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Abstract 

This dissertation is concerned with iterative learning control, which was 

originally developed as a trial-based control method for robot rnanipulators 

to track a given trajectory defined on a short t i1ne interval precisely and 

repeatedly. One of the most effective method of iterative learning control is 

a method utilizing adjoint systems, which is based on the gradient method. 

Some experimental results has shown its advantage. In this dissertation , 

convergence of this type of iterative learning control is theoretically discussed 

for linear systems. 

First, iterative learning control using adjoint system for linear continuous

time systems is discussed. We demonstrate its convergence and express the 

convergence conditions as conditions of system matrices or transfer matrices 

for applications. Moreover , convergence rate of the iterative learning control 

is presented. We also discuss relationship between convergence rates and 

robustness of the iterative learning control against measurement noise , per

turbation caused by initialization errors etc. A modification of the iterative 

learning control is proposed for the robustness. 

Second, iterative learning control for sampled-data system is discussed. 

Since iterative learning control is a method to obtain the desired input from 

the output, its performance is determined by the inverse system. On the 

other hand , it is not trivial to discuss stability of the inverse system or zeros 

of sampled-data system on the short-fixed continuous-time interval because 

both the zeros and the number of sample points are determined by the sam

pling period. We examine limiting properties of the inverse sampled-data 

system on the finite continuous-time interval to determine whether it is pos

sible or not to formulate iterative learning control as a minimization problem 

of the output error at sample points. We present a affirmative result which 

is independent of stability of zeros. 

Finally, iterative learning control for linear discrete-ti1ne systems is dis-
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cussed based on the results of the preceding chapters. It is formulated as a 

minimization problem of the Euclidean norm of the output errors. As is done 

for the continuous-tirne systems, the gradient method is applied to iterative 

learning control and a method using adjoint systems is developed. Frorn an 

application viewpoint , convergence conditions are discussed for discrete- t ime 

systems with structured uncertainty or with parameters given as intervals. 
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Chapter 1 

Introduction 

1.1 Iterative Learning Control and Its Brief 
Review 

Industrial robot manipulators are often required to track a given trajectory 

defined on a short time interval precisely and repeatedly. However, it is dif

ficult for conventional servo systems to satisfy this requirement because the 

effect of transient response cannot be ignored over the short tirne interval if 

feedback controllers are employed. On the other hand, if fcedforward con

trollers are introduced, effects of uncertainty of the systern model emerge. In 

order to overcome these difficulties, a control method called iterative learning 

control has been developed by robotics researchers[l). The basic idea of the 

method is described as follows. Consider a robot manipulator, which can be 

set to a fixed initial condition and is required to yield a fixed trajectory Yd 

defined on a finite time interval [0, tf], repeatedly. Let~ be its input-output 

mapping with the sa1ne initial condition. Then the output trajectory y E Y 

for an input function u E U can be denoted by y = ~u where Y and U are 

classes of functions defined on [0, t f] . Iterative learning control uses recursive 

iteration, including trial operation on the real systern, so that the output 

function y converges to the desired trajectory. (see Fig.l.l) 

Step 1 Give an input function u E U to ~. 

1 
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Figure 1.1: Iterative learning control algorithm 

Step 2 l\Ieasure the output trajectory y = L:u. 

Step 3 Substitute u by F(u, e), where e = y- Yd and F:U x y ----t U. 

Step 4 Reset the initial condition. Go to Step 1. 

Assume that F ( u, e) is chosen so that 

1/ek(t)JI = /lyk(t)- Yd(t)JI ----t 0 or the minimum value (1.1) 

as k ----t oo where /1 · II indicates a functional norm on [0, t 1] and k denotes an 

index of the iteration. Then, naturally, such iteration is equivalent to numer

ical algorithms for solving the functional equation Yd = L:u or to methods for 

minimizing the norm of y - Yd· However, it is possible to apply those algo

rithms or methods only if 2:: is completely known. Therefore, the problem of 

this control Inethod is to determine the revision mapping F ( u, e) at Step 3 

when only partial information on 2:: is available. 

As stated abo,·e iterative learning control has been developed as an ap

proach to the problen1 of fast and precise servo syste1ns for robotic manip

ulators. One of the first ideas of iterative learning control was presented by 

Vchiya1na [2]. He studied updating algorithm 

( 1. 2) 

3 

where A is a matrix and ek(t) = [L:uk](t)- Yd(t). Convergence of the algo

rithm was discussed in the frequency domain hy using approxirnat.ions. Ad

vantage of introduction of the method was demonstrated experi1nentally for a 

mechanical arm. Subsequently, Arimoto and his research group investigated 

more general class of iterative learning control algorithms both theoretically 

and experimentally. They examined so-called PID-type algorithn1s 

(1.3) 

applied to linear systerns or nonlinear systems where Ai ( i = 1, 2, 3) is a ma

trix [3, 4, 5]. Bondi et al. [6, 7] also investigated similar algorithrns for robotic: 

manipulators. Convergence of those algorithms were proved theoretically for 

a class of nonlinear systems including robotic manipulators [8 1 9, 10, 11]. 

However it was pointed out that r in the algorithm (1.3) rnust include a 

differential operator in order to apply the algorithm to wider class of plants 

(12, 13] . Complete differential operation cannot be implemented on physical 

systems; it can be realized only approximately. Approaches to improvenH'nt 

of applicability to a larger class are exarnined also frorn a diflrrent viewpoint. 

Moore et al. [14] or Mita et al. [15, 16] discussed relaxation of the require

ment (1.1) to the algorithm. They showed that the application class of the 

algorithm can be improved by replacing the limit 0 or the minimum value in 

(1.1) with a neighborhood of them. It was also demonstrated hy Hrinzinger 

et al. [17, 9] and Arimoto [8] that such relaxation improves robustnPss of the 

algorithm against measuren1ent noises, initialization errors and fluctuations 

of system dynamics. 

On the other hand, Inoue et al. [18] proposed repetitive control as a pre

cise tracking control rnethod for a proton synchrotron magnet power supply, 

whose desired trajectories are periodic. Since repetitivr control rrcords the 

output errors and delay them to utilize for adjusting thr input, it seems to 

be based on the same idra as iterative learHing control. However. repeti

tive control is essentially different from iterat ivr learning control since the 
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former include no reset operation of the initial condition at each t 1 period. 

Stability and tracking perforrnance of repetitive control were discussed on 

the infinite time horizon or the frequency domain independently of iterative 

learning control [19, 20, 21, 22]; its application was also developed [23]. 

One of the most distinctive feature of iterative learning control is reset 

operation of the initial condition at each t 1 period, which is not included by 

repetitive control. This makes it possible to choose a non-causal operator as 

the r in the algorithm (1.3) since the input function can be updated off-line; 

some researchers noticed the fact. Togai et al.(24] and Saab [25] studied algo

rithms for linear discrete-time systems, which utilize the output error at the 

one-step forward time. Kurek et al. [26] discussed sirnilar algorithms in the 

context of 2-D systen1 theory. Togai et al. [24] applied the steepest descent 

method, Newton-Raphson method and Gauss-Newton method to determi

nation of the optimum r in the algorithm. Furuta et al. [27, 28] examined 

one of the rnost effective non-causal methods based on the gradient method 

in functional spaces, which utilizes adjoint systems. Since the algorithm is 

a generalized version of numerical optimization methods, it can be applied 

to any system provided that the system model is completely known. It has 

been shown experimentally that even if only partial information on the sys

tem rrwdel is available, the algorithm can be applied to a more general class 

of systems than the PID-type, and moreover that the scheme is easily real

ized with digital controllers[28]. However, convergence of the algorithm was 

discussed only in the frequency domain, which is useless when one deals with 

non-causal systems defined on the finite time domain. 

1.2 An Overview of the Dissertation 

In this dissertation, we discuss iterative learning control using adjoint systen1s 

for linear systems, convergence of which has not shown theoretically. \Ve 

present its convergence conditions in order to give design n1ethoclologies of 
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the algorithrn for linear syst(")rr1s with uncertainty. :Vloreovcr, we discuss 

iterative learning control for sarnpled-data systems, especially non-rninirnum 

phase systems. Design rnethods of iterative learning control is also presented 

for linear discrete-tirne systems. 

Chapter 2: Iterative Learning Control for Linear 

Continuous-Time Systems 

In this chapter, we discuss iterative learning control for linear continuous

time systems. As stated in the preceding section , iterative learning control 

is regarded as iterative methods to solve functional equations or minirnize 

functional norms. However , conventional numerical methods cannot be ap

plied to iterative learning control because those methods require the precise 

system models. The main topic of iterative learning control is how to de

sign the method when there is uncertainty of the systerns model. In this 

chapter, based on the gradient method in the functional spare , we propose 

an algorithm of iterative learning control for linear continuous-tirne systern 

with uncertainty. The algorithm utilizes the adjoint system of the nominr~l 

system for updating the input function. We present a convergence condition 

of the algorithm, which is expressed as strictly coerciveness of the operator 

that represents uncertainty of the system. l\!Ioreover, for convenirncr of the 

application, the condition is transformed into the strictly positive real (SPR) 

condition of the transfer function; a design methodology of iterative learning 

control for linear time-invariant systems is given based on the SPR condition. 

We also discuss the convergence condition for linear tinw-invariant systrn1s 

with structured uncertainty, namely the systern panuneters are given as in

tervals where the pararneter exist. Next, fr·orn an application vic\vpoint , 

we discuss relaxation of the convergence conditions, especially the conditioll 

irr1posed on the desired trajectory. vVe demonstrate that the relaxation pre

serves uniform convergence of the output to the desired trajectory. Finally. 
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some numerical examples are presented to illustrate the iterative learning 

control and the design methodology proposed in this chapter. 

Chapter 3: Convergence Rate and Robustness of Iterative 

Learning Control 

In this chapter, \Ve discuss convergence rate of iterative learning control 

and its relation with robustness against measurement noises , initialization 

errors, fluctuations of system dynamics etc. First, we demonstrate that con

vergence speed of iterative learning control should be of exponential functions 

from robustness point of view. It is shown, however, that it is impossible to 

give such algorithms for linear continuous-time systems provided that we 

consider the minimization problem formulated in the previous chapter as the 

problem of iterative learning control. In order to overcome this difficulty, we 

modify the functional to be minin1ized by introducing a so-called regulariza

tion term. vVe present a design method of iterative learning control with the 

regularization term. From an application viewpoint of the iterative learning 

control, we also discuss properties of the minimizer that the input function 

converges to. 

Chapter 4: Iterative Learning Control for Sampled-data Systems 

and the Inverse Systems 

The continuous-time system discussed in the preceding chapters was de

fined on the finite time interval. Since the time interval is short for most 

applications of iteratiYe learning control, stability of poles and zeros of the 

system transfer functions is not considered. On the other hand, for implemen

tation of iterative learning control, it is necessary to record input functions 

or the measured output functions and process those functions repetitively. 

Therefore, it is convenient to in1plement the iterative learning control with 

a sampler, a hold and digital computers. In this case, however , we have to 

to consider stability of poles and zeros of the discrete-time system because 
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the number of the sarnple points or the disc:r<'te-tirne interval increases on 

the fixed continuous-time interval as the sampling period approaches 0. In 

this chapter, we consider iterative learning control for sampl<'d-uata systc1ns 

with a 0-order hold and a sampler which have the sarne sampling period. It 

is known that zeros of the transfer function of sampled-data systerns have 

no simple relationship with zeros of the original continnous-tirnP systPrns; 

unstable zeros of the sampled-data systen1s are con1mon even if there is no 

unstable zero of the continuous-time system. vVe discuss effect of those zeros 

to inverse systems and iterative learning control for the sarnpled-data systrrn. 

It is demonstrated that, contrary to intuitive expectation , unstable ZC'ros do 

not cause divergence of the inverse system when the sampling period goes 

to 0 as far as relative degree of the transfer function of the continuous-timr 

system is 0, 1 or 2. It is shown that this property implies one can define 

iterative learning control for sampled-data systems as a 1ninin1ization prob

lem only on the sample points; the ripple on the inter-sa1nple points can b<' 

reduced by shrinking the sampling period. Those results are illustrated by 

numerical examples. 

Chapter 5: Iterative Learning Control for Linear Discrete-ti1ne 

Systems 

In this chapter, in order to develop iterative learning control for linear 

sampled-data system, we discuss iterative learning control for linear discrete

time systems as minimization problems in finite dirnension vector spaces. 

This is supported by the result given in the preceding chapter. First , we 

present iterative learning control using adjoint systems , which is based on the' 

gradient method in the vector space. As is given for the case of continuous

time systems in Chapter 2, convergence conditions of the rnethod are pre

sented as strictly positive real condition of a systr1n which represent uncer

tainty of the syste1n. ~1oreover, we al o discuss the convergence' condition 

for linear ti1ne-invariant ystems with uncertainty whrn the systern par am-
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eters are given as intervals where the parameter exist. Finally, the iterative 

learning control and its design are illustrated by examples. 
Chapter 2 

Iterative Learning Control for 
Linear Continuous-Time 
Systems 

2.1 Introduction 

In t his chapter , we discuss iterative learning control using adjoint systerns 

for linear continuous-time systems theoretically and demonstrate its conver

gence. As stated in chapter 1, iterative learning control can be regarded 

as iterative methods to solve functional equations or minirnize functional 

norms. However, conventional numerical methods cannot be applied to it

erative learning control because those methods require the precise systcn1 

models. 

In t he following sections, first, we formalize iterative learning control using 

adjoint systerns and then present convergence conditions for linear syste1ns 

with uncertainty. Second, t hose conditions are transferred to conditions on 

system matrices for convenience of application . We also give convergence 

conditions for single-inpu t si11gle-output linear time-invariant systerns with 

structured uncertainty. Ivloreover, relaxation of the convergence' con eli Lio11s 

is discussed, again from an applications viewpoint. Finally, sorne rnnnerical 

examples are presented. 

9 
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2.2 Convergence of Iterative Learning Con

trol Using Adjoint Systems 

Consider a linear tin1e-invariant systr1n 

d 
dt x( t) 

y(t) 

A(t)x(t) + B(t)u(t) 

C(t)x(t) + D(t)u(t) (2.1) 

defined on the finite tin1e interval [0 1 tJ] where u E Rm, x E Rn andy E RP. 

A(t) , B(t) , C(t) and D(t) are cornpatible rnatrices consisting of continuous 

functions oft E [0 , t1]. If an initial condition x(O) and a continuous function 

u(t) are given , then y(t) is uniquely detern1ined as 

y(t) = h(t) + [Su](t) 

where 

h(t) = C(t)R(t, O)x(O) , 

[Su](t) = fa' C(t)R(t, a )B(a)u(a )da + D(t)u(t) (2.2) 

and R(t, a-) is a n x n matrix of continuous functions oft and a-. Consider 

L 2 space of Rm-valued functions, 

where T denotes the transpose. Then S defines a linear operator 1napping 

L;n[o t1] into L~[O, t1]. The inner product and the norm in L;n[o, t1] are 

defined as 

and 

respectively. \\Then there is no possibility of confusion about the din1ension , 

the superscript of L;n[o, t1] is mnitted. The induced nann , the range and 
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the null space of an operator K: L2 [0 , t1]--+ L2 [0 , t1] arr expressed as jj J(j j, 

R(K) and N(K), respectively; the adjoint operator is denoted by K *. 

Let us consider the problern of rnaking the output of the systen1 (2.1) 

track a desired output trajectory Yd E L2 [0 , t f] precisely. Then an ideal 

input function is u* E L2 [0 , t f] satisfying Yd = h + Su*. However. u* can Le 

known only if the system model (2.1) is completely known. In this paper , we 

will develop an iterative method to obtain u* with the following assurnptions: 

1. The initial value is always the same x(O). 

2. One can measure the response y = h + Su for any input function u. 

Since these assumptions imply that Yd- h can be substituted for Yd· without 

loss of generality, it is assumed that x(O) = 0 or h = 0 in the following 

discussion. Therefore , we will discuss the functional equation 

Suppose that (2.1) is a partly unknown system and can br decornpos0cl 

into an unknown systern and a known system as follows: 

and 

d 
-~(t) 
dt 

TJ( t) 

d 
-x(t) 
dt 

y(t) 

E(t)~(t) + F(t)u(t) 

G(t)~(t) + H(t)u(t) 

A(t)x(t) + B(t)r;(t) 

C(t)x(t) + D(L)r7(t) 

(2.3) 

(2.4) 

with ~(0) = 0 and x(O) = 0 where 7J E Rm and elcrr1rnts of 1natrices arc 

continuous functions oft E [0 t 1]. Then 

(2.5) 
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where S and U are defined in thr same way as S in order to represent input

output mappings of (2.3) and (2 .4), namely 

17 Uu 17, u E L;n[o, t1] 

y Sr7 y E Li[O, t1], 77 E L;n[o, t1], 

respectively. (sec Figure 2.1) The next theore1n presents an iterative algo

rithm using S instead of the unavailable S. 

I s I I ~ 

~I I ~I /\. u s 

Figure 2.1: Decomposition of S 

Theorem 1 Suppose that there exists vd E L2 [0, t 1] such that 

and U is strictly coercive, namely 

(Ur7, 77) ~ JJII'711~ (2.7) 

for any 17 E Li[O, t f] where B is a positive constant. Then the sequence 

{ uk: k = 0, 1, · · ·} generated by 

(2.8) 

with 

uo E R(S*) (2.9) 

satisfies 

llu~,;- S*udll2 -t 0 

as k -t oo where the constant a is chosen as 0 < a < 2/) /II SU II 2 . 
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Proof: Since (2.8) with (2.9) implies Hk E R(S*) for k = 0, 1, · · ·, there 

exists a unique vk E N(S*)l_ such that uk = S*vk where N(S*)l_ denotes 

the orthogonal complement of N(S*). Furtherrnore, (2.6) irnplics that there 

exists a unique vd E N(S*) l_ such that S*vd = S*vd. Therefore , (2.8) with 

(2 .5) implies 

(2.10) 

Since R(S) ~ R(S) = N(S*)l_ where R(S) indicates the closure of R(S), we 

have 

Hence, (2.10) implies 

(2.11) 

From this equality and (2. 7), we have 

iivk+1- vdll~ < llvk- vdll~- 2atJIIS*(vk- vd)li~ + a2 IISUS*(vk- vd)li~ 

< llvk- vdll~- a(2j)- aliSUII 2 )iiS*(vk- vd)li~ 

Since a(2jJ- aliSUII2) > 0 and { llvk- vdll~; k = 0, 1, ··-}are bounded frorn 

below, we establish 

(2.12) 

ask-too. • 
Remark 1 If S = S or U = I (the identity operator) then the alyorithnt 

(2. 8) is equivalent to the Landweber-FTidman rnethod{29} oT one of the gra

dient methods such as the steepest descent method{30}. The condition (2. 7) 

gives a maTgin of the convergence of the iteTation joT the systern (2.1) with 

unceTtainty. 
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The operator S* corresponds to an input-output mapping of the systen1 

d 
dtp( t) 

17( t) 

-AT ( t) p ( t) - (;T ( t) y ( t) 

f3T(t)p(t) + fJT(t)y(t) (2.13) 

with the initial condition p( t f) = 0, as is shown from an identical equation 

Therefore, the function S* (Suk - Yd) in the algorithrn can be obtained by 

numerical calculation of the response for each error function Suk - Yd· Note 

that (2.9) can be satisfied by letting u 0 = 0. Then the algorithm (2.8) can 

easily be realized for a recursive process of iterative learning control as shown 

in Figure 2.2. 

u ----.---.. 
• 
I 

substitution 
I 

u s 

Figure 2.2: Iterative learning control using the adjoint system 

2.3 Convergence Conditions for Linear Time

Variant Systems and Linear Time-Invariant 

Systems 

Convergence of the algorithm is guaranteed for a partly unknown systern S, 

if S can be decomposed into a known S and a strictly coercive U; which 

is unknown. The next theorem gives a method to determine whether U 
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is strictly coercive based on the system matrices of (2.3). In the following 

discussions, H(t) > 0 means v7 H(t)u > 0 for all u E Rm and the other 

inequalities of a matrix are defined likewise. 

Theorem 2 If 

H(t) > 0 

for all t E [0, t1] and there exist matrices K(t) 7 L(t) 7 P(t) and Q(t) such that 

p ( t) E ( t) + ET ( t) p ( t) - L T ( t) L ( t) - Q ( t) 

pT ( t) p ( t) + KT ( t) L ( t) = G ( t) 

KT ( t) K ( t) H ( t) + HT ( t) 

where P(t) and Q(t) are symmetric and satisfy 

P(t1)~0 

!!_ P(t) < 0 
dt -

Q(t) > 0 

for all t E [0, t f]. Then U is strictly coercive. 

Proof: Since there exists a constant c E ( 0, 1) such that 

Q(t)- G -1) LT(t)L(t) > 0 
for all t E [0, t f], we have 

p ( t) E ( t) + ET ( t) p ( t) 

pT ( t) p ( t) + MT ( t) N ( t) 

MT(t)M(t) 

-NT (t)N(t) - R(t) 

G(t) 

c(H(t) + HT(t)) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where M(t) = vfCK(t), N(t) = L(t)/vc and R(t) = Q(t)-(1jc- 1)LT(t)L(t). 

Moreover, from (2.3), (2.15), (2.18), (2.19) and (2.20), we have 

! ((rP() = (EE + FulPE + ETP(E( + Fu) + (T (!p) ~ 
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~T( -NT N- R)~ + 2uT(G - MT N)~ + ~T (~p) ~ 
~T( -JVTJV- R)~ + 2uT 7J- uT(H + HT)u 

-2uT lifT N~ + ~T (! P) ~ 
- ( JV ~ + l\1 u) T ( N ~ + !vi u) - ~ T R~ + 2uT 1J 

- ( 1 - c) u T ( H + HT)u + ~ T (! p) ~ 
Integration on [0, t 1] of both sides of the equalities yields 

~(tJ)TP(tJ)~(tJ) = -II JV~ + !'vfuil~- (~,R~) + 2(u,7J)- (1- c)(u: (H + HT)u) 

+(~ , (:tp)~) 
From (2.14), (2.15), (2.17) and this equality, we establish 

1- c 
(u, 17) ~ -

2
--\ro t 1 JIIull~ 

where A[ohJ(t) indicates the minin1um value of the smallest eigenvalue of 

H(t) + HT(t) on [0, t1]. This completes the proof. • 

The follo·wing example illustrates the design of the algorithm presented 

in Theorem 1 based on Theorem 2. 

Example 1 Consider a linear time-variant system 

d 
dt x(t) (d- t)x(t) + u(t) 

y(t) x(t) 

(2.21) 

(2.22) 

as S where t E [0, 1] and the parameter d is unknown but the range is known;· 

d E [2, 3]. Let S for the algorithm of Theorem 1 be 

d 
dtx(t) (1- t)x(t) + 17(t) 

then the system U is 

d 
dt ~ ( t) 

1] ( t) 

y(t) x(t) (2.23) 

(d- t)~(t) + (d- 1)u(t) 

~(t) + u(t) 
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Since there exist K , L , P and Q satisfying the conditions of Theorern 2, 

narnely 

K /2 
L ( t) J2 { 1 + ( 1 - d) p ( t)} I 2 

P ( t) {-2t - 1 + 3d + j 2 ( 2t2 + 2t - 6dt - 1 + 3d2)} 1 ( d - 1) 2 

Q 1 

U is strictly coercive. Note that the system EJ* is 

d 
dtp(t) -(1- t)p(t)- v(t) 

u(t) p(t) (2.24) 

with p(tJ) = 0. Then a sufficient condition for (2.6) is 

and 
d 

y d ( 0) = y d ( t f) = dt ( t f) = 0 

where cn[o, t f] denotes the class of n-times continuously differentiable func

tions on [0, t 1]. Hence, we can guarantee convergence of the algorithm with 

a sufficiently small a based on (2.24) for (2.22). 

Suppose that the systern (2.3) is time-invariant . Then by the Popov

Kalrnan-Yakubovic Lemma[31] we can rewrite the presuppositions of Thro

rem 2 as follows: 

1. H > 0 

2. The transfer rnatrix U(s) = G(si- E) - 1 F +His strictly positive real 

(SPR) i.e. , there exists a positive,\ such that U(s- -\) + U(s - ,\)T ~ 0 

for all s on the right-half plane and the imaginary axis ·where s denotes 

the conjugate complex number of s. 
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If the linear systems (2.1), (2.4) and (2.3) are time-invariant to choose S so 

that U is strictly coercive for the algorith1n of Theorem 1 is to extract the 

transfer function 

S(s) = C(si- A)B + 6 

from 

S(s) = C(si- A)B + C 

so that U(s) satisfying S(s) = S(s)U(s) has the above two properties. 

The process to design the algorithm of Theorem 1 for linear time-invariant 

systems is sumn1arized as follows(32, 33, 34). 

step 1 Choose a transfer function matrix S ( s) such that S ( s) = C (sf -

A)- 1 B + D is expressed as 

S(s) = S(s)U(s) 

where U(s) = G(si- E)- 1 F +His SPR and 

H> 0. (2 .25) 

step 2 Let a realization of the transfer function matrix sr ( s) be (;iT' (;T' fJT' fJT) 

step 3 Let the tnapping TJ = S* (y- Yd) of the algorithm (2.8) be the input

output mapping of the linear system 

}iT p(T) + (;T(y(t)- Yd(t)) 

_BT p(T) + fJT(y(t)- Yd(t)) 

with the initial condition p(O) = 0 where T = t1 - t. 

If the matrix S(s) is invertible, step 1 can be replaced with: 

(2.26) 

step 1 Choose .5'-1 
( s) as an approximate inverse of S ( s) so that U ( s) 

S(s)S - 1(s) satisfies strictly-positive-real conditions and (2 .25) . 
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2.4 Convergence Conditions for Linear Time
Invariant Systems with Structured Un
certainty 

In this section, we will develop a 1nethod to check whether S(s) is chosen 

so that U(s) is SPR, provided S(s) is single-input single-output etnd has 

structured uncertainty, namely 

where 

If we choose S(s) as 

N(s) 

D(s) 

Po 

N(s) 
S(s) = D(s) 

n 

LPn- kSk 

k=O 

Qo = 1 

Pi E (Pi, Pi] ( i = 1, · · · , n) 

Qi E [qi,Qi] (i=1,···,m) 

S(s) = ~(s) 
D(s) 

(2.27) 

(2.28) 

where il(s) = I:~=o iJm- ksk and D(s) = L~=oPn.- ksk then Lhe firsL condition 

H > o imposes n- m = n- m and p0ij0 > 0. Without loss of generality, it is 

assumed that p0 = q0 = 1 in the following discussion. The second condition 

requires that for all parameters satisfying (2.27) and (2.28) 

U(s) = ~(s)N(s) 
N(s)D(s) 

is SPR, equivalently in this cc:tse[35] 

(2.29) 

1. U(s) has no pole on the right-half plane or the irnaginary axis, i.e .. 

N(s)D(s) is Hurwitz. 
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2. RcU(jw) > 0 for all wE ( -oo, oo). 

It is already known that a transfer function is SPR for all parameters 

from the convex set as long as the transfer function is SPR for only a finite 

number of parameters. These results were developed to make the verification 

of the SPR condition computationally feasible in terms of adaptive control 

applications. Some results have been published for transfer functions with 

such forms as JV(s)/ N(s)[36], N(s)(1 + s)n-m / D(s)[37] and JV(s)/ D(s)[38]. 

However , these authors have not considered the function (2.29) with which 

we are concerned. A similar result for (2.29) is presented as follows. 

Theorem 3 The transfer function D(s)N(s)/(N(s)D(s)) is SPR for all pa

rameters satisfying (2. 27) and (2. 28) if the transfer function 

Uuv(s) = ~(s)Nu(s) 
N(s)Dv(s) 

is SPR for u = 1,2,3, 4 and v = 1, 2,3,4 where 

n / 4] n / 4] 

D ( ) """ -- 4k """ ~- 4k+1 1 S = ~ Pn-4kS + ~ Pn-4k-1S 
k=O k=O 

n / 4] n / 4] 
""" 4k+2 """ 4k+3 + ~ Pn- 4k -2 S + ~ Pn-4k-3S 
k=O k=O 

n / 4] n / 4] 

D ( ) """ 4k """ 4k+ 1 2 S ~ Pn - 4ks + ~ Pn - 4k - 1S 
k=O k=O 

n / 4] n/4] 
""" 4k+2 "'"' =--- 4k+3 + ~ Pn- 4k - 2S + ~ Pn-4k-3S 
k=O k=O 

n / 4] n / 4] 

D3(s) L Pn -4kS4k + L p=-n---4k---ls4k+ 1 

k=O k=O 
n / 4] n /4] 
"'"' 4k+2 "'"' 4k+3 + ~ Pn -4k-2s + ~ Pn-4k-3S 
k=O k=O 

n / 4] n/ 4] 

D ( ) """ -- 4k """ 4k+l 4 S ~ Pn -4ks + ~ Pn - 4k - l S 
k=O k=O 

n / 4] n / 4] 
""" ~4 k+2 """ 4k+3 + ~ Pn- 4k -2 S + ~ Pn - 4k - 3S 
k=O k=O 

(2.30) 

(2.31) 

(2.32) 

(2 .33) 

(2.34) 
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where Po = p0 = 1 and Pi =Pi = 0 fori < 0; n/ 4] denotes the larges t integer 

that is less than or equal to n/4. Polynomials N 1 (s), N2(s), N3(s) and JV4(s) 

are defin ed likewise. 

To prove this theorem, we utilize the next theorern , given by Kharitonov[39]. 

Theorern 4 A polynomial 

n 

D(s) = L Pn- ksk 
k=O 

is Hurwitz for all parameters satisfying (2. 27) where Po = 1 if the four poly

nomials (2.31), (2.32), (2.33) and (2.34) are Hurwitz. 

Proof of Theorem 3. First, since (2.30) is SPR for v = 1, 2, 3, 4, the 

denominator N(s)Dv(s) is Hurwitz for v = 1, 2, 3, 4, and, hence, by Theorern 

4 N(s)D(s) is Hurwitz for all parameters satisfying (2.27). 

Second, we show ReU(jw) > 0 for wE ( -oo, oo). Since 

n / 4] n / 4] 

ReD(jw) "'"' 4k "'"' ( ) 4k+2 ~ Pn- 4kw + ~ - Pn-4k-2 W 

k=O k=O 
n/~ n/~ 

ImD(jw) """ 4k+ 1 "'"' ( ) 4k+3 ~ Pn-4k- lw + ~ - Pn-4k- 3 W 

k=O k=O 

etc., we have 

ReD2 (jw) = ReD3(jw) < ReD(jw) ~ ReD1 (jw) = ReD4(jw) (2.35) 

hnD2 (jw) = ImD4 (jw) < ImD(jw) ~ ImD1(jw) = ImD3(jwX2.36) 

for wE [0 , oo) and 

ReD2(jw) = ReD3(jw) < ReD(jw) ~ ReD1(jw) = ReD,1(jw)(2.37) 

ImD1 (jw) = In1D3 (jw) < linD(jw) ~ ImD2(jw) = In1D4(jwX2.38) 

for wE ( -oo, 0]. Inequalities (2.35) , (2.36), (2.37) and (2.38) where Ns are 

substituted forDs also hold. Note that ReU(jw) > 0 for wE (-oo,oo) is 
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equivalent to 

(ReD(jw)Re1V(jw) + ImD(jw)InuV(jw))Rc { ~(jw)} 
N(Jw) 

+(ImD(jw)ReN(jw)- ReD(jw)ImJV(jw))Im { ~(jw)} > 0(2.39) 
JV(Jw) 

for wE ( -oo, oo); the left-hand side of (2.39) is linear for ReD(jw) , IrnD(jw), 

ReN(jw) and IrnN(jw). Then ReUuv(jw) > 0 for u = 1, 2, 3, 4, v = 1, 2, 3, 4 

implies that ReU(jw) > 0 for all parameters satisfying (2.27) and (2.28). 

This completes the proof. • 
The following example illustrates the design of the algorithm of Theorem 

1 based on Theorem 3. 

Example 2 Consider a linear tinLe-invariant system 

S ( s) = N ( s) = s + q1 

D(s) s2 + P1S + P2 

with uncertain parameters 

Pi E (pi , Pi] ( i = 1 , 2) 

Q1 E [ql , Ql] 

Let 
s ( s) = ~ ( s) = s + ql 

D(s) s2 + fhs + P2 

Then (fh , P2, q1 ) must be chosen so that 

N ( s) iJ ( s) _ ( s + Q1 )( s2 + P1 s + P2) 
D(s)il(s) (s2 + P1S + P2)(s + qr) 

is SP R for (PI, P2, Q1) E P 1 x P 2 x Q1 where 

specifically, 

{Pi , pi} ( i = 1 , 2) 

{ql , Ql} 

(2.40) 
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{(P2- w2)ql + Plw2}{(P2- w2)ql + PLw2} 

+{PlQJW- (P2- w2)w2}{fJiqlw- (P2- w2)w2
} > 0 

2.5 Relaxation of the Convergence Condition 

The example in Section 2 shows that the existence condition (2.6) imposes 

restrictions upon the value of the desired trajectory Yd(t) or its drrivatives at 

t = t f as well as at t = 0. This can be an inconvenience for sorne applications. 

On the other hand , the aim of iterative learning control is to make the output 

of the system track the desired trajectory rather than to estimate the ideal 

input function S*vd precisely. The next theorem shows that even if the 

existence condition is relaxed , we can guarantee at least conYergence of the 

output to the desired trajectory and boundedness of the input. 

Theorem 5 Suppose that there exists 'Ud E L2 [0, t f] such that 

(2.41) 

and U which satisfies S = US is strictly coercive, namely 

(UTJ, TJ) 2:: JJIITJII~ (2.42) 

for any TJ E L~[O , t f] where ;3 is a positive constant. Then the sequence 

{ uk; k = 0, 1, · · ·} generated by 

with 

(2.44) 

satisfies 

(2.45) 
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(2.46) 

ask~ oo where the constant a is chosen as 0 < a < 2,6//IS*U/1 2; Jvf is a 

positive constant. 

Proof: From (2.41), (2.42) and (2.43), we have 

(2.47) 

fork= 0, 1, · · ·. Since a(2(3- /IS*UII 2a) is positive, this inequality implies 

and 

as k ~ oo. This completes the proof. • 
Remark 2 If there is no direct term from input to output in (2.1), z. e., 

D(t) = 0, and every element of C(t) is in C 1 [0, t1], then (2.46) with (2.45) 

implies uniform convergence of the output, which is desirable for the aim of 

iterative learning control, namely 

(2.48) 

ask ~ oo where IISuk- Ydlloo = sup{j[Suk](t)- Yd(t)l; t E [0, t1]} and I· I 
denotes Euclidean norm. This is demonstrated as follows. From (2.2), (2.41) 

and (2.45), we have 

II :t [S(uk- ud){:; M' 

where M' is a positive constant. On the other hand 
) 

(2.49) 

for t1, t2 E [0, tf], j = 1, · · · ,p and k = 0, 1, ···where [S(uk- ud)]J(t) denotes 

the j-th element of [S(uk- ud)](t). Hence, by the Cauchy-Schwarz inequality 
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which implies that {[S(uk- ud)]J(t);j = 1, · · · ,p; k = 0, 1, ···}is equicontin

UO'us. By this property, (2.4 6) implies pointwise convergence 

I[S(uk- ud)F(t)i ~ 0 (j = 1, · · · ,p; t E [0, tf]) 

ask~ oo whence, by the Ascoli-Arzela theorem{40}, (2.48) follows. 

Example 3 Consider the system {2.22) asS. lfyd E C1 [0, t1] and Yd(O) = 0 

then there exists ud E C0 [0, T] such that Yd = Sud, which is sufficient for 

(2.41). 

Example 4 Consider the system (2.40) asS. Ifyd E C1 [0, tJ] and Yd(O) = 0 

then 

x(t) = e-q,t fa' eq,r Yd( T)dT 

satisfies Yd(t) = 1£x(t) + q1x(t) with ftx(O) = x(O) = 0, hence, there ex·ists 

such that Yd = Sud, which is sufficient for (2.41). 

2.6 Numerical Examples 

In this section, we illustrate design of the iterative learning control presented 

in the preceding sections. Numerical examples are also given. 

Example 5 Let's consider a time-invariant system 

d2 d 
-d 2 y(t) + a-y(t) + by(t) = cu(t) 
t dt 

(2.50) 

y(O) = 0 

and 
d 
dty(O) = 0 
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where a,b and c are positive constants with uncertainty. Laplace transforma

tion yields 

.c[ ] 
y(O)s + ay(O) + -ffty(O) c 

y = + .C[u] 
s2 + as + b s2 + as + b 

where .C denotes the Laplace-transformed function. Let y = Yd then 

.C [ !2

2 Yd +a! Yd+ byd] = (y(O) - Yd(O) )s + (ay(O) + :ty(O)) 

- ( ayd(O) + :tYd(O)) + C.C[u] 

Sufficient conditions for (2.41) are 

Yd(O) = y(O) 

and 

(2.51) 

(2.52) 

The design process of the iterative learning control is illustrated as follows. 

step 1 Let the transfer function be 

c 
S(s) = -s2-+-as_+_b 

and choose S ( s) as 

then 

~ c 
S(s) = ~ 

s2 +as+ b 

U(s) = S(s)S- 1 (s) = :(s~ +as+ b) 
c(s2 +as+b) 

The SP R condition of U ( s) is equivalent to 

U( ·w) U(- ·w) = 2c{w
4 + (aa- b- b)w 2 + bb} 

J + J c { ( b - w 2) 2 + ( aw )2 } > 0 

for all wE (-oo,oo) [41}. 

(2.53) 
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step 2 & 3 The mapping rJ = f)* (y- Yd) of the algorithm (2.43) is 

:l(T) - ( ~[; !a ) p(T) + ( ~ ) (y(t)- Yd(t)) 

rJ(t) - ( 1 0 )p(T) 

with the initial condition p(O) = (0 O)T, where t = iJ- T and (a, b, c) 

satisfy (2. 53) 

Figure 2. 3 and 2.4 show results of numerical simulations for Example 5, 

where the pararneters, u0 ( t), and the desired trajectory Yd( t) on [0, 20) are 

chosen as follows. 

(a, b, c)= (1.0, 2.0, 3.0) 

(a, b, c)= (2o.o, 5.0, 5.0) 

a= 1.0 

u0 (t) = 0 t E [0, 20) 

{ 
f(t) if t E (0, 10) 

Yd(t) = f(20- t) if t E (10, 20) (2.54) 

where 

f( ) 
= -2t3 + 30t2 

t 100 

Note that there exists ud(t) satisfying (2.41) for (2.54): 

if 0 :::; t :::; 10 

1
-4t3 + 54t2 + 48t + 60 

ud(t) = -4(20- t~~~ 66(20- t) 2 - 72(20- t) + 60 
300 if 10 < t :::; 20 

Dotted lines in Figure 2. 3 show the output functions and input functions 

for k = 0, 1, 2, 3, 5, 7. Points in Figure 2.4 are values of norrns for k = 

0, 1, ... ' 19 . 
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Example 5 implies that our method presented in Theorem 5 can be applied 

to syste1ns which many conventional methods failed to be applied to. The 

reason is that our method needs only (2.53) on 

while the conventional methods require conditions which are not satisfied by 

this system, for example, 

CB #- 0 

in (4, 5, 10), 

where P > 0 in (11), or 

fo'f u( t) fo' CeA(t-r) Bu( T )dTdt ::> 0 

for any u(t) E L 2 [0, tJ] [5, 42). 

Example 6 Consider a multi-input multi-output linear system 

S(s) = ( as
2 + 4s + 2 -4s- 2 ) -

1 

-4s - 2 s2 + 9s + 5 

where a is a positive constant . Only step 2 of the design process will be 

examined. 

step 2 Let 

then 

S(s) = ( 2s
2

+4s+2 -4s-2 ) -
1 

_ -4s - 2 s2 + 9s + 5 

U(s) S(s)S- 1 (s) 

( 

d(s,2) 
d(s.a) 

(2-a)s 2 (4s+2) 
d(s,a) 

~ ) 
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where 

d(s, a)= as4 + (9a + 4)s3 + (5a + 22)s2 + 22s + 6 

Since 

• If a > 0 then U ( s) is analytic for Re{ s} > 0 

• If 4.4 > a > 0 then ur ( -jw) + U (jw) > 0 for w E R 

• If a> 0 then H = 2/a > 0 

S(s) with 

4.4 >a> 0 

satisfies the convergence condition. 

Figure 2. 5-2.7 show results of numerical sirnulations for the ex·ample. The 

parameters, u0 (t), and the desired trajectory Yd(t) on [0, 10) are chosen as 

follows. 

a= 1.0 

y 1 (0) = 1/(0) = 0 

y
2 (0) = 7/(0) = 0 

nt 
y ~ (t) = 1 - cos -

5 
nt 

y~(t) =cos 5 - 1 

a= 2.0 

u6(t) = 0 (t E [0, 10]) 

u6(t) = 0 (t E [0, 10]) 

Note that there exists ud(t) satisfying (2.41) for (2.55) and (2.56): 

1 nt nt 
u~(t) = 

25 
{ ( n 2 

- 100) cos 5 + 40n sin 
5 

+ 100 

2 1 _ 2 nt . nt ~ 
ud(t) = -{ (175- n ) cos-- 65n s1n--=- - 170 

25 5 0 

(2.55) 

(2.56) 
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Dotted lines in Figure 2. 5 and Figure 2. 6 show the output functions and 

input functions fork = 0, 1, 2, 3, 4, 49 , 99. Plots in Figure 2. 7 show incTeasing 

values of norms fork= 0, 1, · · ·, 499. 

2.7 Concluding Remarks 

In this chapter, convergence of functions generated by iteratiYe learning con

trol using adjoint syste1ns was demonstrated for linear continuous-time sys

tems. Several convergence conditions were presented and discussed from an 

applications viewpoint. Design method of the iterative learning control were 

presented for time-variant or time-invariant linear systems. Relaxation of 

the convergence conditions and L 00 convergence ·were discussed, again from 

an applications viewpoint. 
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Figure 2.4: Errors vs. the number of the iteration of Example 5 

33 

1.5 

0.5 

0 

-0.5 L_ ___ .L__ ___ ..J.__ ___ _L_ ___ __.8 ___ ~10 
0 2 4 6 

t 

(a) Plots of y 1 (t) 

t 

(b) Plots of y 2 (t) 

Figure 2.5: Output functions of Exa1nple 6 



34 

12 

10 u u99 
.... --

/ 
.... ...... 

u49 / 

8 '/ ....... ----- ....... :1 / ...... 
/ ..... 

" / 
/ '~ 

6 / 9 '~ :~' u ', 
..... 

4 

1 /ft-~~2~~', ::s 

2 ..,.....; ~~--~--~c--~~~~ ', ' ~~~~::- ------~~~~~~~,, ---- --- ~~~ 0 -~~~\c~;-- --~1-"'~~ 
-2 

-4 
0 2 4 6 8 

t 

(a) Plots of u 1 (t) 

5 

0 

-5 

C\J 

::l 

-10 

u49 
-15 

-20 
0 2 4 6 8 

t 

(b) Plots of u2 (t) 

Figure 2.6 : Input functions of Exan1ple 6 

10 

10 

C\J 

"0 
>-. 

I 

>-. 

C\J 

"0 
::l 

I 

::l 

100 

'. 

10 

0.1 

.. 
--. ... 

lly-ydll2-
II u-ud II 2 ---- · 

0.01 l_.._.___jL_____JL_____j'--___j _ ____l _ ___j _ ____. _ ____. _ _~. _ _____, 

0 50 100 150 200 250 300 350 400 450 

k 

Figure 2.7: Errors vs. the number of the iteration of the cxarnplc 6 
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Chapter 3 

Convergence Rate and 
Robustness of Iterative 
Learning Control 

3.1 Introduction 

In the last chapter, we discussed design of the iterative algorithms to generate 

input functions , which is summarized as follows. 

Problem 1 Determine a mapping K:L2 [0,tJ]--+ L2 [0 , t1] of the algorithm 

(3 .1 ) 

so that 

(3.2) 

as k --+ oo where S is defined by (2. 2) . 

J\!Iany kinds of mappings other than ones discussed in this dissertation have 

been proposed as K, e.g. PID-type operators [43], approxirnate adjoint 

operators[27] etc. However , convergence rate of (3.2) ha not been stud

ied very much. On the other hand , it is important to investigate robustness 

of the algorithms against rneasuremeut noise , perturbation caused by initial

ization errors etc . The robustness means boundcdness of the error sequence 
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{Suk - Yd} generated by (3.1) with bounded noise: i.e. 

(3.3) 

and 

where J\1 is a positive constant which represents the noise level. One of the 

sufficient conditions to guarantee the robustness is 

(3.4) 

provided that it is assumed that there exists vd E L2 [0, t 1 such that Yd = Sud 

where I denotes the identical operator. The reason is that (3.3) with (3.4) 

leads to 

Suk- Yd =(I+ SI<)(Suk- 1- Yd) + SKdk-l 

and hence 

IISuk- Ydll2 < II(!+ SK)(Suk- 1- Yd)ll2 + IISI\dk - 1lb 

< riiSuk - 1- Ydll2 + IISKdk - 1ll2 
k-1 

< rkiiSuo- Ydll2 + 2::: rniiSKdn-1ll2 
n = O 

kiiS II IISKIIiVJ < r Uo - Yd 2 + --'----
1-r 

This inequality means that the lirnit of IISuk - Ydll 2 is bounded by a value 

proportional to the noise level AI; accumulation of the noise at iterations does 

not cause divergence of IISuk - Ydll 2. Therefore, iterative learning control 

algorithn1s should satisfy (3.4) when a large nu1nber of iterations are needed 

or the noise is uot srnall. 

In this chapter, we demonstrate that there exists no bounded operator ]{ 

of the algorithn1 (3.1) such that (3.4) is satisfied. Therefore, we rnodify the 

fonnulation of iterati,·e learning control b~· introducing regularization ideas 

for the case that countenneasurcs against noise are needed. 

3.2 

39 

Convergence Rate of Iterative Learning 
Control 

Consider a linear system (2.1) with D(t) = 0, i.e. 

d 
dt x (t) 

y(t) 

A(t)x(t) + B(t)'u(t) 

C(t).x(t) (3.5) 

that is defined on the finite time interval [0 , t1]. Let Yd be a desired trajec

tory. Note that for rnost of applications such as robot manipulators , one can 

assume that D(t) = 0, i.e. there is no term which directly transforrn the 

input signal to the output signal without dynamics. Suppose that (3.5) is 

a single-input-single-output system for simplicity. Then the output y(t) is 

denoted as 

and 

y(t) = h(t) + [Su](t) 

h(t) = C(t)R(t , O):r(O) 

[Su](t) = fa' C(t)R(t, a )B(a)u(a)da (3.6) 

where R(t , a) is the transition matrix. Note that we can assume the initial 

condition x(O) = 0 or h(t) = 0 by considering Yd + h E R(S) as desired 

trajectories instead of Yd where R(S) denotes range of the operatorS. In the 

follo,ving discussions, we consider 

and 

Yd E R(S) 

as input-output mapping of the system and a desired trajectory, respectively. 

If U = I i.e. S = S in Theorem 1 or Theorern 5, an csti1nation of 

convergence speed of the algorithm is known [30]. The next theore1n gives a 

similar esti1nation of convergence speed of the algorithr11 given in Thcorcn1 3 

for the general U. 
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Theorem 6 Assume that the algorithrn of Theorem 5 is applied to the SISO 

system (3. 5) and the constant ex satisfies 

Then 

2{3 
0 <ex< 115112 

fork= 0. 1, · · · where 
C = a(2,6- exi!SII 2

) 

IIUII 2 IIuo- udll~ 
Proof: From the assumption, vve can easily see 

From this equality and the Schwarz inequality, we have 

(S*S(uk- ud), uk- ud) 

< IIU* S* S(uk- ud)ll2lluk- udl/2 

i\1oreover from (2.5), we obtain 

and hence 
IIS(uk- ud)ll~ A* 2 

IIU*II2IIuo- udll~ :::; liS S(uk- ud)ll2 

On the other hand, the algorithm (2.43) with (3.9) leads to 

+ex2//SS* S(uk- ud)ll~ 

< IIS(uk- ud)ll~ 

-ex(2f3- exiiSII 2)IIS*S(uk - ud)ll~ 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Since (3.7) implies a(23- a!ISII 2
) > 0, substitution of (3.10) to (3.12) yields 
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Frorn this inequality we can obtain (3.8) since {IIS(uk- ud)ll~; k = 0, 1. · · ·} 

is a sequrnce of nonnegative nuinbers(30]. •• 
The convergencr spcrd of the right hand side' in (3.8) is rnuch slO\\'Pr than 

exponential functions such as rk ( jrj < 1) which play important roles for 

robustness against noise as stated in the section 3.1. On the other hmHl, 

since the integral operator S defined by (3.6) is a cornpac:t linear oprrator 

and has the infinite dimensional range, R(S) is non-closed, i.e. 

R(S) # R(S) 

where R(S) denotes the closure of R(S)[29). In this casr, the equation 

Yd = Su 

for a given Yd is called an ill-posed problem because a srnall perturbation of 

Yd causes a large error of the solution ud[29] [44]. 

As stated in 2.5 of Chapter 2 convergence of the input functio11 sequcnc(' 

of iterative learning control 

is not indispensable; convergence of th output function seqnenC('S 

(3.13) 

is required. However , we can drrnonstrate that (3.13) cannot he expoucnbal 

from the following proposition. 

Proposition 1 [45} If y E R(S) andy~ R(S) 7 then any sequence {uk: ·u~,: E 

L2 [0 t f]} such that 

is unbounded. 

Theorem 7 There exists no bounded ope1·ator K which satisfies (8.4). 
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Proof: Suppose that there exists a bounded operator K such that (3.4). 

Then the sequence {uk; k = 0, 1, · · ·} defined by (3.1) with u0 = 0 satisfies 

and 

li(I + SI<)(Suk- Yd)lb 

< rkjjSuo- Ydll2 

k-1 

< L JjK(Sun- Yd)jj2 
n=O 

where r is a constant satisfying 0 < r < 1. Therefore we have 

(3.14) 

which implies that { uk; k = 0, 1, · · ·} includes a weakly converging subse

quence { uki; i = 0, 1, · · ·}. Let ud be a weak limit of the sequence. Then 

equivalently, 

(3.15) 

for any g E L2 [0, t 1], and hence 

(3.16) 

Note that (3.14) holds for uk = ud [46], i.e. 

lludll2 :s; II~II~Y:II2 (3.17) 
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Consider fi defined in Proposition 1 and a sequence {yk; Yk E R(S)} such 

that 

(3.18) 

as k ----+ oo. Since (3.16) and (3.17) hold for each Yk, there exists a sequence 

{uk} such that 

(3.19) 

and 

llukll2 :s; II~II~Y;II2 (3.20) 

Substituting (3.19) for (3.18) yields 

as k ----+ oo. On the other hand, since {Yk} is a converging sequence, (3.20) 

leads to 

where !vi is a positive constant. This contradicts Proposition 1. • 
Since we can irnplen1ent only bounded operators as physical systems, the 

theorem claims that it is impossible to choose an operator as I< defined in 

Problem 1 so that the algorithrn has the exponentially decreasing property 

(3.4). 

3.3 Iterative Learning Control with a Regu
larization Term 

As stated in section 3.1, iterative learning control should be designed so 

that it converges exponentially, fron1 a robustness viewpoint. On the other 

hand, this is impossible for the algorithrn of Problcn1 1. TherC'forr, we have 

to rnodify the fonnulation of the problem when countrnrwasnrrs against 

noise are needed, e.g. when the noise is not s1nall and a large nurnber of 

iterations are needed. In this section, we modify the fonuulation of the 
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problem of iterative learning control by introducing regularization ideas in 

order to design exponentially converging algorithms. 

In Problen1 1, the functional to be minimized is 

(3.21) 

The minimizers of (3.21) do not always exist. The fact is one of the reasons 

why we have to check existence of ud such that Yd = Sud in order to apply the 

algorithn1s of Theorem 1 and 5. i\!Ioreover, non-closedness of S implies that 

the convergence (3.21) cannot be exponential. Therefore, we will replace the 

functional (3.21) to be minimized with 

JQ(u) = IISu- Ydll~ + (u, Qu) (3.22) 

where Q: L;n[o,t1] -t L2L[O,t1] is a positive self-adjoint operator, i.e. 

(u,Qu)>O (u#O) 

and 

Q = Q*. 

Since 

JQ(u + 17) = JQ(u) + 2(17, (S* S + Q)u- S*yd) + (17, (S* S + Q)17) 

where u and 17 E L2 [0, t 1], a necessary condition for the minimizer u is 

(S* S + Q)u- S*yd = 0 (3.23) 

On the other hand, the operator S* S + Q has the bounded inverse because 

S* S + Q is positive self-adjoint. Therefore JQ(u) always has the unique 

minimizer[ 4 7] 

(3.24) 

Although ud is not equivalent to u*, at the final part of this section we will 

show that it is possible to choose Q of JQ(u) so that 

* s * y = u 
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is arbitrarily close to Yrl =Sud with jju*ll 2 kept bounded. By adding (u. Qu) 

to (3.21), the minirnizing problern is replaced with a problem which has Hw · 

unique minimizer for any Yd E L 2 [0, t f], and hrnce thcrr exists exponentially 

converging algorithms as is shown in the following discussions. The added 

term (u, Qu) of (3.22) is called regularization tenn[44). Note that the left 

hand side of (3.23) corresponds to the gradient function of JQ ( u). 

As stated in Chapter 2, conventional gradient methods cannot be applied 

to generating a sequence of input functions which 1ninimize JQ ( 11) because 

the adjoint operator S* is unavailable. We will examine a 1net hod utilizing 

S* which is different frorn S*. Let S be 

or 

S* = U* El* 

where U is a positive self-adjoint operator which represents uncertainty in

cluded in the system S. Consider 

where E is a positive constant . Then 

and hence the unique minirnizer of JEu ( u) is the solution of 

U*{S*(Su- Yd) + Eu} = 0. (3.25) 

The next theoren1 gives an algorithm to 1ninimize leu ( u) by ntilizing 

S*(h+Su-yd)+Eu 

instead of the unavailable U*{S*(Su- Yd) + ru}. (See Figure 3.1) 
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Figure 3.1: Iterative learning control for JEu(u) 

Theorem 8 Assume that U is positive self-adjoint and { uk} is generated by 

(3.26) 

(3.27) 

and 

Then 

(3.28) 

where u* is the minimizer of JEu ( u); r and Jvf are constants satisfying 0 < 

r < 1 and 0 < Jv[) respectively. 

Proof: Since U is a positive self-adjoint operator, there exists the bounded 

inverse u- 1 (46]. From (3 .26), we obtain 

Since S* S + cU is also a positive self-adjoint operator: (3 .29) leads to 
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and hence 

uk+l- (S"' S + cU)- 1S*(yd- h) 

= {I- aU- 1(S*S + fU)}{uk- (S*S + cU) - 1S"'(yd- h)} 

On the other hand , 

for a > 0. For a chosen as ( 3. 27), we have 

wherr 0 < r < 1, therefore 

This completes the proof. • 
It is easy to see robustness of the algorithm. Consider the algorithrn (3.2G) 

with additional term dk which sterns from nwasurernent Boise , perturbation 

caused by initialization error etc, 

where 

for k = 0, 1, · ·-: L is a positive constant. Then reasoning which is sirnilar to 

the proof of Theorern 8 yields 

lluk+l- (S*S + cU)- 1S*(yd- h)ll2 

:::; 1 ·11 u k - ( S* S + E U) - 1 S * ( y d - h) !12 - n S * ch 

and hence 

lluk - (S*S + fu) - 1S*(yd- h)ll 2 

k * 1 * (YIIS*IIL 
~ r lluo- (S S + cU)- S (yd- h) ll2 + -

1
-_-r-

This in1plies that the lin1it of uk is within neighborhood of the' rniHin1izcr h~· 

the radius proportional to the noise lcYcl L. 
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3.4 Interpretation of the Minimizer of the Mod
ified Problem 

The input functions { uk} generated by the algorithm (3.26) converges to 

and hence the output functions converges to 

that is different from the original desired trajectory Yd· However, we can 

show the norm of the difference is bounded by a positive constant which is 

proportional to E. 

Theorem 9 Assume that there exists ud E L2 [0, t 1] such that 

Then 

(3 .30) 

and 

l!u*l!::::; Mu 
mu 

(3.31) 

where 

{
(u Uu) } 

lVfu =sup !lull~ ; u E L2 [0, t1], u #- 0 

. f { (u,Vu) [ ] } rnu =In !lull~ · u E L2 0, t 1 , u #- 0 

and u* is the minimizer of J(u(u). 

Proof: Frorn positiveness of U, we have 
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This inequality leads to 

(3.32) 

and 
1 Af 

!!u*!l~ ~ -I!Su- Ydll~ +~!lull~ 
Emu mu 

(3.33) 

for any u E L2 [0, t 1] because 

and 

Substitution of ud for u of (3.32) and (3.33) yield (3.30) and (3.31), respec

tively. • 

This theorem means that I!Su* - Ydl! 2 can be arbitrarily close to 0 by 

making E small \Vhereas the least upper bound of l!u* 1! 2 is independent of c 

3.5 Concluding Remarks 

In this chapter, first, we discussed speed of the convergence of iterative learn

ing control from a robustness viewpoint; we demonstrated that speed of the 

convergence should be of exponential functions. Second, we pointed out that 

there is no exponentially converging algorithm for the problc1n given in the 

last chapter. Finally, in order to deal with the case that the uoise level is 

not small, we modified the formulation of the problem of itrratiYe learning 

control by introducing the regularization tenr1. Based on the idea giYen in 

the last chapter, we also presented an iterative learning control algori t lun 

which converges exponentially. 



Chapter 4 

Iterative Learning Control for 
Sampled-Data Systems and the 
Inverse Systems 

4.1 Introduction 

In the last two chapters, we discussed iterative learning control for continuous

time systems. The dynamical systems to be controlled was defined on the 

finite time interval [0, t 1]. Since the time interval is short for rnost applica

tions of iterative learning control, stability of poles and zeros of the system 

transfer functions was not considered. On the other hand , for intpleinen

tation of iterative learning control, it is necessary to record input functions 

or the measured output functions and process those functions repetitively. 

Therefore , it is convenient to implement the iterative lrarning control with 

a sampler , a hold and digital computers. In this case, however, we have to 

consider stability of poles and zeros of the discrete-time systern because thr 

nu1nber of the sample points or the discrete-time interval increases as the 

sampling period 6 goes to 0 even if the continuous-time interval [0, t 1] is 

fixed. 

In this chapter, vve consider iterative learning control for sa1nplcd-data 

systems with a 0-order hold and a sarnpler which have the sante sampling 
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period. First, we discuss unstable zeros which ernerge when we consider 

san1pled-data systerns and iterative learning control for the s~'sterns. Srconcl, 
wr dcn1onstrate that it is not necessary to consider stability of zeros of the 
sampled-data systcn1s for any srnall sampling period when relative degree of 
the transfrr function of the continuous-tin1e systern is 0, 1 or 2 even if it 
has unstable zeros. Finally, nurnerical cxan1ples arc given to illustrate the 

results. 

4.2 Mathematical Preliminaries and Motiva
tion of the Study 

Consider a linear continuous-tinw SISO system defined on [0, t 1] 

d 
dt x( t) 

y(t) 

Acx(t) + bcu(t) 

ex ( t) + d u ( t) ( 4.1) 

with the initial condition x(O) = 0 where x E Rn, u E R and y E R. Then 
the input-output mapping defined by (4.1) on [0, t1] is expressed as 

where 

Su = fo' ceAo(t-r)bcu(r)dr + du(t) 

The transfer function of ( 4.1) is 

G(s) c(sf - Ac)-1bc + d 
c adj (s f - Ac)bc + d det( sf - Ac) 

det(sf- Ac) 
K(s-{l)···(S-{m) 
(s- Pl) · · · (s- Pn) 

-vvherc adj(sf- Ac) indicatrs the adjoint rnatrix of sf- Ac. 

(4.2) 

(4.3) 

Consider the continuous-time systcrn ( 4.1) with a sarnpler of the sarnpling 
period ~ anci a 0-order hold at the sarne cycle which generates the iuput. 
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Then the relationship of y, x and 'IL at sarnple points { k.6: k = 0. 1, · · ·} is 

expressed as the discrete- tirne system 

where 

x((k + 1).6) 

y(k.6) 

A6 (k6) + b6 u(kil) 

cx(k.6) + du(k.6) 

A6 = exp Acll 

The pulse transfer function is 

where 

H(z) 

N(z) = det [ zl ~A~ -~~ ] 

D(z) = det(zf- A6) 

( 4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Relationship between poles and zeros of sampled-data systems and those of 
continuous-time systems has been studied . By considering eigcnvalurs of the 
matrix Ac and ones of the matrix A 6 = exp(Ac.6), we can see that Pi of 
( 4.3) corresponds to exp(pill) of ( 4.6). It should be noted that as 6 ---1 0, 
all poles of ( 4.6) converges to 1 that is on the boundary of the stable area 
and the unstable one. However, there is no such sirnple relationship between 
zeros of ( 4.3) and ones of ( 4.6). ~nstable zeros can erncrge in ( 4.6) evc'n if 

there is no unstable ones ill (4.3). \iVhen cb6 #- 0, H(z) is expressed as 

(4.9) 

The next len1ma should be noted for the following discussions. 
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Lemma 1 rr n - 172 2:: 1 then there e.Tist Eo > 0 such that 

for any 6 E (0, Eo). 

Proof: See Appendix A. 

Remark 3 (4. 10) irnplies 

for- any 6 E (0 , fo). 

Suppose 

6 = tf 
N 

(4.10) 

• 

( 4.11) 

where N is a natural number. Then the input-output mapping of ( 4.4) on 

{0 ,6 ,26 , .. · , t1 - 6 , tf} is 

where 

v6 = [ u(O) u(6) u(t1) ]T 

WD. = [ y(O) y(6) y(tj) ]T 
d 0 0 

cb6 d 

ri::l = cA 6 b6 cb6 ( 4.12) 

d 0 
cA~- 1 b6 cA6 b6 cb6 d 

Let y* be a desired trajectory defined on [0, t 1] Then, among previous studies 

on iteratiYe learning control for discrete-time systems [25][24], one of the n1ost 

com1non formulation of the problem is 

( 4.13) 

where I · I indicates the Euclidean norm; the operator 
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is the sampling operator defined as 

Since the minimizer of ( 4.13) with the minimum norm (It should be noted 

that the minimizers are generally not unique.) IS 

where f! indicates the Moore-Penrose pseudo-inverse matrix off 6 , one can 

define the iterative learning control as an iterative algorithm which generates 

{ Vn; Vn E RN+I, n = 0, 1, · · ·} such that 

(4.14) 

as n ---t oo. It should be noted that we can obtain the minin1izer f ! a 6 y* 

as the output of the inverse system of ( 4.4). If d i- 0 then r ! = f6_ 1 that 

corresponds to 

.T((k + 1)6) 

u(k/:1) 

there exists a positive 6 such that cb6 # 0 for any 6 E (0 , 6) and if d = 0 

and cb6 # 0 then 

r+-6-

that corresponds to 

x((k + 1)6) 

u(k6) 

0 

0 
0 

(4.15) 
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Most of previous studies on iterative learning control focused only on how 

to design algorithrns to update Vn so that ( 4.14) holds. However, behavior 

of the minin1izer r! CJ 6 y* for varying L\ is not studied very much. Since the 

dimension N + 1 = t 1/6. + 1 ---t oo as 6. ---t 0, undesirable effect of unstable 

poles or zeros of ( 4.6) may possibly occur for scunpled-data systerns with a 

small 6.. 

Astrom et. al. [48] showed the next result on limiting behavior of zeros in 

H(z). 

Theorem 10 [48} Assume that G(s) is strictly proper) i.e. m < n . Then 

for almost all L\ > 0 there exist n - 1 zeros in H ( z) and H ( z ) approaches 

]{ L\n-m (z- 1YnBn- m(z) 
(n-m)! (z-1)n 

as .6. ---t 0 where 

This theorem shows that n- 1 zeros in H ( z) can be classified into m zeros 

which converge to 1 and n- m- 1 ones which converge to zeros of Bn-m(z). 

The next result is known about the former zeros. 

Theorem 11 [49} The zero of H( z) that converges to 1 is Taylor-expanded 

as 

where i = 1, 2, · · ·, m. 

If the relative degree n - m = 2, then zeros of H ( z) converge to 1 or -1 

because B2 ( z) = z + 1. We can show the next result about the z ro that 

con,·erges to - 1. 
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Lemma 2 Assume that n- m = 2 and zeros {qi(L\); i = 1, 2, · · ·, m} of 

H( z) is expanded as (4.16) when m 2:: 1. Then) the other zero is e.Tpanded · 

as 

Proof: See Appendix B • 
In the following sections, we discuss the difference 

( 4.16) 

and its relationship with behavior of the zeros of H( z) for small L\ where u* 

is a function defined on [0, t J] satisfying y* = Su*; e 6 : RN +l ---t L2 [0, t J] is a 

0-order hold operator defined as 

if 

! 
v(k) 

[B6v](t) = 

v (~ + 1) if 

t E [(k- 1).6. , kL\) 
(k = 1 2 .. . !L) 

' ' ' 6. 

t = tf 

It should be note that if (4.16) is small, the output error including the inter

sample error or the ripple 

is also small . 

4.3 A Limiting Property of the Inverse of the 
Sampled-Data System 

In the following sections .. the following notations are used. 

the class of k-times continuously differentiable 

functions on [0, t 1] 

sup{ lu(t) I; t E [0, t 1]} 

sup{lu(t)l;t E [O,tJ)} 
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We present the next proposition for sake of the following discussions about 

the difference (4.16). 

Proposition 2 If u* E C0 [0, t 1] then 

11::ise~a~u·- !isu·L ~ o ( 4.17) 

as 6 -+ 0 fori = 0, 1, · · · , n- m. 

Proof: From (4.2), we have 

11:>11 = sup { ~~~~~oo;u(t): piece-wise continuous function on [0, tJ]} 

< +oo (4.18) 

Since u* E C 0 [0,tf], we have 

lim IIB[a[u*]] - u* lloo = 0 
6 -tO 

(4.19) 

(4.18) and (4.19) leads to (4.17). • 
Remark 4 Th e convergence (4.17) is independent of stability of poles of 

H ( z) which is equivalent to stability of poles of G ( s). 

4.3.1 The Case of Relative Degree 0 or 1 

Intuitively, convergence of the difference ( 4.16) as 6 -+ 0 depends on stability 

of zeros of H( z), behavior of which is complicated as stated in Section 4.2. 

However , the next theorem shows that the convergence is independent of the 

stability. 

Theorem 12 Assurne that y* satisfies y* = Su* where u* E C[O, t 1]. If 

n- m = 0 then 

(4.20) 

as 6 -+ 0. If n- m = 1 then 

(4.21) 

as .6. -+ 0. 
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Remark 5 If the relative degree n - m = 1 equivalently d = 0 then from 

(4.15) we have [tJ6 f!a6y*](N6) = 0 equivalently [e6r!a6y*](t1) = 0. In · 

this case, the convergence (4.20) does not generally hold; the convergence 

(4. 21) that is convergence except t = t 1 is the best result. 

The following lemmas are prepared to prove Theorem 12. 

Lemma 3 If u* E C[O, t f] then there exists Eo > 0 such that 

for any 6 E (0 , t:o). 

Proof: See Appendix C 

Lemma 4 Assume that n - m = 0 and 

v 

w 

satisfy w = r 6 v. Then 

[v(O) v( 1) · · · v(N)]T E RN+l 

[w(O) w(1) · · · w(N)]T E RN+l 

max {lv(k)l; k = 0, 1, · · ·, N} 

~ Lmax{lw(k)l;k=O, l , .. ·,N} 

for any 6 = t1/N E (0, t:1 ) where t: 1 and L are positive constants. 

Proof: See Appendix D 

Lemma 5 Assume that n - m = 1 and 

v [v(O) v(1) · · · v(N)]T E RN+l 

w T N+l [w(O) w(1) .. · w(N)] E R 

satisfy w = r 6 v. Th en 

max { lv( k) l; k = 0, 1, .. · , N - 1} 

~ M 1nax { I [56 w ]( k) I ; k = 0, 1, .. · , JV - 1} 

(4.22) 

• 

(4.23) 

• 

(4.24) 
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for any ~ = t 1 j.V E (0: Eo) where Jv! is a positive constant; Eo was given in 

Lemma 3. The operator 66 : RN+l ---7 RN is defined as 

Proof: Sec Appendix E 

Proof of Theorem 12: Note that 

and since u* E C[O, t f], 

IIB6.f!a6.y*- u*lloo 

< IIB6.r!a6.y*- e6.a6.u*lloo 

+IIB6.a6.u*- u*lloo 

• 

( 4.25) 

as 6 ---7 0. Those properties hold with the norm II · II~· Therefore, what 

we have demonstrate in order to prove (4.20) or (4.21) is llf6 lloo ---7 0 or 

llf.0.ll~ ---7 0, respectively, vvherc 

( 1) The case of n - m = 0 

Frorn a 0.se6. = r 6., we haYe 

f 6 a 6 B6 (f!a6 y*- a6 u*) 

f 6 a 6 f 6 

~IoreoYer, by Lernrna 4, we obtain 

rnax{l[a6 f 6 ](k)l; k = 1, 2, · · ·, N + 1} 

:::; Lrnax{l[a~SJ6 ](k)l;k = 1,2,· .. ,J\T + 1} 

(4 .26) 

(4.27) 

for~ E (0, El). On the other hand, Proposition 2 leads to 

as ~ ---7 0. From Lemma 3, we have 

(4.28) and (4.29) implies 

and moreover 

f 6 f!a6 y*- a6 SB6 a6 u* 

a~::,y*- a~::,S()~::,a~::,u* 

because of (4 .27). This leads to (4 .20) since f 6 was defined by (4.26). 

( 2) The case of n - m = 1 

Since we have 

as the case of n - m = 0, Lemma 5 leads to 

max{l[a6 j 6 ](k)l; k = 1, 2, · · ·, N} 

:::; l\11 n1ax { I [ 6 6. a 6. Sf 6. ]( k) I; k = 1, · · · , ~N} 
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(-±.28) 

(4.29) 

(4.30) 

( 4.31) 

for 6 E (0, Eo). On the other hand, since ( 4.29) is satisfied for n - rn = 1, we 

have 

(4.32) 

for~ E (0, Eo) . Since n- rn = 1, G(s) is expressed as 

sn-1 + blsn-2 + . . . + b - 1 
]{ n 

sn+alsn- l+···+an 
G(s) 

]{ 
-+G1(s) 
s 
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where 

G ( 
·) _ v(bl- a1)8n- l + · · · + (bn - 1- On - I)s - an 1 s - 1\ __ __:_-----;-___ __:__ __ ___:____:__:_ _ ___:_:_ 

s(sn + a1sn - J +···+an) 

that is the systcrn of relative degree 2. Let S br the input-output rnappiug 

of G1(8) on [0, tJ] as is done for S. Then Su = ]{ J~ u(T)dT + Su and hence 

( 4.32) leads to 

fork= 0, 1, · · · , N- 1, where the mean value theorem was applied since we 

have Su* E C1 [0, t1] and se~a~u* E C1 [0, t1] frorn u* E C[O, t1] and the 

relative degree of GI(s) is 2. Moreover, we obtain 

l[6~a~SJ~](k)l 

< IK { ~ 1~+l)<"> u*(T)dT- u*(M) }I 
+I [ :t Su*] ((k + af)6) - [ :lu*] ((k + (3£')6)1 

+l [~su·J ((k+,Bf)t>) 

- [~sB"<J"'u·] ((k + f3f)6.)1 (4.33) 

for k = 0, L · · · 1V- 1. On the other hand , fr01n u* E C[O, t 1], ,,.e have 

{I { 1 r (k+l)[;.. }I max ]{ 
6 

J k ~ u * ( T) d T - v * ( k ..'::::,.) 
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·k=O ··· N-1}-tO ' ' ' 
( 4.34) 

as 6 -t 0. Note that -ftSu* E C 1 [0, t1] because the relative degree of G1(s) 

is 2. Then, frmn max{l(k + af)~- (k + t]f)6l; k = 0, 1, · · ·, N- 1} -t 0 

(as 6 -t 0), we have 

max { [ :(S'u*] ((k + a~)6)- [ :/u*] ((k + Bf)6)1; 

k=O:l, .. ·,N-1}-tO (4.35) 

as 6 -t 0. Note that Proposition 2 holds for S. Then: from 11-ftSu* - !tSBau* lloo -t 

0 (as 6 -t 0), we have 

max {I [ :t Su*] ( (k + f3f)6) 

- [:tSiJ"'!J"'u·] ((k + ,6£')6.)1 ;k ~ o, 1, ·. · ,N -1} 
-tO ( 4.36) 

as 6 -t 0. 

From (4.33), (4.34), (4.35) and (4.36), we establish 

that implies 

because of ( 4.31). This completes the proof. • 

Remark 6 As stated in Section 4.2) when G(s) has an unstable zero, H(z) 

have the corresponding unstable one for the sufficiently S'fnall ~. H owcveT) 

Th eorem 12 implies that when ~ -t 0 on the finite time interval [0, t f L 
divergence doesn't occur even if H ( z) has unstable zeros 
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4.3.2 The Case of Relative Degree 2 

In this srction, we discuss the case of relativr degree 2. \iVe show thP next 

theorem that is sin1ilar to the case of relat ive degree 0 or 1. 

Theorem 13 Assume that y* satisfies y* = Su* where u* E C 1 [0, t 1]. If the 

relative degree n - rn = 2, then 

( 4.37) 

as 6 ~ 0 

Remark 7 Theorem 13 is independent of stability of zeros of H ( z) . Th e 

convergence (4.37) with respect to the norm II · II~ is the best result in this 

case because of the same reason as stated in Remark 5. 

In the following discussion , it is assumed that n- m = 2 and 6 is chosen 

sufficiently small that cb6 -:f 0. (See Lemrna 4.10 and Rernark 4.11.) Fron1 

(4.9), we can express H - 1(z) as 

where 

and 

_ 1 ( ) _ 6 2 (z + 1)(z- exp(pl6)) · · · (z - exp(pn6)) 
H1 z - cb.0. (z- 1)2(z- q1(6)) · · · (z - qn- 1(6)) ' 

-1 1 H 2 (z) = --
z+ 1 

H - l( ) = (z- 1)2 
3 z ~2 

f!(N, JV + 1) , 1\T x (JV + 1) rnatrix that is made of r! except theN+ 1-th 

row, is expressed as the rnultiplicat ion of three n1atrices which correspond to 

H } 1 (z), H:; 1(z) and H31(z), respectively. 

( 4.38) 

6.S 

where i\.0. 1 , i\.0.2 and i\.0.3 are N x N, N x (N- 1) and (N- 1) x (fv + 1) : 

respectively. The elements of these matrices arc exprcssrcl as follows. 

,0.2 

0 cbc,. 
,0.2 

c.0. b.0. cb6 

i\.0.1 = c.0. A.0. b .0. c.0. b .0. (4.39) 
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C,0.A~ - 2
6,0. 

cb~ 
62 c 6 A .0. b .0. c.0. b.0. cbc,. 

where ( A.0., b .0., c.0., ~:) is the realization of H11 
( z) in the controllable canon-

ical form. 
0 0 1 0 

-1 1 0 

i\.0.2 = 1 -1 1 0 ( 4.40) 

1 0 
( -1)N 1 - 1 1 

1 - 2 1 0 1 -2 1 
1 

i\.0.3 = 62 ( 4.41) 

0 1 -2 1 

For the sake of the proof of Theoren1 13, we present the following lernrnas 

about H1 1 
( z) and H 21 

( z) . 

Lemma 6 Consider a sequence {17(k) ; k = 0, 1, · · ·, N - 1(= t1/ .6 - 1)} and 

let {u(k)} be 

[ u(O) u(1) · · · u(N- 1) ]T 

= i\.0. 1 [ 77(0) 77(1) · · · 77(N - 1) ]T 

Th en, for any 6 E (0 , t) and any sequence {17(k)} , we have 

max { I u ( k) I ; k = 0, 1, .. · N - 1 ( = t f /6 - 1)} 

~ i\11 n1 ax { 177 ( k) I ; k = 0, 1 , .. · N - 1 ( = t f / .6 - 1) } ( 4.42) 
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where E and lvh are positive constants. 

Proof: See appendix F • 
Lemma 7 Consider a sequence { ( ( k): k = 0, 1, · · · JV - 2} which is defined 

by one of the following equations. 

2. ((k) = 6Pf(tk) (p ~ 1) where tk E [0, tf], ltk+l - tkl :::; M26 (lvh: a 

positive constant) and j E C0 [0, tJJ· 

3. ((k) = f 6 (k6.)-j(k6) wherej6 , j E C1 [0 , tJJ andll1zfo. - 1tflloo -t 0 

as 6 -t 0. 

Let {'17( k)} be 

[ 77(0) 77(1) · · · 77(N- 1) ]T 
= A62 [ ((0) ((1) · · · ((N- 2) ]T 

Th en 

111 ax { 177 ( k) I ; k = 0, 1 , · · · , N - 1 ( = t 1 / 6 - 1) } -t 0 

as 6 -t 0. 

Proof: See appendix G 

Proof of Theorem 13: Since 

IIB6r~a6y*- u*ll~ 

< llfJ6a6u*- u*ll~ 

+IIB6r~a6y*- e6ac.u * ll~ 

< IIBo.a~u*- u*ll~ 

+ Inax{l[f~a6y* - a6v,*](k)l; 

k = 0 1 · · · N - 1} 
' ' ' 

( 4.43) 

• 

max{j[f~a6y*- a6u*](k)l ; 

k = 0 1 · · · N - 1} -t 0 
' ' ' 
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(4.44) 

as 6 -t 0. Moreover, from the definition of r~ , y* = Su* and r o = a6Se6 

we have 

r~(a6y*- r6a6u*) 

f~(a6Su*- a6S86a6u*) 

This equality with ( 4.38) implies that what we have to prove is 

max {I [A 61 A62 A63 (a 6 s u * - a 6 s e 6 a 6 u *) ]( k) I; 
k=0,1 , ···,N-1}-t0 (4.45) 

First, we discuss A63 (a6 Su* - a6 S86 a6 u*). Since the relative degree of 

G(s) is 2, we have 

and hence 

where 

sl u = K fa' loT u( (J )dudT 

S2u = L fa' loT loa u(x)dxdudT, 

S3u = fo' Cexp(A(t- T))bu(T)dT, 

and (A, b, c) is realization of the third term of (4.46). Note that 

A63(a6Su*- a6Se6a6u*) 

Ao. 3a~S1 u* + A63a6S2u* + A63a6S3u* 

(A63a6Sle6a6u* + A63a6S206a6u* 

+A63a6S3e6a6u*) (4.47) 
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and 

[AMY](k) = y(k + 2)- 2~: + 1) + y(k) 

(k = 0, · · ·, N- 2) where Y = [y(O) · · · y(1V)]r. Then we obtai11 the following 

expression of each term of ( 4.4 7) by the mean value theorern. 

A63a 6 [S1 u*](k) 

= K { u'(k6.) + 6.~! u'((k + 2</!J(k, 6.)).6.) 

-6.~ :t u'((k + 2</J2 (k, 6.)).6.)} 

A63a 6 [S2u*](k) 

- L { t"' u'(T)dT + Ll~u'((k + 2</J3 (k, 6.))6.) 

-Ll~u'((k + 2</J4 (k, 6.)).6.)} 

A63a6[S3u*](k) 

{ 
d2 4 d3 

= K dt2S3u*(k.6.) + ~ 3 dt3S3u*((k + 2¢5 (k, ~))~) 

1 d
3 

} -~3 dt3 S3u*((k + 2¢6 (k, ~))~) 

A63a 6[51 e .c:,a 6 u*]( k) 

= J{ (u*(k6) + ~ !!:_u*((k + cP7(k, ~))~)) 
2 dt 

A63a 6[S286a 6 u*](k) 

- L (.f"'reM'"'u'JdT 

~2 d ) 
+~u*(k~) + 6 dt u*((k + ¢8 (k, ~))~) 

J\c.3a 6 [ S38 2la 6 u*](k) 
d2 

= dt2 [S3e6a6u*](k~) 

4 d3 

+~3 dt3 [S3e6a6u*]((k + 2¢9 (k, .6.))~) 

1 d3 

-~3 dt·3 [S3B~a6u*]((k + 2¢10 (k, 6))6) 

( 4.48) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

where 0 ~ cPi(k, ~) ~ 1 (i = 1, 2, · · ·, 10). Moreover, (4.53) leads to 

A63a 6 [S386a 6 u*](k) 
d2 

- dt2 [S3e6a6u*](k~) 

4 { d
3 

+~ 3 dt3 [S3e6a6u*]((k + 2¢9 (k, ~))~) 

- !
3

3 [S3u']((k + 2</Jg(k, 6.))6.)} 

1 { d
3 

-~3 dt3 [S386a6u*]((k + 2¢To(k, ~))~) 

-::3 [S3u']((k + 2</J10 (k, 6.))6.)} 

4 d3 

+~ 3 dt3 [S3u*]((k + 2¢9 (k, ~))~) 

1 d3 

-~3 dt3 [S3u*]((k + 2¢10(k, ~))~) 

Therefore, fron1 Proposition 2 , we can see 
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( 4.54) 

(4.55) 

(k = 0, 1, · · ·, N- 2) is the linear combination of 1., 2. or 3. of Len1ma 7. 

By Lernma 7, we have 

max{J[A62A63(a6Su*- a6S86a6u*)](k)J; 

k = 0, 1, · · ·, N- 1} -t 0 

furthermore, by Lemma 6, we obtain ( 4.45). This completes the proof. • 

4.4 Implication of the Result and Numerical 
Examples 

If the desired trajectory y*(t) (t E [0, tf]) is defined as in Theorern 12 or 

Theorem 13, one can obtain u* satisfying y* = Su* by using the following 



70 

inYerse s:vstem of ( 4.1). 

when d I- 0; 

d 
-
1 

.r(t) 
( t 

d 
d{r(t) 

,u*(t) 

v*(t) = 

(Ac- d- 1c)x(t) + rl - 1bcy*(t) 

- d- 1cx(t) + d- 1y*(t) (4.56) 

( 4.57) 

when d = 0 vrhere F = cA~-m- 1 bc and x(O) = 0. Let s-1 be the input-output 

rnapping of (4.56) or (4.57) on [0, tJ]· Then the conclusion of Theorern 12 or 

Theoren1 13 is 

( 4.58) 

or 

(4.59) 

These convergences irnply that the inverse system of the sampled-data system 

approxirnates the inverse system of the continuous-time systern provided that 

n- 1n == 0, 1 or 2. 

As stated in the section 4.2. one of the rnost conunon problern formulation 

of iterative learniug control is the 1ninimization problem ( 4.13). Theorem 12 

or Thcorern 13 supports this problem formulation because ( 4.58) or ( 4.59) 

guarant ee that, by shrinking the sampling period ~. we can make the nlini

nlizC'r Buf!ae:.. y* of (4.13) arbitrarily close to the ideal input s - 1y*. It should 

be noted that the ripple b etween sample points is reduced independently of 

stability of the zeros because 

or 
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Numerical examples are presented to illustrate the results of Theorcru 12 

or Theorem 13. 

Example 7 Consider a system with relative degree 1, 

s- 1 
S(s) = (s+5)( s+ 6) 

on [0 , t 1]. Then the pulse transfer function is 

that has an unstable zero for small t6. where 

K = 36e-56 - 35e-66 
- 1. 

Let a desired trajectory be 

y*(t) = -t2 (2t- 3) 

Then we can see that au* satisfying y* = Su* is defined by the inverse syste'm 

[ 
0 1 ] [ X1 ] [ 0 ] d * 
0 1 x 2 + 1 dty 

It is easily checked that there exists u*(t) E C[O, t1] which satisfies the as

sumption of Th eorem 12. In Figure 4.1 (a), u = 8 6 f! a 6 y* is plolted 

for t6. = 0.2 and 0.05 ; the dash ed line refers to u*. In Figure 4.1 {b), 

e = S(86 f!a6 y* - u*) is plotted for t6. = 0.2 and 0.05. We can .see Lhat, 

as the sampling period 6 goes to 0, eD.r!ae:..y* approaches u* and hence the 

residual seD.r!aD.y*- y* is reduced. 

Example 8 Consider a systern with relat'ive deg1·ee 2, 

G(s) = s- 1 
s3 
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Then 
H(z) = (3- ~)~2 (z- q4(.6.))(z- qs(~) 

6 (z- 1)3 

where q4(~) = 1 + ~ + 0(.6.2) and q5(.6.) = -1 + ~ + 0(~2 ). Let u* be 

u*(t) = t + 1 t E [0, 10] (4.60) 

and y* = S u*. Then the assurnption of Theorem 13 is satisfied. In Figure 

4.2 (a)) 'U = e~r!crb.y* is plotted for~ = 1 and 0.5; the dashed line refers 

to u*. In Figure 4.2 (b)) e = S(B6f!cr6y*- u*) is plotted for~= 1 and 0.5. 

We can see effect of the zero q1 (~) is reduced even though q1 (~) approaches 

to 1 from inside the unstable area. 

Example 9 Consider a systen~ with relative degree 2) 

G(s)-
2 

- 2s2 - 3s + 1 (4.61) 

Then 

H(z) = 2(ei\f2 - 1) 2 z- q1 (~) 
(z - e6 ) (z - e6 /2) ( 4.62) 

where ql(~) = -1- %- + 0(~2 ). The function u* is chosen as (4.60) and 

y* = Su*. In Figure 4.3) u = B6f!cr.0.y* for .6. = 1 and 0.25 and e = 

S(B.0.f!cr6y*- u*) for~ = 1 and 0.25 are plotted) respectively. 

Example 10 Consider a system with relative degree 3) 

Then 

H( z) 

G(s) -
1 

- (s+1)3 

2- (~2 + 2~ + 2)e- 6 

2 
(z- q2(~))(z- q3(~)) 

(z- e- 6 )3 

(4.63) 

( 4.64) 

where q2(.6.) ------t -2- V3 and q3(~) ------t -2 + V3 as~ ------t 0. The function u* 

is chosen as (4.60) andy*= Su*. In Figure 4.4) u = B6 f!cr6 y* for~ = 2.5 

and 1 and c = S(BD-f!cr~y* - u*) for~= 2.5 and 1 are plotted) respectively. 

We can see the norrns of these functions increase as ~ goes to 0 This 'is the 

ejj'ect of the zero q2(~) which converges to thr unstable z = -2- /3. 
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4.5 Concluding Remarks 

In this chapter, we discussed implementation of iterativC' learning coutrol 

with a 0-order hold, a sarnpler and digital rornputers. It was proved that 

if relative degree of transfer function of the continuous-tirne system is 0, 1 

or 2 then it is not necessary to consider stability of zeros of the sampled

data system for any small sampling period wh ln sampled-data systems are 

considered 011 the fixed continuous time interval; this property holds even if 

the transfer function of the continuous time system has unstable zeros. It was 

guaranteed that one can simply define problen1s of iterative learning control 

for sampled-data systems as minimization problems of output errors on the 

sample points. We also presented some nurnerical examples to illustrate the 

main result and den1onstrated that the result is uucornrnon for systen1s with 

general relative degree of the transfer functions. This implies that when we 

consider iterative learning control for sampled-data systen1s and the relative 

degree of the original continuous-time system is greater than 2, WC' must pay 

much attention to unstable zeros or length of the sarnpling period in order 

to avoid undesirable effect on the inter sarnple points. 
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Chapter 5 

Iterative Learning Control for 
Linear Discrete-Time Systems 

5.1 Introduction 

In the last chapter, we discussed iterative learning control for sampled-data 

systems. It was shown that one can define iterative learning control as an 

iterative algorithm of minimizing output errors on the sample points when 

relative degree of the transfer function of the continuous-time systern is 0, 1 

or 2. Even if there are unstable zeros of the transfer function of the sampled

data system, effect of the unstable zeros is reduced by shrinking the sarnple 

period; the ripple on the inter-sample points is small when the sample period 

is sufficiently small. In this chapter, we develop iterative learning control for 

linear discrete-time systems which refer to sampled-data systerns with the 

limiting property stated above. 

Many researchers studied iterative learning control for linear discrete

time systems and proposed the design n1ethods [50, 51 , 52 , 53, 54 , 2G , 55 , 25, 

56]. However, no specific design method of iterative learning control using 

adjoint systems was presented for discrete-tin1e systems with uncertainty. 

On the other hand, we demonstrated advantage of the iterative learning 

control using adjoint systems for linear continuous-time systerns. In the 

following sections, we discuss this kind of iterative learning control for linear 

79 
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discrete-time systerns. First, v\'e forrnulate iterative learning control for linear 

discrete-tirnr sys1en1s as an iterative algorithrn of rninimizing the output 

error in the vector space. Second, we presrnt iterative learning control using 

adjoint systems and den1onstrate its convergence . The convergence condition 

is given as strictly positive realness of the transfer function that represents 

uncertainty of the systern. ~Ioreover, vve presE'nt a convergence condition 

when the systen1 has structured uncertainty, i.e. when pararncters of the 

systern is given as intervals. Finally, nurnerical exarnples is presented to 

illustrate the results. 

5.2 Mathematical Preliminaries 

Consider a linear discrete- tirne systern 

x(k + 1) 

y(k) 

Ax(k) + Bu(k) 

Cx(k) + Du(k) (k = 0, 1, · · ·) (5.1) 

with x(O) = 0 where x E Rn, u E R.m and y E RP. Then the input-output 

rnapping of (5.1) for tirnes k = 0, 1, · · ·, N- 1 is expressed as 

where 

w == rv 

'U = [ u(Ofr u(1 )T 

W = [ y(O)T y(1)T 

f= 

D 

CB 

CAB 

0 

D 

CB 

u(l\ - 1)T JT 

y(N-1)T ]T 

0 

D 0 
CAB CB D 

Lrt a desired trajectory at k = 0. 1, · · · N - 1 be 

(5.2) 
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then the best input v* is the solution of the equation rv = wd. Ivlore generally, 

v* is defined as the least-squares solution with the rninimum norm, namely 

where rt indicates the Moore-Penrose generalized inverse matrix. If r is 

expressed as 

f=FG 

where F and G are matrices with the maximum rank, then 

In the following discussion, we consider 

Vn- <Pen (n = 0, 1, · · ·) 

(5.3) 

as algorithms that update the input v where dn represents n1easurernent error 

or disturbance; it is assumed that 

where M is a positive constant. We discuss a problem to determine <I? so 

that the input sequence { vn; n = 0, 1, · · ·} generated by (5.3) satisfies 

(5.4) 

as n -t oo and M -t 0. If rr is available and <I> is chosen as 

(5.5) 

where a is a sufficiently small positive constant, then (5.3) is coincident with 

the gradient method. The main topic of iterative learning control is how 

to choose <I> when there is uncertainty in the system ( 5.1) and hence rr is 

unavailable. 

In the following discussions, R(f) and N(f) indicate the range and the 

null space of r, respectively. 
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5.3 Convergence of Iterative Learning Con
trol 

Assume that the paran1eters of the system (5.1) have uncertainty anrl. let the 

nominal model be 

.r(k + 1) 

y(k) 

Ax(k) + Bu(k) 

Cx(k) + Du(k) 

Then the counterpart of r for (5.6) is 

D 0 

CB iJ 
f= CAB CB 

0 

CAN-2B 
D 0 

CAB CB iJ 

In the following discussion, we consider the algorithm (5.3) with 

instead of unavailable rT. 
Suppose 

where A E RpN xpN . Then we have the next theorem . 

Theorem 14 If 

(Aw)T1u ~ p,lwl 2 (J-L: a positive constant) 

for any w E RPN and 

wa E R(r) 

then the sequence { vn: n = 0. 1, · · ·} defined by 

Vo E _iV(f)..L 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

satisfies 

2p., 
0<a<-~

lfTI2 
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(5.11) 

(5.12) 

(5.13) 

(5.14) 

where I dn I ~ M and r is a positive constant less than 1; I · I indicates the 

Euclidean norm or the induced norm. 

Proof: Since (5.9) implies 

(5 .1 1) with (5 .1 2) and (5.7) leads to 

Vn- r+wd- arT ATr(vn- r+wd) 

+afT AT dn 

Frorn this equation, we have 

lvn+l - r+wdl 

< lvn - r+wd- arT ATr(vn - r +wd) I 

+ lafTI.i\1 

moreover , from (5.8), 

lvn- r +wd- afTATf(vn- r+wd)l 2 

< I'Un- r wdl 2 

-o:(2p- olfTI 2
) If( Vn - r + wd) 1

2 

(5 .1 5) 

(5.16) 

( 5.1 7) 
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Since r+wd E N(f)j_ and R(fr) = N(f)j_. (5.15) with (5.10) implies that 

un E N(f)j_ (n = 0, 1, · · ·) 

On the other hand, since fJN(f)j_ : N(r)j_ -t R(f) is bijection, there exists 

a positive constant 

{ 
Jfv! } a= min j;T·v E N(f)j_.v # 0 

and hence (5.17) leads to 

where 

Jvn- r+wd- o:fTi\Tf(vn- f+wd)j 2 

< r21v - r+w 12 _ n d 

which satisfies 0 ::; r 2 < 1 because (5 .13) i1nplies 

Therefore, from (5.16) and (5.19), we obtain 

lvn- r+wdl 

::; rlvn-1 - r+wdl + Jcxtrl-~1 
1 - T 11 ~ , 

::; rn Iva - r+ wd 1 + Jof7
1 1\!I 

1-r 

( 5.14) follows this inequality. 

(5 .18) 

(5.19) 

• 
Remark 8 The conclusion of Theorem 14 means that if the iteTation n -t oo 

and the noise level \I -t 0 then the input Vn tends to the ideal input r+ wd. 

Remark 9 Let 

and 

then c(k) and TJ(k) aTe Telated by the adjoint systern 

p(k- 1) 

TJ(k) 

AT p(k) + (;T f(k) 

f3T p(k) + fJTc(k) 
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(5.20) 

withp(N -1) = 0. tren is easily calculated by using (5.20). The condition 

(5.10) is satisfied by vo = 0. 

The next theorem show that adding a condition about t eli1ninatcs the 

restriction (5.9) on the desired trajectory wd. 

Theorem 15 Suppose that t is expressed as 

(5.21) 

and 

( 5. 22) 

where i\1 and i\2 satisfy 

(5.23) 

for any w E RPN and 

(5.24) 

for any v E RmN, respectively. Then the sequence { vn; n = 0, 1, · · ·} defined 

by 

Vn+l 

fvn- WcL + dn 

( 5.25) 

(5.26) 

(5.27) 
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satisfies 

0 < a < :1-11 

lfTI2 

lvn - r +wdl 
+ 1 ~ T 

~ rnlvo- r wd l + --laf l.iYf 
1 - r 

where ldnl ~ M and r is a posit'ive constant less than 1. 

Proof: From (5.26) and (5.27), we have 

~ T 

Vn - ar (fvn - Pwd) 

+af'T(I- P)wd + af'T dn 

where P : RPN --+ R(f) is the orthogonal projection. 

( 5. 28) 

(5.29) 

Since (5.24) implies R(A2) j_ = {0} and IA2vl ~ 1-12lvl because of the 

Schwarz inequality, A2 is bijective and hence there exist A;- 1
. Since (5.22) 

leads to f'T = AfrT and A2 Tf'T = rr' 

moreover 

(5 .30) 

By rnaking use of this relationship in (5.30), we obtain 

furthermore, by Pwd = rr+wd, 

- r + - rr "rr( , r + ) Vn Wd a 1 \. un - Wct 

From this equation, (5.29) is established by reasoning which is sin1ilar to 

Theorem 14. • 
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Assume that the systems (5.1) and (5.6) are single-input single-output 

and let the transfer functions be 

bo zm + bl zm- l + · · · + bm 
H( z)- --------

zn + al zn-1 + ... + an 
(5.31) 

(5.32) 

where 

m+n~m+n 

Then 

J(z) := H(z)H( z)- 1 (5.33) 

satisfies H( z) = J( z) H( z) and hence the matrix A in (5.7) is 

d 0 0 

cb d 

A= cAb cb (5.34) 

d 0 
cfiN- 2b cAb cb d 

where (A, b, c, d) is a realization of J(z). In this case, fA = Ar because 

N i- j 
[rA]ij = ~ ri-k :>..k - j = ~ ri-j-k :>..k 

k = 1 k=O 

and 
N i- j 

[Ar]ij = ~ :>..i - krk - j = ~ :>..i - j - krk 
k = 1 k=O 

where 

/i-j = { 
0 i < j 
D 7, = .J 
CAi- j+l B i > j 

and 

).H = { 
0 i < j 
d ~ = .J 
cfii-j+lb i > j 
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Therefore , in Theorern 15, t hr condition ( 5 .23) is equivalent to the condition 

(5.24). 

The 11ext lrn11na replace those conditions \Vith a property of the transfer 

function J( z) . 

Lemma 8 If Lhe transfer function J ( z) 

real, equivalently, 

H(z)H(z) - 1 is strictly positive 

1. (Schur stability) 

J( z ) and J(z) - t has no pole outside or on the unit circle. 

2. (positiveness) 

(5.35) 

for any wE R 

then A satisfies 

for any w E RN where J-L is a positive constant. 

Proof: See Appendix H. • 
Even if there is uncertainty in 1-I(z). choosing H( z ) so that J( z ) is strictly 

positive real1nakes it possible to guarantee the convergence of the algorithm 

gi,·cn in Theorem 14 or 15. 

5.4 Convergence of the Iterative Learning Con
trol for Systems with Uncertain Parame
ters 

In section 5.3. convergence conditions for i terati \'e learning con Lrol are ex

pressed by a strictly-positi vc-real (SPR) condition on 1 he transfer function 
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J(z) = H(z)H(z)- 1
. In this section, moreover, the SPR condition will be re

placed with inequalities in the parameters of H ( z) for practical applications. 

Suppose that the orders m and n in H( z) are known. Let H( z) and H(z) be 

where 

and 

H( z) = ~i:i and fl(z) = ~i:; 

JV(z) = bozm + b1zm-l + · · · + bm 

D(z) = zn + a1zn-l +···+an 

~ ~ m. ~ m.-1 ~ 

N(z) = b0 z + b1 z + · · · + bm. 

D~ ( ) n ~ n-1 ~ z = z + a1 z + · · · + an_ 

If m and n are chosen as m = m and n = n, it is possible to make J( z) be 

SPR, because choosing H(z) as H(z) = H( z) yields J( z) = 1. The next theo

rem gives margins of corresponding differences between ( a 1 , · · · ,an, b0 , · · · , bm) 

and (al , ... 'an, bo, ... 'bm) · 

Theorem 16 Suppose that D(z) and N(z) are Schur stable. If n 
m = m and parameters ( al' ... ' an' bo' ... ' bm) satisfy 

and 

Then J(z) is SPR. 

n, 

(5.36) 

(5.37) 

Proof: Note that (5.36) and (5.37) imply !D(ejw)- D(eJw)l < ID(eJw)l and 

IN(ejw)- N(ejw)l < lrV(eJw)l, respectively. Then by Rouche's theorem[57] 

D(z) = D( z) + D(z) - D(z) and JV(z) = iv(z) + N(z) - i'-l(z) are Schur 

stable if D(z) and N(z) are Schur stable. Since 

J ( z) = 1 + { N ( z) - j~ ( z) } I ~ ( z) 
1 + {D(z)- D(z)}/D( z) 
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we have 

(5.38) 

On the other hand. note that /{ ( z) and iJ ( z) have no zero 011 the unit circle; 

then frorn (5.36) and (5.37) we obtain 

and 

I 
D(cjw} - D(ejw) I < 

D(eJw) 
I a 1 - a 1 I + · · · + I an - an I 

ID( eJw) 1 
1 

< -
V2 

I 
N(ejw} - J'l( ejw) I < 

N( eiw) 
I bo - bo I + · · · + Ibm - bm I 

I J\r ( e]w) I 
1 

<-
V2 

Those inequalities lead to 

for any w E R and 

(5 .39) 

(5.40) 

for any w E R , respectiYcly. From (5.38) , (5.39) and (5.40) ·we establish 

Re[J(cJw)] > 0 for any w E R. Thi cornpletes the proof. • 
The assu1nptions (5.36) and (5.37) in Theoren1 16 arc simple and con

,·enient for applications. However they could be conservative estimates of 

the pararneter 1nargins. because they arc sufficient conditions for J( z ) to be 

SPR . . Text , a necessary and sufficient con eli tion -vvill be discussed. Suppose 

that para1netcrs ( a1, · · · , an, b0 . · · · , bm) satisfy 

(5 .41) 
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and 

(5.42) 

It should be noted that n = n or rn = m are not necessarily assumed in the 

following discussions. A condition for 

H(z) = bozm + b1zm- 1 + · · · + bm 
zn + al zn-l + ... + an 

with (5.41) and (5.42) to be SPR is already known[58]. Although their result 

cannot be applied directly to 

(bozm + b1zm- l + · · · + bm) 
J(z) = 

(zit+ a1zn- 1 + ... +an) 
(zn + a1zn- 1 + · · · +an) 

(bozm + b1zm- 1 + · · · + bm) 

which we are interested in, we can show a sin1ilar result as follows. 

Theorem 17 J ( z) is SP R in a parameter space (hyper cube) 

if and only if 

bk E [Qkl bk] ( k = 0, · · · , m) , 

a k E [Qkl a k] ( k = 1 , · · · , n) } 

1. J( z ) and J(z) - 1 are Schur stable on m/2] + n/2] + 1 line segments) 

ci>o, · · · , ci>m/2] and \ll1, · · · , \ll n/2] where 

ci>k = {(bo,···,bk,···,bm)lbkE[Qklbk], 

bi E { Qi , bi} ( i = 0, · · · , m; 

with the exception that i = k)} 

bi E { Qi ai} ( i = 1 , · · · , n; 

with the exception that i = k)} 

and m/2] indicates the largest integer less than m/2. 
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2. J ( z ) satisfies 

for any w E R on 2m+n+ 1 corner points 

{ ( al' ... ' an' bo ' ... ' bm); 

bk E {l2kl bk} (k = 0, · · ·, 1n): 

ak E {{h, ak} ( k = 1, · · ·, n)} 

( 5.43) 

PrDoj: First. we can see that J( z ) and J( z )- 1 are Schur stable if 1\T(z ), D(z ). 

N( z ) and D(z) arc Schur stable. Direct application of the kno·wn result[58] 

to the polynon1ials ~N(z ) and D(z) establish condition 1o. 1. 

Second , since (5 .35) is equivalent to 

for any w E R : we will discuss the positiveness of 

Frmn 

and 
n+m m 

1V( z)D(z ) = L L bm-i/in- k2 +i 2 Z k 2 

k2=0 i2=0 

\Vhere ao = iio = L ai = 0 (i = -m, ... ' -1 , n + 1, . .. ' n + {h,) and ai = 0 

(i = -m . . . . ' -1, n + 1. ... j n + m) , we have 
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Since the right hand side of the equation shows that f(w , a1, ···,an , bo, · · · , bm) 

is a linear function of parameters a1 , ···,an, bo · · ·, bm, we obtain 

f ( w' a 1 ' ... ' an' bo' ... ' bm) 

Aj(w, a1, ···,ilk,···, an, bo, · · ·, bm) 

etc. where A E [0,1]. This implies that if f(w,al,···,an,bo,···,bm) > 0 for 

wER 

ai E { ili, ai } ( i = 1 , · · · , k) 

ai E [ili, ai] ( i = k + 1, · · · , n) 

bi E [Qi,bi] (i = O, .. ·,m) 

t hen j(w,a1,· ··,an,bo,·· ·,bm) > 0 for 

wER 

ai E {ili, ai} ( i = 1, · · · , k - 1) 

ai E [ g_i , ai] ( i = k , · · · , n) 

bi E [l2i,bi] (i = 0, · · · ,m) 

Iteration of such induction for ai and bi establishes condition 1\' o. 2. 

5.5 Numerical Examples 

• 

In t his section, we present numerical examples to illustrate the iterative learn

ing control and its convergence conditions given in the preceding section. 
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Example 11 Consider a system, 

Let H( z ) be 
A() 0.15z +0 .09 H z =-----

z2 - l.Oz + 0.2 
(G.44) 

Thfn rninwE R jD(ejw)j = 0.2 and minwER jN(ejw)j = 0.06; by Theore1n 16, 

J ( z ) = if ( z ) H - l ( z ) is S P R if 

I a 1 + 1. o I + I a2 - o. 21 < o .1--1 

lbo - 0.151 + lb1 - 0.091 < 0.042 

The algorithm, that is derived jro1n (5.44) based on Th eorem 15 is 

U n+ 1 ( k) = Un ( k) - 0:7Jn ( k) ( k = 01 • • • , JV - 1) 

Pn(k -1) = [ -~ 2 1
1
0 ] Pn(k) + [ ~] En(k) 

7Jn(k) - [ 0.09 0.1 5 ] Pn(k) 

tn(k) = Yn(k) - Yd(k) 

where {Yn(k)lk = 0, · · · , 1V-1} is the output of (5.1) for {un(k)jk = 0, · · · , N-

1}. Figure 5.1 shows len I for n = 0, 1, · · · , 10 when 

( a1, a2) = ( - 1.1 , 0.18) 

( bo, bl) = (0.16, 0.12) 

Yc~(k) 
2k 

(k = 0, 1, .. ' ; 100) = Sin -n 
100 

uo (k) = 0 (k = 0, 1, .. · , 100) 

(} = 0.2 

~Yf = 0 

7 

d 4 
Q) 

3 

2 

n 

Figure 5.1: len! of Example 11. 

Example 12 Consider a system 

with interval parameters 

Let H( z ) be 

boz + b1 
H(z) = z2 + a1 z + a2 

a 1 E [ -0.55 , -0.45) 

a2 E [0.04 , 0.06) 

b0 E [2.0, 3.0) 

b1 E [ - 1.5 , -0.5) 

A 1 
H( z ) = z- 0.5 

Then b0 z + b1 and z2 + a1z + a2 are Schur stable on line elernents 

<Po = {(bo , bi)·bo E [2.0,3.0) 
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(5.45) 

(5.46) 

(5.47) 

(5.48) 

( 5.49) 
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and 

b1 E { - 1.5, - 0. 5}} 

{ ( a1 , a2) ; a1 E [ - 0.55 , - 0.45], 

a2 E {0.04, 0.06}} 

Re[J( ejw)] > 0 for any wE R on points 

Th erefore) J( z) 

(5.48). 

{(a1 , o2, bo , bl) ; 

a1 E { - 0.55 , - 0.45} , a2 E {0.04, 0.06}. 

bo E {2.0. 3.0} , b1 E { -1.5 , -0.5}} 

fi (z )f!( z )- 1 is SP R for any (5.45) ) (5.4 6)
1 

(5.4 7) and 

5.6 Concluding Remarks 

In this chapter , itrrative learning control based on the gradient method for 

linrar discrete-tin1e systems was presented. \Vhen there is uncertainty in 

the systen1. a convergence condition is given by 111atrix inequalities or the 

SPR condition on a transfer function which represents the uncertainty of 

the systen1. Furthern1ore , the SPR condition on the transfer function was 

replaced vvi th inequalities of paran1eters that are convenient for practical 

applications. 

It should be noted again that the iterative learning control prrsentecl 

in this paper can be directly applied to san1pled-data systems with 0-ordcr 

hold if the relative d('gree of the transfer function of thr original continuous

tirnc systern is 0, 1 or 2. As dernonstrated in chapter 4. the inter-sample 

error between the output aHd the desirrd trajectory converges to 0 as thC' 

sarnpling prriod goes to 0 independently of stability of zeros ill the transfer 

function of tbr sa1nplcd-data systern. 

Chapter 6 

Conclusion 

In this thesis, we discussed iterative learning control using adjoint systems for 

linear continuous-time systems and its extension to sampled-data systerns. 

In Chapter 2, we demonstrated convergence of the iterative learning con

trol applied to linear continuous-time systems with uncertainty. The main 

convergence condition is strictly coerciveness or strictly positiveness of the 

unknown part of the system. Next, in Chapter 3, we estimated convergence 

rate of the iterative learning control and proved that it cannot be exponential 

one, which yields robustness against noise. In order to achieve exponential 

convergence, we introduce a regularization method into the iterative learning 

control in exchange for tracking performance. 

In Chapter 4 and 5, we discussed extension of the iterative learning con

trol presented in the preceding chapters to linear sampled-data systen1s. In 

Chapter 4, we treated ripples at inter-sample points ·which are effects of un

stable zeros of sampled-data systems . We proved that if the relative degree 

of transfer function of the continuous-time system is 0, 1 or 2, shrinking 

the sampling period reduces the ripples independently of stability zeros. In 

Chapter 5, we developed iterative learning control for linear sampled-data 

systems based on the same idea as in Chapter 2. Since the results in 4 

presents how to decrease ripples at inter-sample points , we dealt with linear 

discrete-time systems as object systems of the iterative learning control. 
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Appendix A 

Proof of Lemma 1 

Note that cA~ be = 0 ( k = 0, 1, · · · , n- m- 2) if n- m ~ 2 and cA~-m- l be #- 0 

Then we have 

and hence 

cb 

oo cAP- lb 6P 
cb = L e ' e 

p=n-m p. 

An-m- lb c e e ----+ 
(n- m)! 

00 

2.:.:: 
p=n - m+l 

On the other hand , since 

p! 

00 00 cAP-1 b ~p-n+m 
e e < 2.:.:: 

p=n - m+l p=n - m+l 

p! 
(A.l) 

p! 

the right hand side of which converges to a continuous function for .6. E 

( -oo, oo), we have 

00 

lim L 
6---tO 

p=n-m+l 

(A.2) 

Therefore, there exists co > 0 such that 

~~~~m~ > 0 

for any 6 E (0, co) • 
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Appendix B 

Proof of Lemma 2 

By applying a differentiation formula for matrix determinant to ( 4. 7) , we 

obtain 

d~ N(z)l"'=o = (z- 1t-
1
cb, 

d~2 N( z ) l"'=o (z + l)(z - 1t-
2
cAcbc 

d~3 N( z ) IL'> =O 

= 

(z + 5)(z- l )n- 2cA~bc 
-3trace(Ac)cAcbc(z - l)n- 2 if n = 2 

(z 2 + 4z + l )(z- l)n- 3 cA~bc 
-3trace(Ac)cAcbc(z + l)( z - l)n- 3 

if n ~ 3 

Note that cbc = 0 and cA~bc -/= O(k = 1, 2, · · ·) when n - m = 2. Then we 

have 

N( z) 
~2 

= (z + 1)(z- 1)n- 2cAcbc2 

d3 I .6 3 
+ d6. 3 N( z ) L> = O cA~b,6 
+0(.6 4) 
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1noreover 

l 
( _ 2)n- 2 4cA ; bc-3tr~Ce ( Ac) cAc bc 

JV( -1) _ +0(6) if n = 2 
63 -

( -2)n- 2 cAlbc + 0(6) if n ~ 3 

On the other hand , from ( 4.9), we have 

moreover 

where 

qn - l (6) + 1 
6 

= - { ( -2)n~2~n + 0(6)} 

{ ~~ ( - 1- ql(6)) ... ( -] - Qn~2(6)) r l 

Since we obtain ~'§' = cA2bc + O(ll) and 

( - 1- q1(6)) · · · ( - 1 - qn- 2(ll)) = ( -2)n- 2 + 0(6) 

frmn ( 4.16), we establish 

qn - l (6) + 1 
6 

= - {( -2)n~2~n+0(6) } 

{ ( -2r~2cAt, + 0(6) rl 

_ _ Jvfn + 0(6 ). 
3cAcbc 

• 

Appendix C 

Proof of Lemma 3 

If d =f. 0 then r is nonsingular, equivalently r+ = r- 1 . vVe obtain immedi

ately ( 4.22). We will discuss the case of d = 0, i.e. n - m ~ 1. From ( 4.11) 

and (4.15), we have 

for ll E (0, t:o). On the other hand, u* E C[O, t f] and y* = Su* imply 

y* (0) = 0. This cornpletes the proof. • 
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Appendix D 

Proof of Lemma 4 

Since d f. 0, we can rewrite ( 4.4) as 

x(k + 1) = (A- d- 1bc)x(k) + d- 1bw(k) 

v(k) - -d- 1cx(k) + d- 1w(k) 

T hese equation with x(O) = 0 leads to 

v(O) = d- 1w(O) 
k-1 

v ( k) = - d- 1 c L (A - d- 1 be )P d- 1 bw ( k - 1 - p) 
p=O 

+d- 1w(k) (k = 1, 2, · · · , N) 

and hence 

lv(O) I < ld- 1 llw(O) I 
k-l 

jv(k)j < jd- 1cj L JA- d- 1bcJPid- 1JibJjw(k- 1 - p)j 
p=O 

+I d- 1 11 w ( k) I 

< ld- 1clld- 11 max{ lw(p)l;p = 0, 1, .. ·, k - 1} · 
k - l 

lbl L lA- d- 1bciP + ld- 1 llw(k)l 
p=O 

Ioreover 

max{ lv(k)l; k = 1, 2, .. ·, N } 
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< ld 1clld- 1
1 Inax{ lw(p)l; p = 0, 1, · · ·, lv- 1} · 

k - 1 

n1ax{lbl L lA- rl - 1bciP; k = 1. 2, · · · . . V} 
p 0 

+ld- 11Inax{lw(k)l; k = 1, 2. · · · , .N} 

On the other hand , since 

ancl 

lbl - libel {; IAcl:~l~k I 

< 
oo lA lk- 1 6k 

lbcl {; . c k! 

-
lb ·I cxp(IAcl6.) - 1 

c l£lcl 

we can cstin1atc 

where L 1 is a positive constant. This in1plies 

furt hcnnore 

p= O 

< [ exp (I A c 16.) + L 1 { exp (I Ac 1.0:.) - 1}] k - 1 
{ exp (I AcI D.) - 1} ( 1 + L 1) 

k- 1 

n1ax{ lbl L lA - d- 1bciP; k = 1. 2, · · · , 1V} 
p=- 0 

< lbcl {cxp (IA,I .6) + Ll(cxp( IA,ID) - 1)rr;~ - 1 
IAcl 1 + L l 

< L2 

(D.l) 

(D.2) 

(D.3) 
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for 6. = t 1/ N E (0 , Eo) where L 2 is a positive constant. Therefore, from (D.1) 

we obtain 

max{lv(k)l ; k = 1, 2, · · · N} 

~ (ld- 1clld- 1IL2 + ld- 1 1) max{ lw(p) I; p = 0, 1, .. ·, JV} 

This inequality with (D.l) leads to (4.23). • 



Appendix E 

Proof of Lemma 5 

Since ~ E (0, Eo) implies ~ -1- 0, we can rewrite ( 4.4) as 

x(k+ 1) = 

(E.1) 

v(k) 

(E.2) 

for k = 0, 1, · · · , N- 1. Those equations with x(O) = 0 lead to 

for k = 0, 1, · · · , N- 1 where 

(E .3) 

(E.4) 
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This irnplies 

11·(k) l < (~rl I,.A~l 
1 n ax { I [c) 6 w ](p) I ; p = 0, 1 , ... , k - 1 } . 

k - 1 

196 1 L IFt-. lp 
p=O 

+ ( ~) - J I[On w](k) I 

and hrncc 

nlax{l v(k)l ; k = 1, 2, ... , N - 1} 

< (~rj lcA~l 
Inax{l[66 w](p)j;p = 0, 1, ... , JV- 2}. 

k - l 

Inax{IDt-.1 L IF~ I P; k = 1, 2, ... , N} 
p=O 

(
cb) -1 

+ ~ 0 

max { I [c) .6 w] (p) I; p = 1, 2, ... , N - 1} (E.5) 

On the othr.r hand , vve have 

and , frorn (A.1) and (A.2) , 

(E.6) 

for any ~ E ( 0, Eo) where j'f1 is 8 positiv-e constant . 1\IorcoYer. from (E.3) ; 

(EA), (D.2). (E.6) , (D.3) , and (E.6) , we obtain 

I I lb l exp( I A c l~) - 1 
1 

g~ :::_; c IAcl Afl 

IF~! < exp(/Ar/.6) 

lb l exp( I Acl~)- 1 o/I I 1 cxp(IAc /~) - 1 
+ c IAcl j 1 C ~ 

< exp(IAcl~) + 1\lh(exp(!Acl~)- 1) 

for ~ E (0, t:0 ) where 

lbciAil/cl(exp(IAciEo)- 1) 
1112 

= IAclt:o 

By these inequalities , we can estimate 

and hence 

k - 1 

lg~l L IF~Ip 
p=O 

= lb I exp(IAcl~) - 1 1\1! . 
c IAcl 1 

= 

{exp(IAcl~) + A12(exp(IAcl~)- 1)}k- 1 

{ exp(IAcl~) + Jv!2(exp(IAcl.6)- 1)- 1 

lbcl ivfl {exp(IAcl~) + 1\lh(exp(IAcl~)- 1)}k- 1 

IAcl 1 + J\!h 

max l9t-.l L IF~IP; k = 1, 2, ... , N 
{ 

k-1 } 

p=O 

lbcliVIl {exp(IAcl~) + Nf2(exp(IAcl~)- 1)P1 1 ~ - 1 

/Ac/ 1 + Jvf2 

111 

(E.7) 

for~= t1j JV E (0, t:o) where J'vh is a positive constant. The inequality (E.5) 

with (E.6), (E.6) and (E. 7) leads to 

max { I v ( k) I; k = 1, 2, · · · , JV - 1} 

S All {lei exp(IA;~Eo) - 1M3 - 1} . 

max { I [ 6 6 w ](p) I ; p = 0, 1, .. · , JV - 1 } 

and the equation (E.2) with x(O) = 0 and (E.6) implies 

I v ( o) I :::; Jvh I [ 6 c. w ]( o) I 

for~ E (0, t: 0 ). Con1bination of those inequalities leads to (4.24). • 



Appendix F 

Proof of Lemma 6 

From Theorem 11 and Lemma 2, we have 

where 

H1l(z) 
62 

= -{1+ 
cbtJ. 
ro(6)zn + r1(6)zn- l + · · · + rn(.0.) } 

( Z - 1 )2 ( Z - ql ( .0.)) · · · ( Z - qn- l ( 6)) 

(F.1) 

Consider the realization of H1 1 
( z) in the controllable canonical forrn and 

ro ( .0.) 

x(k + 1) = AtJ.x(k) + 
ro(6) 

TJ(k) 

62 
u ( k) == [ 0 · · · 0 ~: ] x ( k) + cb tJ. TJ ( k) (F. 2) 

with the initial value x(O) = 0. Then we have 

ro(6) 
k-l ro(6) 

< L IA!J.Ij ITJ(k- j- 1)1 
j =O 

rn(6) 

+ITJ(k)l 
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for k 2:: 1 whrr<' I · I indicat<'s Euclidean norrn or the ind uccd norrr1. :\ otc 

that h:v (F.1) 

{ 11 (6) 

Since Thcoren1 11 and Lcnnna 2 i1nply 

11/-1~1- 11 
lin ax { 1, I q 1 ( 6) I , · · · , I qn - l ( ~) I } - 11 

< .fh~ 

where l\I2 is a positive constant , we haYc 

Therefore, we obtain 

for k = 1, 2, · · ·, ~V- 1 ( = t f /6- 1). On thr other hand , since 

cb6 = cAcbc 0(6 ) 
~2 2 + 

there exists f > 0 such that 

(F.3) 

(F.4) 

(F.5) 

for any ~ E (0. f) where ~f/3 is a positive constant. The inequality (F.4) with 

(F. 5) est a blishcs 

1 u (k) I 
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T -
- e 75: l'vh 6 - 1 -

< i\h j\J
2 

AI1 

max{lrJ(i)l; i = 0, 1, · · ·, k- 1} 

+l77(k)l (F.6) 

fork = 1, .. ·,N(= T/6). From (F.2), we have u(O) = 6
b

2
77(0) and hence 

c !::;. 

(F.7) 

From (F.6) and (F.7), we obtain (4.42). • 



Appendix G 

Proof of Lemma 7 

The case of 1.: 

Since r;(k) = L:J=1(-1)j-l((k- j), we have 

max { I r; ( k) I; k = 0, 1, · · · , N - 1} 

~ (N- 1) max{l((k)l; k = 0, 1, · · · , N- 2} 

and hence 

This implies ( 4.43). 

The case of 2.: 

Note that 

r;(k) = 

and hence 

lr;(k)l 

max { I r; ( k) I; k = 0, 1, · · · , N - 1} 

~ (t1/~- 1)~PIIfcJioo 

L:~~l)/2 { ((k- 2j + 1) - ((k- 2j)} 
+((0) if k: odd 

2::~21 {((k- 2j + 1)- ((k- 2j)} 
if k: even 
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< 

< 

Then 

< 

k ~ 1 n 1 ax { I ( ( k - 2 j + 1 ) - ( ( k - 2 j) I ; 
J=l.···,k; 1}+I((O)I ifk: oclcl 

~ 1 n ax { I ( ( k - 2 j + 1) - ( ( k - 2j) I ; 
j = 1: · · · , ~} if k: C\'Cn 

N 
2 

2 ruax { I ( ( k - 2 j + 1 ) - ( ( k - 2 j) I : 
· N- 2} .] = 1,···.-2-
+ I ( ( 0) I if JV - 1: odd 

/\' ;-
1 

111 ax { I ( ( k - 2 j + 1) - ( ( k - 2 j) I ; 
j = 1, ·. ·, N;l} if N -1: ('V('ll 

T-2~ - 1 {I ( ) ( ) I - 2- ..::::.P n1ax f tk - 2]+1 - f tk - 2j : 
j = 1, ... , N;-2} + ~Pif(to) l 

if lv- 1: odd 

T;~ ~p-l max{lf(tk- 2j 1)- .f(tk- 2])1: 
j = 1, ... , N:; 1 } if JV - 1: even 

On the othrr hand. fron1 f E C0 [0, t 1] and ltk-2j+l - tk - 2j I ::; Af2~- \\'C have 

n1ax { If ( t k - 2J + t) - f ( t k - 2 j) I ; 
N-2( JV-1)} j = 1. · · · , 

2 
or 

2 
---+ 0 

as~---+ 0. This in1plics (4.43). 

The case of 8.: 

~otc that. vYhE'll ~---+ 0. ((0) = f~(O) - j(O)---+ 0 and 

((k- 2.J + 1) - ((k- 2j) 

= ~ { h((k- 2j + 1).6.l- h((k- 2]).6.) 

_ J((k- 2J + 1pl- f((k- 2J).6.)} 

= .6 {!!_ r~((k- 2j).6 + o:(k. ~)~) dt 

_!!_ J((k- 2j).6 + o:(k, .6)~)} dt 

= .6 {!!_ J~((k- 2j).6 + o:(k, ~)~) dt 

_!!_ J((k- 2j).6 + o:(k, .6)~)} dt 

+~ { !!:_ J( (k- 2j)6 + o:(k, ~)~) dt 

_!!_ J((k- 2j).6 + !3(k, .6)~)} dt 
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where 0 ::; o:(k, .6) ::; 1 and 0 ::; /3(k, 6) ::; 1. Since 1tf E C 0 (0, T] and 

ll1t f~~ - ft f jjoo ---+ 0, ( 4.43) is established by the same reasoning as the case 

of 2. • 



Appendix H 

Proof of Lemma 8 

Given { u ( k); k = 0, 1, · · · , N - 1} , { x ( k); k = 0, 1, .. · , JV} and { y ( k) ; k = 

0, 1, · · ·, N- 1} defined by 

x(k + 1) = Ax(k) + bu(k) 

y(k) cx(k) + du(k) (H.1) 

with x(O) = 0, by the discrete strictly positive reallernma[59] there exist ma

trices K and L and positive-definite symmetric matrices P and Q satisfying 

N - 1 N - 1 

2 2:: u(k)y(k) x(N)r Px(N) + 2:: x(k)TQx(k) 
k=O k=O 

N - l 

+ L ILx(k) + Ku(k)i 2 (H.2) 
k=O 

This leads to wr i\ 1 w 2 0 where 

w = [ u(O) u(1) .. · u(N- 1) JT 

Suppose that wr i\1 w = 0, then from (H.2) we have x(k) = 0 (k = 0, 1, · · · , N) 
because P and Q are positive definite. This leads to bu(k) = 0 (k = 
0, 1, · · ·, N -1) by (H.1). Suppose, without loss of generality, that (A , b, c, d) 
is in controllable canonical form , then we can obtain u(k) = 0 (k = 0, 1, · · · , 1\T -

1) namely w = 0. Therefore since there exists the smallest positive eigenvalue 

1-L of (A+ J\T)/2, we obtain wr i\w 2 {L\w\ 2 
• 
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