilon \downarrow 0$

and $|u|^2 \in \mathcal{M}$. Since $\left\{|u|^2\right\}_{\epsilon \in (0, 1]}$ is bounded in \mathcal{M} and \mathcal{B}_0^0 is a separable normed vector space, there exist a subsequence $\left\{|u|^2\right\}_{\epsilon \in (0, 1]}$ and $\mu \in \mathcal{M}$ such that

$$|u|^2 \xrightarrow{\epsilon \downarrow 0} \mu \quad \text{in} \quad \mathcal{M}$$

(6.57)

Let $a(t, x, y) \in \mathcal{D}'(\mathbb{R}^2)$. Using the Fubini theorem and the integration by parts with respect to x, we have

(6.58)

It is easy to see $F(a) \rightarrow 0$ as $\epsilon \downarrow 0$. $F(a) \rightarrow 0$ as $\epsilon \downarrow 0$ follows from (6.57) directly. Then we have finished to prove the case of $j = 1$ in (6.55). Similarly we can show the case of $j = 2$ in (6.55). This completes the proof of the existence of a solution to (6.1)-(6.2). The uniqueness of the solution can be proved by the same energy method as above.

More precisely let $u, v \in L^m(\mathbb{R}, H^m)$ be solutions to (6.1)-(6.2). We here note

$$\partial_t u + u \partial_x u - \partial_x v - \partial_y u = 0$$

$$\partial_t v + v \partial_x v + u \partial_x u = 0$$

We define the symbol of the transformations $\partial_t (u - v) \rightarrow K(t) \partial_t (u - v)$ and $\partial_t (u - v) \rightarrow H(t) \partial_t (u - v)$ by using u and we evaluate $|u - v|$. These procedure imply the uniqueness of the solution. This completes the proof of Theorem 6.1.1.
6.5 Proof of global existence theorem

Finally we prove Theorem 6.1.2 by the a priori estimates. We take \(m_7 \in \mathbb{N} \) as \(m_7 = \max(l + 4, 6) \geq m_1 + 1 \). In view of Theorem 6.1.1, we have only to obtain the a priori estimate of \(\|u(t)\|_{m_7} \) \(\leq 1/2\sqrt{\varepsilon} \). In the same way as the previous section, we define \(K(t) \), \(H(t) \), \(B_{K}(t) \) and etc. We denote \(Y(t) \) by

\[
Y(t) = 4 \sum_{j=0}^{4} X_{m_7-1-j,j}(t) + (1 + t)^{-1/2} X_{m_7-1}(t) \\
+ \sum_{j=0}^{4} \sum_{n=0}^{m_7-j} \| \partial_x^n \partial_y^n J_x^j J_y^j u(t) \| \\
+ (1 + t)^{-1/2} \left(\sum_{n=0}^{m_7} \| K(t) \partial^n_x \partial^n_y u(t) \| + \sum_{n=0}^{m_7} \| H(t) \partial^n_x \partial^n_y u(t) \| \right).
\]

We suppose \(\sup_{t \in [0, T]} Y(t) \leq R \) for some \(T > 0 \), where \(R > 0 \) is smaller than \(1/2\sqrt{\varepsilon} \). We have

\[
\left\| \int_{a}^{b} \partial_x \phi(t, x') dx' \right\| \\
= M \left\| \int_{a}^{b} \int_{b}^{1} \partial_x u(t, x', y)^2 dy dx' \right\| \\
= M \left\| \int_{a}^{b} \int_{b}^{1} (\partial_x \bar{u} + u \bar{u}) dy dx' \right\| \\
= M \left\| \int_{a}^{b} \int_{b}^{1} \left(i \partial_x^2 + \partial_y^2 \right) u - iuv \partial_x^2 + \partial_y^2 u \right\| \\
+ f(u, \partial_x u, \partial_y u) - f(u, \partial_x u, \partial_y u) dy dx' \right\| \\
\leq M \left\| \int_{a}^{b} \int_{b}^{1} (\partial_x \bar{u} + u \bar{u}) dy dx' \right\| \\
+ \left\| \int_{a}^{b} \int_{b}^{1} f(u(t)) \|u(t)\| \right\|_{L^2} \|u(t)\|^2 \\
\leq C(1 + t)^{-1} \sum_{j=0}^{2} X_{2-j,j}(t)^2 + (1 + \|u(t)\|^2) \\
\leq C(1 + t)^{-1} Y(t)^2.
\]

This means that the transformation \(u(t) \mapsto K(t)u(t) \) does not bring about the loss of time-decay because of the structural nice property of \(\phi(t, x) \). This was first pointed out by S. Katayama and Y. Tsutsumi ([27]). Similarly we have

\[
B_{K}(t), B_H(t), B_{\phi}(t), B_{\phi}^2(t) \leq C, \\
B_{K}^2(t), B_{H}^2(t), B_{\phi}^2(t), B_{\phi}^3(t) \leq CR^2(1 + t)^{-1}.
\]

6.5. Proof of global existence theorem

(6.36), (6.37), (6.38) and (6.40) become

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \partial_x^a \partial_y^b J_x^c J_y^d u(t) \| f(u(t), \partial_x u(t), \partial_y u(t)) \right\| \leq CR^2(1 + t)^{-3/2},
\]

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \partial_x^a \partial_y^b J_x^c J_y^d u(t) \| f(u(t), \partial_x u(t), \partial_y u(t)) \right\| \\
+ \left\| \partial_x^a \partial_y^b J_x^c J_y^d u(t) \| f(u(t), \partial_x u(t), \partial_y u(t)) \right\| \\
\leq CR^3(1 + t)^{-1/2},
\]

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \left(K(t) \partial_x^a \partial_y^b J_x^c J_y^d u(t) \right) \left(K(t) \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\| \\
\leq CR^4 + \frac{1}{2} \left(1 + \frac{3}{e} \right),
\]

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \left(K(t) \partial_x^a \partial_y^b J_x^c J_y^d u(t) \right) \left(K(t) \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\| \\
\leq CR^3 + \frac{1}{2} \left(1 + \frac{3}{e} \right),
\]

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \left(K(t) \partial_x^a \partial_y^b J_x^c J_y^d u(t) \right) \left(K(t) \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\| \\
\leq CR^4 + \frac{1}{2} \left(1 + \frac{3}{e} \right),
\]

Using (6.14), (6.15), (6.60) and (6.61), we get

\[
\frac{d}{dt} \left(\sum_{a+b+c+d+e+f+g=1} \left\| \left(K(t) \partial_x^a \partial_y^b \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\|^2 + \sum_{a+b+c+d+e+f+g=1} \left\| \left(H(t) \partial_x^a \partial_y^b \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\|^3 \right) \leq CR^4.
\]

Then we have

\[
(1 + t)^{-1/2} \left(\sum_{a+b+c+d+e+f+g=1} \left\| \left(K(t) \partial_x^a \partial_y^b \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\| + \sum_{a+b+c+d+e+f+g=1} \left\| \left(H(t) \partial_x^a \partial_y^b \partial_x^e \partial_y^f J_x^g J_y^h u(t) \right) \right\| \right) \leq C(\delta + R^2).
\]

On the other hand, (6.58) and (6.59) yield

\[
\sum_{a+b+c+d+e+f+g=1} \left\| \partial_x^a \partial_y^b J_x^c J_y^d u(t) \right\| \leq C(\delta + R^3),
\]

(6.62).
Combining (6.62), (6.63) and (6.64), we obtain
\[\sup_{t \in [0,T)} Y(t) \leq C(\delta + R^2). \]
Let \(R_1 \) be a positive small constant satisfying \(CR_1^2 \leq R_1/4 \). We can take \(R \) as \(R \leq R_1 \).
Then we have
\[\sup_{t \in [0,T)} Y(t) \leq \frac{R}{2} \]
provided that \(\delta \) is sufficiently small. This completes the proof of Theorem 6.1.2.

Bibliography

List of author's papers cited in this thesis

