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Abstract

With the recent advances in V'LSI technology. the complexity of VLSI civcuits has grown
far from the level of the manual design. and design automation svstems have become
indispensable. This thesis discusses graph-based representations of Boolean cirenits and
functions for design and analvsis methods of VLSI logic circuits. We focus on layout
svnthesis of arithmetic circuits. Boolean function representation for circmt verification

and svnthesis. and timing analvsis of sequential circuits.

In Chapter 2. we deal with lavout problems of adder trees used in parallel multiple
operand addition. We introduce a class of graphs called p-¢ dag to represent the connection
schemes of adder trees. such as Wallace trees. VLSI lavout problem of an adder tree is
treated as the minimum cut linear arrangement problem of its corresponding p-¢ dag. Two
algorithms for minimum cut linear arrangement of p-¢g dags are proposed. One of the two
algorithms is based on dynamic programming, and calculates an exact minimum solution
within n?M time and space. where nois the size of a given graph. The other algorithm
is an approximation algorithm which calculates a solution with Oflog n) cutwidth. Tt

requires O(nlogn) time.

In Chapter 3. graph-based representations of Boolean functions are discussed. Ordered
Binarv Decision Diagrams (OBDDs) are directed acvelic graphs to represent Boolean func-
tions. OBDDs are widelv used because of the canonicity and compactness. but alternatives
to OBDDs for manipulating still large scale functions are needed for modern VLSI de-

sign. We introduce an extension of OBDDs called nondeterministic OBDDs (NOBDDs)
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and their restricted forms. NOBDDs are not canonical for representing Boolean functions.
but can be more compact than OBDDs. In applications of OBDDs where it is sufficient to
check satisfiability, we can use NOBDDs and reduce the required amount of storage. We
focus on two particular methods which can be regarded as using restricted forms of NOB-
DDs and show how the size of OBDDs can be reduced in such forms from the theoretical
point of view. First. we consider a method to solve satisfiability problems of combinational
circuits where the structure of cirenits is used as a keyv to reduce the NOBDD size. We
show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analvze
methods that nse OBDDs to represent Boolean functions as sets of product terms. We
show that the class of functions treated feasibly in this representation strictly contains
that in OBDDs and is contained by that in NOBDDs.

In C'hapter 10 we focus on exact minimization of Free BDDs (FBDDs) and their ap-
plication to the design of Pass-transistor Logic (PTL) circuits. FBDD is a well-stu ed
extension of OBDD with free variable ordering on each path. and can be less size than
OBDD for the same function. Boolean functions expressed as OBDDs can be directly
mapped to PTL eircuits. where each node of the OBDDs are replaced by a s ctor con-
sists of a pair of transistors. The total size of OBDDs (nur Her of nodes) corresponds
to the cirev  size. We investigate a method using FBDDs instead of OBDDs. We focus
on exact minimization of FBDDs and present statistics showing that more than 56% of
616126 NP N-equivalence classes of H-variable Boolean functions have minimum FBDDs
with less size than their OBDDs. We also applied the minimization algorithm of FBDDs
to the synthesis of PTL circuits for MICONC benchmarks and found up to 5% size reduction.

In Chapter 5. we deseribe a method for the timing analvsis of sequential circuits based
on svimbolic state traversal using OBDDs. We focus on the detection of multi-clock paths.
whose delay does not aftect the decision of the maximum clock frequency. Such paths are
typically controlled by waiting states. and the delay time of these paths can be greater
than the clock period. We propose a method to detect these paths based on the symbolic

state traversal.
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Chapter 1

Introduction

1.1 Background

With the recent advances in V'LSI technology. the complexity of VVLSI circuits has grown
far from the level of the manual design. and design automation syvstems have become
indispensable. Design problems of VLSI logic circuits involve combinational problems.
and graph-theoretical aspects of the problems are essential for developing efficient design
methods.

In this thesis. we deal with graph-based design and analvsis methods of VLS cireuits in
several design levels. We focus on layvout synthesis of arithmetic circuits, Boolean function
representation for circuit verification and synthesis. and timing analvsis of sequential
circuits.

The process of VLSI lavout design contains phases of logic cell placement and wire
routing among the cells. Automatic placement and routing systems are available nowa-
davs. In the modeling of the lavout design problems. grid model 1s adopted and the
lavout problems can be treated as graph embedding problems into grids[39]. The ma-
jor cost functions of embedding are the edge congestion and dilation. which correspond
to VLSI area and delav. Manyv optimization algorithms for graph embedding have been

proposed and the algorithins are put into practical use.



2 N CHAPTER 1. INTRODUCTION

For Tavout generation of anthmetic circuits. the lavout algorithms should make use
of the regularity of the circuits. When hardware algorithms for arithmetic operations
are discussed. the regularity of cirenits is often one of the measures for evaluation. The
regularity can be formalized as some special properties of the directed acvelic graphs
representing the structure of arithmetic circuits. Those properties can be utilized in
praph embedding algorithms.

The second topic of this thesis is concerned with graph representations of Boolean func-
tions. For the logic design and analvsis of VLSI circuits, representation and manipulation
of Boolean functions are major topies  In order to represent Boolean functions compactly,
directed acvelie graphs called Ordered Binary Decision Diagrams (OBDDs)[1. 5] have
been developed.

OBDDs have a reduced canonical form for each Boolean function. Many Boolean
functions we deal with in real design can be represented by OBDDs of feasible size. and
efficient operations on OBDDs are possible.  Because of these properties, OBDDs are
widely used in logic design.

A family of OBDDs can be regarded as a computational model. An OBDD is a re-
stricted form of branching programs. The computational power of size-bounded branching
programs have been studied[24]. and that of OBDDs have also been studied[19. 33]. Tt is
proved that logarithm of the size of branching programs roughly corresponds to the space
complexity of Turing machines. This relationship also holds between OBDDs and online
Turing machines.

With the inerease of available amount of computer storage. feasible size of OBDDs
have increased. However. manipulation of still large scale Boolean functions are required.
and new data structures have been songht. Several attempts have been done to overcome
the hmitation of OBDDs. Some of them propose extensions of OBDDs and others use
OBDDs in different ways than usual function representation. Theoretical analvsis of such
approaches is important for understanding the nature of the data structures.

Another topic on OBDDs is their direct implementation into transistor networks. Re-
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cently. Pass-Transistor Logic(PTL) circuits have been paid attention for the potential of
low-power and high-speed circuit implementation compared to CNOS cirenits. An OBDD
can be regarded as a network of 2-1 selector. Selector networks can be implemented in
PTL circuits by replacing cach selector by a pair of transistors.

Design flow for PTL circuits based on OBDDs have been studied[13. 8. Because
the size of the resulting PTL circuit 1s affected by the size of the OBDD expression.
minimization of OBDDs is important for small circuit area. In order to reduce the required
amount of storage, Free BDDs (FBDDs)[16] can be used instead of OBDDs. FBDDs are
well-studied extension of OBDDs with free variable ordering on cach path. and can be
less size than OBDDs. In order to make full use of FBDD expression, synthesis and
optimization methods for FBDD-based PTL circuit design are expected.

The last topic of this thesis is concerned with timing analvsis of sequential circuits
based on symbolic st: » traversal using OBDDs. Syvmbolic state traversal of sequential
circuits[14, 10, 7] is a major application of OBDDs. where the set of states and the
state transition relation are expressed by OBDDs. and state transitions are executed by
operations o OBDDs. The timing verification is basicallv the computation of delay time
of each path between registers in the circuits. and the svmbolic state traversal method

captures the dvnamic behavior of each path.

1.2 Objectives and Results of the Thesis

In Chapter 2, we deal with lavout problems of adder trees nsed in parallel multiple operand
addition. Multiple operand addition is ubiquitous in various digital syvstems, and mmulti-
plication is also performed by multiple operand addition of partial products.

We introduce a class of graphs called p-¢ dags. A p-¢ dag represents the connection
schemes of adder trees. such as Wallace trees. and the V'LSI Tavout problem of an adder
tree is treated as the minimum cut linear arrangement problem of its corresponding p-

¢ dag. Two algorithms for minimum cut linear arrangement of p-g dags are proposed.
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One of the two algorithms is based on dvnamic programming. It calculates an exact

YU time and space. where n is the size of a given graph. The

minimum solution within n
other algorithny is an approximation algorithm which caleulates a solution with O(logn)
cutwidth. It requires O(nlog n) time.

In Chapter 3. graph-based representations of Boolean functions are discussed. OB-
DDs are directed acvelie graphs to represent Boolean functions. OBDDs are widely used
because of the canonicity and compactness. but alternatives to OBDDs for manipulating
still Jarge scale functions are needed for modern VLSI design. We introduce an extension
of OBDDs called nondeterministic OBDDs (NOBDDs) and their restricted forms. NOB-
DDs are not canonical for representing Boolean functions. but can be more compact than
OBDDs. Tnapplications of OBDDs where it is sufficient to check satisfiability. we can use
NOBDDs and reduce the required amount of storage.

It is known that the size of OBDDs is related to the space complexity of deterministic
online Turing machines. We show that this relationship also holds between NOBDDs and
nondeterministic online Turing machines.

We focus on two particular methods which can be regarded as using restricted forms
of NOBDDs and show how the size of OBDDs can be reduced in such forms from the
theoretical point of view. First. we consider a method to solve satisfiability problems
of combinational circuits where the structure of circuits is used as a kev to reduce the
NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits.
Secondly. we analvze methods that use OBDDs to represent Boolean functions as sets of
product terms. We show that the elass of functions treated feasibly in this representation
strictly contains that in OBDDs and is contained by that in NOBDDs.

In Chapter . we focus on exact minimization of Free BDDs (FBDDs) and their ap-
plication to the design of Pass-transistor Logic (PTL) circuits.

In design flow for PTL circuits based on OBDDs. Boolean functions expressed as
OBDDs are directly mapped to PTL circuits. where each node of the OBDDs is replaced

by a selector consists of a pair of transistors. The total size of OBDDs (number of nodes)
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corresponds to the circuit size.

We investigate a method using FBDDs instead of OBDDs. We focus on exact mini-
mization of FBDDs and present statistics showing that more than 56% of 616126 NP\-
equivalence classes of H-variable Boolean functions have minimum FBDDs with less size
than their OBDDs. We also applied the exact minimization algorithm of FBDDs to the
svnthesis of PTL circuits for NMIONC benchmarks and found up to 54 size reduction.

In Chapter 5. we describe a method for the timing analvsis of sequential circuits
based on svmbolic state traversal using OBDDs. The clock frequency of a sequential
logic circuit is decided hased on the maximum delay of the combinational parts of the
circuit. Therefore. the precise estimation of the maximum delay is important in deciding,
the proper clock frequency. We focus on the detection of multi-clock paths. whose delay
does not affect the decision of the maximum clock frequency. Such paths are tvpically
controlled by waiting states. and the delav time of these paths can be greater than the
clock period. We propose a method to detect these paths based on the svmbolic state
travers:

In Chapter 6. the conclusion of this thesis and future works are stated.



Chapter 2

Mirimim Cut Linear Arrangemen’

of p-q Jags

2.1 ] t1 duction

Adder trees, such as Wallace trees, are schemes for parallel multip » operand addition.
Multiple operand addition is ubiquitous in various digital syvstems. and multiplication is
also performed by multiple operand addition of partial products.  Since multiplication
plavs an important role, development of a high-speed \V'LSI multiplier has been one of the
major research topics in the area of VLSI systems.

Parallel multiple operand adder schemes. and also parallel multiplier schemes, can be
put into roughly two categories: those with an adder tree. and, those based on iterative
arrav. [terative arrav schemes have been mainly used in fabrication because they have
simpler structure compared to adder trees. However. as the mumber of operands .V in-
creases. adder tree schemes become much faster because they operate in O(log V) time.
while iterative arrav schemes operate in O(N) time. For high-speed and large-scale op-
eration. therefore. adder tree schemes are attractive. Recently. these schemes came into
use for implementation.

Lavout generation of theoreticallv fastest adder trees has been considered to be diffi-
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cult becanse their connection network is nregular and complicated. Adder trees occupy
considerable area i multiple operand adders and multipliers. and the placement of par-
allel counters heavily affecrs the area. Therefore. it is important to develop an efficient
lavout method which can treat their complicated connections.

Several efficient lavouts for circuits with fast adder tree have been shown. For example.

S shows a favout for a niltipher with Wallace tree. [34] shows that for a multiplier with

an adder tree which uses 9-2 adders as counter elements. However. each of these lavouts
is only for a particular scheme with a particular operand length. Although some heuristic
methods are shown to be effective for circuit generation of multiplier-accumulators with
adder trees[28]0 no general Lavout algorithm which is applicable to anv of the schemes
with arbitrary minnber of operands has been proposed.

Vartons adder tree schemes with simpler structure and rather regular connection net-
work have heen proposed[10. 16]. However. they trade the depth for the regularity and
hence slower by a constant factor than optimal adder tree using the same counter ele-
ments. In this chapter. we are concerned with fastest adder trees using given counter
clenients and propose algorithins which are useful for the lavout generation of them.

With the increasing demand for development of ASICs including a high-speed parallel
multiphier with certain operand length. development of a general lavout method of such
multipliers has become more and more important. We are concerned with such a general
method.

We regard the VLSI Tavout problems as the graph embedding problems. Since adder
trees have bit slice structure. we may only consider the lavout of a bit slice. We can
treat the lavout problems of a bit slice as graph embedding problems to one-dimensional
mesh. Le. linear arrangement problems of a graph. We consider the minimum cut linear
arrangement problem of graphs which corresponds to the area minimization problem.

In order to represent the connection scheme of adder trees. we introduce a class of
eraphs called p-¢ dags. A pg dag is a directed acvelic graph which corresponds to an

adder tree with p-in g-out counter clements. Wallace tree can be represented by oa 3-2

2.2. LINEAR ARRANGEMENT PROBLEMS AND P’-() DAGS . 9

dag. We reduce the VLSI area minimization problem of adder trees to the minimum cut
lincar arrangement problem of its corresponding p-¢ dags. and propose two algorithins
for this linear arrangement problem. One of them is based on dyvnamic programming.
For fixed p and ¢. it calculates an exact minimum solution within time and space both
proportional to n'#« PO where n s the size of a given graph which grows linearly in the
nutber of operands. The other algorithm 1s an approximation algorithm which caleulates
a solution with O(log 1) cutwidth. Tt requires O(n log n) time.

This chapter is organized as follows: Section 2 contains prelimimaries and definition
of p-g dags to represent the adder tree structures. In scction 3. we observe the basice
properties of the linear arrangement of p-¢g dags. Section 1 gives an algorithm based
on dynamic programming. Section 5 gives an approximation algorithm. Section 6 is a

conclusion.

2.2 Linear Arrangement Problems and p-¢ Dags

2.2.1 Minimum Cut Linear Arrangement Problems

Let G = (V. E.¢d) be a directed graph. where 17 1s a set of vertices and 14 is a set of edges,
b = (0_.04). where 0.6, : ' — V. is the incidence function. Edge ¢ starts™ at the
vertex _(e) and “ends” at the vertex &, (¢). NMultiple edges can be treated exphcitly in
this description.

In linear arrangement of a directed graph. we treat the graph as an undirected graph.
bv regarding each (0_(¢). 0, (¢)) as an nnordered pair. Let (/ (V.E.0) be a finite
undirected graph. A linear arrangement of ;7 is a bijection LoV 5 {120 |V}

A partial linear arrangement L' of (7 is a linear arrangement of a subgraph G of &
(See Figure 2.1.) Let G" = (V' E.0"). V7 is called the length of L' and denoted by
length(L'). In order to simplify the notation. let L'(¢) = ~ for ¢ ¢ 170 V7 The dangling
cut of L' is the set of edges in E between V7 and 17 V7 Let L and L” be partial linear

arrangements of a graph G. L is said to be an extension of L', denoted by L7 < L' if



10 CHAPTER 2. MINIMUM CUT LINEAR ARRANGEMENT OF P-() DAGS
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Figure 2.1: Partial lincar arrangements of a graph.

length (L") < length (L") and for all v € Vs, L'(e) # oc. L'(¢) = L"(¢).
The cutwidth of partial linear arrangement L' of G at position 7 (1 < i < length(L")),

denoted by cwe (7). is the quantity
He e E1ole) = {ueh st L) < i< L'(v)}).
The cutwidth of partial linear arrangement L' of graph G denoted by cu ./ (G). is

max  cwe. ().
l< i< length(L)

The eutwidth of graph 0 denoted by cw (G). is the minimum cutwidth cw (G) of all
lincar arrangements 1, of (.

Minimum cut linear arrangenment problem of undirected graphs (MINCUT for short)
is defined as [15]: “Find a lincar arrangement of a given graph with minimum cutwidth.”

The following results on MINCUT problem are known.

o MINCUT is NP-Complete for general graphs [15].
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For graphs with cutwidth A. there is an O(n%) time algorithm for MINCUT [17].

For graphs with maximum vertex degree 3. MINCUT is still NP-Complete [21].

For trees. there is an O(nlog n) time algorithm for NIINCUT [12].

For complete A-ary trees. there is a linear time algorithm for NIINCUT [20].

2.2.2 p-g Dags and Their Basic Properties

In general, a multiplier with an adder tree consists of three parts. namely. a partial prodiet
generator. an adder tree for partial product accumulation. and a carrv-propagate-adder
for carry assimilation. The first part. the partial product generator. is a circuit to generate
a whole partial product matrix in parallel. Tt is basicallv a matrix of 1-by-1-bit multiplier.
i.e.. AND gates. Recoding methods. such as modified Booth recoding. are often used here
in order to reduce the size of the resulting matrix. The partial products are summed up
to two numbers in the next part, L.e.. in the adder tree.

Wallace tree[41] is a well-known adder tree scheme. In Wallace tree. the basic element
is a 1-bit full adder which produces a 2-bit binary number from three bits with the same
weight. A 1-bit full adder can be regarded as a 3-2 counter. In general. generalized
counters{35] can be used as the basic elements to construct an adder tree.

In order to represent the connection scheme of a bit slice of adder trees. we introduce

“p-q dags.”

Definition 2.1 A p-¢ dag is a directed acvelie graph satisfving the following conditions:
e There is one vertex, called a root vertex. with indegree at most p and outdegree ().
e The other vertices have indegree at most p and ontdegree exactly ¢.

Multiple edges are allowed. A vertex with indegree 0 is called a leaf. The height of a

p-¢ dag is the maximum length. i.e.. the number of edges. of the directed paths. a
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Figure 2.2: Complete 3-2 dags of height 4.

3-2 dags of height -bis shown in Figure 2.2, The root vertices are at the top. All edges
are drawn upward.

We are interested in the fastest accumulation schemes. i.e.. the schemes that acenmu-
late operands in minimum computation time (h). for a given type of circuit elements (p
and ¢) and the number of operands (V). For the sake of simplicity. we prove theorems
only for the cases that N is the maximum number for a value of h. We can treat such
cases by complete p-¢g dags defined below. The theorems in this chapter can be extended

to the case that .V is not a maximun.

Definition 2.2 \ complete p-¢ dag of height A is a graph with the maximum number of

vertices among p-g dags of height h. g

A complete p-1 dag is the complete p-ary tree. This definition is a natural extension
of the complete tree. Note that for given p.g and A, complete p-¢ dag of height A is not
unique i general. This corresponds to the fact that there can be various order of addition.
Both of the two dags in Figure 2.2(a) and (b) are actually complete 3-2 dags of height 1.

There can be various connection pattern for p.g and A. thus various order of addition.
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However. hecause addition is associative and commutative. any complete p-¢ dag repre-
sents proper adder tree. Thus we can select a p-¢ dag with good nature for embedding.
in generating VLSI lavout of corresponding adder trees.

Let G = (V. E.9) be a complete p-¢ dag. and ¢4 € V7 be the root vertex. The depth of
a vertex ¢ € 1 is the maximum path length from ¢ to ¢y and denoted by depth(e). Let
14 be the set of all vertices of depth d.

Let £, be the set of the edges out of depth d. i.c..
E, ={e € E|depth(s_(¢)) = d}.
and E; be the set of the edges into depth d. i.c..

Ej={cekE

depth(d, (¢)) = d}.
An edge ¢ € E is called a leaping edge if
depth(6_(¢)) — depth(d, (¢)) > 1.

Let R;(C E;). and RJ(C FEJ) be the set of leaping edges out of. and into depth d.

respectivelyv. The set of leaping edges through depth o is the set

d—1 h
_ t -
R-U U mon,.
1=0 j=d+1

Here we show basic properties of p-¢ dags.
Proposition 2.1 For a complete p-¢ dag of height h.
(a) for cach d. |Ry| <q— 1. |R;| <qg— 1 and |k, <q— 1.

(b) for each d. thf—l ((L;)d <yl < ((L[')d.

and

hi1 . K hod 1
: 1 < “ [ S (p ({g
— plg-1

N pog*tlpig)
(() ) ) g—
F Pq
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Proof : (a) W [Iy] ~ ¢. a vertex can be inserted at level  without changing the height.
This is contrary to the completeness. Thus the last inequality of (a) holds. The others

<Ry and R, ] < Ryl

are derived from |17
(b) V4] — 1 and [yl - 0. For fixed p and ¢. the infinite sequence ([Vo|. [Vi] V2] .)

is unique. that is. the following recurrence equations hold.
Vb = L Ve L+ 1R ) gl

Byl = (pVa ] +[Ry 1)) modq.

or. equivalently.

q WVl + [ Rl = p [Vaor| + [Ra-]
Therefore.

) ) Ri | — IR,
L A B
q q

d d d—1
P . P ‘Ri—I‘ - [R:’
— (£ n ST L )
(‘1> | 0‘Jri:1 <(1> q

d d— d—i
- (ﬁ)) _i(ﬁ) uuﬂfw
q = \y pg g
Using property (a).

b d d-1 D d- 1 p—q q— 1 D d
() "Z() (¢ —1) = —— <[lyl < ( :
q 1 \4 pPq q q

which leads to the inequality of (b).

(¢}« This is derived directly from (b) and V= Uh Vi a

2.2.3 p-q Dags and Connection Scheme of Adder Trees

We focus on the Tavout of the adder tree part. Typically. the adder tree part account for
the most of the circuit and their lavout heavily affects the chip area. We are concerned
with adder trees which ave theoretically fastest. including constant factor. among adder

trees using given counter elements. As fastest adder trees have complex connections. they

2.2. LINEAR ARRANGEMENT PROBLEMS AND I’-() DAGS 1D

are said to be hard to fabricate on VLSI chips.  Our algorithms can be used as a basis
for generating the lavout of adder trees with anv tvpe of generalized counter efficiently.
Adder trees have bit slice structure. We assume that basic circult components are
parallel counters. We can construct a lavout of an adder tree from a linear lavout of a
bit slice. In order to treat the problem formally. we adopt the grid model|39] as a VLSI

circuit model.  We can obtain a two-dimensional lavout by

(1) arranging parallel counters in a bit slice in a columun. and.

(2) placing copies of the column iteratively in a row and making connections.

In order to obtain a lavout of an adder tree with small arca. we have to construct
a lavout of the bit slice with small width in (1). In (2). we can construet a lavout by
either (a) placing copies of the same bit slice with enough number of counters iteratively
and then reducing redundant counters. or. (b) placing possibly different bit slices with
number of counters required for each row. If extra lavers for wires are available. the wires
can be routed on the above the parallel counters. Otherwise. they are routed hetween
bit slices of parallel counters. In both cases. the bit shice width is proportional to both
the size of the counter cells and the number of tracks used for wire routing. The cell size
can be considered as a constant. while the number of tracks for wires heavily depends on
the lavout. Once the placement of parallel counters is fixed. the wire routing can casily
be obtained. Therefore. the placement of the counter elements in a bit slice is the keyv
problem of lavout of adder trees.

In general. a generalized counter[35] which sums up » A-bit numbers to s d-bit mumbers.
where r > s and k& < d. can be used as a basic element of an adder tree. The connection

network of a bit slice (of A bits) of an adder tree made up of the generalized counters is

d

k}s) dag. since a d-bit number is fed to f;ﬂ counters. When the

represented by an (]
number of leaves of a p-¢ dag s 1. the corresponding adder tree accumulates [p operands.
The height i of the dag corresponds to the computation time of the adder tree.

Once a linear arrangement of a p-¢ dag i1s obtained. we can construct a lavout of
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adder tree. Figure 2.3(b) 1s an example of linear arrangement of the 3-2 dag shown in

Figure 2.3(a). This arrangement achieves cutwidth 5. which is the minimum. A lavout of

bit slices of I3-input adder tree shown in Figure 2.3(¢) is derived from this arrangement.
A box in the figure is a full adder which reduces 3 bits of the same weight to a 2-bit
number. A broken line box shows a bit slice. Two wires from outputs of a full adder
are drawn according to the edges which start from the corresponding vertex. One output
(sum) is fed to a full adder in the same bit slice and the other (carry) is fed to one in
the next bit slice. In this case. it is suflicient to feed each output to the next bit slice.
When o > 2k some of the outputs should be fed to bit slices which are not adjacent using
feed through wires.  We can put enough number of copies of this bit slice and reduce

redundant counters to construct a lavout of a 13-input multiple operand adder.

2.3 Minimum Cut Linear Arrangement of p-¢ Dags

In this section. we define problem PQMINCUT based on the problem MINCUT of ¢com-
plete p-g dags and show properties of this problem.

For  fining PQMINCUT. we ignore the directions of edges of p-¢ dags when we
mention cutwidth. Furthermore. we treat all complete p-¢ dags collectively in order to
find a dag with good nature for MINCUT. That is. for given p. ¢ and h. minimum cutwidth
is taken over arrangements not only of a fixed complete p-¢ dag. but all complete p-q dags
of height 2o Formally, PQMINCUT is defined as follows.

Definition 2.3 Problem PQMINCUT @ “For given p. ¢ and L. find a complete p-¢ dag G
of height hvand its lincar arrangement L. which provide smallest cutwidth cw, (G).” O
[n general. the search space of PQMINCUT for given p. ¢ and 7 is much larger than that
of MINCUT for a complete p-g dag of height h. However. the problem PQMINCUT is
of PQMINCUT. We look into the properties of PQMINCUT and make use of them for

linear arrangement algorithms.

2.3.

MINIMUM CUT LINEAR ARRANGEMENT OF I’-(Q DAGS

_
fe—-
j

Figure 2.3: A layout of 13-input adder tree.

P




18 CHAPTER 2. MINIMUM CUT LINEAR ARRANGEMENT OF P-() DAGS

We now see the properties of the minimum cut linear arrangement of complete p-¢
dags.

There are n' linear arrangements for a graph with n vertices. Therefore. the search
space of the problem POMINCUT is 1! times the number of complete p-¢ dags of height
L. We can use some properties of complete p-¢ dags to reduce the search space.

The next theorem states that we can reduce the search space of PQMINCUT to graphs

(; and their arrangements L owith the following properties.
(i) ¢ is almost planar. namely. planar except for leaping edges.

(i) L arranges the vertices in cach 1, in the "p nar order.” 1.e.. the fixed order for each
depth of the graph.

In other words. for anv arrangement L of a p-g dag of height A. there is an arrangement

of a p-¢ dag of height A (not necessary the original dag). which has the above properties.

with cutwidth not larger than that of L.

Theorem 2.1 For given p. ¢. and h. there is a solution of PQMINCUT, i.e.. a graph
G = (V.E.0) and its arrangement L. with the following property.

For each pair of edges ey.¢, € ELif

(a) depth(d, (ey)) < depth(0_(c,)) and
depth (S, (e4)) < depth(d ().

then.

(h) cither

(b2) L0 () < L(0_(¢y)) and
L6 (e2)) < L0 (1))

2.3. MINIMUM CUT LINEAR ARRANGEMENT OF P’-QQ DAGS 19

Proof - Let Gy = (V. E.dy) be a complete p-g dag of height . Let L be any linecar
arrangement with cutwidth « of GGy, We can construct a complete p-g dag (7 - (V. E20).
with cutwidth at most w under linear arrangement L. having the above property.

First. let (¢ := Gy. We take all pairs of edges of (7 satisfving (a). and redraw the edges

if needed. The procedure is shown in Figure 2.4 V. E. and L are not changed in this

procedure.
procedure Redraw Edges 1
begin 2
for each pair of edges (¢;.¢,) satisfying (a) do 3
if (ey.ey) satisfies neither (bl) nor (b2) then 4
swap 0, (e;) and 4, (¢y) 5
end 6

Figure 2.4: Procedure Redraw_Edges.

Let Gy = (V. E.§;) be the graph G at a point of time in this procedure. It is trans-
formed to graph G, = (V. E.§,) after one execution of line 5.

Suppose that (e;.e,) in Gy satisfies neither (bl) nor (b2). The operation in line 5
makes (€. ¢,) in Gy satisfv (b1) or (b2).

This operation does not change indegree and outdegree of the vertices. Because of the
condition (a). Gy remains acvelic and the height does not change. Thus the graph ¢, is
a complete p-¢ dag of height 1.

Suppose that (bl) is satisfied after the operation. Figure 2.5 shows all the four cases of
the transformation except for svimmetry. The horizontal lines represent an arrangement
and onlv the four vertices and two edges under consideration are drawn.

Because the cutwidth of L of &, differs from that of ¢y only in the location of edges



20) CHAPTER 2. MINIMUM CUT LINEAR ARRANGEMENT OF P-() DAGS
[ (] € €1
., - N =
O AC o n‘// ~ — KA\\A
A ((1) (5 (f;») (5?((1) 0 ((3) (5+((’2) 6,((1) (5,((‘_)) 6+((1)
€ U (] €] €y
2 N
& {en) oy (1) dy(e2) d_(e2) dy(€1) d_(er) o (e2) 9. (e2)
() {(b)
€ €1
o ot S \‘,; =0 o= /2\// - :\\\\A
o (er) Oy (e2) d (e2) d4(er) a_(er) d(e2) dy(e2) 6+ (e1)
. \Vg e
/ e T e T
& \c & \o = 6/ S
3 (1) Oy (er) o (e2) ds (e2) o—(e1) d_(e2) di(er) di(e2)
(¢) (d)

Figure 2.5: Operations in procedure Redraw_Edges.
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¢, and oy,

e, (1) = 2.
Cwe,r(l) = if max{L(d, (¢1)). L(or(er))} <i<min{L(ds (¢2)) L(ds, (¢2))}.

cwe, (7). otherwise.

Let “total squared edge length™ be the quantity
Q(G.L) = (L5 () = L(3. ()",
ek
() decreases by this operation. i.e., Q(G,, L) < Q(G,. L) .

Therefore, the operation does not increase the cutwidth and does decrease the total
squared edge length . The case that (b2) is satisfied is similar.

This operation is applied to all pairs of edges satisfving (a) to obtain final (/. Because
the total squared edge I gth decreases by one operation. a graph does not appear more
than once in the procedure. For the number of possible graphs is finite. the condition (b)
eventually comes to hold for all edge pairs satisfving (a).

Thus we obtain the transformed graph ;. Arrangement L of (i satisfies the condition,

and the cutwidth is at most w. (]

Let L' : V7 — {1.2..... [V} (V7 C V') be a partial linear arrangement of a complete
p-q dag G = (V. E.§) of height h. The out-of-depth-d-cut of L' of G at ¢ (1 <d < h.1 =

i< |V']) is the set

cutl (doi)y = {ee Eldepth(o (¢)) =d

and L'(0 (¢)) < i< L'y, (¢))}

The in-to-depth-d-cut of L' of G at i (0 <d <h 1.1 <7< V') is the set

cuti (doi) = {ce E|depth(o,(e)) =d

and L'(6.(e)) << L'(d (e))}
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Recall that for all ¢ ¢ V0V L (¢) = ~. We can describe the cutwidth of a lincar

arrangement Loat 7 (1 <7 < [V1) using these sets as follows.

h

cwe i) = Z(}(“/m(}.ll(r/. 0+ |eut (d = 1.0)])

d 1
Note that when (G0 L) has the property of Theorem 2.1, at least one of the sets cutf, ; (d.q)
and cut,(d - 1.7) is empty. This is because, if there are edges e, € cutf,, (d.4) and

¢y € cute, (d = 1.7). they satisfv (a) in Theorem 2.1. but can satisfy neither (b1) nor

(h2).

Theovem 2.1 points out that we onlyv have to treat the case that cach vertex set 15 is
arranged in the “planar order.” We can further assume that the slippage” between each

pair of depth is small.

Theorem 2.2 For given p. . and h. there is a solution of PQMINCUT. i.e.. a graph

(/= (V. E.0) and its linear arrangement L. such that. for any 7 € {1.2..... V| — 1} and

lcuty;  (doi)] < p.and

cutl (d+ 100 < p+ R,

Proof : Let Gy = (V. E.0) be a complete p-¢ dag of height 4. Let Ly be a linear
arrangement with cutwidth w of Gy, We can assume that Ly and Gy have the property
of Theorem 2.1 We can construct an arrangement L of G. with cutwidth at most w.
satisfving the above mequalities.

Let L' be the reverse arrangement of L defined as:

>

LAy = VI + 1 — Le) for all v € 1V

We rearrange vertices. from the depth £ — 1 down to the depth 0. so that each vertex is
placed near its adjacent vertices. Figure 2.6 is an algorithm for rearrangement.
Let us look into operations on ¢ of depth d. Suppose that ((. L) has the property of

Theorem 2.1 and let ¢y - cut , (doL(e)) and (4 = cut . g(d. L()).

2.3. MINIMUM CUT LINEAR ARRANGEMENT OF 7-( DAGS

procedure Rearrange Vertices
begin
G:=Gy; L:=1
for d from /I — 1 downto ( do
for each vertex ¢ ¢ 1, do
begin
while |cut,(d.L(¢))] > p do
begin /* move ¢ to the right */
find u such that L(u) = L{¢) +1
L(v):=L(v)+1; L(u):= L{u)—1
rece struct (G.L) by procedure Redraw Edges
end
while |cut_  x(d.L"(v))] > p do
begin /* move v to the left =/
find u such that L(u) = L{v)— 1
L(v):=L(v)—1; L(u):= L(u)+1
reconstruct ((GG.L) by procedure Redraw_Edges
end
end

end

Figure 2.6: Procedure Rearrange Vertices.
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Oy = cut g (doL(e))

Figure 2.7: Operations in procedure Rearrange_Ver es.

When the condition of the first *while” loop holds. i.e.. |('y] > p. then (', = (). This can
be proved as {ollows: If there exists an edge e, € (. then ey and any e; € ') satisfy the
condition (a) of Theorem 2.1, L(d_(eu)) < L(d_(e1)). and L(d4(e1)) < L(v) < L(04(e2)).
The former two imply L3, (e2)) < L(d, (¢;)) from Theorem 2.1 (b2). which with the last

leads to Ve e (LU C 04 (¢) — ¢ and therefore

(Vl} S -

Figure 2.7 shows a situation when || > p. The horizontal lines represent an arrange-
ment and the two vertices above the line are in depth d. Ouly the edges into depth d are
drawn. Because the number of edges from o (found in line 9 of the procedure) is at most
¢. |5 can inerease at most ¢ in one pass of the loop. Therefore. |Cy] < ¢(< p) holds when

the process exits the first ~while” loop. Hence the second “while™ loop is not executed.

Similarlv. if the condition of the second “while™ loop holds. [('] < ¢(< p) holds when

o
33

2.4. ALGORITHMS BASED ON DYNAMIC PROGRAMMING

the process exits the loop.
Each pass of the loop does not increase the cutwidth of G The operations for a vertex
in depth d do not destrov the inequalities of the theorem for depth d.d + 1. .. b
Therefore. the operations cau be applied from depth A — 1 down to depth 0. Thus we can
translate (G. L) with cutwidth at most w. satisfving the first inequality of the theorem.
The edges in cut,  (d 4+ 1.0)\ cuty, o (d.[V] = 1) are leaping edges from depth d + 1.

Therefore. the next inequality holds.
leutl  (d+1.0)] < jcut pr(d V= O+ (1)

This leads to the second inequality of the theorem. ()

2.4 Algorithms Based on Dynamic Programming

In - issection. we describe an algorithm  ased on dynamic programming for PQMINCUT.
The algorithm is fed p.¢ and h and vields a linear arrangement of a graph with the
minimum cutwidth.

Dynamic programming is a bottom-up method to solve various optimization problems
with decomposable structure. The MINCUT problem has a structure such that partial
linear arrangements with small cutwidth lead to the solution of the NMINCUT problem.
In order to utilize this structure, we define an equivalence relation among p-g dags and
their linear arrangements. Let L, and L, be two partial linear arrangements of p-g dags
of height h. G, and G. respectively. where length(L,) > 0 and length(Ly,) > 0. (G, L,)

and (Gy, L) are called “dangling cut equivalent.” if the next equations hold:

for all 1 < d < h.

|(:ut}:“‘,‘u(d, length(L,))| = [cuty, , (d length(Ly))] .

3

and

fcute, ;. (d = Vodength(Ly))| = lcute, ; (d = 1 length(Ly))! .

a
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Note that this implies lengtht L, ) - length(Ly). G, and Gy, are not necessarily isomorphic.
Let [((/L)] be the dangling cut equivalence class to which (G L) belongs. Let (G D)
be the set of pairs in [((. L)) which gives the minimum cutwidth.

The algorithm shown below searches alinear arrangement Ly, of a p-g dag (7, which
provides the minimum cutwidth. The search space of the algorithm is the set of dangling
cut cquivalence classes {{(GL L))} with (G L) having the properties in Theorems 2.1 and
2.2

(L 1)] can be represented by asset of 2/ values of cutwidths out-of and in-to depths
O to h.o e an h-tuple

(cioy. clog. . ... cioy )
where. cach cioy (T < d < h)is a pair
(leut o, (ddength (L)), |cut g (d — 1. length(L))]).

As we have noted. at least one of the values of cach cioy is 0 for (G.L) having the
property in Theorems 2.1, Thus possible pair of values of ciog for each d is at most
(prptyg—1+1)=2p+q) from Theorem 2.2

In order to find the minimum cutwidth. all we have to keep track of is

. v/
CWie Ly = min cwp (G
et (G LNe[(GLL)] (&)

for cach [((7.L)]. The algorithm starts at the arrangement of length 0. The vertices
are arranged from left to right. That is. in the /i-th stage. it constructs all [(G. L))
(length(L, ) — i + 1) from cach [(G. L)] (length(L,) = i) by extending L;. This procedure
is a traversal of the space shown in Figure 2.8 in a breadth-first manner. In this figure. cach
state is represented by a set of arranged vertices. and the next states with one new vertex
cach are examined. Figure 2.9 shows a rough sketeh of one step. € and (7 separating
the dag in the figure are dangling cuts of (G.L,) and (G.L;.)) respectively.  Tuples
of cutwidths corresponding to (" and (7 vepresent [(GL L)) and [(G. L)) respectively,

Here. for each cut ' cutwidths in the left and right of ¢ can be minimized independently.

2.4 ALGORITHMS BASED ON DYNAMIC PROGRAMMING 27

0
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{1.2} {1.3} e o Lond

\\‘{1\2\ }//

Figure 2.8: Search space of procedure Nincut.

Because of this good property. it is sufficient to keep all possible (G0 L,) of length / with
minimum cutwidth. in order to generate (G. L;. ;) of length /4 1 with minimum cutwidth.
CU((( L, ) are easily calculated from ewyer,,))- After the ([V] = I)-th stage, the minimum
cutwidth is obtained as cwi 1, (length(Lp) = [V]).

The procedure is shown in Figure 2.10. At lines 6 and 7. the number of classes
(G.L;)] (length(L;) = i) is the number of patterns of (cioy. cio,. .. .. cioy ). which is at
most (2p + ¢)". At line 8. vertices in each depth are tested. along with all possible
combinations of the numbers of leaping edges into and out of them. The munber of
classes [(G. Ly 1)) for cach [(G. L)} for each depth is at most (2p + ¢). which amounts
to (2p + ¢)h in total for all depths. Thus the number of iterations of innermost loop is
O((2p + ¢)h(2p +¢)"). We can use the quantity {12, |} and {|17; |} in Proposition 2.1 for
further reduction of the search space.

We have to keep cuy, for all [(GOL)] We also have to keep a pair (GLL) €
(G L)]pm for cach [(G.L)] to calenlate (Goun. Lo ). O02p + q)h(2p + q)") space is

sufficient to store these information.
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AN

|
J

o

C C’
0 g
[(G LZ')] [(G-sz’l)}

Figure 2.9: One step of procedure Mincut.

Therefore, for fixed p and ¢. this algorithm spends at most both time and space
O((2p + ¢)"h). simultaneously.

Together with Proposition 2.1(¢). we have the following theorem.

Theorem 2.3 For fixed p and ¢. MINCUT for complete p-¢ dags of heig h can be

. ©) . . .
solved in O(n'"#7P 44y time and space, where n is the number of vertices, O

An example is shown in Figures 2.11 and 2.12. Figure 2.11 is a complete 3-2 dag of
height 10. The edges are  rected upward and a bold line represents duplicate edges.
Figure 2,12 shows a minimum cut linear arrangement of the graph. The numbers in the
vertices are the level. and the ranking in each level counted from left in figure 2.11. We
can derive a lavout of a multiple operand adder based on Wallace tree scheme which
accununtlates [ operands.

If an upper bound of the cutwidth is given. we can further reduce the search space. In

the algorithm. it cw ;g is greater than the upper bound. extensions of L need not be ex-

2.4. ALGORITHMS BASED ON DYNAMIC PROGRAMMING

procedure Mincut(p.q.h)
begin
calculate |17
CW(((.Ly)| i= () where L, is the arrangement of length 0
cwi.py = X where L # L
for i from 0 to |1~ 1 do
for each [(G.L;)] Uength(L;)=1) do
for each [(G.L;y\)] Uength(L;y\) =1+ 1)
where 4G'. L'.L". s.t.
(G'. L") € (G L) in s
(G'"."L"y e (G.L; )], L' < L" do
if cwyar,,,) > cwir(G') then
CW((G Ly ) = cwp (G
/* cwpn(G') = max{cwyq.py. ot + 1)} */
return (Guin. L) € [(G.Lj )l
where L is an arrangement of length [}]

end

Figure 2.10: Procedure Mincut.
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procedure Approx mincut(p.q.h)
begin
fix a graph ( = (V. F£.0) satisfying Theorem 2.1
calculate V4. V5. ... 19
L := L, (the arrangement of length 0)
for / from 1 to || do
begin
if |eat) (holength(L))] > |q/2] then d:=h

else
begin
for d from /-1 to 1 do
if |cutl,, (d.-length(L))] > |%%] then goto a lvertex
if |cute, (O length(L))| > [p/2] then d:=0
else d:=h
end

add.vertex: /x extend L; length(L):= 1. */
L(v):=1, where  is the leftmost vertex in 1y,
which has not arranged yet
end
return /.

end

Figure 2.13: Procedure Approx_Mincut.
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using any counter component. We reduced the lavout area minimization problem of adder
trees to a graph problem. the minimum cut linear arrangement problem of p-¢ dags.

The first algorithm finds out an exact minimum solution through dyvnamic program-
ming approach. We proved that the minimum cut of a complete p-¢ dag is attained by
an arrangement of almost planar graphs with small “slippage” between cach depths. We
can reduce the search space based on these properties. For fixed p and ¢. the algorithm
calculates a solution within time and space O(n'%%r P79 where 1 is the size of a given
graph.

The second algorithm is an approximation algorithm which calculates an arrangement
with O(logn) cutwidth. This algorithm runs in O(nlog n) time.

The layout of adder trees such as Wallace tree have heen thought to be difficult because
of their complex connection scheme. However. we can construct VEST lavout of those
circuits efficiently by means of our algorithms.

We can construct algorithms similar to those shown in this chapter for the problem
MINSUNML which minimizes e total edge length. based on dyvnamic programming. It
1s easy to see that Theorem 2.1 and Theorem 2.2 for cutwidth also holds for total edge
length. The algorithm for MINSUM is obtained by keeping the sums of the edge length

of partial linear arrangements. instead of keeping the cutwidths.



Chapter 3

Computational Power of
Nondete~ministic Ordered Binary

Decision Diagrams

3.1 Introduction

Efficient representation and manipulation of Boolean functions are indispensable in var-
ious fields of computer science. Ordered Binary Decision Diagramns (OBDDs)[1. 5] are
directed acvclic graphs representing Boolean functions, which have been used for vari-
ous applications becanse of their good properties: 1) given a total order of the input
variables. OBDDs have a reduced canonical form for each Boolean function. 2) many
practical Boolean functions can be represented by OBDDs of feasible size. and 3) there
are efficient algorithins for Boolean operations on OBDDs.

With the increase of available amount of computer storage. feasible size of OBDDs
have been increased. However. requirements for manipulating still larger scale Boolean
functions are growing.

In some applications. it is not necessary to represent functions in canonical forms. In

this chapter. we introduce Nondeterministic OBDDs (NOBDDs) and observe that we can

35
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handle Tavger class of functions using NOBDDs, at the cost of canonicity, and that some
applications can be viewed as utilizing the power of nondeterminism from theoretical point
of view.

A family of OBDDs can be regarded as a computational model. The computational
power of size-bounded OBDDs have heen studied[19. 33]. They showed that logarithm
of the size of OBDDs roughly corresponds to the space complexity of deterministic on-
line Turing machines. We show that this relationship also holds between NOBDDs and
nondeterministic online Turing machines. Namelv., the class of functions computable by
polvniomial size NOBDDs is identical to the class of functions computable by logarithmic
space-bounded nondeterministic online Turing machines.

However. this relationship only gives the limit of applications of NOBDDs i general.
In this chapter. we treat two particular methods in practical applications that make use
of the expressions using the nondeterminismn of OBDDs. We investigate to what extent
thev utilize the nondeterminism introduced into OBDDs.

First. we treat a method to solve satisfiability problem of combinational circuits using
NOBDDs.

The size of OBDDs heavily depends on the total order defined on the input variables.
[t 1s known that the OBDD size is closely related to the circuit width. and when a lincar
arrangement of the circuit with width o is known. a variable ordering which gives OBDD
of size 20 can be derived[4. 23], The size of NOBDDs depends on the way of introducing
nondeterminisi. in addition to the variable ordering. In constructing an OBDD in order
to decide satistiability, Hamaguchi et al. proposed a method to decompose the given
circult into subcircuits and decides the variable ordering. based on the circuit structure
[18]. This decomposition can be regarded as introducing nondeterminism into the OBDD.
In this method. the OBDD size is related to the circnit cutwidth. defined as the cutwidth
of the cireutt as an undivected graph. which is a two-way counterpart of the circuit width.
In this chapter. we mvestigate which kind of functions can be treated feasiblv through

this approach. We detine the class of functions computable by circuits with logarithmic

3.2. PRELIMINARIES - 3=

cutwidth. and show that this class is strictly contained by the class of functions represented
by polynomial size NOBDDs.

Secondly. we treat a method that uses OBDDs to represent Boolean functions as sets
of terms[11]. i.c.. in sum-of-product form. Recently. varieties of OBDDs more suitable
for expression and manipulation of sum-of-product form formulas are proposed(25, 15].
In these representations. each path from the root node to the "I7 node corresponds to
a tern. Although OBDDs for these representations are not canonical with respect to
the functions. they have one-to-one correspondence with sum-of-product forms. In this
chapter. we show that these representations can also be regarded as restricted forms of
NOBDD:s.

This chapter is organized as follows. Section 2 gives fundamental definitions.  [n
Section 3. we show some methods that can be viewed as utilizing nondeterminism. and
observe the computational power of NOBDDs. In Section -1 we investigate methods
to construct NOBDDs based on circuit structure and relate the NOBDD size and the
circuit cutwidth. In Section 5, we investigate expressive power of OBDDs which represent

sum-of-product forn. Section 6 is a conclusion.

3.2 Preliminaries

3.2.1 Ordered Binary Decision Diagrams

An OBDD represents a Boolean function over {0. 1}, An OBDD is a labeled. directed
acyclic graph with a unique source node. called the root node. There are two sink nodes,
called the constant nodes. labeled by a Boolean value 0 and 1 respectively. Other nodes
are called variable nodes. Each variable node is labeled by one of the n variables and
has exactly two outgoing edges. O-edge and 1-edge respectively. On any path from the
root node to a sink node. cach variable appears as a label of a node at most once. The
order in which the variables appear is consistent among all paths. That is. the set of

variables {ury oy oL rytois ordered by a bijection 7@ {1.2... .. np {2000 ny. and if
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f = abc+ ab
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Figure 3.1: An OBDD representing f = abc + ab.

7(1) < 7(j). «; cannot appear before a; on any path. An OBDD representing f = abc+ab

15 shown i Figure 3.1.

When a set of value assignment for the input variables is given, the OBDD is traversed
from the root node to a constant node according to the assignment. The label of the

reached constant node is interpreted as the function value.

When a variable ordering is fixed. OBDDs have reduced canonical form. The reduction
is done by merging equivalent nodes and removing redundant nodes. The size. defined as
the number of nodes. of reduced OBDDs depends on the variable ordering.

We regard a family of OBDDs {D;}; o,

y. where D; represents a Boolean function

over {0. 1}, as a computation model which computes a Boolean function over {0.1}*.

3.2. PRELIMINARIES o

3.2.2 Complexity Classes of Functions

*

In this chapter. we treat onlyv languages over {0. 1}* and identifyv a language with its

characteristic function.

We cannot directly compare classes of functions based on OBDDs with those based on
Turing machines. This is because: 1) OBDD model is nonuniform. i.e.. we have to provide
different OBDD for each input size n. while one Turing machine can handle inputs of all
sizes, and it) OBDD size is affected by the input variable ordering. while the order of input
variables is fixed for Turing machine model. In this chapter. we choose nonuniform models
and allow variable ordering to be selected arbitrary by adjusting the Turing machine model

to the OBDD model. We can discuss similarly in other settings.

We give a definition of the classes of functions C/poly. which are nonuniform counter-
parts of classes C based on Turing machines with advice, where C is L.NL ete. X\ Turing
machine with advice is a Turing machine that has access to a special oracle. called advice,

A Turing machine with advice works as follows. Let f: W — {0.1}* be a function. f is

called an advice function. On input & of size [r]. f(|2]) is written on the special read-only

advice tape. before the computation starts. Then the computation proceeds as usual.

L/poly (NL/poly. respectively) is the class of functions computable in logarithmic
space bounded deterministic (nondeterministic) Turing machines with advice such that
the length of the string | f(n)! is bounded by n? . 1-L /poly and 1-NL /poly arve defined in
the same wayv except that the Turing machines are online. 1.e.. thev can read each bits on
the input tape only once in order. Note that the length of the advice tape is not connted

in the computation space and the online condition is not applied to the advice tape.

The class of complements of a class C. denoted by co-C. is defined as the class {1 ]
{0.1}7\ A eC}.

Next. we define permutation closure Il in order to deal with input variable ordering.

Let C be a class of functions defined by online Turing machines. The permutation closure
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In other words. while € is defined by Turing machines which read the input once in order.
[HC) can be defined by Turing machines which read the input once in the order which is
fixed for cach input size. We refer to this kind of machines as 11(C) machines.

We are interested in the characterization of functions representable by feasible size
OBDDs. ere. onr criterion for feasibilitv is polynomial size. ie.. the size within p@t"
where nis the input size. Let PolyOBDD be the class of functions representable by

OBDDs of polvnomial size. The next theorem is known.

Theorem 3.1 [19. 33] PolyOBDD = 11(1-L/poly) ]

3.3 Solving Satisfiability Problems Us ng ] mdeterministic OB-
DDs

In this section. we analvze methods to solve satisfiability problems using OBDDs and
observe that such methods can be regarded as using Nondeterministic OBDDs (NOBDD:s).

Satisfiability problem of formulas or circuits is a fundamental problem. In order to
solve satistiability problems. it is sufficient to construct OBDDs for the formulas or circuits.
because the reduced OBDD representing contradiction is unique.  However. it is not
necessary to construct complete OBDDs as long as we can check satisfiability easily. We
can reduce required amount of storage at the cost of canonicity of OBDDs. by decomposing

the function. or by introducing redundancy.

3.3. SOLVING SATISFIABILITY PROBLEMS USING NONDETERMINISTIC OBDDS 11

Recently. methods for manipulating Boolean functions without constructing whole
OBDDs for given functions are used. Let us observe the casiest case first as an example.
Let f be the function which we want to examine satisfiability. If f is decomposed into
subfunctions as f = fiV fy V-V fi. we can examine the satisfiability of [ Dby constructing
OBDDs for fi. fo.. ... fi and checking satisfiability of each subfunction. When the size of
OBDDs for each function is s;.8y. ... . sp. the size of OBDD for [ could be O(s; x s, x
<o x sg). If f s suitable for decomposition and the wav of the decomposition is good. the
OBDD size for fi. fo... .. fr 1s much smaller than that of f.

Next, let us cousider more general cases. Let f(F) be a Boolean function. Then

introduce new variables 7 in some manner and express f () as [(.7. ) such that.
F(F) = 35 F(7.9).

Note that f(F) is satisfiable if and only if f(F. ) is satisliable. The variable ordering
for {7. ¢} can be chosen arbitrary. On reduced OBDDs. satisfiability of '/;(.F. i), and
hence satisfiability of f(r). can be decided easilv. We can use this property in solving
satisfiability problems.

For some functions. the size of the OBDD for /‘(F 7) is much smaller than that for
f(7), if f and ordering of {7, 7} are selected carefully.

Our question is as follows: what is the condition for such methods to work efficient]v?
Here. we define NOBDDs in order to formalize the expression in these methods and

evaluate the expressive power.

Definition 3.1 An NOBDD is an OBDD whose variable nodes are labeled by either of
n variables or an V' svmbol.  While V' svmbols can appear arbitrarv. appearance of
the variables is restricted as usual OBDDs. Given an assignment. NOBDD is traversed
nondeterministically on each node labeled by an “v™ svinbol. If at least one path reaches a
constant node labeled by 1. the value of the function the NOBDD represents is determined

to be 1. and otherwise. determined to be 0. O
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The OBDD for f(./7. ) can be regarded as an NOBDD for f(r). it we regard the
variable nodes labeled by variables in i/ as nodes labeled by v

We consider how much the nondeterminism introduced here can improve the expressive
power of OBDDs. Theorem 3.1 states the expressive power of OBDDs. We show the
similar property for NOBDDs. The main idea is the same as n 24]. where other stronger

models are studied. Let PolyNOBDD be the class of functions representable by NOBDDs

of polynomial size.

Theorem 3.2 PolyNOBDD = 11(1-NL/poly)

Proof: Let o be the tuput size. First. we simulate an NOBDD D by a I1(1-NL/poly)
Turing machine M. The deseription of the NOBDD for input size n (encoded in binary
string) is given as the advice. The advice is a function of n and the length is polynomial
in 1. M starts at the root node of D and traverse the graph. On the nodes labeled by
a variable. M reads the input value and traverses the corresponding edge. On the nodes
labeled v V. M traverses both outgoing edges nondeterministically. O(log n) space 1s
sufficient in order to store the current node number and to find the next node. as the
description of D is given as the advice. In the computation. the order M reads the input
bits is fixed for each mput size.

Conversely. we simulate a TL(1-NL/poly) Turing machine by an NOBDD. We assign
a node of OBDD for cach configuration where 1) an input bit is read. or ii) a nondeter-
ministic branch occurs. Each node corresponding to a read configuration (case 1)) has
the corresponding variable as its label. Each node corresponding to a nondeterministic
branch (case ii)) has a "V as its label. The edges are assigned according to the transition
relation.  The number of nodes is at most polvuomial in 7 becanse there are at most
polviiomial number of configurations. The order in which variables appears is fixed for

cach input size. O

Similar discussion is possible for the case that conjunctive quantifiers are allowed.

where the corresponding elass is H(co-1-NL/poly).

3.4. COMBINATIONAL CIRCUITS WITH SMALL CUTWIDTH 13

Since T 1-L/poly) C 1L I-NL/poly). we can sav that introduction of "V nodes properly
boosts up the expressive power of OBDDs at the cost of canonicity.

However. in order to utilize the nondeterminism. heuristic methods for constructing
NOBDDs. in particular for introducing "V’ nodes and ordering variables. are required,
In the next two sections. we show two particular cases where subelasses of NOBDDs are

constructed by taking the structure of instances into account.

3.4 Combinational Circuits with Small Cutwidth

In this section. we show that, when combinational circuits are given. we can partly get a
clue to minimize the NOBDDs of the functions the cireuits compute. from the structure
of the circuits.

It is well-known that the width of circuits correspoud to the space of deterministic
Turing machines[30. 12]. As OBDD size is also related to the space of Turing machines.
OBDD size can be estimated from the width of the circuit which computes the funetion[ .1
23].

Hamaguchi et al. showed a method for equivalence check of combinational circuits
using OBDDs with redundant variables[18]. This method can be regarded as constructing
NOBDDs for given circuits. In this method. the given cirenit is partitioned into modules
so that the modules are arranged in line and the interconnection wires exist only between
adjacent modules. Then redundant variables are inserted and an OBDD with redundant
variables is constructed from the OBDDs for ecach modules. The size of the resulting
OBDD is related to the number of interconnection wires.

In this section. we evaluate the class of functions on which this method can work
efficientlv with respect to the OBDD size. We introduce circuit cutwsdth. a measure
similar to circuit width. and relate it to the space of Turing machines.  Because the
space complexity of nondeterministic online Turing machines corresponds with the size of

NOBDDs as shown in Theorem 3.2, we can obtain a relationship between cireuit entwidth
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