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So far the temperature dependence of the axisymmetric clectrostatic oscillation
(the second mode) has been studied up to 0.25 ¢V for a spheroidal plasma with small
electron munbers and the observed frequency shifts have been explained only through
computer simnlations. A higher density spheroidal nonneutral plasma composed of many
particles is becoming more requisite, because they are necessary for production of anti-
hydrogen. In such a case, the frequency shift may become larger and a simple method to
estimate the shift will be favorable. Therefore, it is important to investigate properties of

such a high density plasma.

The frequency shifts in the presence of the cylindrical conducting wall were exper-
imentally observed at room temperature at fivst. Then, the temperature dependence of the
electron plasma oscillations (the second and thir  mode) were examined for the tempera-
turc up to 1.2 eV i plasmas of higher densities with larger total particle nm Hers. It was
shown at the observed frequency shifts can be estimated [rom the dispersion relation in
w ch the  mperature deper ence of the diclectric tensor and the frequency shift by the
wall effect are inc de  The ispersion relation modified in this manner makes it casy o
estimate the frequency at a given finite temperature. These results revealed the impotance

of we cffect when  large spheroidal plasma is confined.

Longitudin  electron plasma oscillations (Langmuir oscillations) in a nonneutral
clectron plasma column must obey a dispersion relation which is different from that of an
unbounded plasma. The present theory states that three wave interaction of Langmuir
waves is prohibited in v bounded plasma. But, little attention has been paid to large

amp ude Langmuir waves in a confine nonncutral plasma with a finite length.

hrough the experiment described here, it was found that a large amplitude Lang-



mir oscillation excited in the confined plasma can transit to the lower modes. When the
amplitude of the excited mode is small. the oscillation is governed by Trivelpicce-Gould
dispersion relation. However. when the amplitude is large, both sidebands and nonlincar
[requency shifts occure. As a vesult, three wave interaction becomes possible in the non-
neutral plasma cohunn. This is the first observation of the three wave nonlinear interaction

among Langimuir waves.
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Chapter 1

Intrduction

A nonneutral plasma is a collection of charged particles, which does not have a
charge neutrality as a whole system. One component plasmas (OCP) is a kind of nonncutral
plasmas. The words such as nonneutral clectron plasma, nonneutral ion plasma, positron

I sma and so o arc used to scribe OCD.

Some w ks on no e tral plasmas done before 1970s were mainly concerned with
clectre beams in aicrowave generation devices. The main rescarch on nonneutral plasmas
arosc in 1970s. The theoretical works by R. C. Davidson [1, 2, 3, 4] and the experimental
wo s v IL Me mberg [5, 6] fa itated the development of research in this field. Many
fundamental investigations, such as equilibrium and stability properties [10, 11], diffusion
properties [12, 13, 14], a collisional relaxation of anisotropic temperature [15], a transition to
thermal ¢ rinm [16], plasma waves 5. 6, 17], diocotron instabilitics [18, 19], clectron
cyclotron waves [20, 21, 22, 23], have been performed by many workers. The ficld has
extended to ic  plasmas [24, 25], pos -on plasmas [26, L., 28, 29, 30, 31, 32, 33] and

antiproton plasmas [34]. I + nonneutral electron plasma column is also studied as an



s

excellent example of 2D viscid fluid [35, 36, 37, 38, 39.10]. Nonneutral plasmas are studied
as strongly coupled plasmas. too. There are several theoretical works on strongly coupled
nonneural plasmas [9, 41] and many experimental studies in the laboratories; strongly

coupled two dimensional clectron plasma on the liquid helium [42]. strongly coupled ion

plasmas in the Penning trap [43, 44, 45, 46] and strongly coupled dusty plasmas.

The Malmberg trap has heen a powerful tool to investigate fundamental properties
of the nonneutral plasma column. 1t is also served as a good container of antim: er, so are
the Penning trap and the Paul trap. Although Malmberg trap can confine a large number
of particles, its confinement property has problems. The confinement time becomes shorter
as the confinement length hecomes longer [11]. Furthermo — the confined plasma is not. in
the ideal rigid rotor equilibrium. These are the fate  defects when we try to confine a large
number of (antimatter) particles. The Penning trap [47] and the ar trap [18] can be used
to confine the spherotde  plasma. Their confinements are almost ideal unless the particle
nur oer s arge. Therefore, it is desiral 1o improve the confinement apparatus so that
it can contain a le ze number of articles in the rigid rotor cquilibrium. The multi-ring

clectrode trap described in this thesis is one of approaches to develop such an apparatus.

The basic confinement propertics of the multi-ring clectrode trap were extensively
studied y investigating the effect of the electrostatic potential configuration on the con-
finement time. T could obtain the result that the clectrostatic potential ¢ ox p? — 222 gives
the better confinement time in the multi-ring clectrode trap. This is the same clectrostatic
pc entic wit that of the — nning trap. THowever, the multi-ring clectrode trap can confine
nmuch ore particles than the Penning trap. which is comparable to the Malmberg trap.

This fact causes another problem. ¢ image charges of the plasma itself or the boundary



cannot beignored. Thus the potential @ mentioned above is not enough for the rigid rotor

equuilibrinm when a lot of particles are confined.

Hereo the boundary and temperature effects on the linear dispersion relations of
the lowest order diocotron oscillation and lower modes of clectron plasma waves are inves-
tigated. "This kind of experiment has not been done hefore, since spheroidal plasmas have
been confined by Penning trap with less particles (i.c, the wall effect is unimportant). This
measurement. is important because measured frequencies of these oscillatioins cannot be
explained by the theoretical dispersioin relatioin for the cold spheroidal plasma with an in-
finite boundary. The obtained dispersion relation for the lowest order diocotron oscillation
is useful for the diagnosis of the confined plasma. 1t was found that the measured [requen-
cies of clectron plasma waves are explained by considering the frequency shifts caused by

the wall and temperature effect.

[t is interesting to know not only the properties of lincar oscillations but also those
of nonlinear oscillations in ¢ m i ring electrode trap. To understand the behaviour of
nonlincar oscillations in the nonneutr: | sma will give us a good insight into the confine-
ment of the plasmas. Although linear Langmuir waves in the cylindrical plasma are well
known as Trivelpiece-Gould mode, little experiment has been done for nonlinear Langmuir
waves in co ined cylindrical non utral plasma so far. Therefore, the experiiment pre-
sented in s thesis is important in that this is the first report on the nonlinear Langmuir
waves in the confine  cylindrical nonneutral plasma. It was found that three wave intor-
action between Langmuir waves is possible in the eylindrical plasma, which is prohibited

against v bounded plasmas.

The results obti 1ed at University of Toronto were also very interesting showing
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that the ponderomotive force of Ips laser pulse suppresses the expansion of the high tem-
perature plasma which triggers the onset of the radiative thermal conduction inside the
solid 570, target. Threshold intensities for the onset of the radiative thermal conduction
were measured for the first time and it was found that it depends on the pulse duration of
the laser. T am sure that my stay in Toronto was quite fruitful experience for me in that I
could extend my knowledge in physics and learn the international rescarch activity.

The following chapters are constructed as follows. In the next chapter, the theo-
retical treatment of nonneutral plasmas are briefly reviewed. T e multi-ring electrode trap
and the basic experimental procedures are described in chapter 3. The linear dispersion
relations of diocotron and clectron plasma oscillations in the multi-ring electrode trap is
discussed in chapter 4 and 5, respectively. ‘The novel features of 1 » nonlincar clectron
plasma oscillations are treated in chapter 6. The chapter 7 summarizes this  esis. Fvery

sult obtie »de U versity of Toronto during my stay as an exchange student is presented

m appendix A,
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Figure 2.1t The radial force balance in the infinitely long nonncutral electron plasma col-

wmn.

Here, w, = /4mne?/m is the « sctron plasma frequency. —e and m are the charge and
T I | Y g
mass of an electron. Shown in FFig. 2.1, the plasma is radially confined by a uniform axial

magnetic fic 1 B, he radi: force balance equation bhecomes

Vo ()2 o
C V) ey - Vo) B (2.2)
C

”
with y(r) = w,(r)r. Here, ¢ is the speed of light,, Vo(r) is the equilibrium azimuathal velocity
of an electron 1 d element and w,(r) is the angular rotation frequency. Substituting

eq.(2.1) o eq 2.2) gives the angular rotation frequency

22

C

| 2w?
w(r) =wt = 0, {1 + (1 — i)'”}. (2.3)
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Figure 2.2: e equilibrium rotation Jrequency w, [Q. vs density n/ng. There are higher
an lower rotations for a certain densily and there is the Brillouin density limil for a

cerl I

. = cB/mc is the clectron cyele -on frequency. It can be scen from this expression
that w.(r) is independent of radius in t!  cold nonneutral plasma column, which means
that { » plasma rotates as a rigid body. Furthermore, there is a maximum density ng =
B*/8rme? at a given B, which is ca ~d Brillouin density limit. Therefore, the infinitely
mg nonncutral elee o plasma colur 1 has a rigid rotor equilibrium with a higher or lower
rotation frequer v when ¢ plasma de ity is lower than ng. The equilibrium rotation

frequency is plotted against dens v in IYig.2.2.

=1



2.1.2 Spheroidal nonneutral plasma

[t is seen in the previous subsection that the rigid rotor equilibrium is obtained
[or the mfinitely long cold nonneutral electron plasma with constant density. Although
a conlined nonnentral plasma in the laboratory has a finite axial length, the rigid rotor
cquilibrium can be obtained for the special case. That is the cold spheroidal nonneutral
plasma which has a constant density n confined with the external clectrostatic potential
&""(p, z) expressed hy

P (pyz) = =V(p® =221 /(2L + b?). (2.1)

This potential ¢*"(p, z) is created by the Penning trap which has the axial and radial
dimensions 1, and b, respectively. et us assume that the spheroidal plasma with axial
length 2z, and radius 7, which is revolving about the z axis, is confined in the Penning
trap as shown in Fig.2.3. The self field potential $*(p, z) inside the plasma is denoted by

mw 2

¢°(p,2) = == (9’ + B2, (2.

1

S
<t
~—

with
( o)y LI —(1/a) (2.6)
y — - — O -0
L= (el B T T ey
Sa) 21/ ev)? L e L= (1a)? o
o) =———" 0 —— L | .
T e TS0 R T T
fo o =z/m > 1, ic., prolate shape. This o is called the aspect ratio of the spheroidal

plas a. When " (p.z) + ¢*(p,z) does not depend on z, i.e. depends only on p, the
sphe Hidal plasma has the rigid rotor equilibriunm. Here, the constant density is the functioin

of o and denoted by

2V
nla) = o 2L2 +02)5(a) (2.8)

Al ough the function A(a) is modified, the similar expression holds in the case of a < 1.

S



Figure 2.3: The spheroidal nonneutral plasma in the Pen ning trap which creates the cxternal

polential ¢ The aspect ralio of the plasma is o = /Ty,



2.1.3 Thermal equilibrium

Though the cold plasmas are treated in the previous sections, real plasmas have
their finite temperature. The thermal equilibrium of the plasma with uniform temperature
1" is considered here. The distribution function of the infinitely long nonneutral clectron

plasma columm in the rigid rotor thermal equilibrium is given by

1o 1 —w,Po} )
oy o, [ et 2.9
j‘(”p) (271‘777,"”']'){/2 ()\]){ ]('HT ( )

where [1 = (p2 + pi + p2)/2m — c¢(p) is the total energy on individual particle, % =
p(pe — mpSl./2) the canonical angular momentum and p, the axial momentum. And ¢(p)
is the radial self potential in the equilibrium. llere, kg is the Boltzmann’s constant. An
equilibrium density n(p) is obtained by integrating the distribution function in the mo-
mentum space.

m

2e
n(y = ngoxp {— — [/)Q(Yw,.ﬂF —wl) — _(’(/)([))]} (2.10)
2T m ‘

It is scen that ng is regarded as the  nsity on the axis (p = 0). It is necessary and sufficient
to satisly w,Q. — w? — w5/2 > 0 for ¢ 1 aing I plasma radially (n(p — oo) = 0). This
condition is sa fied in the region surrounded by the curves wt. w™ and the ordinate in

T

Fig.2.2. The equ ibrium  nsity n( wist satisfly the Poisson’s equation
g ] Y np 3 |

L g 0o ™m 5 2¢
L0 e o Eal) e
p(,)pp(f)/)cﬁ(/)) ”0(‘<P{ ST [/’ (wr§le — w)) —9ln) (2.11)

This nonlinear Poisson’s equation is casily solved as shown in Fig.2.1 [19]. When 7" is not
so high that Debye leng — Ap = /kpT/d7nc? is small compared with the plasma size, n(p)
15 & nost constant inside the plasma.
The similar discussion can he repeated for the spheroidal nonneutral plasma by
10 ¢

replacing é(p). n(p) and ;%p# i above equations with ¢(r, z) = ¢ (r, 2) +¢*(r, 2). n(p, 2)

10
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and 1L p 4 25 respectivelv. In this system. the total electron number, NV = Ji- nro2)de,
pidpl dp = . .

the total canonical angular momentum, ;° = f‘r(—%r"z)n(r,:)dv and the electrostatic

cnergy. 1= [y (= )n(r.2)dve are conserved.

2.2 Linear diocotron oscilla ions

2.2.1 Infinitely long nonneutral plasma column

The purpose of this subsection is to derive the dispersion relation of diocotron os-
cillations in the infinitely long, cold nonneutral clect  n plasma column [4]. The continuity

cquation

(—)n(x, t) + "()

— )V ) = 2.12
py I n(x,)V(x,t) =0, (2.12)

the force balance equation

v J J )
(X, )=+ V(x, 1) - l .
n(x, )((’)f + V(x,1) ()P(x, )+ I ®(x,1)
1
=n(x,t) BE(x, 1) + =V(x,1) x B(x,1)), (2.13)
¢
an ¢ Poisson’s equation
Vip(x,1) = Amen(x, t) (2.14)

are the start point. llere, n(x,!) is a density, V(x,1) a mean velocity, P(x,1) a mean
momentum, ®(x,t) a pressure tensor. Since the cold plasma is considered, the pressure
gradient term is neglected.  Also, é(x, 1), E(x,1) and B(x,t) denote electric potential,
electric and may  etic field, respecti Iy, It is assumed that Lhese quantitics are expressed

as the sum of equilibrium value and pert hed value as follows.

n(x,t) =n(p) + dn(x, 1)

12
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Vix. 1) = Vol p)és + Viéy, + 0V(x. 1) (2.
o(x.1) = 6(p) + d(x. 1)

B(x.!) = B3&, + 6B(x, /)

urthermore, it is assuined that the perturbation depends on time as exp(iwt) and {hat
the 0 and = dependence is Fourier decomposed as
(p 0.z t) = . & (py k) exp{i(10 + k.z —wl)}. (2.16)

=0 k,=—m0

Thus the eqs. (2.12) ~ (2.11) can be rewritten as

1 SV
—i(w — ko V — Loy )en! 4+ —i(pmsv‘) ™Y syt = o, (2.17)
pop p :
—ilw — h Ve = ho )0V — (= + 20,)8V) = e 9, # (2.18)
mdp
—iw =k V, — lw,)oV) + [-Q. + ~ 9( Zw,.)]é‘v’:—idad)‘, (2.19)
‘ pdp r mp
—i(w =k V= Lo)dV! = — s (2.20)
m
1a 9., . ,_
Sl _~M k28t = —dmedn!.
/)(),0 p o k6 Amedn (2.21)

Substituting « s. (2.17) ~ (2.20) 1o the Poisson’s equation (2.21) results in the equation

1 () rr) - ' wf, | —(ié(/)l
pp (w =k V, — lwon)? — (wf —w-)2)
? w?
—— |1 = - P .
p’ [ (w— &V, — lw,,)z - (wt — wT—)zJ o
2
—kZ 1 - “p !
. { (w-—kz‘/z*[wr)z} b9
e [(S—(b[ (_QF + 2&),) wTZ)

P =R Ve L) (w0 — KoV =l ) = (f — a2t 7 ) (2.22)

.
Here, it is considered that the plasi « with uniform density n(0 < p < py) is surrounded
by the cylindrice  con icting wi at p = b as shown in Fig.2.5. The following relation is

13






As the boundary conditions for 84/, it remains finite at p = 0. but vanishes on the wall

p = b. At the plasma boundary p = p,, 6¢' should be continuous. Then the solution is

b¢y = AJ(Tp), 0<p<p

[L(kap) Ky(kob) — (ko p) L( ko))
[ (kepo) Ki(kob) — Ky(kpy) 1 (K2b))

(2.26)

by = AD(T py) P < p < b.

Here, Ais a constant, J; the Bessel function of the first kind of order [, I, and K, are
the modified Bessel functions of the first and the second kind of order . Multiplying the
eigenvalue equation (2.22) by p and integrating across the su e of the plasma column

from p = py— to p = py+, we have the equation

0 w? “To
Ry - : =00
a [ap ¢”} p=pp " [ (w—kV, - lwr)2 - (wj - wr_)2_' [apé(ﬁ]:l P=pb
(=, + 2w,) w?

. ) ¢
= 1166 o=, (W—=kV, —lw,) (w—k,V, — lw,)? — (w} —wr)? (2.27)

Substitution of eq 2.26) it > eq.(2.27) gives the dispersion relation for the electrostatic

oscillat nsin the asma de bedinl 1.2.5.

1], o} o (T

7 (= k. Vo =Ly, — (0} —wp)?] PP (T )

(=0 + 2w,) w?
= (2.28)
(W =k V. =) (w—k,V, — lw,)? — (wf — )2

w1

U (ko po) Ky (kb)) — Ki(k,py) 1 (K, b)

g1 = . = 2.29
oo 1 (ko) K1 (R26) — Ky ) 1, (o) (2.29)
hen diocotron oscillat  ns (k, = 0) are considered, eq.(2.28) can be simplified.
(po /D) + 1 w?
[—ee—— |1l — £
(0[O — 1 (0= L) = (o — )
2 -Q{‘ + 2 T
-y et wr) (2.30)

(Wl = )2 = (wf —wy )]

15
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I ogure 2,70 Schemalic drawings of lower modes diocolron oscillalions of the nonneulral

plasma column surrounded by the conducting wall.
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2.2.2 Spheroidal nonneutral plasma

The dispersion relation for clectrostatic oscillations in the cold spheroidal nonnen-
tral plasma can be also derived [50. 51]. Tt is assumed without the loss of generality that
the pertirbed potential ¥ has an azimuthal and time dependence of exp 1(mf — i) in the

frame rotating with the plasma. Then @ satisfies the following Poisson’s equation.
¢ =iy 0
Voo N =00 wilh e=1 4, g (2.33)
Lo o o
Here. ¢ = 1—w,?/(w?—0,%). ¢, = Qow,? fw(w? = Q%) ¢ = [—w,?/w?and Q, = Q. — 2w,
Therefore, q.(2.33) becomes simple Laplace’s equation V3 = 0 ¢ tside the plasma
whereas inside the plasma it hecomes {02 + 0%/ %) + 30/ 0z }4pt = 0. These
cquations seem unseparable since the equations have the o1 ndrical sy umetry and ¢ has
the spheroide 1 vmelry.  Hwever, it is s arable in the spheroidal coordinates (£,,&,, ¢)

which are determi ed by

o= G- d) (=) cost
y o= (& — a1 =€) sino (2.31)
= L&

for the outside of the plasma, where 2 = £ — ri, and the definitions of z, and T, are

the same as before. To i e the operator of eq.(2.33) Laplacian inside the plasma, the
spheroidal coordinate (&, €,,¢) shot 1 be used by replacing z — = = z(¢; [¢3)1/%, & — €.
¢ 7. ‘ b e . . . P ..

o — & and d7 — ¢ = ;f((]/(3) —r¢. Then the solution y. which satisfies the condition

that " vanishes at infinity and remains finite at the origin is given by

W= AQP (&) P (Ey) exp'mOTeh

I8
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L“]’ _ /fl)[m (E] /(/)[)[m( )( \l)z (mfd—wt) ( .

P and QF are associated Legendre functions of the first and second kinds. Furthermore,

lgandn-e- Vo' =n - Vi?|s at the plasma boundary, which leads

vomnst satisly o = @

to the equations below

/3 [)[‘I)P A (b) m

Bl(b/d)es P+ ma’, P = A(b/d)Qr. (2.36)

The presence of the nontrivial sc 1tion results in the dispersion relation

, 2\ 1/2 Pl ])m O™ (| -
¢+ mao (nz — —3) %1)( W( YOIk (2.37)
a P (k) 7\ P (k)QT (k2)
Heve, by o= a(a? — 3/¢))7" Y% and hy = ala? = 1)72 7 e moc s . the clectrostatic
osc ations  the sp 1 al nonmeutral plasma are expressed with integers ([,m). The

o »(L.0)isan axic rs' netric electron plasma oscillation which will be treated in the
next section a ¢ apter .
The mode (1.1) denotes a diocotron oscillation which corresponds to the mode {

ocotron oscillation 1 the eylindrical plasma column. In lact, €q.(2.37) reduces o

w = =0 /02 1 aw2[l = QV/IQl(a? — 1)72 1) /2, (2.38)

and eq.(2.35) becomes b’ o phexpli(lt — wi 1)] for the mode (1.1). As 9" does not depend on
so1tis casily understood that the mode /. [) corresponds to diocotron oscillations of the
spheroidal plasma. Since €q.(2.37) 1s the dispersion relation in the frame rotating with the

plasma. the diocotron frequency in e laboratory [rame is wip = w, — w.

19



2.3 Linear electron plasma oscillations

2.3.1 Infinitely long nonneutral plasma column

When the nonneutral plasma column without the eylindrical boundary is con-
sidered. the continuity equation (2.12), the force balance equation (2.13), eq.(2.9) and
Poisson’s equation (2.11) lead to the Bohm-Gross dispersion relation w? = w1+ 3k2A%).
However, this is not suitable to explain the dispersion relation of electron plasma waves
in the plasma surrounded by the cylindrical conducting wall. - Although temperature is
ignored. the Trivelpicce-Gould dispersion is more suitable from this point of view. In this
model it is assumed that the plasma column with constant density n fills the cylindrical
conducting wall of the radius b. The dispersion relation becomes Jy(T0) = 0, since ¢, — 0
m eq.(2.28). Introducing py,, as the m'th zero of J,  1d the effective erpendicular wave

mmber k1 = py,,, /b, the dispersion rel ion can be rewritten as

w? k2 w?
ot S . 0. (2.39)
k2 (w =k V, — lw,)? — (Q2 - 2wr) R (w =RV = lw,)?

This equation is casily s red for w wit { =0 and V, = 0.

2 Aw(Q? - 2w?)]?
B2k 02— 2

Y4

(2.10)

Y

, 1
W= (2 - W) 1l

1 is is the Trivelpiece-Gould dispersic — relation for the cold plasma columm [filling the
cvlindrical boundary.  Unfortunately, the exact dispersion relation for clectron plasma
waves in the nonneutral clectron plasma column, which has the gap between the plasma
and the bo  lary, has not been obtained 1eorctically. There is not the exact dispersion

relation for the axially confined plasma colunm either. The eigenvalue equation

Y Jo , )
;E(rum)—/ﬁz(,“q):o (2.41)
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with ¢ = 1. P and @Q; arc the st a 1 the second kind of Legendre function of order /.

When 7' =1, reduces o« = \/;V/m(?]jl + 0%) with cq. (2.8). This means that [ = |
electron plasma oscillation is garded as the harmonic oscillation in the ¢ When [ = 2,

o (2.42) has two solutions wy, 4. These are plotted against o in Fig.2.9.

-4 Nor.ii ez ele trc plasma oscil’ tions

As me done i the abstract. nonlinear electron plasma waves are mainly inves:
tigated in the neatral plasma. For examples. parametric coupling between clectron-plasma
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and don-aconstic oscillations [52] excitation of lower hybrid oscillations at upper hvbrid
resonance by microwaves [53]0 nonlincar decay instability and parametric amplification of

cvclotron harmonic plasma waves [51]. spatial collapse of beam-driven plasma waves [55].

sidehand instability in a large amplitude clectron plasima wave [56], nonlincar frequency
shift ol an clectron plasma wave [57], cte [H8, 59, 6()]. However, nonlinear electron plasma

waves ina nonneutral plasima colunm also has an interesting feature which will he deseribed

i a later chapter. Tlere, some related theoretical topics are sunimarized briefly.

The ratio of the energy density W of electrostatic oscillations to the plasma particle
cnergy density nhgT is nsed to classify the nonlinear processes in the plasma [61]. It is
assumed that 1/n\," < W/ nkgT < 1. Iurthermore, the critical encergy density W is
i roduced. TV, correspon 1o the wave energy density with which the nonlinear frequency
broademng is equal to the frequency difference of mteracting waves. When W< W, the
nonlinear wave-wave interaction results in the decay mstability. In this process, interacting
waves satisfy wg = wp +wpr and b = L+ . Here, wy. is the angular rotation frequency of
the wave which as the wave number k. Although there are other nonlincar processes such
as the nonlinear Landau damping and the modulational instability, we focus our atiention
on the decay instability. According to the theoretical treatment for an unbounded neutral
plasma. three wave processes wy, — w4+ wer leads to the parallelogram on w — & planc as
shown in Fig.2.10. A remarkable feature in this phenomenon is that it has a certain power
thre, old for = itial pump waves. By using the damping rate poand 'er of the waves, it
15 shown that the threshold for { s process is proportional to dwgrwpn e (62, 63]. The

process i which a angmuir wave decays into fwo Langmuir waves are forbidden in the
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Figure 2,100 A typical decay instability in which an clectromagnetic wave decays into an

clectron plasn we ¢ an ton acoustic wave.
unbounded | wsma.  cause the energy conservation law
Wi = Wy + wyn (2’1 {3)

is not satisfied, that is, it is impossible to constrict a parallelogram ounly with the dispersion
curve ol ang uir waves. In fact, the dispersion relation of Langmuir waves are dominated
by the boundary condition an the de ity distribution. Tn the plasma surrounded by the
evlindi al boundary, t - dispersion of a  rmuir waves becomes as shown in I1g.2.8, so

that equation (2.13) might be satisfied.



Chapter 3

Multi-rin~ (lectrode trap

[n this chapter, the experimental apparatus and the experimental procedure are
described briefly. As mentioned in the Introduction, the wlti-ring electrode trap (MRE
trap) can provide the axially long confinement geometry which leads to confinement of a
spcroidal n meuatral ¢ sctron plasma with large o and volume. Also the fact that the

MRE  ap has many elec ydes means that the applied potentioal can be controlled easily.

3. Appa atus

To trap nonneutral clectron plasmas, the multi-ring electrode trap shown in IMig.3.1
is used. The uniform axial magne ¢ field B for the radial confinement and the electrostatic
potential ¢(r, z) for the axial confinement are supplied. Fleven ring electrodes of 3 ¢m
mner ra - us are aligned along the axis with the same pitch of 1.2 cm, and tungsten mesh
clectrodes are set on each endside of the trap. These ring clectrodes (No.2 ~ 12) are
connected through resisters and also used as probes. Quter most mesh electrodes (No.1, 13)
are negatively biased to V' to form the electrostatic potential ¢™(r, z) for the {rapping.
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3.2 Procedure

The experimental procedure is as follows. At first, the potential applied to No.l
mesh electrode is slightly raised from 1V = =23 V so that electrons can flow into the con-
finciment region. After 9ms injection of clectrc s, the potential of the clectrode is returned
to V"= =23 Vand electrons arc contined in the confinement region. Trapped cleetrons ave
cooled through collisions with background neutrals. The plasma temperature becomes loss
than 0.1 eV within 300ms after injection. The clectron cyclotron hea 1g ol about T84 MIlz
or rf heating of ~ 14 Mtz is used for controlling the plasma temperature up to 1.5 eV,
Then at a constant temperature, the fixed power of RF perturbation is applied to excite
the diocotron wave or axially symmetric Langmuir wave with an appropriate electrode,
Oscillations of a plasma are detected with other ring clectrodes after the excitation signal
is ccased. he mo > of the excited oscillation is identified with the phase difference of os-
cillation sign s from cach ring clectrode. Immediately after the oscillation mecasurement,
clec. 5 s No.l3 are grounded and the trapped electrons flow into the collectors, with
which N and the radial profile e measured. This procedure is shown in [M1g.3.3. When a
plasma temperature is measured, a potential of No.13 electrode is damped to V. Measure-
ment ¢ leaked electron numbers is repeated at various V. A high encrgy tail of integrated
distribution function is obtained by plotting clectron numbers against V. In this way, the
plasma temperature is obtained by assuming a Maxwell distribution. An example of data
is shown in Fig.3.4. Also shown in Fig.3.5 is an example of the measured line integrated
radial profile. Fach point is measured with one of the segmented collectors, which has a
diameter of 2r.=3.4mm. Since these profiles are line inlegrated along z axis, they bec ne
bell-shaped pro es. In Fig.3.5. ¢ solid circles, open circles and solid triangles correspond
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to fa=T1.p,=7.5 mm). (a=9.6. p,=7.5 mm) and (a=7.3. pp=0.5 mm) with 7"~ 0.1 ¢\
Open diamo Is correspond to (a=11. p,=7.5 mm) with 7" ~ 1.5 e\". For the plasmas in
this examples. Ay is estimated to be less than 011 em at 7= 0.1 eV and Ap < 0.33 ¢em
at 1" = 1.5 eV. Thercfore. Ajy is smaller than - Although Ay may not small enough at
high temperature, it can be seen that there is no ne ceable change i the profile. Thus.
the practical way to determine plasma parameters like a, pp and z, is to assume that a

plasma has a constant density n(a) given by eq.(2.8). Then the cquation

Ne ~ 2mr2n(a)ap, (o, N) (3.1)

is solved to obtain a with the measured N a 1 V.. Here, N, is the received charge by the
scgmented faraday cap on the axis. Onee o is obtained, pp and z, are casily derived and it

15 confirmed A1 p, s consistent with the measured radial profile.
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Chapter 4

Diocotron oscil’a'ions

T e mnear  ocolron osc ation in the multi-ring clectrode trap is discussed in this
chapter.  he eorctical ¢ persion relations of diocotron oscillations are available only for
a cylinc cal lasma surrounded hy a conducting wall and for a spheroidal plasma without
a boundary. is difficult to ol 1in a dispersion relation for a spheroidal plasma with
a cylindric  boundary. However, it is easy to imagine that the dispersion relation for a
spheroi Wl plasma with a cylindrical houndary should be approximated by the fomer ones.
When a plasma has a large a, it can be regarded as a cylindrical plasma and it should be
approximated by a spheroidal plasma when it has a small v and its image charge cflect, is
neg gible. 1 is is easily confirme by experiment. Although it is empirical one, we can
csti lish a dispersion relation and it can be used as a nondestructive diagnostic of the

plasma under a i ecial condition.



4.1 Experiments and Discussion

A radius of a plasma p, is almost constant for a dillerent a since the cathode and
the magnetic field are fixed. This means that a of a plasma is easily controlled by changing
A with afixed p,,. For the experiment described in this chapter, no hicating is applied to
exchide temperature effect as far as possible. The plasma temperature in this experiment
i5 less than 0.1 ¢V, Since a density of a plasma is between 2 ~ 8 x 108~ (1 <a< 1l
m this experiment, Ay is less than 0.16 cm. Examples of measured radial profiles n((r) are
shown in Fig.3.5. Since there is the extra field cansed by the image charges induced on the
wall, the plasma may not he perfectly spheroidal. However, the measured radial profiles
show approximately the characteristic quadratic dependence on ro 'l s micans that the
deformation of the plasma is not so large as far as « is less than 11, which is the I zest
ain s experiment. When Vs increased [urther to obtain larger a, a plasma cxpand

racdially and a hecomes smaller. This is regarded as an effect, of image charges.

Diocotron oscillations of the lowest azimuthal mode, i.e. m = 1, were excited by
applying small electrostatic perturbations for 2 ms to one of four scctors of No.7 clect rode,
where the perturbation frequency was chosen quite close or equal to the natural mode
frequency fy. Alter the cease of the excitation, fy was measured from signals on another
sector of No.7 electrode. Detected signals are shown in Fig.4.1. Figure 1.2 shows plots of
[ for diffevent a’s and their least square fitting curve (fa = 0.19 + 0.66a(1 < o < 12))

given by solid line.

We shall compare the observed frequency f; with the frequencies in the two extreme
cases. Il a spheroidal plasma is free from houndary, the mode is expressed as (( = 1.m = 1)
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No.J.

igure 4.2: The measured [y as a function of o. Also shown are the caluculation for the

spherowdal plasma and the cylindrical plasma.
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and its frequency fio = w, /27 is determined from the dispersion relation [H0)]

@l Qi)
2. Q1 (ky)a(a? — 1)1/2

}. (1.1)

V,o— o
Wifs — Wy

]

where Q1 is the associated Legendre function and ky = af(a? — 1)1z
In the other extreme case such that the plasmoid has a considerably Targe aspect
ratio and it can be regarded as an infinitely long cylindrical colunm with the radius Py

then the e =1 diocotron frequency denoted by fy. = wy. /27 is given by [1]

for the case w, < Q. which is satisfied in this experiment.

The broken line in Fig.4.2 is a curve of [y, given by eq.(4.1) with the measured
values of a and n(«) (eq.(2.8) ). In this experimental condition, [y, is nearly constant
around 2.6 kHz. Substitution of the experimentally obtained pp and n(a) into eq.(1.2) also
leads to a formal vi 1c of 1.0 f3 which is a frequency when the column has the radius
ol p, and the density of n(a). The curve of [i. is shown by the dotted line in Fig.4.2.
[t is clearly seen that f; approa es [ as a increases, while, as « becomes smaller, f,
parts from f7 and gets close to fys . Plasmoids with small a were formed at small N since
the potential well of the trap w i kept the same through the experiment. Therclore, the
results support that the dispersion relation governing the diocotron oscillations is reduced
toeq.(-L.1) at very small N where the image charge eflects hecomes negligible.

The  spersion relation for m=1 diocotron oscillations may be written in the form

[N
~T
[t

2 ‘
(o) = S {(ws — w)? — (20 =20 ) (wy —wy )} . (1.3)

wp(
Here. (/(a) is a geometrical lactor depending on the shape of plasmoid. In the case of a
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Figure 4.3: Geometric faclors determined by the measurement and by the dispersion rela-

tions for a sphcroidal and a eylindrical plasm

spheroidi  plasma b g free from b indary, eq.(4.1) is rewritten to the form eq.(4.3) using

L . Q1 (k)
Clay = Calo) =2/ = e 1))

(1.1)
and for an finitely long column v h radius pp located in the boundary wall of inner
radius b

.. 9

Glo)y=d. =1 — (4.5)

"0
The theoretical form of G/(a) for a spheroidal plasma with boundary has not been found vyet.
However, (/(a) can be evaluated numerically by substituting the experimentally obtained
T (the least square fitting) and o in cq.(1.3) . Now, let this empirical factor be (7, (a).
hese three factors are drawn as a function of a in Fig.4.3. In this experiment, Py ~
0.64 cm for 4 < o < 12 and then G, ( dotted line ) is constant as 0.95. The solid line
of (i), () approaches ¢ roken ne of Gy(a)asa (or N ) decreases and, on the other
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hand, (7, (a) comes near to the dotied line with increase in a. This behaviour of (7, (a)
means as follows: the dispersion relation of m = 1 mode for a spheroidal plasma set inside
a conducting wall is approximately expressed by eq.(1.2) given for a evlindrical column
when ais Jarge enough. and the relation becomes close to eq.(1.1) when N is so small
that the image charge effect is negligible. Using the empirical G (o) in eq.(13) | we can
have the dispersion relation in an intermediate state between these extreme cases, but its

application is not general and limited only to this experimental condition.

4.2 Summary

Diocotron m. = 1 frequencies of spheroidal noni utral electron plasmas, which
were enclosed with a conducting wall and neither approximated as a cylindrical column nor
as a spheroidal plasma with free hbonundary, were measured for a fairly wide range ol «r using
the i-ring clectrodes trap. An example of the observed change in gecometrical factor
with o was also prese  ed to see a variation of dispersion relation with e If the relation
ol gecometrical actor with « is generally found either theoretically or experimentally, the

casure —cnt of diocotron oscillations will offer a means of diagnosis of spheroidal plasmas,

simila 7 to  ondest ctive measurements reported so far [17, 44, 45, 33].
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The cold theory predicts that the [ = 2 mode has two mode {requencios wh®
o > wy ) and that w,t s comparable to Q.. In the experimental condition, €. ~
F2o 10" vad/sow, ~ 1.3 < 10" rad /s and w, ~ 8.0 x 107 rad/s. Thend the mode frequency
m the range w, < w, < Q. is wy to which equ.(2.12) is applicable. Herealter only w, ™ is
examined so that the superseript () is omitted. This mode repeats radial expansion and
contraction accompanied with axial contraction and expansion, keeping a constant density.
Once parameters N, p,, a are determined experimentally, the practical w, is presumed
to lie near the value estimated by eq.(2.42) . The app d tf perturbation frequency s
tuned around it watching the amplitude of excited osc  ations. / .or the perturbation,
the natural 1 = 2 mode is again identified by observing plase relations among signals from
different electrodes. The oscillatory signal of I = 2 mode from 4 is in phase to that from

E10 but ont of phase (o that from K7, which is shown in Fig.5.1. Also signals [rom the

fonr sey aents of 157 are all in phase because the mode is axisymmetric.

Mode 1= 3 has two branches wyt with the range of w, € wy™ < w, <wyt <« N,
This exper aent i estigates wf mo » having no radial node. This mode can be excited
by applying rf perturbation to an clectrode. Herealter the superscript(+) is omitted. In
th case, two signals from I5 and 19 hecome out of phase and no oscillation signal can he

detected by ET because a node is on the midplane z = 0. The detected signals are shown

m 45,2,

A power spectriin of excited natural modes is shown in Fig.5.3. For demonstration,
tf perturbations of three frequenc s [y fyand f () < fo < f3) are simultancously applied
to different clectrodes. Three peaks in Fig.5.3 correspond to the excited modes [ = 1.2
and 3. respectively.
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5.1.1 Wall effects

The dispersion relation deduced for a cold spheroidal plasma does not include the
effect of the - nduct gwa w ch surrounds the plasma. The nonneutral plasma induces
image charges on the wall and they generate an additional clectric field which acts on
the plasma. 1 erefore, observed mode frequencies wf*® may deviate from those found by
cq.(2.12) wi™ In order to clarify such a boundary effect, it is important to determine the
amount. of the variation of obscrved frequency w”® with the increase of N by adjusting o
to be constant. Although the equilibrium condition is slightly modified by the wall effect.
it is considerc  thatl the density remains nearly constant, according to eq.(2.8). ince the
plasma expands and aj roaches the conducting clectrodes as N increases, it is expected

that the wall effect causes more frequency shifts for a larger N.
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Figure 4 shows experimentally obtained N dependances of the ratio wi® /wse! for
two cases as o ~ 5 and 7, where 7"~ 0.03 eV and the applied voltage is V = —23 V. Ilere,
«v is determined - the observed parameters N and N. as mentioned carlier. The ratio
w§* Jws hecomes wger as N increases, i.e., the frequency shifts upwards with N. Errors

inclided in the acasured values lead to a 0.2% error in w§®™,

resulting in the error bars in
Fig.h.4. The obtained rest s suggest that the boundary effect gives rise to a frequency shift.
This situation will not alter essentially when the plasma is cold, because the fitting curves
extrapolated to 1" = 0 in Fig.5.5, which shows another shift due to finite temperature, do
n - coincide with wy. Similar frequency shift in the [ = 2 case was observed and compared

with particle simulation results [17]. The preseut experiment reconfirms this phenomenon

and clarifies results by increasing only the total charge N at constant c.

As the exact dispersion relation, including the wall effect. has not vet heen de-
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termined theoreticallv, the observed frequency shift at 77 <0 0.03 e\ is denoted hy o)
throngh

ohs . vl -
w s u);fz[ + (SW“)Z’ 11/. ()1 )

The plasma boundary in this experiment is diffusive due to collisions with residual gases.
The change in the mode lrequency caused by such a diffusive houndary is also included
in the term dw. The frequency shift which is additionally caused by raising the plasma

temperature will e considered with the term wst.

5.1.2 Temperature effects

When the temperature of a spheroidal plasma becomes finite, its peripheral hound-
ary ix no longer sharp in density and becomes blunt even in the collisionless case. [19, (4]
Also. s dieler e tensor itsell  ecomes to depend on temperature.

Ifigt 2 5.5 shows obscrved temperature dependances of the mode frequencies of
['=2and 3 al three different a’s for 7' > 0.15 ¢V and p, ~ 0.7 em. The temperature is
mcreased by applying e rf heating and o is the value for the case without the heating.
Filled circles are measured at o ~ 7.9, N ~ 0.39 x 10% clectrons, open triangles at o ~

9.6, N ~ 1.0 x  ® clectrons and filled squares at o ~ 11.1, N ~ 1.5 x 10% clectrons. The

b

S

angilar frequencies w3 and wg increase with 7', hecoming higher for smaller o at a same
I'> 0.2 eV. Similar temperature dependence in the case of [ = 2 has been observed [17] and
its approximate estimation was given by making use of one component compressive fluid
model in the limit of high magnetic field. [I7. 16] Here, a different method for estimating

mode frequencies will be atten ted and the estimated frequency shifts will be compared

with the obtained re  Its.
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Figure 5.6: The nodes of oscillations inside and outside of the spheroidal nonncutral plasma

forl="2 and 3.



The observed modes w, and wy are axisvimetric and they have no node of os-
cillations in the radial direction. Figure 5.6 shows the nodes of these modes inside and
outside of the plasma. The nodal surfaces are not planes but the axial wave length may be
approxumated as A ~ 1z, /(/ — |} inside the plasma and also in the neighbouring vacuum
region. Therefore. the corresponding wave number is k. ~ w(l— 1)/2z,. The bluntness
of the plasma boundary due to finite temperature has been analysed and/or numerically
examined [19. 6:4] and the results showed that it is a few times the Debye length. Since the
largest Debye length Ay in the experimental conditions is 0.33 cinat. 7' = 1.5 ¢V, the depth
of the bluntness is much shorter than the axic  wave lengths of low order modes such as
[ =2 and 3. The change in the net axial wave length A,; is less than 9% at ten  eratures
up to L5 eV. In this experiment, therefore, A < z, and A, (I = 2,3) is not substan-
tially changed by finite temperature. The temperature dependence of k, is ignored in the
following discussions.

W en the p wsma temperature is finite, the temperature dependence of the tensor

el ent a3 in eq.(2.42) should ¢ considered through

w2

2]
€3 = J — *’l—[l
w? m

/\737v }!‘j_ ﬁ-] (
w? 822)’ '

N
]
~—

where kg i1s Boltzmann constant, ky=Fk. and k£ is the wave number perpendicular to the
magnetic field. T this experiment. the termof (k1 /$2)? can he neglected to (k. /w)? hecause

w? < Q% Therefore, we have

el 3k
=21y,

(5.3)

mooow

The ten  erature dependence of ¢ is also negligible compared with that of ¢5. This is
hecause the coefficient of the temperature dependent term becomes O(Q7Y). Sinee k, ~

16



constant. all components ¢y and ¢, are nearly constant side the plasma. The analvtical
connection of the plasma region to the vacuum region hecomes possible as in the rescarch
done by Dubin [50]. Thus, the dispersion relation of eq.(2.12) using ¢, of cq.(5.3)  will
Raxts

provide rongh temperature dependence of mode frequencies, and the mode frequencies Wy

are expressed by adding the frequency shift due to the wall eflects as

it =win, e, T k) + &u;”””. (H.

)
—
~—

The values of (‘)w;“"” can be determined to be the di rence hetween w}""s at T =

0.03 eV and wi™. They are dependent on the plasma parameters as noted in the gure

caption ol Iig.5.4. Making use of these dwf"! values, we can plot curves of wi* on Iig.5.5.

/£ hough the me ' quantitios N and No include errors, these errors negligibly affect

the caleulate  val s of wf*!.

Foven if errors in T for wi® arc taken into account, cach
curve 1s 1 suostantial agreement with the corresponding observed plots. This means that
the « _ange of a with constant p, is clearly detected in the multiring electrode trap. Here,
deformation of the f ma shape from a spheroid which may be caused by the wall effects
have not been taken into account hecause they are thonght to be small in actuality, and
the spatial density distribution has been assumed mniform although it is diffusive due to
collisions with the residual gases. However, the agreement of wi** with the obscerved mode
frequencies suggest that the temperature dependence of a spheroidal plasma is mainly due
to changes of the ¢ lectric tensor and the other factors have little influence. Therefore., it
s possible to use eq.(2.42)  with cq.(5.3) and eq.(5.1) to estimate mode [requencies at

lower temperatt > as long as Ay <z, and A

i



5.2  Summary

Electrostatic oscillations of spheroidal nonnentral electron plasmas in the multiring
clectrodes trap were investigated experimentally, and it was demonstrated that this frap
is valid tool to studies of siuch an oscillation because the trap can confine a plasma with a
large axial length and pick up the signals of many modes. By increasing N with a constant
a. the observed npper shift of 1 = 2 mode frequency with NV at room temperatire proved
to be primarily due to the wall effects.

Temperature effects on the changes in mode frequencies of 1 = 2 and 3 were
observed in the range 0.03 < T < 1.5 eV for fairly large o up to 1. The [requencies
mereased with 7 and the slopes became greater as o decreased in both cases of 1 = 2
and 3. It was possible to estimate this increase in the mode frequency with 7 by using
the dispersion relation modified from Dubin’s formula, where the diclectric constant was
replaced v b the general ¢ lectric constant including finite temperature. Application of
thmethod will be limited to low temperature cases so that the Debye length is sulliciently
shorter than thes ol the | asmaand the diclectric tensor is approximately constant inside
the |osma.

The wa effects on oscillations are characterized by the geometrical shape of the
trap, so it is necessary to clucidate the effects for cach type of a trap. In addition, it should
be pointed out that the presence of the wall provides a harmful influcnce on the cquilibrium
- conjunction with plasma confinement. The multiving electrodes trap has the potential to
cancel the influence on the equilibrium by imposing an appropriate potential distribution

the electro s,



Chapter 6

Decay instability of Langmuir waves

[n this chapter, the behaviour of nonlinear clectron plasma os. v ns (Langmuir
waves) in a confined nonneutral clectron plasma column is discussed. As mentioned in
section 2.4, the presence of a houndary totally « anges the dispersion relation of Langmuir
waves. It causes novel nonlincar phenomena which are not predicted by the theory of

a o aded neutral |oas  as.

6. Experil ents and Discussions

6.1.1 Line - oscillations

Ther asured linear dispersion relation of Langmuir waves in a confined nonneutral
clectron plasma wi  a cvlindrical boundary is shown in Iig.6.1. In this case, the plasma
density no~ 6.9 x 10%m="* (N ~ 1 x 10%) and the plasma temperature 77 ~ 0.2 eV give
the Debye length Ajy ~ 0.13cm and the electron plasma frequency w, ~ 118 rad/scc (23.5
MITz). As mentioned in the section 2.1, {he Trivelpiece-Gould dispersion relation is snitable
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for the present plasma [65]. 1t is seen that the oscillation frequency w is proportional o
k-when ks simall as a rongh approximation. The solid line in Fig.6.1 15 calenlated from
the Trivelpicee-Gould dispersion relation with the effective plasma density n,;r ~ 5.0
10%m = The deviation from the measurement s mainly due to the density gradient in the
radial direction. Observed Langmuir waves are standing waves and resonance [requencies
become discreate in the long wave length region because the plasma is axially finite [5. 21,
66]. The clectrostatic potential of these standing waves has antinodes at the ends of the
plasma and the wave number k¢ of mode ¢ is approximately given by k = (/L where [
is the axial length of the plasma [67]. Ilcre, the approximate plasma length of L ~ 21 em
is used. This length is estimated by ¢ (r, z) and the pote tial at which confined electrons
begin to flow out from the confinement, region.

The mode of oscillations can be identified by measuring the phase differences of
detected signals. In the case of the mode ¢ = 1, oscillations measured at No.2 ~ G have the
same phase and those al. No.8 ~ 12 have the antiphase. This means that the mode £ —
has the o1 7 no » at the center (No.7) clectrode. In general, « d numnber modes have a
uode at t» center electrode and they are neither excited nor detected with it. On the other
hand, even  umber modes have an antinode at the center. In the case of ¢ — 2, signals at
No.2 ~ 4 and 10 ~ 12 have the same phase and those at No.5 ~ 9 Lave antiphase. Thus
it is scen that the mode £ = 2 has two nodes. In general, the Langmuir wave of mode ¢

has ( nodes inside the plasima.

1.2 on 1 a decay instability

It is seen from observations of linear oscillations that 1o excife a even mode oscilla-
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tion with the center electrode is the casicst wav 1o excite a single large amplitude Langmuir
wave. A tvpical behavior of a large amplitude Langniir wave whose initial power s bevond
the threshold is shown in 17g.6.2 and 6.3. Hereafter, the Langniuir wave of mode ( s rep-
resented by Lo In these figures. the large amplitude (-23.6 dBm detected at the electrode
No.d) Ly is excited with the e er electrode by app -ing the RIY perturbation of 9.5 Mlly
during dpsce. The plasma parameters are the same as those in Fig.6.1. Shown in IMig.6.2
are the time sequence of FFT power spectrums of the signals detected at the electrode
Nolo In Fig.6.3, the power of the main three peaks (£ = 1.3,4) in ['1g.6.2 are plotied as
functions ol time. It can be seen from these figures that only the excited L, dominates the
oscillation of the plasma and it decays expone i v until 7T0psec. Then Ly and L begin
to grow exponentially from the noise level (< -50 dBm) to the level of initially excited wave
(=35 dBm) until 90gpsce. v the other hand, Ly changes the decay rate suddenly at Ypsce
an  heav - decays from -30 dBm to -47 dBm until 100ssce. As a result, L, decays and 1,
and Ly are created through this process. This is thought to be the decay instability among
Langmuir waves, hecause no « er oscillations such as diocotron oscillations and electron
cye otron oscillations can be observed during this process and there is no ions which lead

to low frequency ion sound waves.

The decay process described above occurs only when the power of the excited L4
exceeds a certain level. When the initially excited Langmuir wave is below the threshold,
it just decays away exponentially and no other wave is excited. This is because the mode

cquencies of fi =2.61 [z, fa = 7.4 MHz and f, = 9.5 Mz do not satisfv the condition

wy = w3+ wp. Inthe case of figure 6.2, the excited large amplitude Langmuir wave makes



sidebands of f,* = fr £0.5 Mz to grow and these sidebands satisty

o= w'j(s— + w' (/H(/ ""‘~l.\‘+ — Wy + W ((‘l )

In fact. amplitude oscillation of Langmuir waves which causes sideband instabilitv and
makes clectron temperature higher is sometimes detected by a ring eleetrode (57, HYl.
The amplitude oscillation detected at, No.7 electrode in this example is shown in Fig.6.1.
The frequency of this amplitude oscillation is about 0.5 Mz Thercfore, the sideband
mstability associated with the large amplitude Langmuir wave is fundamental to these
decay processes. One remarkable feature in this case is that the excited la rge amplitude 1,
which is above the threshold can not decay into other waves inunediately unless thev satisly
the cnergy conservation relation. Therefore, it ¢ 1 be said that it takes several tens s for
sidebands to grow. In this example, simall peaks of € = 2 and 5 (f, ~ 1.8 MHz and fs ~11.06
MIiz) can be scen during decay processes (7Hps and 95ps). It suggests that the processes
wy = 2wy and 2wy = wy + w; occur at the same time. I is also seen that there is a peak
at 19 MIlz which is the second harmonic of fy. Unfortunately it was difficult to excliude
this harmonic entirely when a large amplitude f, was excited. It is possible {o Imagine
a process ke 2wy = w3 + wy contribute the process. However, the power of the second
harmonic is not large enough to have a significant effect on the process. In addition to the
cnergy conservation relation. the decay process must satisly the momentum conservation
ke = ko + koo Inthe case of Fig6.2, ky ~ ky + Ry(hks ~ 052, ks ~ 0.39. k) ~ 0.13) is
satistied.  his implies that this process is basically a three wave process, ie. [, decays
mto Ly and L. Theoretically, 5 wave interaction is a higher order process compared with

3 or I wave interaction [61]. Thus, it can be ignored.

‘The process show —in Fig.6.2 is an example and does not mean that 74 always
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decavs into Ly and Ly, What kind of processes ocenr in a plasma depends on parameters
siich as a plasma density, initial amplitude and so on. 1l the plasma density is lower than
that in Fig.6.2, it is observed that Ly decays into Ly and L. When the initial amplitude is
larger than that of Iig.6.2. it is observed that Ly decavs into many other modes Ly ~ [
(mainlvinto Ly). I'urthermore, Ly is not the onlv mode which causes these decay processes.
Another example of decay process is shown in IMig.6.5 and 6.6. In this case, large amplitude
Lg is excited at ficst. Hois seen that Lg decays exponentially while Ly and Ly grows
exponentially until S0psce. Since, fo = 9.3 Mz, fo =128 Mz, fs = 16.3 Mz and

by ~ 0.52 kg ~ 0.78, kg ~ 1.04, this process satisfies

20w = wy + wa and 2hg = ky + kg, (6.2)

This is the four wave process. Although clear sidebands are not observed, their frequencies
are shifted from near ones. Therefore, nonlincar frequency shifts are responsible for this
process. Then a fow sibands such as wh = 7.6 M1z, wf = 110403 Mz, wf =
I5.8 MHz appears an Ly begi (o grow abraptly. With these sidebands, the following
1 cractions become possible.  wg + wx™ wy + wy wst kg + ks o~ kg + kg + ks and
we -+ wy = w3 + 2wy kg + kg ~ kg o+ 285, These nonlinear interactions cease al 65pusce and
a  cexcited Langmuir waves begin to decay. However, these are higher order interactions
and  Ht 1 ely to occur. It s difficult to figure out these processes with the three wave
or four wave interaction. The similar process is also observed when the larger amplitude
La s excited. The fact is that sidebands make the frequency differences of neighbouring
modes almost equal and wave energy is transferred to lower modes. Since every oscillation
modes are standing waves in this nonnentral clectron plasma column, they have virtually
zero momentum and total momentum is conserved in these processes. A weak turbulent
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state mig t be produced y the initial large ¢ aplitude Langmuir wave. I[ the dispersioin
re ation is regarded - continuous (at large () and the excitation period is optimized, the
Kolmogorov spectrum might be obtained at large k. Since the present apparatus is not

suttal » for the 1 asurement of short wave length, this problem is treated in the future.

As alrcady mentioned, { se decay processes have thresholds for the power of the
mitially excited wave. It is found that the threshold depends on the plasma temperature.
Shown i I1g.6.7 1s the case in which Ly is initially excited. The abscissa is T in eV and
the ordinate is the power of the initially excited Langmuir wave. Open circles mean that
an anitially excited Ly does not decay into other waves and filled cireles mean that L,
decavs int other waves. The obtained results show that the threshold becomes Jower as
the lasma temperature becomes higher. The temperature dependence of the threshold
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fits the exponential function exp(—a7) with o ~ I represented by the dotted line. When
I becomes higher, w, and Ty become larger. Thus the obtained result is contrary to the
theory that threshold is proportional to dwjrwpn . 1 is thought that the proportional
cocllicient in this system depends on temperature or that the broadening of frequency spee-
tra duc to temperature causes this temperature dependence. However. the clear evidence

for such a spectrum broadening was not found in the present observation.

6.2 Summary

The three wave and four wave decay instability of Langmuir waves were experi-
mentally observed in nonmeuatral electron plasmas on the condition that the plasma had a
finite axial extent with a cylindrical boundary. One rema  able feature is that the three
wave | ocess of Langmuir waves is possible in the plasma, which is forbidden in the imn-
houn neutral - Tasma. This is mainly due to the difference of dispersion relations. The
cnergy consery ion relation for a decay instability was satisfied by the presence of side-
bands or no incar fre 1ency shifts of mode frequencies. The absence of ion sound waves
makes the measurer nt of tI processes clear; a Langmuir wave can not decay into an ion
soun  wave and a Langmuir wave. It was also observed that the threshold power of the
pump wave for the instability decreased exponentially as the plasma temperature hecame
higher. Similar results should also be observed in a positron plasma and an ion nonnecutral

plasma.
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Chapter 7

Conclusion

The main topic of this Doctor thesis are e linear and nonlinear electrostatic
oscillations i the nonneatral clectron plasma confined in the multi-ring clectrodes (MRI)

trap.

The dispersion rela for the fundamental diocotron oscillation of the spheroidal
nonnentral clectron plasma in the MRE trap was determined experimentally.  'The dis-
persion relation approar es asyn  totically to the Dubin dispersion relation as the total
clectron number N oor the total charge decreases (with small o), while it approches to
the dispersion relation deduced for an infinitely long cylindrical plasma column when N
becomes larger (with large o). T crefore, the intermediate relation between the dispersion
rela on for the eylindrical plasma column and the Dubin dispersion relation was revealed
out by the experiment. The empi ally obtained dispersioin relation in this experiment
can be used for the agnosis of the plasma under the special condition. This is quite nseful

for ant hatter plasmas  which destructive measurement is not favorable.

The wall and temperature effects on the electron plasma oscillations of the spheroidal
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nonnentral electron plasima in the MRE trap were also studied. The frequency shifts cansed
by the wall effect were ohserved for the plasmas composed of 107 ~ [0Y clectrons atl room
temperatire. The temperature effect on mode frequencies was also measured up to 1.2 eV
for both I =2 and 3 modes. On the other hand. these frequencies are estimated by in-
cluding the lowest order temperature effect of the plasma dic ctric tensor in the dispersion
relation and adding the frequency shifts measnred al room temperature. The calculated
results fit well with measured frequencies. This means that this stimple calculational proce-
dhrre is useful for evaluating the frequency shifts as far as Debye length is small compared
with a plasma scale. These experiments made it clear that the conduct, g wall surrounding
a spheroidal nonnentral plasma affects the characteristics of electrostatic oscillations when

the total particle number is large.

The experiment with nonlincar Langmmuir waves in the cyhudrical nonneutral plasma
was performed.  was fo d for the first time that a large amplitude Langmuir wave in a
nonneutral electron pla a column decavs into other modes of Langmuir waves when its
amp tude exceeds a threshold.  his nonlincar interaction is cansed by formation of side-
bands and nonl car fre 1ency shifts. There is a threshold for this nonlinear process and
it becomes lower as the plasma temperature becomes higher. However, this temperature
dependence is contrary to ¢ theory for decay instabilities. Although three wave process
among Lang uir waves is prohibited in the unbounded nentral plasma, this experiment
prove that three wave interaction exists in the eylindrical nonneutral plasma of a finite

length.

It should be noted here that the obtained results in this thesis have generality, 1.e,
they are applicable to every nonneutral plasma such as ion nonneutral plasmas, positron
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plasmas. and so on. When a spheroidal nonmentral plasma which has a large number of
particles is confined in a trap. the wall offeet and temperature effect should be considered
to evalnate a frequency of its clectrostatic oscillations. When a nonlincar Langmuir wave
is excited i a evlindrical or a spheroidal nonneutral plasma. it decayvs into other modes of
Langmuir waves. This transition should he paid attention when we use the nondestructive
measurement with clectrostatic frequencies.

The Nobel prize for Wolfgang Paul and Hans (. Delunelt in 1989 represents the
Penning trap and Paul trap are the powerful tools | trapping fundamental charged par-
ticles in a vacuum. The long confinement time of the trap makes the precise spectroscopy
of the trapped particles possible. Also the confine ent of antiparticles (e*,p) hecame pos-
sible, that led to the measurement of CPT invariance with the higher precision. However,
to make it progress further, i.c. to make a wge number of p— e, p—p and anti-hydrogen
particles Hr spectroscopy, it is desirable to confine mich more ¢t and p at higher density
so that they have lar v cross sections. More efforts should be made to produce higher
density  Hnneutral plasmas. Strongly coupled ion plasmas and dusty plasmas are studied
wit  kinds of Penning traps. too. Since these traps are such useful tools, it is important to
understand th roperties much more. Further study in this field will open the way to the
novel resecarch with a large number of low cnergy antiparticles. T hope the works reported

i this thesis can contribute in some degree to realize some features of these traps.
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Appendix A

The etch rate accelera'ion by the
ponc eromotive force with the high

intensity short pulse .aser

A the rest s described in this chapter were obtained during my stay in the

Department  Physics, University of Toronto as an exchange student.

The recent deve Hpment of lasers with chirped pulse amplification (CPA) technique
has exte led its field of research drastically [68]. The high intensity ultrafast laser pulse
created with € A svstem has been widely used to study laser-plasma interactions for
co crent X-ray generation, higher harmonic generation, inertial confinement fusion, etc
[69]. However, the maximum intensity available with present laser systems is imited by the
damage (1~ old of transparent. materials. Since fused silica (570,) is important optical
components, its amage threshold has been studied = ), 71, 72].  Also, the controlled
ctching of materials like S7a 1 10Oy has been an important issucs for it has potential
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apphications for industries. Nevertheless. the eteh rate of 870, are investigated only with
low [lnences near the damage threshold until now.  Since how an ultralast laser pulse
creates a plasma inside a material, how the laser produced plasma evolves, and how the
laser pulse interact with the plasma are all important to be understood. the ionization
process of S0, interacting with ultrafast laser pulses was studied by some rescarchers. The
velocity of the tomzation wave was explained by standard electron thermal conduction at
low intensity (< 10¥W/an?) [73, 7] and by radiative thermal conduction at high intensity
(~ 10" /em?) [75]. Tt is inferred that there is a transition of heat transport mechanisms
in the range of the laser intensity between 10M to 10" W /em*. These situations motivated

us Lo investigate the eteh rate of S70, with a high intensity short pulse laser.

A.1 The experimental setup

T ¢ CPA lasc syster used in this experiment [76] has a {eedbackcontrolled ac-
tive/passive mo locked Ndiy ass oscillator which can produce high-contrast picosccond
pulses of miero wle e gy at 1.054 jon wave length. These pulses are temporally stretehed
to 300 ps with a  ffraction grating dispersive line. A sclected pulse is optically amplified
and finally recompressed by a grating pair compressor which is complementary to the
stretche  Changi ¢ the distance between the compre or gratings, various pulse durations
(1.2 ~ 32 ps) can be obtained with the maximum energy ~ 800 mJ. A 300 ps pulse is also
available by bypassing these compressor gratings. In the experiment described here, the
energy of the laser ranges from 0.02 ~ 4100 mJ. The energy of the final output laser pulse
is measured with a photo diode which was calibrated with an energy meter (morectron) in

advance. In the last stage. the amplified pulse with 25mm diameter is focused with the lens
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Figure Al: The schematie drawing of the CPA laser sysicn.

(= 7 m) altached to the vacumr  chamber. The maximum energy corresponds {o the
ma: i inte ity of about 10 W /em? with the focal spot size of about 300 prm? in the
casc of 1.2 ps pulse. The focused spot sizes of the laser for each pulse duration were imaged
and calibrated with a x10 microscope objective and a CCD camera. The polarization of
the final output can be casily changed between s- and p-polarization by placing a 1/2 plate.
schemat  drawing of the system is shown in Ifig. A 1.

S10y targets (1 x [in ) with thickness ~ 200 gm (Corning 9695) were used in
a scries of experiments. The target is shot in the vacuum of ~ | x 1072 torr with an
incident angle of ~ 5% or ~ 35° and moved for each shot so that a focused laser pulse can
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interact with a clean snurface of a target. Since the fluence of the laser in this experiment
are basically above the damage threshold of S70, for each pulse duration. a depth ol an
ctched hole can he measured with the stylus profiler (tencor alpha-step 200) whose vertical
resoliution is about 10 nn in our case.

The spectrum of the specularly reflected laser light at the imcident angle ol 35% is
also measured with the spectrometer (American Holographic) whose resolution is 0.Inm in
wave length. Tor this measurement. a pair of lenses ([ = 14 cn) are set up to collect the

reflected light eflfectively and to make it focus on the slit of the spectrometer.

A.2 rxperiments and Discussions

As mentioned carly in this chapter, the velocity of the ionization wave in S1(,
cot 1 be we  explained by standard electron thermal conduction at low intensity regime
< 5 x 10"V /em?. T s was experimentally confirmed with the pump-probe scheme. It
was  so found that the velocity of he jonization wave is consistent with radiative thermal
conduction at a igh intensity of 10" W /em®. In this case, the pump-probe scheme in a
sliy 1y differe  way was use  {for the experiment. Thus, there shonld he a transition from
clectron therr a1l transport to radiative thermal transport as the intensity of short pulse
ncreases from MM o 107 W /em?.

Although measuring the depths of the etched holes gives only indirect information
of the position and velocity of the ionization front, the obtained resiults for 1ps pulse shows
the abrupt increase in the cteh rate at high intensity. In Fig.A.2(a). solid circles mean the
etched he s were made by 1ps pulse without the dye cell pulse cleaner and open circles

mean the clea  1ps pulse were nsed. Although the clean pulse tends to have smaller etcli
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rate. it also shows the acceleration of the eteh rate comparable to the dirty pulse. oven
il the prepulse or pedestal of the 1ps pulse may enhance the accecleration of the etch rate.
they are not the main reasons for the accelerated etching. The result shown in g A.2(a)
is explained using one dimensional thermal conduction inside a material, which is governed

by the following equation

“nk = — Al
SR TR o (A-1)

3 7T, ) 1,
a1, [ ) }
with Spitzer-Tlarm conductivity rgy = Akp(hgT)2 /(7 + 1)ctinA for the clectron

thermal conduction [77]. Here, Z is the charge of the ion and InA is the Coulomb logarithn.

[n this case, the position of the ionization front is given by

: 3 . 579 -
SHo ¢ 2/9 725/9,2/9 .
1 = ; s ) [‘”)s [ ('\Z)
fiml/z( + l)r"‘wé/zlm\ :

I 1s the absorbed laser flnence. It is clear that the etch rates at low fluence < 10114/ em?
¢ > proportio Wl to ~ (I7— 2)° Therefore, it reproduces the fact that the electron
thert CoOn 1 ( - the heat {ransport mechanism at a low intensity. However, the etch
rale increases su  lo ly at 10" W /em? and deviates from the fitting curve. At this higher
intensity, radiative  ern conductivity #,,y = 160T?Ar/3 can be used for estimating the

position of the heat front with eq.(A.1), which is expressed by

320

T g 18T T T A3
S)n,;k‘,’;Z ) ( )

ihs

‘l.rml _ ()76(

tlere, o 1s the Stefan-Boltz  an constant. The cteh rates can be fitted by the [unction
~ (= 1) with 1y ~ 10 W em ™2,

The measured Doppler s of the specularly reflected laser ight clearly suggests
that e ponderomotive force [78] causes the accelerated etching as shown in Fig. A2 (h).
Whe  the inte sity is less than ~ 10" W /e =% and the pressure of the plasma expansion
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dominates that of the laser clectric field. the wave fength of the reflected light shows the
blue shift. The shift of the wave length hecomes larger as the mtensity becomes higher.
This means the eritical density surface moves out from the target and the velocity of the
surface increases as the intensity incrcases. The expansion velocity v is casily estimated by
the simple relation AN/ A = —2(v/¢)cosd with the incident angle 0. When the intensity is
larger than ~ 10" W/em ™2, the ponderomotive force dominates the plasma pressure and
the shift hecomes smaller as the intensity increases. This is clearly scen in Fig.A.2 (b).
It means that the expansion of the critical surface is suppressed by the ponderomotive
force and the high temperature plasma stays longer on the surface of the target during ¢
pulse duration providing the heat which is necessary for the onset of the radiative {hermal
conduction. A similar accelerated etching is observed for various pulse duration (3, 9, 30ps)

with different threshold intensities.

However, a distinctive result is obtained for 300ps pulse as shown in Mg A3 (a)
an (b). /' hough the etch rate shows a slight increase at 5 x 10" W/ =% with the red shift
of the reflected laser light, the cteh rate basically follows the clectron thermal condiction
for the ent > van >ol ¢ intensity. At low intensity, the cold temperature (~ a few tens
electron v s) of the plasma climinate the red shift caused by the Brillouin scattering [79]
(The Brillouin scattering here means the process in which the incident laser light decays

to the ion acoustic wave and the reflected light. When the plasma temperature is low,
the low frequency of the ion acoustic wave leads to the small frequency shift of the reflected
light). This explains the fact that there is no clear shift of the wave length at low intensity.
At hiy intensity, the critical surface is pushed into {he target by the ponderomotive force,
whic makes the plasma temperature higher, and the Brillouin scattering dominates the
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micraction between the laser pulse and the expanding plasma [R0]. which results in the ved
shift of the reflected light. The fact that the eteh rate at high intensity for 300 ps obevs
clectron thermal conduction law may he exp ined as follows. The scale length and density
profile of the freely expanding plasma arve given by Ly = el and n = ngexp(—a/cgd) [69]
vespectively with ¢ = /ZkgT, /M the ion sound velocity and ng the density at the distance
= 0. Since 300 ps pulse has 300 times longer leading edge compared with | ps pulse. the
preformed underdense plasma has 300 times longer scale length if the plasima temperature
is the same for both 300 and 1 ps pulse. A wugh assuming the same temperature is
madequate, it 1s plansible to assume 10 ~ 30 times longer L, for 300 ps pulse. There is
a huge difference in the amount of underdense plasmas which absorb the energy of the
mcoming laser when the peak of the laser pulse come into the target surface. Thus, the
mich longer scale Tength of the plasma prevents the effective  cat deposition into the target

and the onset of the radiative thermal conduction.

The condi® m that the ponderomotive force equals to the thermal energy of the

o DTG (rtre ;7R
clectrons is given y [78]

mo< vl > 2T, = 3.2 x 107 L, N J kg, ~ | (A1)

with v,o = ¢l//mw. Thus, the electron temperature at the onset of the radiative thermal
conduction can be estimated for cach pulse duration as shown in Fig. A4, Unfortunately

o measurement was dc e to confirm the electron plasma temperature. However, obtained
values are proper ones for this type of plasma. The empirical fitting 1, (< 10"W/cm?) ~

13771 (ps) is obtained for the threshold intensity of the accelerated etching from Fig A A.
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Figure Az The threshold intensily for the accelevaled clehing depends on the laser pulse

duration. The plasma lemperature al the threshold is inferred by simple cstimalion.

A.3 Suw ary

The interi ton of an ultre st high intensity laser with a solid surface of fused
silica (870,) was wvestigated. T sasuring depth of holes etched by a laser pulse which
has a broad range « intensity ('~ 3 x 10" W/em?), a transition of thermal conduction
me  anisms were clearly observed. For 1ps pulse. the etch rate follows the power law ~ 72/
in e low intc sity range < 101 /em?, which is characteristic to the clectron thermal
conduction.  However, the deviation from the power law with much higher etch rates
midicates that the radiative thermal conduction dominates in the high intensity range >
1O 11 /em®. he similar accelere ion of the etching was confirmed for other pulse duration
(3. 9. 30ps). By measuring the spectrum of the reflected laser light, it was found that the

ponderomotive force plays an important role fc  the etch rate acceleration. In the casc of



300ps pulse. however, this effect is suppressed by the longer scale length of the plasma.

The etch rate is basicallv determined by the electron thermal condietion.
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