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Abstract 

With the recent advances in VLSI technology, the complexity of VLSI circuits has grown 

far from the level of the manual design, and design automation systems have becon1e 

indispensable. This thesis discusses graph-based representations of Boolean circuits and 

functions for design and analysis methods of VLSI logic circuits. We focus on layout 

synthesis of arithmetic circuits , Boolean function representation for circuit verification 

and synthesis, and timing analysis of sequential circuits. 

In Chapter 2, we deal with layout problems of adder trees used in parallel multiple 

operand addition. We introduce a class of graphs called p-q dag to represent the connection 

schemes of adder trees, such as Wallace trees. VLSI layout problem of an adder tree is 

treated as the minimum cut linear arrangement problem of its corresponding p-q dag. Two 

algorithms for minimum cut linear arrangement of p-q dags are proposed. One of the two 

algorithms is based on dynamic programming, and calculates an exact minimum solution 

within n°(l) time and space, where n is the size of a given graph. The other algorithm 

is an approximation algorithm which calculates a solution with O(log n) cutwidth. It 

requires 0( n log n) time. 

In Chapter 3, graph-based representations of Boolean functions are discussed. Ordered 

Binary Decision Diagrams (OBDDs) are directed acyclic graphs to represent Boolean func­

tions . OBDDs are widely used because of the canonicity and compactness, but alternatives 

to OBDDs for manipulating still large scale functions are needed for modern VLSI de­

sign. We introduce an extension of OBDDs called nondeterministic OBDDs (NOBDDs) 
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and their restricted forms. NOBDDs are not canonical for representing Boolean functions , 

but can be more compact than OBDDs. In applications of OBDDs where it is sufficient to 

check satisfiability, we can use ~OBDDs and reduce the required amount of storage. We 

focus on two particular rnethods which can be regarded as using restricted forms of NOB­

DDs and show how the size of OBDDs can be reduced in such forms from the theoretical 

point of view. First , we consider a method to solve satisfiability problems of combinational 

circuits where the structure of circuits is used as a key to reduce the NOBDD size. We 

show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze 

rnethods that usr OBDDs to represent Boolean functions as sets of product terms. We 

show that the class of functions treated feasibly in this representation strictly contains 

that in OBDDs and is contained by that in NOBDDs. 

In Chapter 4, wr focus on exact minimization of Free BDDs (FBDDs) and their ap­

plication to the design of Pass-transistor Logic (PTL) circuits. FBDD is a well-studied 

extension of OBDD with free variable ordering on each path , and can be less size than 

OBDD for the same function. Boolean functions expressed as OBDDs can be directly 

mapped to PTL circuits, where each node of the OBDDs are replaced by a selector con­

sists of a pair of transistors. The total size of OBDDs (number of nodes) corresponds 

to the circuit size. We investigate a method using FBDDs instead of OBDDs. We focus 

on exact minimization of FBDDs and present statistics showing that more than 56% of 

616126 NPN-equivalcnce classes of 5-Yariable Boolean functions have minimum FBDDs 

with less size than their OBDDs. \Ve also applied the minimization algorithm of FBDDs 

to the synthesis of PTL circuits for l\ICNC benchmarks and found up to 5% size reduction . 

In Chapter 5, we describe a method for the timing analysis of sequential circuits based 

on symbolic state traversal using OBDDs. \Ve focus on the detection of multi-clock paths, 

whose delay does not affect the decision of the maximum clock frequency. Such paths are 

typically controlled by ·waiting states, and the delay time of these paths can be greater 

than the clock period. \Ye propose a rnethod to detect these paths based on the symbolic 

state traversal. 
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Chapter 1 

Introduction 

1.1 Background 

With the recent advances in VLSI technology, the complexity of VLSI circuits has grown 

far from the level of the manual design, and design automation systems have become 

indispensable. Design problems of VLSI logic circuits involve combinational problems , 

and graph-theoretical aspects of the problems are essential for developing efficient design 

methods. 

In this thesis, we deal with graph-based design and analysis methods of VLSI circuits in 

several design levels. We focus on layout synthesis of arithmetic circuits , Boolean function 

representation for circuit verification and synthesis, and timing analysis of sequential 

circuits. 

The process of VLSI layout design contains phases of logic cell placement and wire 

routing among the cells . Automatic placement and routing systems are available nowa­

days. In the modeling of the layout design problerns, grid model is adopted and the 

layout problems can be treated as graph embedding problems into grids[39]. The ma­

jor cost functions of embedding are the edge congestion and dilation , which correspond 

to VLSI area and delay. Many optimization algorithms for graph embedding have been 

proposed and the algorithms are put into practical use. 

1 



2 CHAPTER 1. INTRODUCTION 

For layout generation of arithmetic circuits, the layout algorithms should make use 

of the regularity of the circuits. \Vhen hardware algorithms for arithmetic operations 

are discussed , the regularity of circuits is often one of the measures for evaluation. The 

regularity can be formalized as some special properties of the directed acyclic graphs 

representing the structure of arithmetic circuits. Those properties can be utilized in 

graph embedding algorithms. 

The second topic of this thesis is concerned with graph representations of Boolean func­

tions. For the logic design and analysis of VLSI circuits, representation and manipulation 

of Boolean functions are major topics . In order to represent Boolean functions compactly, 

directed acyclic graphs called Ordered Binary Decision Diagrams ( OBDDs) [1, 5] have 

heen developed. 

OBDDs have a reduced canonical form for each Boolean function. Many Boolean 

functions we deal with in real design can be represented by OBDDs of feasible size, and 

efficient operations on OBDDs are possible. Because of these properties, OBDDs are 

widely used in logic design. 

A family of OBDDs can be regarded as a computational model. An OBDD is a re­

stricted fonn of branching programs. The con1putational power of size-bounded branching 

programs have been studied[24], and that of OBDDs have also been studied[19, 33). It is 

proved that logarithm of the size of branching programs roughly corresponds to the space 

complexity of Turing machines. This relationship also holds between OBDDs and online 

Turing machines. 

\~rith the increase of available amount of computer storage, feasible size of OBDDs 

have increased. HoweYer, manipulation of still large scale Boolean functions are required, 

and new data structures have been sought. Several attempts have been done to overcome 

the li1nitation of OBDDs. Some of them propose extensions of OBDDs and others use 

OBDDs in different ways than usual function representation. Theoretical analysis of such 

approaches is important for understanding the nature of the data structures. 

Another topic on OBDDs is their direct implementation into transistor netvvorks. Re-
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cently, Pass-Transistor Logic(PTL) circuits have been paid attention for the potential of 

low-power and high-speed circuit implementation compared to CMOS circuits. An OBDD 

can be regarded as a network of 2-1 selector. Selector networks can be implemented in 

PTL circuits by replacing each selector by a pair of transistors. 

Design flow for PTL circuits based on OBDDs have been studied[43 , 8]. Because 

the size of the resulting PTL circuit is affected by the size of the OBDD expression , 

minimization of OBDDs is important for small circuit area. In order to reduce the required 

amount of storage, Free BDDs (FBDDs)[16] can be used instead of OBDDs. FBDDs are 

well-studied extension of OBDDs with free variable ordering on each path , and can be 

less size than OBDDs. In order to make full use of FBDD expression, synthesis and 

optimization methods for FBDD-based PTL circuit design are expected. 

The last topic of this thesis is concerned with timing analysis of sequential circuits 

based on symbolic state traversal using OBDDs. Symbolic state traversal of sequential 

circuits[14, 10, 7] is a major application of OBDDs, where the set of states and the 

state transition relation are expressed by OBDDs, and state transitions are executed by 

operations on OBDDs. The timing verification is basically the computation of delay time 

of each path between registers in the circuits, and the symbolic state traversal method 

captures the dynamic behavior of each path. 

1.2 Objectives and Results of the Thesis 

In Chapter 2, we deal with layout problems of adder trees used in parallel multiple operand 

addition. Multiple operand addition is ubiquitous in various digital systems, and multi­

plication is also performed by multiple operand addition of partial products. 

We introduce a class of graphs called p-q dags. A p-q dag represents the connection 

schemes of adder trees , such as Vvallace trees , and the VLSI layout problem of an adder 

tree is treated as the minimum cut linear arrangement problem of its corresponding p­

q dag. Two algorithms for minimum cut linear arrangement of p-q dags are proposed. 
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One of the two algorithms is based on dynamic programming. It calculates an exact 

minimum solution within n°(l ) time and space, where n is the size of a given graph. The 

other algorithrn is an approximation algorithm which calculates a solution with O(log n) 

cutwidth. It requires 0 ( n log n) time. 

In Chapter 3, graph-based representations of Boolean functions are discussed. OB­

DDs are directed acyclic graphs to represent Boolean functions. OBDDs are widely used 

because of the canonicity and compactness, but alternatives to OBDDs for manipulating 

still large scale functions are needed for modern VLSI design. We introduce an extension 

of OBDDs called nondeterministic OBDDs (NOBDDs) and their restricted forms . NOB­

DDs are not canonical for representing Boolean functions, but can be more compact than 

OBDDs. In applications of OBDDs vvhere it is sufficient to check satisfiability, we can use 

NOBDDs and reduce the required amount of storage. 

It is known that the size of OBDDs is related to the space complexity of deterministic 

online Turing machines. \Ve show that this relationship also holds betv.reen NOBDDs and 

nondeterministic online Turing machines. 

We focus on two particular methods which can be regarded as using restricted forms 

of NOBDDs and show how the size of OBDDs can be reduced in such forms from the 

theoretical point of view. First , \Ve consider a method to solve satisfiability problems 

of combinational circuits where the structure of circuits is used as a key to reduce the 

NOBDD size. Vve show that the NOBDD size is related to the cutwidth of circuits. 

Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of 

product terms. \Ve show that the class of functions treated feasibly in this representation 

strictly contains that in OBDDs and is contained bv that in NOBDDs. 

In Chapter 4, we focus on exact Ininimization of Free BDDs (FBDDs) and their ap­

plication to the design of Pass-transistor Logic (PTL) circuits. 

In design flow for PTL circuits based on OBDDs, Boolean functions expressed as 

OBDDs are directly 1napped to PTL circuits. where each node of the OBDDs is replaced 

by a selector consists of a pair of transistors. The total size of OBDDs (number of nodes) 
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corresponds to the circuit size. 

We investigate a method using FBDDs instead of OBDDs. V/e focus on exact nlini­

mization of FBDDs and present statistics showing that more than 56% of 616126 NPN­

equivalence classes of 5-variable Boolean functions have minimum FBDDs with less sizr 

than their OBDDs. \Ve also applied the exact minimization algorithm of FBDDs to the 

synthesis of PTL circuits for l'viCNC benchmarks and found up to 5% size reduction. 

In Chapter 5, we describe a method for the timing analysis of sequential circuits 

based on symbolic state traversal using OBDDs. The clock frequency of a sequential 

logic circuit is decided based on the maximum delay of the combinational parts of the 

circuit. Therefore, the precise estimation of the maximum delay is important in deciding 

the proper clock frequency. We focus on the detection of multi-clock paths, whose delay 

does not affect the decision of the maximum clock frequency. Such paths are typically 

controlled by waiting states , and the delay time of these paths can be greater than the 

clock period. We propose a method to detect these paths based on the symbolic state 

traversal. 

In Chapter 6, the conclusion of this thesis and future works are stated. 



Chapter 2 

Minimum Cut Linear Arrangement 

of p-q Dags 

2.1 Introduction 

Adder trees, such as Wallace trees, are schemes for parallel multiple operand addition. 

Multiple operand addition is ubiquitous in various digital systems, and multiplication is 

also performed by multiple operand addition of partial products. Since multiplication 

plays an important role, development of a high-speed VLSI multiplier has been one of the 

major research topics in the area of VLSI systems. 

Parallel multiple operand adder schemes, and also parallel multiplier schemes, can be 

put into roughly two categories: those with an adder tree, and, those based on iterative 

array. Iterative array schemes have been mainly used in fabrication because they have 

simpler structure compared to adder trees. However, as the number of operands N in­

creases, adder tree schemes become much faster because they operate in O(log N) time, 

while iterative array schemes operate in O(N) time. For high-speed and large-scale op­

eration, therefore, adder tree schemes are attractive. Recently, these schemes came into 

use for implementation. 

Layout generation of theoretically fastest adder trees has been considered to be diffi-

7 
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cult because their connection nrtwork is irregular and complicated. Adder trees occupy 

considerable area in n1ultiple operand adders and multipliers, and the placement of par­

allel counters heavily affects the area. Therefore, it is important to develop an efficient 

layout rncthod which can treat their complicated connections. 

Several C'fficicnt layouts for circuits with fast adder tree have been shown. For example, 

[31] shows a layout for a multiplier with \Yallace tree. [34] shows that for a multiplier with 

an adder tree which uses 9-2 adders as counter elements. However , each of these layouts 

is only for a particular scheme with a particular operand length. Although some heuristic 

nwthods arc shown to be effective for circuit generation of multiplier-accumulators with 

adder trcC's[28L no general layout algorithm which is applicable to any of the schemes 

with arbitrary nu1nber of operands has been proposed. 

Various addC'r tree schemes with simpler structure and rather regular connection net­

work have been proposed[40 , 46]. Ho\vever, they trade the depth for the regularity and 

hence slower by a constant factor than optimal adder tree using the same counter ele­

rnents. In this chapter, we are concerned with fastest adder trees using given counter 

clenwnts and propose algorithms which are useful for the layout generation of them. 

With the increasing demand for development of ASIC's including a high-speed parallel 

multiplier with certain operand length, development of a general layout method of such 

multipliers has become rnore and more important. We are concerned with such a general 

method. 

Vve regard the VLSI layout problems as the graph embedding problems. Since adder 

trees have bit slice structure, we n1ay only consider the layout of a bit slice. We can 

treat the layout problems of a bit slice as graph embedding problems to one-dimensional 

rnesh, i.e., linear arrangernent problen1s of a graph. V../e consider the minimum cut linear 

arrangen1ent problem of graphs which corresponds to the area minimization problem. 

In order to represent the connection scheme of adder trees, we introduce a class of 

graphs callC'd p-q dags. :-\_ p-q dag is a directed acyclic graph -...vhich corresponds to an 

adder trer with p-in q-out counter elements. \Vallace tree can be represented by a 3-2 
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dag. vVe reduce the \ 'LSI area minimization problem of adder trees to the rninimum cut 

linear arrangement problem of its corresponding p-q dags, and proposE' t\yo algorithms 

for this linear arrangement problem. One of them is based on dynainic programming. 

For fixed p and q, it calculates an exact minimum solution within tirnC' and space hoth 

proportional to n 10gp/q(2
p+q), where n is the size of a given graph which grows linearly in the 

number of operands. The other algorithm is an approximation algorithrn which calculates 

a solution with O(log n) cutwidth. It requires O(n log n) time. 

This chapter is organized as follows: Section 2 contains preliminaries and definition 

of p-q dags to represent the adder tree structures. In section 3, we observe the basic 

properties of the linear arrangement of p-q dags. Section 4 gives an algorithm based 

on dynamic programming. Section 5 gives an approximation algorithm. Section 6 is a 

conclusion. 

2.2 Linear Arrangement Problems and p-q Dags 

2.2.1 Minimum Cut Linear Arrangement Problems 

Let G = (V, E, 6) be a directed graph, where V is a set of vertices and E is a set of edges. 

6 = (6_, 6+), where 6_, 6+ : E --+ V, is the incidence function. Edge f 'starts' at the 

vertex 6_(e) and 'ends' at the vertex 6+(e). Multiple edges can be treated explicitly in 

this description. 

In linear arrangement of a directed graph, we treat the graph as an undirected graph, 

by regarding each ( 6_ (e), 6+ (e)) as an unordered pair. Let G = (V, E, 6) be a finite 

undirected graph. A linear arrangement of G is a bijection L : V--+ {1 , 2, · · · , lVI}. 
A partial linear arrangement L' of G is a linear arrangernent of a subgraph G' of G 

(See Figure 2.1.) Let G' = (V', E', 6'). IV' I is called the length of L' and denoted by 

length(L'). In order to simplify the notation; let L' ( v) = oo for v E V \ V'. The dangling 

cut of L' is the set of edges in E between V' and V \ V'. Let L' and L" be partial linear 

arrangements of a graph G. L" is said to be an extension of L' , denoted by L' ::5 L", if 
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, ~a-------------------------------- - ---- ----- ---- ----- ----- --- - ---- -- - - ------ , 

i ,Ci~ - --- ---- - --- -- --- --------_::--, 1_r dangling cut of L" 

; ; v/-CW(; ,u~ is 0 !U=::::E 
. . : 0 L/C5 : : . . . 
I I'------------- - ---- - ---- ----- - --' I 
I \ I 
I ---------------------- --- --- ----- ---- --- - ------ I 

' - --- ----------- -------------------- - ---- - -----------------------------------/ 

1 2 3 4 5 6 

L' ( cw u (G) = 4) L" is an extension of L' 

L" ( cw L" (G) = 5) 

Figure 2.1: Partial linear arrangements of a graph. 

length(L') ~ length(L") and for all v E V s.t. L'(v) # oo, L'(v) = L"(v). 

The cutwidth of partial linear arrangement L' of Gat position i (1 ~ i ~ length(L')), 

denoted by cwc,u(i) , is the quantity 

i{e E E I b(e) = {u,v}, s.t. L'(u) ~ i < L'(v)}j. 

The cutwidth of partial linear arrangement L' of graph G, denoted by cw u (G) , is 

max ewe u (i). 
1 'S_ i 'S_ length(L') ' 

The cutwidth of graph G, denoted by cw(G), is the minimum cutwidth cwL(G) of all 

linear arrangcrncnts L of G. 

Iininnnn rut linear arrangement problem of undirected graphs (1viiNCUT for short) 

is defined as [15]: "Find a linear arrangen1ent of a given graph with minimum cutwidth." 

The following results on ~IINCCT problcn1 are known. 

• l\IINCUT is NP-Complete for general graphs [15]. 
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• For graphs with cutvvidth k , there is an O(nk) time algorithm for l\IINCUT [17]. 

• For graphs with maximum vertex degree 3, 1v1INCUT is still NP-Cornplete [21] . 

• For trees, there is an O(nlogn) time algorithm for 1INCUT [42]. 

• For complete k-ary trees , there is a linear time algorithm for 1v1INCUT [20]. 

2.2.2 p-q Dags and Their Basic Properties 

In general, a multiplier with an adder tree consists of three parts , na1nely, a partial product 

generator, an adder tree for partial product accumulation , and a carry-propagate-adder 

for carry assimilation. The first part , the partial product generator , is a circuit to generate 

a whole partial product matrix in parallel. It is basically a matrix of 1-by-1-bit multiplier , 

i.e., AND gates. Recoding methods, such as modified Booth recoding, are often uscd hcre 

in order to reduce the size of the resulting matrix. The partial products are surnrned up 

to two numbers in the next part, i.e., in the adder tree. 

Wallace tree[41] is a well-known adder tree scheme. In Wallace tree, the basic elenwnt 

is a 1-bit full adder which produces a 2-bit binary number from three bits with the same 

weight . A 1-bit full adder can be regarded as a 3-2 counter. In general, generalized 

counters[35] can be used as the basic elements to construct an adder tree. 

In order to represent the connection scheme of a bit slice of adder trees, we introduce 

"p-q dags." 

Definition 2.1 A p-q dag is a directed acyclic graph satisfying the following conditions: 

• There is one vertex, called a root vertex, with indegree at most p and outdegree 0. 

• The other vertices have indegree at most p and outdcgrec exactly q. 

~Iultiple edges are allov\·ed. A vertex with indegree 0 is called a leaf. The height of a 

p-q dag is the maximum length ) i.e.) the number of edges, of the directed paths. D 
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(a) (b) 

Figure 2.2: Complete 3-2 dags of height 4. 

3-2 Jag~ of height 4 is show11 in Figure 2.2. The root vertices are at the top. All edges 

are drawn upward. 

We are interested in the fastest accumulation schemes, i.e., the schemes that accumu­

late operands in minimum computation time (h), for a given type of circuit elements (p 

and q) and the number of operands (N). For the sake of simplicity, we prove theorems 

only for the cases that N is the maximum number for a value of h. We can treat such 

cases by complete p-q dags defined below. The theorems in this chapter can be extended 

to the case that N is not a maximum. 

Definition 2.2 A complete p-q dag of height h is a graph with the maximum number of 

vertices among p-q dags of height h. 0 

A complete p-1 dag is the complete p-ary tree. This definition is a natural extension 

of the complete tree. Note that for given p, q and h, complete p-q dag of height h is not 

unique in general. This corresponds to the fact that there can be various order of addition. 

Both of the two dags in Figure 2.2( a) and (b) are actually complete 3-2 dags of height 4. 

There can be Yarious connection pattern for p. q and h. thus various order of addition. 
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However, because addition is associative and commutative , any complete p-q dag repre­

sents proper adder tree. Thus we can select a p-q dag with good nature for embedding, 

in generating VLSI layout of corresponding adder trees. 

Let G = (V, E, 6) be a complete p-q dag, and v0 E V be the root vertex. The depth of 

a vertex v E V is the maximum path length from v to v0 and denoted by depth ( v). Let 

vd be the set of all vertices of depth d. 

Let E;; be the set of the edges out of depth d, i.e., 

E;; = {e E E I depth(6_(e)) = d}, 

and Et be the set of the edges into depth d, i.e., 

Et = {e E E I depth(6+(e)) = d}. 

An edge e E E is called a leaping edge if 

depth(6_(e))- depth(6+(e)) > 1. 

Let R;; (~ E;;), and R! (~ Et) be the set of leaping edges out of, and into depth d, 

respectively. The set of leaping edges through depth d is the set 

d- 1 h 

Rd = U U Rt n Rj. 
i=0j=d+1 

Here we show basic properties of p-q dags. 

Proposition 2.1 For a complete p-q dag of height h, 

(a) for each d, IR!I:::; q- 1, IR;;I:::; q- 1, and IRdl:::; q- 1, 

and 

(c) E.=.!.l±l (p f q)h+l_1 < lVI < (p f q)h+l _ 1. 
p p j q-1 - - p j q- 1 
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Proof: (a) If IRdl ~ q. a ,·ertex can be inserted at level d without changing the height. 

This is contrary to the cornpleteness. Thus the last inequality of (a) holds. The others 

are derived from IRJ_ 1 j ~ IRdl and 1Rd"+ 11 ~ IRdl· 

(b) !Vol = 1 and IRol = 0. For fixed p and q, the infinite sequence (!Vol , IV1I, IV2I, ... ) 
is unique , that is, the following recurrence equations hold. 

l (p IVd-11 + IRd- 11) I qj' 

(p IVd-1l + IRd-1 !) mod q, 

or, equivalently, 

Thercfon', 

Using property (a), 

(E)d- I: (p_)d-; v- q (q- 1)- q- 1 ::; IVdl::; (E)d 
q i=l q pq q q 

which leads to the inequality of (b). 

(c) : This is derived directly from (b) and V = U~=o Vd. 0 

2.2.3 p-q Dags and Connection Scheme of Adder Trees 

\\·e focus on the layout of the adder tree part. Typically, the adder tree part account for 

the rnost of the circuit and their layout heavily affects the chip area. \Ve are concerned 

with adder trees which arc theoretically fastest, including constant factor, among adder 

trees using given counter den1ents. As fa test adder trees have complex connections, they 
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are said to be hard to fabricate on VLSI chips. Our algorithms can bE' usE'd as a basis 

for generating the layout of adder trees vvith any type of generalized counu~r E'fficiently. 

Adder trees have bit slice structure. We assume that basic circuit cornporwnts are 

parallel counters. We can construct a layout of an adder tree frorn a linrar layout of a 

bit slice. In order to treat the problem formally, we adopt the grid rnodd[39] as a VLSI 

circuit model. We can obtain a two-dimensional layout by 

(1) arranging parallel counters in a bit slice in a column, and, 

(2) placing copies of the column iteratively in a row and making connections. 

In order to obtain a layout of an adder tree with small area, we have to construct 

a layout of the bit slice with small width in (1). In (2), we can construct a layout by 

either (a) placing copies of the same bit slice with enough number of counters iteratively 

and then reducing redundant counters, or, (b) placing possibly different bit slices with 

number of counters required for each row. If extra layers for wires are available, the wires 

can be routed on them above the parallel counters. Otherwise, they are routed between 

bit slices of parallel counters. In both cases, the bit slice width is proportional to both 

the size of the counter cells and the number of tracks used for wire routing. The cell size 

can be considered as a constant, while the number of tracks for wires heavily depends on 

the layout. Once the placement of parallel counters is fixed, the wire routing can easily 

be obtained. Therefore, the placement of the counter elements in a bit slice is the key 

problem of layout of adder trees. 

In general, a generalized counter[35] which sums up r k-bit numbers to s d-bit numbers , 

where r > s and k < d, can be used as a basic element of an adder tree. The connection 

network of a bit slice (of k bits) of an adder tree made up of the generalized counters is 

represented by an r-(1 ~l s) dag, since a d-bit number is fed to I ~l counters. When the 

number of leaves of a p-q dag is l , the corresponding adder tree accumulates lp operands. 

The height h of the dag corresponds to the computation time of the adder tree. 

Once a linear arrangement of a p-q dag is obtained, we can construct a layout of 
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adder tree. Figure 2.3(b) is an example of linear arrangement of the 3-2 dag shown in 

Figure 2.3(a). This arrangement achieYes cutwidth 5, which is the minimum. A layout of 

bit slices of 13-input adder tree shown in Figure 2.3( c) is derived from this arrangement. 

A box in the figure is a full adder -vvhich reduces 3 bits of the same weight to a 2-bit 

number. A broken line box shows a bit slice. Two wires from outputs of a full adder 

arc drawn according to the edges \vhich start from the corresponding vertex. One output 

(stun) is fed to a full adder in the same bit slice and the other (carry) is fed to one in 

the next bit slice. In this case, it is sufficient to feed each output to the next bit slice. 

When d > 2k , some of the outputs should be fed to bit slices which are not adjacent using 

feed through wires. We can put enough number of copies of this bit slice and reduce 

redundant counters to construct a layout of a 13-input multiple operand adder. 

2.3 Minimum Cut Linear Arrangement of p-q Dags 

In this section, we define problem PQ1v:IINCUT based on the problem MINCUT of com­

plete p-q dags and show properties of this problem. 

For defining PQMINCUT, we ignore the directions of edges of p-q dags when we 

mention cutwidth. Furthermore , we treat all complete p-q dags collectively in order to 

find a dag with good nature for 1viiNCUT. That is , for given p, q and h, minimum cutwidth 

is taken over arrangements not only of a fixed complete p-q dag, but all complete p-q dags 

of height h. Formally, PQlv'IINCUT is defined as follows. 

Definition 2.3 Problem PQl\IINCUT : "For given p, q and h, find a complete p-q dag G 

of height hand its linear arrangement L , which provide smallest cutwidth cwL(G)." D 

In generaL the search space of PQ IINCUT for given p, q and h is much larger than that 

of UNCUT for a cOinplete p-q dag of height h. However, the problem PQMINCUT is 

easier to treat as compared with IINCUT for a p-q dag, because of the regular structure 

of PQ ·IINCUT. \Ye look into the properties of PQl\IINCUT and make use of them for 

linear arrange1nent algorithms. 

2.3 . MINIMUM CUT LINEAR ARRANGEMENT OF P-Q DAGS 

,. ---
I 

I 

I 

I 

I 

I 

(a) 

(b) 

(c) 

Figure 2.3: A layout of 13-input adder tree. 
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We now see the properties of the minimum cut linear arrangement of complete p-q 

dags. 

There arc n! linear arrangements for a graph with n vertices. Therefore, the search 

space of the problem PQNIINCUT is n! times the number of complete p-q dags of height 

h. We can use some properties of complete p-q dags to reduce the search space. 

The next theorem states that we can reduce the search space of PQMINCUT to graphs 

G and their arrangements L with the following properties. 

(i) G is almost planar, namely, planar except for leaping edges. 

(ii) L arranges the vertices in each Vd in the 'planar order, ' i.e. , the fixed order for each 

depth of the graph. 

In other words, for any arrangement L of a p-q dag of height h, there is an arrangement 

of a p-q dag of height h (not necessary the original dag) , which has the above properties, 

with cutwidth not larger than that of L. 

Theorem 2.1 For given p , q, and h, there is a solution of PQ1v1INCUT, i.e., a graph 

G = (V, E, 5) and its arrangement L, with the following property. 

For each pair of edges e1 , e2 E E, if 

(a) depth(c5+(e 1 )) < depth(c5_(e2)) and 

depth(c5+(e2 )) < depth(c5_(e 1)) , 

then, 

(b) either 

(b 1) L ( 5 _ ( e 1)) ~ L ( 5 _ ( e2 )) and 

L(5+(ei)) ~ L(5+(e2)) , or, 

(b2) L(5_(e2)) ~ L(5_(el)) and 

L(5+(e2)) ~ L(5+(e 1)) . 
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Proof: Let G0 = (V, E, 50 ) be a complete p-q dag of height h. Let L be any linear 

arrangement with cutwidth w of G0 . We can construct a complete p-q dag G = (l', E, 5), 

with cutwidth at most w under linear arrangement L, having the above property. 

First, let G := G0 . We take all pairs of edges of G satisfying (a), and redraw the edges 

if needed. The procedure is shown in Figure 2.4. V, E, and L are not changed in this 

procedure. 

procedure Redraw_Edges 

begin 

for each pair of edges (e1 , e2 ) satisfying (a) do 

if (e1 , e2 ) satisfies neither (b1) nor (b2) then 

swap 5+(e1 ) and 5+(e2 ) 

end 

Figure 2.4: Procedure Redraw _Edges. 
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5 
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Let G1 = (V, E, 51 ) be the graph G at a point of time in this procedure. It is trans­

formed to graph G2 = (V, E, c52 ) after one execution of line 5. 

Suppose that ( e1 , e2 ) in G 1 satisfies neither (bl) nor (b2). The operation in line 5 

makes ( e1 , e2 ) in G2 satisfy (bl) or (b2). 

This operation does not change indegree and outdegree of the vertices. Because of the 

condition (a), G2 remains acyclic and the height does not change. Thus the graph G2 is 

a complete p-q dag of height h. 

Suppose that (bl) is satisfied after the operation. Figure 2.5 shows all the four cases of 

the transformation except for symmetry. The horizontal lines represent an arrangement 

and only the four vertices and two edges under consideration are drawn. 

Because the cutwidth of L of G 2 differs from that of G 1 only in the location of edges 
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- >----- - >-----
b+ ( e2 ) b_ (el) b_ ( e2) b+ ( ei) 

v v 
e l e2 e1 e2 

Do 0~ 1\ Do o-----o 
t5 ((' I ) b+ ( e 1) b+ ( e2 ) b_ ( e2) b+ ( el) c5_(ei) c5_ ( e2) b+(e2 ) 

(a) (b) 

e1 

------ ~--- ----- ~---
b_ (el) b+ ( e2 ) b_ ( e2 ) b+ ( el) 

v 
e1 e"2 

Do Do 
b_ (el) c5+ ( e 1) c5_ (e2) b+ ( e2 ) 

(c) (d) 

Figure 2.5: Operations in procedure Redraw_Edges. 
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CWc 1 ,L(i )- 2, 

if max{L(c52_ (e1 )) , L(c52+(el))} ~ i < min{L(c52_ (e2) ) , L(c52+(e2 ))} , 

cwc1 ,L(i) , otherwise. 

Let 'total squared edge length ' be the quantity 

Q(G , L) = L(L(c5_(e)) - L(c5+(e))) 2. 
eE E 

Q decreases by this operation , i.e. , Q(G2, L) < Q(G1 , L) . 

Therefore , the operation does not increase the cutwidth and does decrease the total 

squared edge length Q. The case that (b2) is satisfied is similar. 

This operation is applied to all pairs of edges satisfying (a) to obtain final G. Because 

the total squared edge length decreases by one operation, a graph does not appear more 

than once in the procedure. For the number of possible graphs is finite , the condition (b) 

eventually comes to hold for all edge pairs satisfying (a). 

Thus we obtain the transformed graph G. Arrangement L of G satisfies the condition , 

and the cutwidth is at most w . 0 

Let L 1 
: V 1 ---t {1 , 2, ... , IV1 1} (V1 ~ V) be a partial linear arrangement of a complete 

p-q dag G = CV, E , c5) of height h. The out-of-depth-d-cut of L 1 of G at i (1 ~ d ~ h, 1 ~ 

i ~ IV1 1) is the set 

cut "t;,u ( d, i) { e E E I depth ( c5 _ (e)) = d 

and L 1 
( c5 _ (e) ) ~ i < L 1 

( c5 + (e) ) } 

The in-to-depth-d-cut of L 1 of G at i (0 ~ d ~ h - 1, 1 ~ i ~ IV1 1) is the set 

cut (;,u(d, i) = {e E E I depth(c5+(e) ) = d 

and L 1 
( c5 + (e) ) ~ i < L 1 

( c5 _ (e) ) } 
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Recall that for all v E V \ l ,, , L' ( v) = oo. \Ve can describe the cut width of a linear 

arrangement L at i (1 :::; i < lVI) using these sets as follows. 

h 

cwc,L(i ) = :L(Icuti;,L(d, i)l + lcutc ,L(d- 1, i)l) 
d= l 

Note that when (G , L) has the property of Theorem 2.1, at least one of the sets cuti; ,L(d, i) 

and cutc,L(d - 1,i ) is empty. This is because, if there are edges e1 E cuti; ,L(d,i) and 

e2 E cutc,L(d - 1, i) , they satisfy (a) in Theorem 2.1 , but can satisfy neither (b1) nor 

(b2). 

Theorem 2.1 points out that we only have to treat the case that each vertex set Vd is 

arranged in the 'planar order. ' We can further assume that the 'slippage ' between each 

pair of depth is small. 

Theorem 2.2 For given p , q, and h, there is a solution of PQMINCUT, i.e. , a graph 

G = (V, E , c5) and its linear arrangement L , such that , for any i E {1 , 2, ... , lVI - 1} and 

dE {0, 1, ... , h - 1} , 

I cutc,L ( d, i) I < p, and 

lcut i;,L(d+1 , i)l < p+IRd+1 1. 

Proof : Let G0 = (V, E , c5) be a complete p-q dag of height h. Let L0 be a linear 

arrangement with cutwidth w of G0 . We can assume that L 0 and G0 have the property 

of Theorem 2.1. Vve can construct an arrangement L of G, with cutwidth at most w, 

satisfying the above inequalities. 

Let LR be the reverse arrangement of L defined as: 

LR(v) = ll/ 1 + 1- L(v) for all v E V. 

V\Te rearrange ,·ertices , frmn the depth h - 1 down to the depth 0, so that each vertex is 

placed near its adjacent Yertices. Figure 2.6 is an algorithm for rearrangement. 

Let us look into operations on v of depth d. Suppose that ( G, L) has the property of 

Theorem 2.1 and let cl = cut (;, L(d, L(v)) and c2 = cut G,LR(d, LR(v)). 

2.3. MINIMUM CUT LINEAR ARRANGEMENT OF P-Q DAGS 

procedure Rearrange_Vertices 

begin 

G := Go; L := Lo 

for d from h - 1 downto 0 do 

end 

for each vertex v E Vd do 

begin 

while lcutc,L(d , L(v ))l > p do 

begin I* move v to the right *I 

find u such that L(u) = L(v) + 1 

L(v) := L(v) + 1; L(u) := L(u) - 1 

reconstruct (G ,L) by procedure Redraw_Edges 

end 

while lcutc ,LR(d, LR(v))l > p do 

end 

begin I* move v to the left *I 

find u such that L(u) = L(v)- 1 

L(v) := L(v)- 1; L(u) := L(u) + 1 

reconstruct (G ,L) by procedure Redraw_Edges 

end 

Figure 2.6: Procedure Rearrange_Vertices . 
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1

1 c l = cut G L ( d' L ( v)) 
I l 

I 

Figure 2. 7: Operations in procedure Rearrange_ Vertices. 

\Vhen the condition of the first 'while' loop holds, i.e.' ICll > p, then c2 = 0. This can 

be proved as follows: If there exists an edge e2 E C2, then e2 and any e1 E C1 satisfy the 

con di ti on (a) of Theorem 2 .1 , L ( 6 _ ( e 2)) < L ( 6 _ ( e 1 ) ) , and L ( 6 + ( e 1)) ~ L ( v) ~ L ( 6 + ( e2) ) . 

The former two irnply L(6+(e2 )) ~ L(6+(el)) from Theorem 2.1 (b2), which with the last 

leads to VeE cl uc2,6+(e) = V, and therefore ICll ~ p. 

Figure 2. 7 shows a situation when IC1I > p. The horizontal lines represent an arrange­

rnent and the two Yertices aboYe the line are in depth d. Only the edges into depth d are 

drawn. Bee a use the nun1ber of edges from u (found in line 9 of the procedure) is at most 

q, IC2 I can increase at rnost q in one pass of the loop. Therefore , IC2I ~ q( < p) holds when 

the proccss exits the first 'while· loop. Hence the second 'while' loop is not executed. 

Sirnilarly, if the condition of the second 'while· loop holds. IC1 1 ~ q( < p) holds when 
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the process exits the loop. 

Each pass of the loop does not increase the cutvvidth of G. The operations for a vertex 

in depth d do not destroy the inequalities of the theorem for depth d, d + 1, ... , h - 1. 

Therefore, the operations can be applied from depth h- 1 down to depth 0. Thus we can 

translate ( G, L) with cutwid th at most w, satisfying the first inequality of the theorem. 

The edges in cutt;,L(d + 1, i) \ cutc,LR (d, lVI - i) are leaping edges from depth d + 1. 

Therefore, the next inequality holds. 

This leads to the second inequality of the theorem. 0 

2.4 Algorithms Based on Dynamic Programming 

In this section, we describe an algorithm based on dynamic programrning for PQMINCUT. 

The algorithm is fed p, q and h and yields a linear arrangement of a graph with the 

minimum cutwidth. 

Dynamic programming is a bottom-up method to solve various optimization problerns 

with decomposable structure. The MINCUT problem has a structure such that partial 

linear arrangements with small cutwidth lead to the solution of the MINCUT problem. 

In order to utilize this structure, we define an equivalence relation among p-q dags and 

their linear arrangements. Let La and Lb be two partial linear arrangements of p-q dags 

of height h, Ga and Gb, respectively, where length(La) > 0 and length(Lb) > 0. (Ga, La) 

and ( Gb, Lb) are called 'dangling cut equivalent,' if the next equations hold: 

for all 1 ~ d ~ h, 

lcutt;a,La (d, length(La))l = lcutt;b,Lb(d, length(Lb))l , 

and 
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Note that this implies length(La) = length(Lb)· Ga and Gb are not necessarily isomorphic. 

Let [ ( G, L)] be the dangling cut equivalence class to which ( G: L) belongs. Let [ ( G, L)] min 

be the set of pairs in [(G, L)] which gives the minimum cutwidth. 

The algorithm shown below searches a linear arrangement Lmin of a p-q dag Gmin which 

provides the minimum cutwidth. The search space of the algorithm is the set of dangling 

cut equivalence classes { [ ( G, L)]} \vith ( G, L) having the properties in Theorems 2.1 and 

2.2. 

[ ( G, L)] can be represented by a set of 2h values of cutwidths out-of and in-to depths 

0 to h, i.e., an h-tuple 

where, each ciod (1:::; d:::; h) is a pair 

(/cut(j L(d, length(L))/, /cut0 L(d- 1, length(L))/). 
' ' 

As we have noted, at least one of the values of each ciod is 0 for ( G, L) having the 

property in Theorems 2.1. Thus possible pair of values of ciod for each d is at most 

(p + (p + q- 1) + 1) = (2p + q) from Theorem 2.2. 

In order to find the minimum cutwidth, all we have to keep track of is 

CW[(G L)] = min cw u ( G') 
' (G' ,L')E[(G,L)] 

for each [ ( G, L)]. The algorithm starts at the arrangement of length 0. The vertices 

arc arranged from left to right. That is, in the i-th stage, it constructs all [ ( G, Li+l)] 

(length(Li+1) = i+1) from each [(G, Li)] (length(Li) = i) by extending Li· This procedure 

is a traYersal of the space shown in Figure 2.8 in a breadth-first manner. In this figure , each 

state is represented by a set of arranged Yertices, and the next states with one new vertex 

rach arc examined. Figure 2.9 shows a rough sketch of one step. C and C' separating 

the clag in the figure are dangling cuts of (G, Li) and (G, Li+I) respectively. Tuples 

of cutwidt.hs corresponding to C and C' represent [(G, Li)] and [(G, Li+1 )] respectively. 

Here , for each cut C, cutwidths in the left and right of C can be minimized independently. 
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~ 
{n} 

\ 
{n-l,n} 

{1,2, ... ,n} 

Figure 2.8: Search space of procedure Mincut. 

Because of this good property, it is sufficient to keep all possible ( G, Li) of length i with 

minimum cutwidth, in order to generate ( G, Li+l) of length i + 1 with minimum cutwidth. 

CW[(G,Li+dl are easily calculated from CW[(G,Li)]· After the (/V/-1)-th stage, the minimurn 

cutwidth is obtained as CW[(G,Lw 1)J (length(Lwl) = /V/). 

The procedure is shown in Figure 2.10. At lines 6 and 7, the number of classes 

[(G, Li)] (length(Li) = i) is the number of patterns of (cio 1,cio2, ... ,cioh), which is at 

most (2p + q)h. At line 8, vertices in each depth are tested, along with all possible 

combinations of the numbers of leaping edges into and out of them. The number of 

classes [(G, Li+ 1)] for each [(G, Li)] for each depth is at most (2p + q) , which amounts 

to (2p + q)h in total for all depths. Thus the number of iterations of innermost loop is 

0((2p+q)h(2p+q)h). vVe can use the quantity {/Rd/} and {/R!/} in Proposition 2.1 for 

further reduction of the search space. 

We have to keep CW[(G,L)] for all [(G, L)]. We also have to keep a pair (G, L) E 

[(G, L)]min for each [(G, L)] to calculate (Gmin, Lmin)· 0((2p + q)h(2p + q)h) space IS 

sufficient to store these information. 
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C' 
~ 

[( G, Li+l )] 

Figure 2.9: One step of procedure Mincut. 

Therefore, for fixed p and q, this algorithm spends at most both time and space 

0((2p + q)hh) , simultaneously. 

Together with Proposition 2.1 (c) , \Ve have the following theorem. 

Theorem 2.3 For fixed p and q, l\IINCUT for complete p-q dags of height h can be 

solved in O(n10gp/q( 2p+ q) ) time and space, where n is the number of vertices. 0 

An example is shown in Figures 2.11 and 2.12. Figure 2.11 is a complete 3-2 dag of 

height 10. The edges are directed upward and a bold line represents duplicate edges. 

Figure 2.12 shows a minimum cut linear arrangement of the graph. The numbers in the 

vertices arc the level , and the ranking in each level counted from left in figure 2.11. Vve 

can derive a layout of a n1ultiple operand adder based on \Vallace tree scheme which 

accumulates 1.J:1 operands. 

If an upper bound of the cutwidth is given, we can further reduce the search space. In 

the algorithn1. if CH [G. L] is greater than the upper bound. extensions of L need not be ex-
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procedure Min cut (p , q , h) 

begin 

calculate lVI 
CW[(G,Lo )] := 0 where L 0 is the arrangement of length 0 

CW[(G,L)] := oo where L f: Lo 

for i from 0 to lVI- 1 do 

for each [(G, Li)] Clength(Li) = i) do 

for each [(G, Li+ 1)] Clength(Li+l) = i + 1) 

where :3G' , L' , L" , s. t. 

(G' , L') E [(G, Li)]min, 

(G' , L") E [(G, Li+l)], L' ::S L" do 

if CW[(G,Li+dl > cwv,(G') then 

CW[(G,Li+l)] := CWL"(G') 

I* cwL"(G') = max{cw[(G,Li)] , CW(c' ,L" )(i + 1)} *I 

return (Gmin, Lmin) E [(G, Lwl)]min 

where LIV I is an arrangement of length lVI 
end 

Figure 2.10: Procedure Mincut. 
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Figure 2.11: A complete 3-2 dag of height 10. 

Figure 2.12: A linear arrangernent of a complete 3-2 dag of height 10. 
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amined. From Theorem 2.2, an upper bound (p+q-1)h can be obtained. Approximation 

Algorithms such as one in the next section are also useful to obtain upper bounds. 

This algorithm can be extended for the cases that p-q dags are not complete, though 

the search space can be larger in such cases. 

2.5 Fast Approximation Algorithms 

We show another algorithm for MINCUT of p-q dags in this section. This algorith1n 

requires a smaller quantity of time and space than the algorithm in the previous section. 

In the algorithm shown in Figure 2.13, the vertices are arranged from left to right. 

First, a graph G = (V, E, 8) with property of Theorem 2.1 is generated. Each Vd is 

arranged in the 'planar order.' In the i-th iteration, vertices in each Vd are exarnined from 

d = h down to d = 0. If more than the half of the edges which are incident to the vertex 

v are dangling, v is arranged in the i-th position. If there is no such vertex, the next 

leaf is arranged. The algorithm yields an arrangement with the property of Theorem 2.2. 

Therefore, the cutwidth is within a constant factor of the height, i.e. , O(log n). 

The generation of G at line 3 is easy. The outer 'for loop' spends 0( h) time for an 

iteration. One iteration arranges exactly one vertex, while the algorithm in the previous 

section tries several vertices at each depth. Therefore, the algorithm terminates after 

n = lVI iterations. 

Theorem 2.4 For fixed p and q, algorithm Approx_mincut requires O(n log n) tirne, 

where n is the number of vertices. It yields a linear arrangement with cut width O(log n). 

0 

2.6 Conclusion 

We have proposed two algorithms for minimum cut linear arrangement of p-q dags. The 

algorithms give systematic methods to construct VLSI layout of adder trees of any size 
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procedure Approx_mincut (p, q, h) 

begin 

fix a graph G = (V, E, 6) satisfying Theorem 2.1 

calculate v0, V1 , ... , Vh 

L := L 0 (the arrangement of length 0) 

for i from 1 to lVI do 

begin 

if lcut!(h, length(L))I > lq/2J then d := h 

else 

begin 

for d from h- 1 to 1 do 

if lcuti;,L(d,length(L))I > l~J then goto add_vertex 

if lcutc,L(O, length(L))I > lP/2J then d := 0 

else d := h 

end 

add_ vertex: I* extend L; length(L) := i *I 

L(v) := i, where v is the leftmost vertex in Vd 

which has not arranged yet 

end 

return L 

end 

Figure 2.13: Procedure Approx_Mincut. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2.6. CONCLUSION 33 

using any counter component. \\'e reduced the layout area rninimization problem of adder 

trees to a graph problem, the minimum cut linear arrangement problem of p-q dags. 

The first algorithm finds out an exact minimum solution through dynan1ic program­

ming approach. We proved that the minimum cut of a complete p-q dag is attained by 

an arrangement of almost planar graphs with small 'slippage' between each depths. We 

can reduce the search space based on these properties. For fixed p and q, the algorithm 

calculates a solution within time and space O(n10gp /q( 2p+q)) where n is the size of a given 

graph. 

The second algorithm is an approximation algorithm which calculates an arrangement 

with O(log n) cutwidth. This algorithm runs in O(n log n) time. 

The layout of adder trees such as Wallace tree have been thought to be difficult because 

of their complex connection scheme. However, we can construct VLSI layout of those 

circuits efficiently by means of our algorithms. 

We can construct algorithms similar to those shown in this chapter for the problem 

MINSUM, which minimizes the total edge length, based on dynamic programming. It 

is easy to see that Theorem 2.1 and Theorem 2. 2 for cu twid th also holds for total edge 

length. The algorithm for MINSUM is obtained by keeping the sums of the edge length 

of partial linear arrangements, instead of keeping the cutwidths. 



Chapter 3 

Computational Power of 

Nondeterministic Ordered Binary 

Decision Diagrams 

3.1 Introduction 

Efficient representation and manipulation of Boolean functions are indispensable in var­

ious fields of computer science. Ordered Binary Decision Diagrams (OBDDs)[l , 5] are 

directed acyclic graphs representing Boolean functions, which have been used for vari­

ous applications because of their good properties: 1) given a total order of the input 

variables, OBDDs have a reduced canonical form for each Boolean function , 2) many 

practical Boolean functions can be represented by OBDDs of feasible size, and 3) there 

are efficient algorithms for Boolean operations on OBDDs. 

With the increase of available amount of computer storage, feasible size of OBDDs 

have been increased. HoweYer , requirements for manipulating still larger scale Boolean 

functions are growing. 

In some applications, it is not necessary to represent functions in canonical forms. In 

this chapter. \Ve introduce :\ondeterministic OBDDs (NOBDDs) and observe that we can 

35 



36 
CHAPTER 3. COMPUTATIONAL POWER OF 

NONDETERMINISTIC ORDERED BINARY DECISION DIAGRAMS 

handle larger class of functions using :\'"OBDDs, at the cost of canonicity, and that sorne 

applications can be \·irv.'ed as utilizing the power of non determinism from theoretical point 

of view. 

A fcunily of OBDDs can be regarded as a c01nputational model. The computational 

pow('r of size-bounded OBDDs have been studied[19, 33]. They showed that logarithm 

of tlw size of OBDDs roughly corresponds to the space complexity of deterministic on­

line Turing rnachines. \Ve show that this relationship also holds between NOBDDs and 

nondctenninistic online Turing machines. Namely, the class of functions computable by 

polynornial size :'-JOBDDs is identical to the class of functions computable by logarithmic 

space-bounded nondeterministic online Turing machines. 

However, this relationship only gives the limit of applications of NOBDDs in general. 

In this chapter, we treat two particular methods in practical applications that make use 

of the expressions using the nondeterminism of OBDDs. \Ve investigate to what extent 

they utilize the nondeterminism introduced into OBDDs. 

First. we treat a method to solve satisfiability problem of combinational circuits using 

NOBDDs. 

The size of OBDDs heavily depends on the total order defined on the input variables. 

It is known that the OBDD size is closely related to the circuit width, and when a linear 

arrangcnwnt of the circuit with width w is known, a variable ordering which gives OBDD 

of size 21l'n can be clerived[4. 23]. The size of NOBDDs depends on the way of introducing 

nondrtern1inisn1, in addition to the variable ordering. In constructing an OBDD in order 

to decide satisfiability, Han1aguchi et al. proposed a method to decompose the given 

circuit into su bcircuits and decides the variable ordering, based on the circuit structure 

[18]. This decornposition can be regarded as introducing non determinism into the OBDD. 

In this rnethod. the OBDD size is related to the circuit cutvYidth. defined as the cutwidth 

of the circuit as an undirected graph. \\·hich is a two-wa,y counterpart of the circuit width. 

In this chapter. we inve tigate which kind of functions can be treated feasibly through 

this approach. \Ye define the class of functions computable by circuits with logarithmic 
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cutwidth, and show that this class is strictly contained by the class of functions represented 

by polynomial size NOBDDs. 

Secondly, we treat a method that uses OBDDs to represent Boolean functions as sets 

of terms[ll], i.e .. in sum-of-product form. Recently. varieties of OBDDs rnore suitable 

for expression and manipulation of sum-of-product form forrnulas are proposed[25, 45]. 

In these representations, each path from the root node to the '1' node corresponds to 

a term. Although OBDDs for these representations are not canonical with respect to 

the functions, they have one-to-one correspondence with surn-of-product forrns. In this 

chapter, we show that these representations can also be regarded as restricted forms of 

NOBDDs. 

This chapter is organized as follows. Section 2 gives fundarnental definitions. In 

Section 3, we show some methods that can be viewed as utilizing nondctrnninisrn, and 

observe the computational power of NOBDDs. In Section 4, we invrstigat e n1rthods 

to construct NOBDDs based on circuit structure and relate the NOBDD size and the 

circuit cutwidth. In Section 5, we investigate expressive povver of OBDDs which rcpn'sent 

sum-of-product form. Section 6 is a conclusion. 

3.2 Preliminaries 

3.2.1 Ordered Binary Decision Diagrams 

An OBDD represents a Boolean function over {0, 1 }n. An OBDD is a labeled, directed 

acyclic graph with a unique source node, called the root node. There are two sink nodes, 

called the constant nodes, labeled by a Boolean value 0 and 1 respectively. Other nodes 

are called variable nodes. Each variable node is labeled by one of the n variables and 

has exactly two outgoing edges, 0-edge and l-edge respectively. On any path from the 

root node to a sink node, each variable appears as a label of a node at rnost once. The 

order in which the variables appear is consistent among all paths. That is, the set of 

variables {xi, x 2 , ... , Xn} is ordered by a bijection 1r: {1, 2, ... , n}--+ {1, 2, ... , n}, and if 
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f =abc+ ab 

Figure 3.1: An OBDD representing f = abc+ ab. 

n('i) < n(j), Xj cannot appear before xi on any path. An OBDD representing f = abc+ ab 

is shown in Figure 3.1. 

When a set of value assignment for the input variables is given, the OBDD is traversed 

from the root node to a constant node according to the assignment. The label of the 

reached constant node is interpreted as the function value. 

\iVhcn a Yariable ordering is fixed , OBDDs haYe reduced canonical form. The reduction 

is done by 1nerging equivalent nodes and remoYing redundant nodes. The size, defined as 

the number of nodes, of reduced OBDDs depends on the variable ordering. 

\Ve regard a family of OBDDs {Di}(i=O,l.. .. ), where Di represents a Boolean function 

over {0, 1}1. as a cornputation model which computes a Boolean function over {0 , 1}*. 
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3.2.2 Complexity Classes of Functions 

In this chapter, we treat only languages over { 0, 1} * and identify a language vvith its 

characteristic function. 

We cannot directly compare classes of functions based on OBDDs with those based on 

Turing machines. This is because; i) OBDD model is nonuniform, i.e., we have to provide 

different OBDD for each input size n, while one Turing machine can handle inputs of all 

sizes, and ii) OBDD size is affected by the input variable ordering, while the order of input 

variables is fixed for Turing machine model. In this chapter, we choose nonuniform rnodels 

and allow variable ordering to be selected arbitrary by adjusting the Turing machine 1nodel 

to the OBDD model. We can discuss similarly in other settings. 

We give a definition of the classes of functions C /poly , which are nonuniforn1 counter­

parts of classes C based on Turing machines with advice, where C is L1 NL etc. A Turing 

machine with advice is a Turing machine that has access to a special oracle, called advice. 

A Turing machine with advice works as follows. Let f : N ---t {0 , 1 }* be a function . f is 

called an advice function. On input x of size lxl, f(lxl) is written on the special read-only 

advice tape, before the computation starts. Then the computation proceeds as usual. 

L /poly ( NL /poly, respectively) is the class of functions computable in logarithmic 

space bounded deterministic (nondeterministic) Turing machines with advice such that 

the length of the string lf(n)l is bounded by n°(1
). 1-L/poly and 1-NL/poly are defined in 

the same way except that the Turing machines are online, i.e. , they can read each bits on 

the input tape only once in order. Note that the length of the advice tape is not counted 

in the computation space and the online condition is not applied to the advice tape. 

The class of complements of a class C, denoted by co-C, is defined as the class {A I 

{0,1}*\AEC}. 

Next, we define permutation closure IT , in order to deal with input variable ordering. 

Let C be a class of functions defined by online Turing machines . The permutation closure 
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3 a family of bijections {nn: {1 , ... , n} -t {1 , ... , n} }n=0,1, ... , 

s.t., 

In other \\'Orch; , while C is defined by Turing machines which read the input once in order, 

IT(C) can be defined by Turing machines which read the input once in the order \vhich is 

fixed for each input size, vVe refer to this kind of machines as IT(C) machines. 

\\
7e arc interested in the characterization of functions representable by feasible size 

OBDDs. Here , our criterion for feasibility is polynomial size, i.e. , the size within n°( 1
) 

where n is the input size. Let PolyOBDD be the class of functions representable by 

OBDDs of polynomial size. The next theorem is known. 

Theorem 3.1 [19, 33] PolyOBDD = IT(l-Ljpoly) 0 

3.3 Solving Satisfiability Problems Using Nondeterministic OB-

DDs 

In this section, we analyze methods to solve satisfiability problems using OBDDs and 

observe that such n1cthods ran be regarded as using Nondeterministic OBDDs (NOBDDs). 

Satisfiability problen1 of formulas or circuits is a fundamental problem. In order to 

solve satisfiability problerns. it is sufficient to construct OBDDs for the formulas or circuits, 

because the reduced OBDD representing contradiction is unique. However , it is not 

necessary to construct complete OBDDs as long as "·e can check satisfiability easily. \\ e 

can reduce required arnount of storage at the cost of canonicity of OBDDs, by decomposing 

the function. or by introducing redundancy. 
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Recently, methods for manipulating Boolean functions without constructing \vhole 

OBDDs for given functions are used. Let us observe the easiest case first as an exarnple. 

Let f be the function which we want to examine satisfiability. If f is decomposed into 

subfunctions as f = j 1 V j 2 V · · · V fkl we can examine the satisfiability off by constructing 

OBDDs for ! 1 , j 2 , ... , fk and checking satisfiability of each subfunction. \Vhen the size of 

OBDDs for each function is s1 , s2 , ... , sk, the size of OBDD for f could be O(s 1 x s2 x 

· · · x sk). Iff is suitable for decomposition and the way of the decornposition is good, the 

OBDD size for j 1, !2, ... , fk is much smaller than that of f. 

Next, let us consider more general cases. Let f(x) be a Boolean function. Then 

introduce new variables fJ in some manner and express f(x) as ](x, fJ) such that, 

J(x) - 3fl. ](x, fJ). 

Note that f ( x) is satisfiable if and only if j ( x, fJ) is satisfiable. The variable ordering 

for { x, fJ} can be chosen arbitrary. On reduced OBDDs, satisfiability of j (x, fJ), and 

hence satisfiability of f ( x), can be decided easily. We can use this property in solving 

satisfiability problems. 

For some functions , the size of the OBDD for ](x, fJ) is much smaller than that for 

f ( x), if fJ and ordering of { x, fJ} are selected carefully. 

Our question is as follows: what is the condition for such methods to work efficiently? 

Here, we define NOBDDs in order to formalize the expression in these methods and 

evaluate the expressive power. 

Definition 3.1 An NOBDD is an OBDD whose variable nodes are labeled by either of 

n variables or an ' V' symbol. V\7hile ' V ' symbols can appear arbitrary, appearance of 

the variables is restricted as usual OBDDs. Given an assignment, NOBDD is traversed 

nondeterministically on each node labeled by an ' V' symbol. If at least one path reaches a 

constant node labeled by 1, the value of the function the NOBDD represents is determined 

to be 1, and otherwise, determined to be 0. 0 
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The OBDD for ./(x, if) can be regarded as an (\0BDD for f(x), if we regard the 

variable nodes labeled by variables in if as nodes labeled by 'V.' 

We consider how much the nondeterminism introduced here can improve the expressive 

power of OBDDs. Theorem 3.1 states the expressive power of OBDDs. We show the 

sirnilar property for ~OBDDs. The main idea is the same as in [24] , where other stronger 

models are studied. Let PolyNOBDD be the class of functions representable by NOBDDs 

of polynomial size. 

Theorem 3.2 PolyNOBDD = IT(1-NL/poly) 

Proof: Let n be the input size. First , we simulate an NOBDD D by a IT(1-NL/poly) 

Turing 1nachine .~ I. The description of the NOBDD for input size n (encoded in binary 

string) is given as the advice. The advice is a function of n and the length is polynomial 

in n. AI starts at the root node of D and traverse the graph . On the nodes labeled by 

a variable, M reads the input value and traverses the corresponding edge. On the nodes 

labeled by 'v,' l\1 traverses both outgoing edges nondeterministically. 0 (log n) space is 

sufficient in order to store the current node number and to find the next node, as the 

description of D is given as the advice. In the computation, the order M reads the input 

bits is fixed for each input size. 

Conversely, we simulate a IT(1-NL/poly) Turing machine by an NOBDD. vVe assign 

a node of OBDD for each configuration where i) an input bit is read , or ii) a nondeter­

Ininistic branch occurs. Each node corresponding to a read configuration (case i)) has 

the corresponding variable as its label. Each node corresponding to a nondeterministic 

branch (case ii)) has a ·v' as its label. The edges are assigned according to the transition 

relation. The number of nodes is at rnost polynomial in n because there are at most 

polynon1ial nun1ber of configurations. The order in which variables appears is fixed for 

(lach input size. 0 

Sin1ilar discussion is possible for the case that conjunctive quantifiers are allowed , 

where the corresponding dass is IT(co-1-NL/poly). 
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Since IT(1-L/poly) ~ IT(1-NL/poly), we can say that introduction of 'V' nodes properly 

boosts up the expressive power of OBDDs at the cost of canonicity. 

However, in order to utilize the nondeterminisn1 , heuristic' methods for constructing 

NOBDDs, in particular for introducing ' V' nodes and ordering variables, are r<'quired. 

In the next two sections, we show two particular cases where subclasses of NOBDDs an' 

constructed by taking the structure of instances into account. 

3.4 Combinational Circuits with Small Cutwidth 

In this section, we show that, when combinational circuits are given, we can partly get a 

clue to minimize the NOBDDs of the functions the circuits cornpute, from the structure 

of the circuits. 

It is well-known that the width of circuits correspond to the space of clet('rnlinistic 

Turing machines[30, 12]. As OBDD size is also related to the space of Turing 1nachines, 

OBDD size can be estimated from the width of the circuit which computes the function[4, 

23]. 

Hamaguchi et al. showed a method for equivalence check of combinational circuits 

using OBDDs with redundant variables[18]. This method can be regarded as constructing 

NOBDDs for given circuits. In this method, the given circuit is partitioned into modules 

so that the modules are arranged in line and the interconnection wires exist only between 

adjacent modules. Then redundant variables are inserted and an OBDD with redundant 

variables is constructed from the OBDDs for each modules. The size of the resulting 

OBDD is related to the number of interconnection wires. 

In this section, we evaluate the class of functions on which this method can work 

efficiently with respect to the OBDD size. Vve introduce circuit cutwidth, a measure 

similar to circuit width , and relate it to the space of Turing rnachines. Because the 

space complexity of nondeterministic online Turing machines corresponds with the size of 

:\OBDDs as shown in Theorem 3.2, we can obtain a relationship between circuit cutwidth 
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and the size of NOBDDs. 

In the definitions below~ we treat circuits as directed acyclic graphs. Let G = (V, E) be 

a directed graph, where V is a set of vertices and E is a set of edges. A linear arrangement 

of G is a bijection L: V ~ {1, 2, · · ·, lVI}. The cutwidth of G is the minimum of 

max l{(u, v) E E 
l ~i<IVI 

for every linear arrangement L. 

L(u) ~ i < L(v) 

or L(v) ~ i < L(u)}l 

Definition 3.2 1-LogCut is the class of functions computed by families of polynomial 

size circuits with cutwidth O(log n), where n is the size of inputs. 

Here, each circuit can have at most one input gate for each input bit. D 

Note that the width of a circuit can be defined by restricting linear arrangement so that 

there are no edges (u, v) with L(v) < L(u). 

The next theorem states that any function in PolyOBDD is computed by a 1-LogCut 

circuit family, but the converse is not true. 

Theorem 3.3 IT(1-Ljpoly) ~ 1-LogCut 

Proof: (~) It is known that Ljpoly corresponds to the class of functions computable 

by a family of circuits of O(log n) width. It is easy to show that TI( 1-Ljpoly) corresponds 

to the subclass with restriction that each circuit have at most one input gate for each 

input bit. Because the circuit cutwidth is less than or equal to the circuit width, the 

inclusion holds. 

(#)It is sufficient to show a function vvhich is in 1-LogCut but not in TI(1-Ljpoly). The 

family of Hidden \Veighted Bit functions {H\VBn} is known not to be in TI(1-Ljpoly)[6]. 

For input :r1.t·2 · · · T 11 • the weight u{r 1 ~r 2 · · · xn) is defined as the number of '1's, that is, 
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HWBn is defined as : 

As the circuit for HWBn can be constructed from a parallel adder, which computes w, 

and a multiplexer tree, which selects Xw, it is easy to check that {HWBn} is in 1-LogCut. 

D 

We show in the next theorem that any function computed by a 1-LogCut circuit family 

is in PolyNOBDD, but the converse is not true. 

Theorem 3.4 1-LogCut ~ TI(1-NLjpoly n co-1-NLjpoly) 

Proof: Let us consider a circuit C and its arrangement L satisfying the conditions of 

1-LogCut. Let G = (V, E) be the directed graph underlying C. We can assume that the 

output gate of C is in the rightmost (IVI'th) place in L, without loss of generality. (If it 

is not the case, we can fold the arrangement and construct an arrangement with cutwidth 

at most twice.) 

In Figure 3.2(a), vertices (gates) represented by boxes are arranged in line. For each 

edge directed to the left, insert an input gate of dummy variable, as shown in Figure 3.2(b). 

The dummy input is fed to the destination of original edge, and a comparator, which 

outputs '1' when the value is equal to the value of the source of the original edge. The 

outputs of comparators are and'ed with the original output to make new output. There 

exists an assignment to the dummy variables with which this new output has the value 1, 

if and only if the original function has the value 1. 

The new circuit is arranged so that all the edges are directed to the right. We can 

simulate this circuit by a TI ( 1-N L /poly) machine in the similar way as [30, 12]. The only 

difference we have to note is that there are dummy variables, which can be simulated by 

guessing the value nondeterministically. Therefore, 1-LogCut ~ TI(1-NLjpoly). 

Because 1-LogCut is closed under complement, we can also say that 1-LogCut C 

IT( co-1-NLjpoly). 0 
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-~...-------- ~---- __ j 
(a) 

..---------

input gate 

(b) 

Figure 3.2: Replacing two-way cuts with one-way cuts. 

Noting the fact that IT(1-NLjpoly) #- IT(co-1-NLjpoly), the next corollary is derived. 

Corollary 3.1 1-LogCut S,: IT(1-NLjpoly) (or, IT(co-1-NLjpoly)) 0 

This theorem leads to a natural extension of known relationship between circuit width 

and OBDD size[4, 23]. However, as shown above, cutwidth does not correspond exactly 

to the NOBDD size. 

3.5 OBDDs Representing Sum-of-Products Form 

Coudert et al. [11] developed methods for two-level logic minimization using Meta Prod­

ucts , which represent et of product terms using OBDDs. ~1inato[25] have proposed 

zero-suppressed BDDs (0-Sup-BDDs), a variant of reduced OBDDs with a reduction rule 

suitable for repre enting a set of combinations. A Zero-suppressed BDD can be used 

to represent a set of terms becaus terms can be regarded as combinations of literals. 
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Yasuoka[45] proposed a data structure called Ternary Decision Diagra1ns (TDDs), which 

are specialized for manipulation of sets of terms. 

A set of product terms can be evaluated as a sum-of-products form. The threr data 

structures above are essentially equivalent with respect to the expressiYe power in poly­

nomial size, when we regard them as representations of Boolean functions through sunl­

of-products form[27]. Let us regard these data structures as representations of functions 

through sum-of-products form and call 'OBDDsop. ' In this section, we evaluate the cx­

pressive power of OBDDsop for Boolean functions. 

For a variable Xi and a term p, there are three cases of occurrence of literals; xi 

occurs in p, xi occurs in p, and neither xi nor xi occurs in p. In [11] and [25] , a set 

of terms is represented using two new variables for each .ri to distinguish thesc three 

cases on OBDDs. In [25], a term that consists of n variables x 1, .T2 , ... , Xn is represented 

by a 2n-bit vector (xixix2 · · · XnXn), where each bit, Xi or :Ei, expresses whether the 

corresponding literal is included in the term or not. The variables arc ordered so that :r:i 

and xi are adjacent for all i. For example, a product term xix2x 4 can be represented by 

(10010010). [11] uses a different encoding, but it is essentially equivalent to [25]. Given 

a set P of product terms, the function fp(xi, xi, x2, x2, ... , Xn, Xn) is defined such that 

fp(x 1 , XI, x2, x 2, ... , Xn, xn) = 1 if and only if the product term corresponding to the 

vector (xix 1x2 · · · XnXn) is in P. An OBDD is said to represent the set of product terms 

P if the OBDD represents the function fp(x 1 , x1 , x2, x2, ... , Xn, Xn)· In this expression, 

for each variable xi, the nodes labeled by the positive literal xi and the nodes labeled by 

the negative literal xi are used in a OBDD. 

The expression in TDDs can be constructed by collapsing each two adjacent levels 

into one. A TDD is similar to an OBDD except that each variable node has exactly three 

outgoing edges, 0-edge , l-edge , and *-edge, and a variable can take these three values , 

where 1 (or 0) means that the positive (or negative) literal occurs, and *means that the 

literal does not occur. Thus the occurrence of a literal is expressed by a node. A TDD 

representing the set { xix2x 3, x 1 x3, x2x 3} is shown in Figure 3.3. 
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Figure 3.3: A TDD representing {x1x2x3, x1 x3, x2x3}. 
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\Ve investigate here the expressive power of these data structures as representations 

of functions. Let PolyOBDDsop be the class of functions cornputable by polyno1nial 

size OBDDsop. The next theorem states that the class PolyOBDDsop strictly includes 

PolyOBDD. 

Theorem 3.5 IT(l-Ljpoly) £: PolyOBDDsop 

Proof: (~) Consider the TDD D representing the set of mintcrms of given function f. 

We can construct the OBDD representing f of the same size by removing *-edges. 

(#) Let G = (V, E) be an m-dimensional hypercube, with V = {0, 1, ... , 2m- 1} and 

E = ui=0,1, ... ,m-1Ei, where Ei = { { u, v} I u- v = 2i}. 

Let us define the following functions of variables a0 , ... , am_ 1 , x 0 , ... , x2m _ 1 , and let 

n = m+ 2m . 

m-1 
.fn V aigi 

i=O 

gi v Xu 1\ Xv 

{u,v}EEi 

The number of terms is polynomial in n and therefore {.fn} is in PolyOBDDsop. 

We now show that {fn} (j_ IT(l-Ljpoly). Consider each gi and take arbitrary permuta­

tion Jr2m : {0, ... , 2m- 1}--+ {0, ... , 2m- 1}. 

Let XL = {xn(O), ... 'Xn(2m-l_l)} and XR = {xn(2m - l), ... 'Xn(2m - l)}· (XL, XR) corre­

sponds to a bisection of the set of vertices V. Let Ei = { { u, v} I { u, v} E Ei and xu E 

XL and xv E XR}· Because the bisection width of am-dimensional hypercube is not less 

than 2m-l [22], for some i, lEi I 2:: 2
:

1

• Let im be an i satisfying this condition and let 

gim = V {u,v}EE;m Xu 1\ Xv· 

Note that we can yield flim from fn, by assigning 1 to aim and 0 to all aj, j # im and 

0 to all Xj that do not appear in [Jim. Therefore the computation space required for .fn is 

not less than that of gim. 

Now let us suppose that {fn} E IT(l-Ljpoly). Then, {fn} can be cornputed by an 

1-Ljpoly machine after some input permutation which is fixed for each input length. 
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j 
+ 

A B c B A c 

TDD NOBDD 

Figure 3.4: Converting TDD to NOBDD. 

Therefore, !Jim is also computed by an 1-Ljpoly machine after input permutation { 1r2m }. 

(Recall that the input length of !Jim is polynomially related to n.) Let M be the 1-Ljpoly 

machine. 

The number of possible configurations of M is bounded by polynomial in n because of 

the space bound. However , assigning constants for variables in XL yields at least 2IE;m I 

different functions from !Jim . This is a contradiction. 

0 

An OBDDsop can be regarded as a NOBDD of restricted form. 

Theorem 3.6 PolyOBDDsop S: IT(1-NLjpoly) 

Proof: \\.hen a TDD is given, we can construct an NOBDD, that represents the same 

function as the TDD, with asymptotically the same size. For each node v in the given 

TDD, we replace v with a graph as shown in Figure 3.4. 0 

\Ve show that PolyBDDsop is strong enough that a complete language for 1-NL belongs 

3.6. CONCLUSION 51 

to PolyBDDsop. However , whether PolyBDDsop is equal to IT(1-NLjpoly) or not is not 

known. 

Let G = (V, E) be a graph and V = { v1, v2, ... ~ L'm}. The characteristic function of 

language TAGAP is the family of functions {TAGAPm} defined as follows. 

TAGAPm(x12 · · · X1mX21 · · · X2m · · · Xmm) = 1 iff (xij) is the adjacency rnatrix 

of a directed acyclic graph G such that G is topologically arranged and there 

exists a path from v1 to Vm in G. 

Here , the representation of a directed acyclic graph G is topologically arranged if there 

is no edge (vi ,vJ ) when i > j . It is known that TAGAP is a complete language for 1-NL 

under 1-L reductions. 

Theorem 3.7 TAGAP E PolyOBDDsop 

Proof: Let fk be the function that fk = 1 if and only if there exists a path from ?h to 

Vm in G. f 1 = TAGAP m by the definition. We recursively construct a TDD for f m- i , for 

i = 1, ... , m- 1, as 

fm -i (Xm- i m-i+1 1\ fm -i+l ) V 

( Xm-i m-i+2 1\ J m-i+2) V · · · V Xm-i m · 

The size of the TDD increases by i and therefore the size of f1 = TAGAP m is 0( m 2). 

The resulting TDD when m = 5 is shown in Figure 3.5. In this figure , all the 0-edges 

are omitted. The 0-edge from a node v points to the same node as the *-edge from v, or 

points to the constant 0. 0 

3.6 Conclusion 

In this chapter, we introduced :\ondeterministic OBDDs and observed that some appli­

cations of OBDDs can be viewed as utilizing the power of nondeterminism in order to 

reduce the size of OBDDs. 
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Figure 3.5: A TDD representing TAGAP (m = 5). 
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NLjpoly 

Ljpoly 

IT(l-NLjpoly) = PolyNOBDD 
(3.2) 

1-LogCut PolyOBDDsop 

IT(l-Ljpoly) = PolyOBDD 

Figure 3.6: Relationships among classes of functions. 

We showed that the cutwidth of combinational circuits is related to the size of NOB­

DDs, so, methods for circuit partitioning can be applied to the reduction of NOBDD 

size. \Ve also shovved that OBDDs representing sum-of-product form can be regarded as a 

restricted form of NOBDDs. \\re summarize the relationships among classes of functions 

in Figure 3.6. A line represents that the above class contains the below class. A line 

with a check represents proper containment. The relationships proved in this thesis are 

accompanied with the theorem numbers. 
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It is possible to consider OBDDs with universal quantifiers, or parity quantifiers, in 

the sarne way. \\'hrn universal quantifiers are introduced. the corresponding class IS 

IT(co-1 -NL/poly). and the corresponding formula is product-of-sum form. 

Chapter 4 

Exact Minimization of Free Binary 

Decision Diagrams for 

Pass-Transistor Logic Optimization 

4.1 Introduction 

With the advances in fabrication technology, low power design of VLSI has become a 

matter of great importance. Alternatives to the conventional CMOS design style have 

been sought extensively in order to reduce the power dissipation. Recently, Pass-Transistor 

Logic(PTL) circuits have been paid attention for the potential of low-power and high-speed 

circuit implementation compared to CMOS circuits. 

Pass-transistors have been used as transfer gates since the age of early NMOS logic. 

PTL discussed here is a form of pass-transistor networks where each transistor makes 

a pair \Vith its complement. A transistor pair works as a selector and hence the whole 

circuit works as a static selector logic circuit. A variety of PTL circuit structures have been 

proposed such as Complementary Pass-transistor Logic (CPL)[44], Double Pass-transistor 

Logic (DPL) [36] , Swing Restored Pass-transistor Logic (SRPL) [29] , Lean Integration with 

Pass-transistors (LEAP)[43] and Single-rail Pass-transistor Logic (SPL)[38]. Because a 

55 



56 
CHAPTER 4. EXACT MINIMIZATION OF FREE BINARY DECISION DIAGRAMS 

FOR PASS-TRANSISTOR LOGIC OPTIMIZATION 

function requiring several gates in Cf\IOS can be implemented in a single selector network 

in PTL, the area and power dissipation could be reduced with PTL. Though there is room 

for further investigation. PTL is regarded as a promising alternative to CMOS. 

Several attempts have been done to establish design methodology for PTL circuits. [43] 

and [8] introduced synthesis flow for PTL based on Ordered Binary Decision Diagrams 

( OBDDs) [1, 5]. In their synthesis flovv, Boolean functions are decomposed and expressed 

as aggregate of small OBDDs, and the component OBDDs are mapped directly to PTL 

cells. Their experimental results show that PTL could outperform CMOS. However, they 

also suggest that the synthesis and optimization methods for PTL circuits are not yet 

mature. 

In the synthesis methods for PTL based on OBDDs in decomposed form, the size of 

decornposed OBDDs directly affects the circuit size. Therefore, minimization of decom­

posed OBDD is one of the main goals. We can utilize some extension of OBDDs instead of 

conventional OBDDs for further minimization of the function expression. In this chapter, 

we investigate a method using Free BDDs (FBDDs )[16], which are well-studied extension 

of OBDDs. 

A heuristic method for minimization of FBDDs has been shown in [37]. There proposed 

several algorithms based on simulated annealing, in which, functions are once expressed 

in OBDDs and the variables on some paths are reordered to construct FBDDs and then 

Ininimization is performed. Their experimental results show that the algorithms obtain 

smaller expression size than the initial OBDDs for benchmark circuits. However, it is not 

known how their results compare with the optimum OBDDs or the optimum FBDDs. 

This chapter airr1s at estimating the gain of employing decomposed FBDDs instead 

of decornposed OBDDs. First, we show statistics of the size of minimum OBDDs and 

minirnum FBDDs. \Yc also show experimental results on the size of decomposed FBDDs 

of benchmark circuits based on exact minimization of the component FBDDs. 

In the next section. we reYiew BDD-based PTL synthesis flow and present our motiva­

tion for exact Ininimization of FBDDs. The problem of minimizing FBDDs is analyzed in 

4.2. DECOMPOSED BODS AND PASS-TRANSISTOR LOGIC SYNTHESIS 

f f 

(a) OBDD (b) PTL 

lc 

f 

(c) PTL without 

pre-terminal nodes 

Figure 4.1: Synthesis of PTL circuit from OBDD. 
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Section 3. In Section 4, we show statistics of the sizes of OBDDs and FBDDs. Section 5 

contains the experimental results on benchmark circuits. Section 6 is a conclusion. 

4.2 D ecomposed B D Ds and Pass-'fransistor Logic Synthesis 

The synthesis methods for PTL in [43] and [8] are based on the construction of OBDDs. 

Once a Boolean function is expressed as an OBDD, the PTL circuit is derived directly. 

Fig. 4.1(a) is an example of an OBDD for a function with three input variables, f = ab+bc. 

The edges from the left and right of each node are 0-edge and l-edge respectively. PTL 

circuit can be obtained by replacing each node of the OBDD by a pair of transistors gated 

by the control signal and its negation, as shown in Fig. 4.1 (b). 

Circuit design as shown in Fig. 4.1 (c) is possible, where the pre-terminal nodes, the 
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nodes whose successors are both constant nodes , are suppressed by connecting the corre­

sponding signal to the drain. In the following, we mainly use this construction. 

The size of PTL circuits is proportional to the size of OBDDs. Therefore, minimization 

of OBDD size results in minirnization of PTL circuit size. In this chapter, we deal with 

the size of decision graphs including and excluding pre-terminal nodes. Note that the 

total transistor count and area, including buffers and \Vires, depends on detailed design 

styles, but it is beyond the scope of this chapter. 

In PTL circuits, the length of pass-transistor chain is bounded since long pass-transistor 

chain leads to poor performance. In OBDD-based synthesis, the chain length can be at 

rnost the nun1ber of the input variables. Therefore, the number of input variables of 

OBDDs is usually limited. 

In the synthesis flow of [43], monolithic OBDDs are built and then buffers are inserted 

to cut the chains into chunks. [8] takes another approach which constructs decomposed 

OBDDs without dealing with monolithic OBDDs. In their algorithm, a set of OBDDs 

are constructed for a function in a depth-first manner from inputs to outputs and de­

cornposition points are selected during the construction in order to control the size of the 

individual OBDDs. 

As shown above, the synthesis of PTL circuits has two phases: i) decomposition into 

subfunctions with limited number of inputs, and ii) expression of the individual com­

ponents. In this chapter, we focus on the latter problem. On OBDDs, the choices of 

the expressions of functions only come from the variable ordering. However, there is a 

possibility of expression with less size than OBDDs by relaxing the restriction of the vari­

able occurrence on OBDDs at the expense of the canonicity. As far as PTL synthesis is 

concerned, general decision graphs can be used. 

In this chapter, we employ FBDDs[l6] as the expression of the component functions 

instead of OBDDs, and consider their exact minimization. On FBDDs, each variable can 

appear at 1nost once on each path, but the order can be different among paths. 

As the first step of using general decision graphs for PTL synthesis, FBDDs have 
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good properties to begin with. First, the number of variable ordering of an FBDD is 

bounded and the exact minimization is feasible for s1nall uu1nber of variables. Secondly, 

the maximum path length is bounded by the number of variables, which is the same as 

OBDDs. From the next section, we evaluate the advantage of e1nploying decornposed 

FBDDs instead of decomposed OBDDs with respect to the expression size. 

4.3 Exact Minimization of FBDDs 

Because the variable order of FBDDs can be different among paths, a set of orders can 

be expressed as labels on a complete binary tree. Figure 4.2 shows all the 12 orders 

for FBDDs with 3 variables a, b and c. Usually, these orders are expressed as FBDD 

types[l6], which can be obtained by sharing isomorphic subgraphs of each tree. Note 

that the sharing may reduce the graph size, but do not reduce the number of possible 

combination of orders. In this chapter, we use the binary tree expression. This is because 

our algorithms include only the construction of minimum FBDDs and do not include 

operations on FBDDs. In such cases, there is little advantage of using FBDD types and 

rather the overhead for sharing would have to be taken account. Another reason is that 

it is feasible for our case of n ::_:; 5. 

Let Sn be the number of possible variable orders for FBDDs of Boolean functions with 

n variables. When the variable for the root node is fixed, deciding the variable order of 

the rest is equivalent to deciding the variable orders of two (n- I)-variable FBDDs with 

the two successors of the root node as root nodes (see Figure 4.3.) This relation is written 

as follows : 

The value of n! (the number of all variable orders of OBDDs) and Sn for n ::_:; 7 is shown 

in Table 4.1. 
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00®® 

Figure 4.2: All variable orders of FBDDs for n = 3. 

Figure 4.3: The number of FBDD variable orders. 
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Table 4.1: The number of variable orders of OBDDs and FBDDs. 

I n II OBDD (n!) I FBDD (Sn) 

1 1 1 

2 2 2 

3 6 12 

4 24 576 

5 120 1658880 

6 720 16511297126400 

7 5040 1908360529573854283038720000 

For exact minimization of FBDDs, the dynamic programming algorithm which can be 

used for OBDD minimization[13] does not seem to work. Currently, our algorithm checks 

all FBDD variable orders in sequence. For given truth table (Fig. 4.4 (a)) and an FBDD 

variable order (Fig. 4.4 (b)), we construct FBDD (Fig. 4.4 (c)) in a bottom-up manner. 

In order to find a minimum FBDD, we enumerate all possible FBDD variable orders in 

lexicographical order (e.g. row-first order in Fig. 4.2.) 

Several strategies for pruning the search space can be used. Let f be a function and 

T be a tree representing a variable order. Let us consider the following two cases. 

• For a subtree T' ofT, the subfunction off corresponding toT' does not depend on 

all the variables on T'. 

• For two subtrees T', T" ofT, where the sets of variables on T' and T" are the same, 

the subfunctions of f corresponding to T' and T" are identical. 

In the first case, the order, within T', of the variables which the subfunction does not 

depend is unrelated to the FBDD. Especially, if the subfunction is tautology or contradic­

tion , any changes of order within T' result into the same FBDD as in original T. In the 

second case, it is safe to assume that T' is equal to T", because FBDDs for the two sub-
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abed f abed f 
0 0 0 0 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 1 0 
0 0 1 0 0 1 0 1 0 1 
0 0 1 1 0 1 0 1 1 1 
0 1 0 0 0 1 1 0 0 0 
0 1 0 1 1 1 1 0 1 1 
0 1 1 0 1 1 1 1 0 1 
0 1 1 1 0 1 1 1 1 1 

(a) truth table 

~ 

(b) variable order (c) FBDD 

Figure 4.4: Construction of FBDD. 
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functions can be shared without requiring extra nodes. '1'./e can skip some of the variable 

orders not necessary for FBDD minimization by checking these cases. 

4.4 Minimum Size of OBDDs and FBDDs 

n-variable Boolean functions f and g are said to be NPN-equivalent[26] when g is con­

structed from f by combination of the following three types of operations: i) negation of 

some of the input variables of j, ii) permutation of input variables of j , and, iii) nega­

tion of f. NPN-equivalence relation induces equivalence classes of Boolean functions. We 

minimized FBDDs for all the NPN-representative functions for number of variables n as 

follows. 

For each f : NPN-representative of 22
n functions , 

1. Find an OBDD off with minimum size. 

2. Find an FBDD off with minimum size. 

Because the minimum size of OBDDs (or FBDDs) for NPN-equivalent functions are the 

same, it is possible to obtain statistics for all functions from this result. 

The algorithm for FBDD minimization is basically an exhaustive search with the prun­

ing idea presented in the previous section taken into consideration. The next proposition 

is useful to suppress searching on functions which have no possibility of improvement. 

Proposition 4.1 Let f be a function which depends on exactly n variables. If the size of 

an FBDD for f is equal to n, the FBDD can be regarded as an OBDD with some variable 

order. 

Proof) Since f depends on n variables, there should be at least one node, and hence 

exactly one node, for each variable. The variable order as an OBDD is obtained from a 

topological order of the FBDD nodes. 0 
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Corollary 4.1 Let f be a function which depends on exactly n-variables. If the minimum 

size of OBDDs for J is n + 1, the minimum size of FBDDs for f is also n + 1. D 

The FBDD minimization algorithm is implemented in C language. The experiments 

are carried out on AlphaServer8400 (DEC alpha21164A CPU 617MHz x 10, 8GB main 

storage). 

Table 4.2 shows statistics of the minimum size of OBDDs and FBDDs for all functions 

of 4 variables. The 222 NPN-equivalence classes are partitioned into groups according 

to the minimum OBDD-size. For each group, FBDD-size of the functions in the group 

is shown. The '#class' and '#function' columns show the number of NPN-equivalence 

classes and the number of functions included in the classes respectively. FBDD is smaller 

than OBDD for 13 classes among the 222 classes. The CPU time for FBDD minimization 

for all 222 representative functions was about 1.8 seconds. 

Table 4.2: Minimum size of OBDDs and FBDDs (n = 4). 

OBDD #class #function FBDD #class #function 

size SIZe 

0 1 2 0 1 2 

1 1 8 1 1 8 

2 1 48 2 1 48 

3 4 364 3 4 364 

4 14 3168 4 14 3168 

5 38 12440 5 38 12440 

6 70 22488 6 70 22488 

7 68 20346 6 3 1536 

7 65 18810 

8 25 6672 7 10 4032 

8 15 2640 
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In order to take the design as shown in Fig. 4.1 (c) into account, we counted the nodes 

of OBDDs and FBDDs in another way, i.e., excluding pre-terminal nodes. In this case, 

we cannot use Proposition 4.1. The statistics for all 4-variable NPN-equivalencc classes 

are shown in Table 4.3. The size decreased for 17 of the 222 classes. The CPU time is the 

same as the previous case. 

Table 4.4 shows the results for 5-variable functions. Among 616126 NPN-equivalence 

classes, the size decreased for 345073 classes. The CPU time for FBDD minimization for 

a 5-variable function was about 15 seconds. Up to 40MB of main storage was usrd. 

A function with minimum OBDD-size 10 and minimum FBDD-size 6 (excluding pre­

terminal nodes) is shown in Fig. 4.5. Shadowed nodes are pre-terminal nodes. The 

hexadecimal expression of the truth table of this function is 167e8699. 

Table 4.3: Minimum size of OBDDs and FBDDs excluding pre-terminal nodes (n = 4). 

OBDD #class #function FBDD #class #function 
size size 

0 2 10 0 2 10 
1 3 156 1 3 156 
2 11 2464 2 11 2464 

3 43 12912 3 43 12912 

4 72 24248 4 72 24248 

5 77 23650 3 4 1344 

4 10 5760 

5 63 16546 

6 14 2096 5 3 960 

6 11 1136 
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Table 4.4: Minimum size of OBDDs and FBDDs excluding pre-terminal nodes (n = 5). 

OBDD #class #function FBDD #class #function 
size size 

0 2 12 0 2 12 
1 3 340 1 3 340 
2 12 12640 2 12 12640 
3 107 301460 3 107 301460 
4 724 3322584 4 724 3322584 
5 4133 23295290 3 6 14400 

4 78 543360 
5 4049 22737530 

6 18536 114688440 4 107 693120 
5 1646 11736000 
6 16783 102259320 

7 64757 424248610 5 1065 7416640 
6 14499 105483328 
7 49193 311348642 

8 172803 1185295712 5 446 3221760 
6 9994 73603840 
7 63754 464248128 
8 98609 644221984 

9 228594 1618747984 5 6 23040 
6 1677 12528960 
7 33832 250282080 
8 109063 796088384 
9 84016 559825520 

10 108673 795031200 6 42 288000 
7 2240 16705920 
8 33386 250655040 
9 55837 411282112 

10 17168 116100128 
11 17543 128650656 7 142 909120 

8 1849 13777920 
9 9874 73436640 

10 5292 38157312 
11 386 2369664 

12 239 1372368 8 14 103680 
9 84 478944 

10 112 685440 
11 28 104064 
12 1 240 
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(a) OBDD (b) FBDD 

Figure 4.5: A function with OBDD-size 10 and FBDD-size 6 (excluding pre-terminal nodes.) 
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4.5 Experimental Results on Benchmark Circuits 

VVe applied our FBDD minimization method for PTL synthesis to MCNC benchmarks as 

follows . 

For each circuit computing Boolean function f, 

1. Decompose f into 5-variable subfunctions fo , ... , fm· 

2. For each su bfunction fi , 

(a) Find an OBDD of fi with minimum size. 

(b) Find an FBDD of fi with minimum size. 

Since we have not yet developed function decomposition algorithms, we used Look-Up 

Table mapping algorithm of [32] for decomposition in the step 1. Each benchmark circuit 

is decomposed by mapping to 5-1 Look-Up Table cells. Then OBDDs and FBDDs for the 

su bfunctions are minimized in the step 2. and the sizes are summed up. The results are 

shown in Table 4.5. The columns '#input' and '#cells' are the number of primary inputs 

and the number of mapped 5-1 cells respectively. Total number of nodes (excluding pre­

terminal nodes) of OBDDs and FBDDs are shown in the next columns. The CPU time in 

seconds for minimization (step 2) is shown in the last column. This does not include the 

time for decomposition (step 1.) This CPU time is the sum of the time for minimization 

of both OBDDs and FBDDs, though the time for OBDDs is much smaller than that for 

FBDDs and can be neglected. 7 out of 16 circuits are reduced by using FBDDs. 

\i\re also applied our rninimization method for ISCAS85 benchmarks . We used SIS for 

rnapping the circuits into 5-l Look-Up Tables. The results are shown in Table 4.6. Only 

one circuit is rrduced by using FBDDs. 

As we haYc noted , the total size of decomposed BDDs depends on both the decom­

position n1ethocl of the original function and the expression method of the individual 
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Table 4.5: Minimum OBDD and FBDD size of MCNC Benchrnark Circuits. 

#input #cell OBDD FBDD tirne 
size SIZe (sec.) 

5xpl 7 21 41 41 95 
9sym 9 7 42 42 34 
alu4 14 183 1084 1027 1170 

apex5 117 329 852 842 293 
b12 15 25 53 53 51 
clip 9 17 60 58 38 

cordic 23 10 39 39 9 
misexl 8 17 45 44 47 
misex2 25 54 111 111 23 
misex3 14 241 1419 1352 1292 

misex3c 14 81 379 359 395 
rd73 7 9 31 31 42 
rd84 8 11 46 46 41 
sao2 10 25 112 109 82 
t481 16 6 19 19 3 

vg2 25 29 97 97 49 

Table 4.6: Minimum OBDD and FBDD size of ISCAS85 Benchmark Circuits. 

#input #cell OBDD FBDD time 
Size size (sec.) 

c432 36 66 214 214 37 
c499 41 65 282 282 115 
c880 60 89 309 309 99 

c1355 41 65 282 282 280 
c1908 33 103 368 368 284 
c2670 233 253 534 534 272 
c3540 50 382 1270 1270 372 
c5315 178 411 1101 1100 918 
c6288 32 770 2634 2634 127 
c7552 207 512 1447 1447 1136 
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subfunctions. Though \Ye focused on the latter process in this chapter, the effect of the 

former process might be heavier. The algorithms we used here are for Look-Up Table map­

ping, so, the cost function for decomposition may not match for our purpose. Nevertheless 

the result in Table 4.5 suggests that using FBDD would be promising. 

The poor results in Table 4.6 might be due to the decomposition method. Because the 

original benchmark circuits are mostly composed of simple gates, their decomposition by 

SIS based on circuit covering and simplification results in rather simple 5-1 subfunctions. 

FBDD is not effective in such cases because OBDDs for subfunctions are too small. This 

is in contrast to the result in Table 4.5, where the whole function is once represented as 

an OBDD and then decomposed by Boolean function manipulation. 

It is interesting how the processes for function decomposition and subfunction ex­

pression have influence on each other. Properties of the subfunctions depends on the 

decomposition algorithms and effect of using FBDD largely depends on the properties. 

Roughly speaking, FBDD will be effective when each component function has enough 

large OBDD. This implies that FBDD expression might not be useful when the circuits 

are once collapsed into two-level circuits and then decomposed, because such circuits could 

made up mostly of simple subfunctions . Methods based on function decomposition would 

be suitable if the number of subfunctions can be reduced by cramming much logic into 

each subfunction. However, such methods cannot treat large scale circuits in general. 

4.6 Conclusion 

In this chapter, we showed statistics of the size of minimum OBDDs and minimum FB­

DDs for all functions of fixed number of variables. The results can be used for PTL 

synthesis as libraries. \Ve also applied the exact minimization algorithm of FBDDs to 

benchmark circuits. The results would encourage employing decomposed FBDDs instead 

of decomposed OBDDs for PTL synthesis. 

The FBDD n1inimization algorithm shown here cannot deal with larger number of 
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variables. Though the problem seems to be inherently difficult, Inore pruning strategies 

could be introduced. \\re used FBDD as an extension of OBDDs, but more generic decision 

graphs could be employed. The most important point to put our results into practical 

use is development of decomposition algorithms suitable for FBDDs. This is also a future 

work. 



Chapter 5 

Timing Analysis of Sequential Logic 

Circuits with Multi-Clock 

Operations 

5.1 Introduction 

The clock frequency of a sequential logic circuit is decided based on the maximum delay 

of the combinational parts of the circuit. The precise estimation of the maximum delay is 

important in deciding the proper clock frequency. The maximum delay can be computed 

as the longest path of the weighted graph corresponding to the circuit, where nodes in the 

graph are logic gates in the circuit and the weight of the node is the delay time of each 

gate . The computational complexity of the maximum delay computation is proportional 

to the size of the graph. 

In some cases , such topological maximum delay paths cannot be sensitized with any 

input patterns and therefore become false paths. Many researches have been done to 

detect false paths and to minimize the clock period for obtaining the maximum clock 

frequency ([3, 9, 2]). 

However , there can be paths which are sensitizable but do not affect the clock period. 

73 
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In this chapter, we introduce a class of such paths called multi-clock paths. Multi-clock 

paths are combinational paths whose delay time can be greater than the clock period. 

We discuss the properties of multi-clock paths and propose a method for detecting such 

paths in given sequential circuits. Multi-clock paths lie in circuits typically due to the 

operations controlled by waiting states, where the propagation of signals are waited on 

more than one clock cycles, and the delay time of the path can be greater than the clock 

period. We show a method to detect multi-clock paths by computing the interval of value 

changes between each pair of registers. 

The rest of this chapter is organized as follows. In the next section, we show definitions 

of finite state machines. In Section 3, we define multi-clock paths. Section 4 contains a 

method of analyzing update cycles of registers . In Section 5, we show a method to calculate 

interval of value changes between registers and to find multi-clock paths. Section 6 is a 

conclusion. 

5.2 Finite State Machines 

In this section, we show a definition related to finite state machines (FSMs.) 

Definition 5. 1 An FSM M is a 6-tuple (S, ~' r, 6, A, q0 ) where 

• S is a finite set of states, 

• ~ is an input alphabet, 

• r is an output alphabet , 

• 6 : S x LJ ~ S is a state transition function, 

• A : s X ~ ~ r is an output function, 

• q0 ( E S) is the initial state. 

0 
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The behavior of M with respect to an input sequence a 1 a2 ... an ( ai E ~) is a Sf'quence of 

states QoQl ... Qn (qi E S) and a sequence of outputs o1o2 ... on (oi E f), where each of the 

states and the outputs satisfies Qi = 6(qi_1 , ai) and oi = A(Qi- 1 , ai)· 

Let ~* be a set of all input sequences over ~, and let ~k be a set of input sequences 

with length k . The symbol E denotes the sequence with length 0. 

To represent the behavior of M, the domain of 6 and A are extended and 6* : S x ~* ~ 

S and A* : S x ~* ~ f* are introduced as below. The operation '·' is the concatenation 

of strings. 

D efinition 5.2 6* : S x ~* ~ S is defined as follows. 

• 6* (q, E) = q 

• 6* (q , xa) = 6(6*(q, x), a) (a E ~' x E ~*) 

0 

Definition 5.3 A* : S x ~* ~ f* is defined as fo llows. 

• A*(q,E) = E 

• A*(q, xa) = A*(q, x) · A(6*(q, x), a) (a E ~' x E ~*) 

0 

An FSM is implemented as a sequential logic circuit with a set of registers (flip­

flops) and a combinational circuit. States of the FSM is encoded into binary vectors and 

represented as the set of values of the registers. The combinational circuit calculates the 

encoded state transition function and the output function . 

As the output functions, we only deal with the set of encoded state transition functions 

themselves. We denote the transition function for each register r as an output function 

Ar· 
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5.3 Multi-Clock Paths in Finite State Machines 

In this section, we describe the notion of multi-clock paths. Because we use the FSM 

model, we do not deal with individual paths in combinational logic of sequential machines. 

We refer to 'the set of all paths from register rin to register rout' simply as a path from rin 

to rout· In addition, we are concerned with changes of logic values and not with events 

on registers. This means that we deal with hazard-free circuits. 

Let us consider a path from register r in to rout. The number of clock cycles from 

value change of rin to that of rout can be different according to the states. The minimum 

number of the cycles decides the number of clocks the path is allowed to spend for value 

propagation. Vve define the number as the interval of value changes of the path. 

Definition 5.4 The interval of value changes of the path from register r in to register rout 

is said to be k, when k is the maximum number that satisfies the next relation : 

"for any input sequence and for any state, 

when the value of rin has just changed, 

the value of rout does not change for k cycles." 

The path fron1 rin to rout is called a multi-clock path when this relation holds for some 

k>l. D 

l\1ulti-clock paths are the paths in combinational circuits which are sensitizable but 

do not affect the decision of the minimum clock period. 

\i\Then the interval of value changes of a path is k, the path is allowed to spend k clock 

cycles. That is, the timing constraint of the path is 

(delay of the path) :s; k x (clock period). 

The value k of each path can be computed as follows: 
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1. Update cycle analysis of registers: 

Checking whether the value of registers has been changed or not at each state, and 

computing the update cycle. 

2. Timing analysis of each path: 

Analyzing the interval of value changes on each path using the update cycles of the 

input and the output registers. 

In the following two sections, we describe formalization and algorithms for these two 

processes. 

5.4 Update Cycle Analysis of Registers 

In the following, we fix a register r and introduce a set of states where the value of r does 

not change during k clocks. 

First, let RS be the set of reachable states from the initial state of FSM. 

Definition 5.5 The set of reachable states from the initial state RS is defined as follows. 

RS = { q I 3x E ~*, q = 6* ( qo, x) } 

D 

Let S0 be the set of initial states of FSM. From our FSM definition, S0 = { q0 }. RS is 

obtained with the procedure shown in Figure 5.1. In this procedure, P S represents the 

set of present states and N S represents the set of next states of P S. States are traversed 

until the set of newly visited states (the frontier) becomes 0. 

The procedure is executed using a symbolic state traversal of finite state rnachines 

using OBDDs ([14, 10, 7]). In the symbolic state traversal, primary inputs and registers 

are represented as logical variables. The sets S0 , P S, N S, RS and the function 6 are all 

described as logic functions, i.e., OBDDs representing these functions. The manipulations 

of state sets such as n, U, - are executed as logic operations such as AND, OR, and NOT. 
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procedure ReachableStates (So) 

So: the set of the initial states of FSM 

PS: the set of present states 

NS: the set of next states of PS 

RS: the set of reachable states from So 

begin 

PS :=So; 

RS:=So; 

while (P S -j. 0) do 

NS := {5(q,a) I q E PS, a E ~}; 

PS := NS \ RS; 

RS := RS u NS; 

end while ; 

return RS; 

end 

Figure 5.1: Analysis of reachable states from the initial state. 
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Next, we define state sets RS~ (~ RS) where the value of register r docs not change 

during k clock cycles. In other words, when starting frorn a state in RS~ , the value of 

the register does not change for all possible input sequence with length k. Forn1ally, state 

sets RS~ is defined as follows. 

Definition 5.6 The set of states where register r does not change during k clock cycles , 

RS~, is: 

0 

Proposition 5.1 RS~ (k = 0, 1, ... ) have the following property. 

RS = RS~ = RS~ ~ RS; ~ RS; ~ RS~ ... 

0 

Let Kr be the maximum number of k such that RS~_ 1 #- RS~. Note that, if there is a 

strongly connected sink component in the transition relation, where the value of r is the 

same in all the states, then RS~ = RS~+1 #- 0 with some k. Otherwise, RS~ = 0 with 

some k. 

Lemma 5.1 The following formula holds with k > 2. 

RS~ = {q I q E RS~_ 1 , \fa E ~' 5(q, a) E RS~_ 1 } 

Proof: ( ~) Let q be an element of the set of the right side. Since q E RS~_ 1 , A; ( q, x) E 

{ok- 1 ,1k- 1 } for all x E ~k- 1 . Since q' = 5(q,a) E RS~_ 1 , A;(q',x) E {ok- 1,1k- 1
} for 

all x E ~k- 1 . Thus, for any w E ~k, there exist a E ~ and x E ~k-l s. t. w = ax and 

A; ( q, w) E { Ok, 1 k}. These lead to q E RS~. 

(~) Let q be an element of the set RS~, then q E RS~_ 1 . From the definition of RS~, 

for any axE ~k, A;(o(q, a), x) E {ok- 1, 1k- 1}. Hence, for any a E ~' 5(q, a) E RS~_ 1 . o 
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We show a procedure to compute the state sets RS~ for all k = 1, 2, ... , Kr based on 

Lemma 5.1. 

Step 1. Compute the set RS of reachable states from the initial state of FSM, and then 

let 

RS~ := RS. 

Step 2. Using the state set RS, compute the state set RS;, where 

Step 3. Using RS;, RS~ (k 2: 3) are computed as follows. We also compute Kr· 

k := 3; 

while CRS~_ 2 # RS~_ 1 ) do 

RS~ := {q I q E RS~_ 1 1\ \/a E I:: 6(q, a) E RS~_ 1 } 

k := k + 1; 

end while 

Kr := k- 2; 
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First, state sets RS~ and RS; are computed using symbolic state traversal in step 1 and 

step 2. Secondly, state set RS; is computed from RS;, and similarly, we can obtain 

state sets RS~, RS;, ... with Lemma 5.1 in step 3. Note that RS~ is computed until 

RS~_ 2 = RS~_ 1 . 

On the other hand, we define the set CS r of states where the value of register r has 

just changed. Formally, state set CS r is defined as follows. 

Definition 5. 7 The set of states where register r has just changed, CSr, is: 

D 
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The CSr can be computed similarly based on the symbolic state traversal. 

5.5 Detection of Multi-Clock Paths 

The interval of value changes in Definition 5.4 can be cmnputed as follows. 

Proposition 5.2 Let rin and r aut be registers. The interval of value changes from rin to 

r aut is k, when k is the maximum number satisfying the following condition. 

D 

The number k is computed as the procedure shown in Figure 5.2, where i is incrernented 

from 2 to Kr t while CSr· Cf:. RS~out. au tn • 

If k is equal to Krout, then the interval of value changes of the path is infinite. Note 

that this is the case when the destination register of the path never changes. 

If the interval of value changes on a paths is k 2: 2, then the path is a multi-clock 

path, and the allowable delay time of the path is the clock period multiplied by k. 

The procedure for finding all multi-clock paths is as follows. 

Step 1. Compute the reachable state set RS. 

Step 2. For each register r, compute CSr. 

Step 3. For each register r, compute RS~, for k = 2, 3, .... 

Step 4. For each register pair ( r in, rout), 

compute Interval(rin, rout) as shown in Figure 5.2. 

Let us evaluate the computation time of this procedure when it is implemented based 

on symbolic state traversal using OBDD. Let n be the number of registers, and #repetition 

be the number of repetitions in computing the reachable state set. The computation of 



82 
CHAPTER 5. TIMING ANALYSIS OF SEQUENTIAL LOGIC CIRCUITS 

WITH MULTI-CLOCK OPERATIONS 

procedure Interval (Tin, Tout) 

Tin , Tout: the registers With paths from Tin to Tout 

CSr : the state set where the value of Tin changes 
zn 

RS~out: the state set where the value of Tout does not change 

during i clock cycles 

k: the interval of value changes from Tin to Tout 

begin 

k := 2; 

while ( CSrin ~ RS~out) do 

if (k =Krout) then return oo; 

k := k + 1; 

end while 

return k- 1; 

end 

Figure 5.2: Analysis of the interval of value changes between registers. 
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RS in Step 1. is that of the usual symbolic state traversal based on OBDD, and the 

computation time is proportional to the #repetition. The cornputation time of Step 2. is 

proportional to n, and each CS r can be obtained with one OBDD operation on RS. Step 

3. is executed within n x #repetition steps, since k of RS~ is bounded by the #repetition. 

Step 4. is executed within n 2 x #repetition steps. 

5.6 Conclusion 

In this chapter, we have shown a method to detect multi-clock paths in sequential circuits. 

Multi-clock paths exist when input and output registers of the paths are guarded with 

waiting states. The delay time of the path can be greater than the clock period. 

In the detection of multi-clock paths, we use the symbolic state traversal to obtain the 

state sets with update cycle more than 2. 

The method proposed in this chapter can be applied to maximize the clock frequency 

of sequential logic circuits and to optimize the delay of some operations in logic synthesis 

systems. 



Chapter 6 

Conclusion 

In this thesis, we discussed design and analysis methods of VLSI logic circuits us1ng 

graph-based representations of Boolean circuits and functions. 

In Chapter 2, We have proposed two algorithms for the minimum cut linear arrange­

ment of p-q dags representing adder tree structures. The algorithms give systematic 

methods to construct VLSI layout of adder trees of any size using any counter compo­

nent . 

The first algorithm finds out an exact minimum solution through the dynamic pro­

gramming approach. We proved theorems showing that the minimum cut of a complete 

p-q dag is attained by an arrangement of almost planar graphs with small 'slippage' be­

tween each depths. We can reduce the search space based on these theorems. For fixed p 

and q, the algorithm calculates a solution within time and space O(n10
gp/q(

2p+q)) where n 

is the size of a given graph. The second algorithm is an approximation algorithm which 

calculates an arrangement with O(logn) cutwidth. This algorithm runs in O(nlogn) 

time . 

There is another application of the linear arrangement problems. In some approaches 

to VLSI circuit design, the logic elements are linearly arranged with small cutwidth, and 

then folded into a rectangular region. In the standard-cell method , for example, the logic 

elements are the standard cells each of which occupies rectangular area and usually has 
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the same height. In layout systems based on this scheme, at first the cells are placed 

in horizontal rows, and then the wires are routed in the channels between the rows. 

Development of these methods motivates the study of linear arrangement problems to 

abstract VLSI layout problems. 

In Chapter 3, we discussed the expressive power of graph-based representations of 

Boolean functions. We introduced Nondeterministic OBDDs and observed that some 

applications of OBDDs can be viewed as utilizing the power of nondeterminism in order 

to reduce the size of OBDDs. We sho·wed that the cutwidth of combinational circuits is 

related to the size of Nondeterministic OBDDs, so, methods for circuit partitioning can 

be applied to the reduction of Nondeterministic OBDD size. We also showed that OBDDs 

representing sum-of-product form can be regarded as a restricted form of Nondeterministic 

OBDDs. 

We have shown the potential of Nondeterministic OBDDs, but the size of Nondeter­

ministic OBDDs is affected heavily by how to introduce the nondeterministic variables. 

We have to develop methods for the construction to make full use of the effect. Some of 

the relationships of the language classes defined in the chapter are not settled. These are 

also interesting research topics in future. 

In Chapter 4, we focused on design methods for PTL circuits based on graph-based 

representations. In order to evaluate the merit to employ decomposed FBDDs instead of 

decomposed OBDDs, we showed statistics of the size of minimum OBDDs and minimum 

FBDDs for all functions of fixed number of variables. The results can be used for PTL 

synthesis as cell libraries. 

We also applied the exact minimization algorithm to benchmark circuits. Our possible 

future \\'Ork includes improvement of FBDD minimization algorithms, investigation of 

other classes of decision graphs, and, development of decomposition algorithm suitable 

for FBDDs. 

In Chapter 5, we described a method for timing analysis of sequential circuits with 

multi-clock operations, as an application of OBDD-based state traversal. Multi-clock 
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paths are typically due to the operations controlled by waiting states, where the prop­

agation of signals are waited on more than one clock cycles. \Ve showed a method to 

detect multi-clock paths by computing the interval of value changes between each pair of 

registers. The delay time of multi-clock paths can be greater than the clock period. The 

information of multi-clock paths can be used to maximize the clock frequency through 

redesign of the circuit in higher level, or automatic timing-driven optimization by logic 

synthesis systems. 
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