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Chapter 1 Introduction 

Chapter 1 Introduction 

1.1 Introduction 

In many rare-earth and actinide compounds, it has been thought that f-electrons are 

well localized in atoms due to the outer closed shell of p- and d-electrons. However, in 

Ce, Sm, Yb and U compounds, there are many anomalous properties which cannot be 

explained by a simple localized f-electron model. The most typical phenomena are Kondo 

effect and the formation of the heavy Fermion state. In these system, f-electrons fluctuate 

in space and time through the mixing with conduction electrons. In this chapter, we 

survey the Kondo effect and refer to the motivation of this study. 

1.2 Kondo Effect 

1.2.1 Impurity Kondo Effect 

The Kondo effect was first found in alloys with transition metal as impurities. 

Figure 1-1 shows the temperature dependence of resistivity in CuFe alloys. (1
-
1
) In these 

alloys, the resistivity shows a minimum with decreasing temperature and reaches a 

constant value called an unitarity limit. The minimum in the temperature dependence of 

resistivity was known by the 1930s, but it had remained unexplained for about 30 years. 

Then, it was explained by Kondo in 1964.(1-2
) He calculated the scattering probability of 

the conduction electrons to the second Born approximation based on the ~.;.J interaction 

model expressed by eq.(1-1) and showed that the resistivity proportional to -logT 

appears. The s-d interaction Hamiltonian is written as follows, 

H=-Js-d v o(r) (S•s), (1-1) 

where v is the volume per lattice point, r is the position of the conduction electron and S 

and s are spins of the conduction electron and the impurity, respectively. The strength of 

the Kondo effect is characterized by the Kondo temperature T K given by 

(1-2) 

where D is the width of the conduction band, N is the number of lattice points and p is 

the density of states at the Fermi level. 
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Chapter 1 Introduction 

Though the minimum of resistivity was explained by the appearance of the term 

proportional to -logT, an new problem about a ground state arose. The term of -logT 

diverges in the limit ofT ->0. Further, resistivity diverges at Kondo temperature T Keven 

in the case of the approximation of collecting the most divergent terms due to the higher 

perturbation. Thus, a perturbation theory is not proper below T K· By the extensive 

theoretical investigations, the properties of the ground state of an alloy with an impurity 

are well understood: a spin of impurity is screened by spins of conduction electrons and a 

singlet ground state is formed by coupling an impurity spin with conduction electrons 

spins through the s-d interaction. (1 -J) Thus, the Kondo effect makes a ground state to be 

nonmagnetic. 
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Fig. 1-1. Temperature dependence of resistivities in Cu.Fe alloys. (1-l) 

On the other hand, the above Kondo behavior such as the resistance minimum is 

observed in alloys with transition metal impurities of much less than 1 %. In alloys with 

transition metal impurities of more than a few percent, no Kondo behavior is observed 

and a magnetic phase transition such as spin glass occurs due to the RKKY interaction 

between localized moments mediated by conduction electrons. The RKKY interaction is 
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Chapter 1 Introduction 

expressed as follows, 

(1-3) 

where JRKKY is an exchange integral and S 1 and S2 are spins of localized moments. 

Thus, the RKKY interaction makes a system to have a magnetic phase transition. 

The Kondo behavior is observed in some f-electron systems though magnetic 

moments form a lattice. In the next section, we turn to survey a dense Kondo effect. 

1.2.2 Dense Kondo Effect 

As mentioned in the previous section, the Kondo behavior in alloys with transition 

metal impurities appears only when the concentration of impurities is much less than 1 %. 

However, the Kondo behavior is observed in some f-electron systems though magnetic 

moments form a lattice. Below we survey the Kondo behavior referring the experimental 

results of CexLa1_xCu6 system as an example. (1
-
4

'
1

-S) In Fig. 1-2, we show the 

temperature dependence of resistivities in CexLa1_xCu6 system. In the compound with 

x=0.094, the impurity Kondo behavior is observed: the resistivity has a minimum around 

25 K and it is proportional to -logT between 2 K and 20 K, and takes a constant value 

below 0.1 K. These Kondo behavior is also observed even in the compound with x=1: 

the resistivity has a minimum at about room temperature and proportional to -logT 

between 30 K and 100 K. This Kondo effect in f-electron compound is referred to as a 

dense Kondo effect in contrast to an impurity Kondo effect. 

Ce:rLa.l-:rCue 
X• J//b~axia 

e 0. 60 ----·-
C) 0.73 

a 0. 29-------L 

3 60 0.90----

· 1 10 100 
TemperatUre (I) 

Fig. 1-2. Temperature dependence of resistivities in CexLa1_xCu6 system.(l-4
) 
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The temperature dependence of the resistivity in the compound with x>0.73 is 

different from that in the compound with x<0.50: the resistivity has a u1ax:imum and 

decreases with decreasing temperature below about 10 K. In this temperature range, the 

decrease of resistivity follows T 2 dependence and is regarded as a formation of a coherent 

state and/or a heavy Fermion state. The susceptibility shows large Pauli paramagnetism 

XPauti(O) at T=O K as shown in Fig 1-3. The coefficient y of electric specific heat takes a 

large value as shown in Fig 1-4. These behavior is observed in many f-electron 

compounds. According to the Fermi liquid theory, susceptibility XPauti(O) due to the Pauli 

paramagnetism and coefficient y are expressed as follows, 

X Pauli (0) = 2 1-l! p(E p) , (1-4) 

(1-5) 

where p( EF) is a density of states at Fermi level. Thus, the enhancement ot susceptibility 

and coefficient y is regarded as the enhancement of the density of states at Fermi level 

and/or an effective mass of conduction electron. There is a linear relation between 

XPauti(O) and A, where A is the coefficient of the 'f term of the resistivity. (l -
6) Further, 

there is a linear relation between A and y2
. (l -?) Corresponding to the enhancement of 

p(EF), the effective mass of quasi-particles in CeCu 6 is about 1000 times larger than that 

of free electron. Thus, this state is referred to as a heavy Fermion state. Here, it should 

be noted that susceptibility XPauti(O) and coefficients y per Ce ions in CexLa1_xCu6 system 

are almost the same above 10 K and 1 K, respectively. This means that the Kondo effect 

occurs at each Ce site independently even in a dense Kondo compound. 

The dense Kondo compounds show various properties as well as heavy Fermion 

state. These compounds are classified as follows corresponding to those gn:mnd states: 

heavy Fermion state without magnetic orderings, with magnetic orderings, with 

superconducting and so on. These various ground states originate from the competition 

between the Kondo effect and the RKKY interaction. These behavior have not fully 

understood yet and attract much attention due to their anomalous properties as follows. In 
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compounds without magnetic orderings, development of correlation length is strongly 

suppressed by the Kondo effect. On the other hand, in compounds with magnetic 

orderings, magnetic transitions occur at very low temperatures compared to the exchange 

interactions between localized moments. Further, the value of ordered magnetic moments 

is reduced compared to the expected value without the Kondo effect in some compounds 

with magnetic orderings. The boundary between nonmagnetic and magnetic compounds 

is one of the most interesting topics. 
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Fig. 1-3. Temperature dependence of magnetic susceptibilities in CexLa1_xCu6 

system.(l-4) 
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Fig. 1-4. Temperature dependence of specific heat derived temperat~re in 

C La C (1-5) 
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Another interesting topic is the Kondo behavior in low carrier systems. Usually in 

the Kondo system, the conduction electrons couple with each magnetic ion so as to 

screen the localized moment. Thus a substantial amount of conduction electrons are 

thought to be necessary for the heavy Fermion state. However, the Kondo behavior is 

observed in Yb4As3 , (
1

-
8

) CeSb, CeBi(1
-
9

) and so on, where the carrier concentration is 

less than a few percent per magnetic ion. The Yb-monopnictides, which we investigate in 

this study, belong to this category. In the next section, we survey the physical properties 

of Yb-monopnictides and discuss the motivation of this study. 

1.3 Physical Properties ofYb-monopnictides 

Yb-monopnictides YbX (X: N, P, As, Sb) have the cubic NaCl-type crystal 

structure and semi-metallic band structure as Ce-monopnictides. Figures 1-S(a), 1-S(b) 

and 1-S(c) show the band structure of LuP, LuAs and LuSb, respectively, calculated by 

Harima et al. including the spin-orbit interactions as perturbation.(l-1
0) The band structure 

shows that p-character holes which originate from pnictogen are around r point and that 

d-character electrons which originate from Lu atoms are around X point. The p-character 

holes are split into two states, p- r 6 and p-18 states by spin-orbit interactions. It is 

thought that the band structure of Yb-monopnictide is similar to that of Lu-monopnictide. 

This is supported by some experimental results on transport properties. (1
-
11

) First, 

measurements of the Hall coefficients show that these systems have small amount of 

carriers. Second, the magneto-resistance of YbAs follows H 2 dependence. From these 

transport measurements, the number of carriers was estimated to be about 0.01 carriers 

per Yb
3
+ ion in YbAs. The Hund-rule ground-state multiplet of the ( 4f) 13 electric 

configuration, 1=7/2 is split by a crystalline-electric-field (CEF) into a 1 6 doublet as the 

ground state, a r 8 quartet and a r 7 doublet as the first and the second exited states . The 

energies of the excited states from the ground states are listed in Table 1-1. (1
-
12

•
1

-
13

) The 

energies decrease systematically with changing the pnictogen from N to Sb. 
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YbN YbP YbAs YbSb 

Ref. (1-12) 389 261 218 
fs-r6 (K) 

Ref. (1-13) 383 220 203 174 

Ref. (1-12) 584 407 489 
frf6 (K) 

Ref. (1-13) 940 499 476 453 

Table 1-1. Crystalline electric field splittings in Yb-monopnictides. (1
-
12

'
1

-
13

) 
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Fig. 1-5( a). Energy band structure calculated for LuP.(1 -1
0) 
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Fig. 1-S(b). J: (1 -10) Energy band structure calculated tOr LuAs. 
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Fig. 1-S(c). Energy band structure calculated for LuSb.(l -1
0) 
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The first report on the anomalous behavior of Yb-monopnictides was one regarding 

the temperature dependence of the susceptibilities. (1-
14

) Figure 1-6 shows the temperature 

dependence of the susceptibilities of Yb-monopnictides. No magnetic transition is found 

down to 1.5 K, though the effective moment of these system above 80 K are almost same 

with that of the trivalent configuration of the Yb ion, and the absolute values· of the Weiss 

temperatures are larger than 10 K. The susceptibility below about 70 K deviates from the 

behavior of a simple single ion model showing the smaller value. 
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Fig. 1-6. Temperature dependence of magnetic susceptibilities 

in Yb-monopnictides. (1-
14

) 
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An anomalous behavior is also found in the specific heat. The specific heat shows a 

broad peak around 5 K, as shown in Fig. 1-7. This broad peak can not be explained by 

the Schottky peak, since the magnitude of the electric crystal field splitting is much larger. 

This peak is compared with the exact solution of the single impurity Kondo model as also 

shown by a solid line in Fig. 1-7. (1
-
15

) The Kondo temperature is tentatively estimated to 

be 5. 7 K. These behavior such as suppression of a magnetic ordering and a broad peak in 

specific heat is characteristic to the Kondo compounds. However, no Kondo behavior is 

found in the temperature dependence of resistivities of YbP and YbAs as shown in Figs. 

1-8(a) and 1-8(b), respectively.(l-16
) This discrepancy is explained by the p-f mixing 

model.(l -11
) Yb-monopnictides have two types of carriers, holes and electrons, because 

they are compensated semimetalic compounds. The CEF ground state r 6 of 4f-electrons 

mixes with p-r 6 holes stronger than with d-character electrons due to their symmetry. 

Thus, it is thought that the Kondo effect occurs mainly through the mixing between 4f­

electrons and p-r 6 holes. Mobility of conduction electrons is larger than that of holes as 

shown in Fig. 1-9. Thus, the Kondo behavior of resistivity can be masked by resistivity 

of the conduction electrons which are not affected by the Kondo effect. The dHvA 

measurements of YbAs show that there are both Fermi surfaces of holes and electrons. (1
-

17) However, not all of the Fermi surface of holes were observed. The holes which were 

not observed by dHvA measurements can be connected to the holes affected by Kondo 

effect. 

1.0 

0.5 

0 10 
Temperature (K) 

20 · 

Fig. 1-7. Temperature dependence of magnetic specific heat in YbP. 

The solid line shows the exact solution for the single impurity model. (1
-
15

) 

10 



I 
~ .... ·-> ·-.... (IJ ·-(IJ 
41 
~ 

Fig. 1-8(a). 

,-... 
e 
ci .._., 
>. .... ·-~ ·-.... Vl ·-V) 

41 
~ 

Fig. 1-8(b ). 

.so 

40 

30 

20 

10 

0 

~0 

60 

40 

20 

Chapter 1 Introduction 
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Temperature dependence of resistivity in YbP. 

Insert shows the detail near TN. (1
-
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Yb-monopnictides except YbSb undergo clear antiferromagnetic transitions below 1 

K.(l -l
8

) Figure 1-10 shows the temperature dependence of the specific heat of Yb­

monopnictides. There is a sharp peak at about 0.5 K corresponding to the 

antiferromagnetic transition. 

16 
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: v \. \ . 
. A .~ ···.······ 

; '.:· .... / . .' :-·· • • • • ··-I •, ~. 
'--'-------' 

\ 

0.4 0.6 0.8 1.0 1.2 
T[KJ 

Fig. 1-10. Temperature dependence of Yb-monopnictides around TN· (1
-
18

) 

From neutron diffraction measurements, it was reported that the magnetic structure of the 

ordered state is of Type II for YbP and of Type III for YbN and YbAs, whose 

propagation vectors are [1/2,1/2,1/2] and [1,0,1/2], respectively, and that the ordered 

magnetic moments are reduced by about half from the expected value for the r 6 ground 

state. (1
-
19

) The reduction of ordered magnetic moments is quite similar to that in other 

heavy Fermion compounds and is observed only in Yb-monopnictides among low carrier 

concentration systems. Furthermore the coefficient y of electronic specific heat in YbAs 

was estimated to be 270 mJ/mol K2 by the specific heat measurement below TN. (1
-
20

) 

Inelastic neutron scattering studies showed that short-range spin correlations begin to 

develop below about 20 K far above TN. (1
-
21

) This is consistent with the fact that all the 

entropy of the ground state (R ln2) is released above 20 K, including the entropy 

corresponding to a broad maximum of specific heat around 5 K. (1
-
14

) These experimental 
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results are again quite similar to other heavy Fermion compounds. 

On the other hand, YbSb is an exceptional case in Yb-monopnictides. Neutron 

diffraction measurements on YbSb did not detect any magnetic moments larger than 0.1 

~B down to 7 mK. (1
-
19

) However, the Mossbauer measurements performed on the same 

sample with the neutron diffraction measurements reveal the existence of the two phase 

transition at 0.32 K and 5 K. (1
-
22

) It was reported that the phase transitio!'. 1t 0.32 K is 

antiferromagnetic ordering and the transition at 5 K is possibly antiferroquadrupolar 

ordering. However, CEF ground state r 6 has no quadrupolar moment. Thus, the 

situation is not very clear so far. The transition at 5 K was detected by specific heat 

measurements as shown in Fig. 1-11. (l-
23

) These anomalous behavior in YbSb is 

consistent with the difference of the band structure. The number of the p- r 6 holes 

decreases with increasing the weight of pnictogen due to spin-orbit interactions. In YbSb, 

it is expected that the number of p-r6 holes is almost zero. Thus, the p-f mixing model 

cannot be applied to YbSb and a new model is required to understand the physical 

properties in Yb-monopnictides systematically. 

3 

• H•O T - YbSb 0 H•5 T(ahlfted - H•1 OT(ahlfted I 

~ 2 • .... 
I -0 
e 
• ., 1 -
(.) 

QL-~2--~---.L-~--~.--~--~----~10 

T ( K ) 

Fig. 1-11. Temperature dependence of specific heat in YbSb under 

magnetic field of 0, 5, 10 T.(l-23
) 
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1.4 Motivation of This Study 

Yb-monopnictides have many similarities with usual heavy Fermion compounds as 

mentioned above. However, it has been controversial that the heavy Fermion state can be 

realized in the low carrier concentration system. There has been a suggestion that the 

observed T-linear specific heat in YbAs is not due to heavy Fermion state, but due to the 

magnons of which the density of state is proportional to the energy. (1-
24

) Very recently it 

was also suggested that the charge dipolar model may explain the above mentioned 

experimental results. (1 -
25

) Thus the interpretation for the magnetic properties of Yb­

monopnictides is unsettled and it has been controversial that the magnetic properties in 

Yb-monopnictides can be understood by considering the existence of the heavy Fermion 

state or by a different mechanism. 

In this study, we have performed the nuclear magnetic resonance and relaxation 

measurements of Yb-monopnictides to clarify the physical properties from the 

microscopic standpoint. In particular, YbAs has been investigated at low temperatures 

down to 20 mK. Further, we put an emphasis on YbSb to clarify an ambiguous situation 

that whether a phase transition at about 5 K exists or not. 

In chapter 2, we present sample preparation and experimental methods. 

Experimental results are given in chapter 3. In chapter 4, we analyze the experimental 

results and discuss the physical properties of Yb-monopnictides. Then, we present 

conclusions in chapter 5. 
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Chapter 2 Experimental Procedure 

2.1 Sample Preparation 

In this study, we have performed NMR measurements on six kinds of Yb­

monopnictides including YbPo .4Aso .6 and YbAso .8Sb0 .2 alloys. In the following, we 

describe the preparing methods of single or powder Yb-monopnictides samples. 

Single crystals of YbP, YbAs and YbAs 0.8 Sb0 .2 were grown by two stage 

procedures. Firstly, the stoichiometric quantities of elements Yb (3N pure), P (6N pure), 

As (6N pure) and Sb (6N pure) were sealed in an evacuated quartz tube and were heated 

up to 700 OC taking a few weeks. Then powder samples were prepared through the 

reaction between metallic Ytterbium filings and the vapor of pnictogens. Secondly, the 

Bridgman method in a sealed tungsten crucible was used to obtain a single crystal. For 

NMR measurements, the single crystal was ground into fine powders to avoid skin 

effect. 

Powder samples of YbP 0 .4As0 _6 were prepared by the same procedure of the first 

stage for preparing the single crystals. 

YbSb is the only incongruent compound in Yb-monopnictides. Thus, its synthesis 

is very difficult. Only the powder samples of YbSb can be prepared by the same 

procedure of the first stage for preparing the single crystals of the other Yb­

monopnictides at the temperature just below the incongruent melting point of about 800 

°C. In this study, we have used the both samples prepared by the ETH group and by us. 

From now on, we refer to the samples prepared by the ETH group and by us as YbSb#1 

and YbSb#2, respectively. The difference between YbSb#1 and YbSb#2 is discussed 

below. 

Powder samples of YbN were prepared by heating metalliC Ytterbium filings up to 

about 1600 oC in hydrostatic N 2 gas pressure of about 1000 atms. In this study, we have 

used the powder samples of YbN prepared by D. X . Li et al. 

Each sample prepared by the above procedures was checked by X-ray diffraction. 

All sample except YbSb were found to be single phases. The crystal structure was found 

to be NaCl-type and the lattice constants were obtained as follows: 5.55 A for YbP, 5.63 

A for YbP 0.4As0 _6, 5.70 A for YbAs and 5.72 A for YbAs 0 .8Sb0 .2 . These values are 

almost the same with those obtained by the previous study for YbP and YbAs and the 

Vegard 's rule for the alloys. On the other hand, YbSb has some impurity phases. Figure 
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2-1 shows the X-ray diffraction pattern of YbSb#2. Sharp peaks indexed by the letters of 

YbSb show that the crystal structure is NaCl-type and the lattice constant is 6.07 A, 
which is almost the same with that of YbSb#l. However, some small impurity peaks, 

which may come from Yb5Sb4 and/or Yb 11 Sb1 0 , were found around 28 =32 degree. 

These small peaks were also found in YbSb#1. The ratio of intensity between the peaks 

corresponding to the YbSb {200} plane and the impurity Yb5Sb4 {330} plane in YbSb#2 

is as small as 10 : 1, which is almost the same with that in YbSb#l. However, the width 

of the peak corresponding to the YbSb {220} plane in YbSb#2 is about a half of that in 

YbSb#l. Thus, it is found that the homogeneity in YbSb#2 is better than that in YbSb#l. 
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Fig. 2-1 X-ray diffraction pattern of YbSb#2. 
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2.2 NMR Measurements 

NMR measurements on pnictogens were performed using a conventional phase­

coherent pulsed spectrometer. Figure 2-2 shows a block diagram of the NMR apparatus. 

NMR spectra were obtained by the observation of the spin echo intensity as a function of 

external magnetic field. Knight shifts were obtained by using the gyromagnetic ratios of 

3.0756 (MHz/10 kOe), 17.235 (MHz/10 kOe), 7.2919 (MHz/10 kOe) and 10.189 

(MHz/10 kOe) for 14N, 31 P, 75 As and 121 Sb, respectively. The magnitude of magnetic 

field was measured by a Hall resistance which was calibrated by the reference signal of 
11 B in Triethyl Borate (CH3 CH20)3 B assuming the gyromagnetic ratio of 13.660 

(MHz/10 kOe). The spin-lattice relaxation time T1 was measured by observing the 

recovery of spin-echo intensity after the saturation of nuclear magnetization by saturating 

comb pulses. The schematic view of pulse sequence for the measurement ofT 1 is shown 

in Fig 2 -3. The recovery of spin-echo intensity is expressed as follows, 

t 
M(t) = M0 { 1- exp(- T)}, 

1 

(2-1) 

where M(t) is the spin-echo intensity at the time t after the saturation comb pulses and Mo 
is that of equilibrium. 

The resonance frequency ranged from about 5 MHz to about 60 MHz. 
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Fig. 2-2 Block diagram of phase-coherent pulsed NMR spectrometer. 
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Comb pulses rt/2 and rt pulses 

Spin-echo signal 

: 

0 t+-r t+2T ~ 
Time (a.u.) 

Fig. 2-3 . The schematic view of pulse sequence for the measurement of T1 
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2.3 3 He-4 He Dilution Refrigerator 

The temperature below 1.2 K was obtained by using a 3He-4He dilution 

refrigerator. This refrigerator use large entropy of liquid 
3He by diluting liquid 

3
He with 

liquid 4He. The schematic view of 3He-4He dilution refrigerator is shown in_ Fig. 2-4. 

4He bath 
H. E. (4.2 K) 

1 K pot 
Condenser 

Main 
impedance 

Still H. E. 

Sub 
impedance 

Heat exchanger 

(H. E.) 

Mixing 
chamber 

Pump 
(300 K) 

Still 
(0.7 K) 

Fig. 2-4 The schematic view of 3He-4 He dilution refrigerator 
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Chapter 3 Experimental Results 

3.1 Paramagnetic State 

3.1.1 NMR spectrum and Knight Shifts 

First we show the experimental results In the paramagnetic state. A single 

Lorentzian-typed NMR spectrum was observed above 1.5 K in all Yb-monopnictides. 

Figure 3-1 shows a typical example of the NMR spectra in the paramagnetic state. No 

structure due to the electric quadrupole moments was observed, although nuclear spins of 
14 N, 75 As and 121 Sb is 1, 3/2 and 5/2, respectively. This indicates that the local 

symmetry of the pnictogen site is cubic, which is expected from the NaCl-type crystal 

structure, and that there is no distortion in the sample. 

-.. YbAs 
::J 75As-NMR crj 

f\ ....._, 
6.200M Hz >. :::: l \ 4.2K (/') 

c I ' Q) I ' ...... f \ c t \ 
0 I \ ..c K=O I (.) 
Q) 

~ 
I \ c 

\__ ·c. J (/) 

8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 

Magnetic Field (kOe) 

Fig. 3-1. A typical example of the NMR spectrum in the paramagnetic state. 

The Knight shifts K(T) was measured using these spectra. The Knight shifts K(T) 

measured at a constant frequency is usually defined as follows: 

(3-1) 
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where Ho is the resonant external magnetic field of the free pnictogen nuclei and Hm(T) is 

the observed resonant external magnetic field . 

Figures 3-2, 3-3, 3-4 and 3-5 show the temperature dependence of the Knight 

shifts K(T) for YbN, YbP, YbAs and YbSb, respectively. We also show the temperature 

dependence of K(T) for YbPo.4Aso.6 measured by using 
31

P and 
75 

As nuclei as a probe 

in Figs. 3-6(a) and 3-6(b), respectively. The NMR signal of 
75 

As nuclei in YbP0 .4As0 .6 

was observed only below about 20 K due to their week intensity. We show the 

temperature dependence of K(T) for YbAs0 .8 Sb0 .2 measured by using 
75 

As nuclei as a 

probe in Fig. 3-7. The Nl\1R signal of 121 Sb nuclei in YbAs 0 .8 Sb0 .2 was not observed 

due to their week intensity. 

The sign of the observed Knight shift is negative in the all temperature range. The 

absolute value becomes large with decreasing temperature. The Knight shift K(T) is 

almost temperature independent below 4.2 K. 
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Fig. 3-3. Temperature dependence of the Knight Shift of YbP. 
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Fig. 3-5 . Temperature dependence of the Knight Shift of YbSb. 
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Fig.3-7. Temperature dependence of the Knight Shift of 
75 

YbAso.s Sbo.2 probed by As nucleus. 
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In Figs. 3-8, 3-9, 3-10, 3-11, 3-12(a), 3-12(b) and 3-13, we exhibit the Knight 

shift K(T) vs magnetic susceptibility x plot for YbN, YbP, YbAs, YbSb, YbPo.4Aso.6 

probed by 31 P nuclei, YbP 0 .4Aso.6 probed by 
75 

As nuclei and YbAso .8Sbo.2 probed by 

75 As, respectively. The data of x for YbN, YbP, YbAs and YbSb were measured by Ott 

et al. The data of x for YbPo.4Aso.6 and YbAso.8Sbo .2 were measured by us using a 

SQUID magnetometer. The Knight shift K(T) is expressed by x and the hyperfine 

coupling constant ~as follows: 

AHF 
K(1)=-x, 

N ~B 
(3-2) 

where N and !-!Bare the Avogadro's number and the Bohr magneton, respectively. It is 

found that the K(T) vs X plot does not follow a simple linear relation, but exhibits a 

distinct change of the ·slope around 70 K in all Yb-monopnictides. The nonlinearity is 

observed also below about 10 K. The Knight shift have week temperature dependence 

below 10 K, while the susceptibility still increase with decreasing temperature. The 

nonlinearity below about 10 K has strong sample dependence and may come from the 

impurity, although X-ray diffraction detected no impurity phase. Thus we will not 

concern this nonlinearity anymore. 

The hyperfine coupling constants were estimated by using eq. (3-2) and 

summarized in Table 3-1 with the temperature T HF where the change of the slope was 

observed. 
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Hyperfine coupling constant 

~(kOe/~8) THr(K) 

T< THF THF< T 

YbN 14
N-NMR -4.8 -3.4 70 

YbP 31
P-NMR -3.6 -2.6 80 

31 P-NMR -4.0 -2.2 80 
YbPo.4Aso.6 75 

As-NMR -9.4 

YbAs 75 As-NMR -10.1 -5.8 60 

YbAso .sSbo .2 
75 As-NMR -9.2 -5 .3 70 

YbSb 121Sb-NMR -12.8 -9.8 80 

Table 3-1 Hyperfine coupling constants ~F and the temperature T HF where the 

change of the hyperfine coupling constant was observed. 
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3.1.2 Spin-lattice Relaxation Time T1 

Next, we show the temperature dependence of the spin-lattice relaxation rate 1!f1 

above 1.5 K. The temperature dependence of the relaxation rate 1!f 1 for YbN, YbP, 

YbAs, YbSb and YbAso.sSb0 .2 are shown in Figs. 3-14, 3-15, 3-16, 3-17 and 3-18, 

respectively. The relaxation rate 1!f1 is almost temperature independent in this 

temperature range, indicating that the magnetic moments are well localized. In YbP and 

YbAs, a broad minimum of 1!f 1 around 10 K was observed. A small peak of 1!f1 

corresponding to the phase transition at 5 K was observed in YbSb. 
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3.2 Phase Transition and Ordered State in YbAs 

In this section we present the results of YbAs below 1.5 K. Figure 3-19 shows the 
75 As spin-echo spectra around TN at the resonant fTequency of 7.800 MHz. At 0.61 K, 

the NMR spectrum is almost Lorentzian-type with a half line-width at half-maximum 

(HWHM) of -50 Oe, while below 0.40 Kit is an extremely broad one with a HWHM of 

-1.35 kOe. This extremely broad spectrum clearly shows the existence of a magnetic 

ordering. Between 0.40 K and 0.61 K, each NMR spectrum consists of these two 

components. Thus it seems that paramagnetic and antiferromagnetically ordered regions 

coexist in this temperature range. 

We show the experimental results for the spin-lattice relaxation time T 1 in YbAs. 

The recovery curve of the nuclear magnetization to the thermal equilibrium value was not 

single exponential in the temperature range below 0.6 K. It seems that the recovery of the 

nuclear magnetization was affected by the spin diffusion effect below TN· The recovery 

of the nuclear magnetization was also affected by the coexistence of the paramagnetic and 

the antiferromagnetically ordered regions in the temperature range between 0.4 K and 0.6 

K. The recovery curve below 0.6 K is well explained by assuming two components for 

1!f1, though the recovery of the nuclear magnetization was affected by the above two 

effect between 0.4 K and 0.6 K. We regarded the longer component as the intrinsic 

relaxation rat~. 1!f1 . Figure 3-20 shows the temperature dependence of the spin-lattice 

relaxation rate 1!f1 me'asured at the center of the NMR spectrum. 

The relaxation rate 1!f1 exhibits a small peak around 0.8 K, which is followed by a 

rapid decrease of three orders of magnitude with decreasing temperature d~wn to about 

0.3 K. The relaxation rate l!f1 below 0.2 K shows the Fermi-liquid-like behavior given 

as (Tl TY
1=2.9 (s Kr

1
. 
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3.3 Phase Transition and Ordered State in YbSb 

Next, we show the experimental results concerning the phase transition in YbSb. 

Figures 3-21(a) and 3-2l(b) show the temperature dependence of the NMR spectrum 

around 5 Kin YbSb#l and YbSb#2, respectively. We show the temperature dependence 

of the full-line width at half-maximum (FWHM) of YbSb#l and YbSb#2 in Figs. 3-22(a) 

and 3-22(b ), respectively. The distinct broadening of the NMR spectra at 5 K were 

observed in both samples of YbSb#l and YbSb#2. Corresponding to the broadening of 

the NMR spectra, the spin-echo intensity decrease abruptly at 5 K as shown in Fig. 3-23. 

These results clearly shows the presence of a phase transition at about 5 K. NMR spectra 

below the transition temperature are slightly asymmetric. The FWHM below the 

transition temperature increases and the slope of the curve becomes steeper with 

decreasing temperature. 

In order to clarify the character of the ordered phase in YbSb, the external magnetic 

field dependence of the FWHM of the NMR spectrum was measured. Figures 3-24(a) 

and 3-24(b) show the external magnetic field dependence of the FWHM of YbSb#l and 

YbSb#2 in the ordered and the paramagnetic phases, respectively. The FWHM shows 

the week external magnetic field dependence in the paramagnetic phase in both samples. 

The FWHM of YbSb#2 at the extrapolated external magnetic field of zeru - ~s almost the 

same with that for LuSb, which is the nonmagnetic reference compound with no 4f 

holes. In the ordered phase, the FWHM is proportional to the external field with a slope 

steeper than that in the paramagnetic phase. The FWHM at the extrapolated external 

magnetic field of zero in the ordered phase is about 130 Oe larger than that in the 

paramagnetic phase. 

42 



12.301 MHz 
K=O 
J 

Chapter 3 Experimental Results 

8.2 K 

12.0 12.5 13.0 13.5 
Magnetic Field (kOe) 

Fig. 3-21(a). NMR spectra of YbSb#l around 5 K. 

~ ·u; 
c 
Q) ..... 
c 

0 
..c 
(.) 

w 
I 

c ·a_ 
CJ) 

YbSb#2 
121 Sb NMR 

21.0 MHz 

A 

~l_SK 
__jL7K 

20.5 21.0 21.5 22.0 22.5 23.0 

Magnetic Field (kOe) 

Fig. 3-2l(b ). NMR spectra of YbSb#2 around 5 K . 

43 



Chapter 3 Experimental Results 

400 I I I 

• YbSb#1 •• 300 f- •• 121 Sb-N MR -

m •• 12.301 MHz 

Q 
~ 200 - -
I 
s 
LL 

100 - -

• • • 
0 I I I 

0 5 10 15 20 
Temperature (K) 

Fig. 3-22(b ). Temperature dependence of FWHM of YbSb#l . 

800 
I I 

YbSb#2 
600 - • 121 Sb NMR -

-... • • 21.000MHz 
a> 

I 0 ....._, 

~ 400--- -
I s • LL 

200--- -

• • • • 0 1 I I 

0 5 10 15 

Temperature (K) 

Fig. 3-22(b ). Temperature dependence of FWHM of YbSb#2. 

44 



Chapter 3 Experimental Results 

--- YbSb#2 
::J 

co 121Sb NMR -.._..; 

>. ..... 8.9MHz ·u; 
c 
Q) ..... 
c 
0 

J ..c 
0 w 
c 
Ii 
(f) 

4 5 6 7 8 
Temperature(K) 

Fig. 3-23. Temperature dependence of spin-echo intensity around 5 K . 

45 



1200 

1000 

Q) 800 

Q 
~ 600 
I s 
lL 400 

200 

0 
0 

Fig. 3-24(a). 

1200 

1000 

- 800 Q) 

0 
~ 

~ 600 
I s 
lL 400 

200 

0 
0 

Fig. 3-24(b ). 

Chapter 3 Experimental Results 

YbSb#1 
121 Sb-NM R 

10 20 30 40 50 60 

. Magnetic field (kOe) 

External magnetic field dependence of FWHM of YbSb#l 

at 4. 2 K and 5 K. 

YbSb#2 
121 Sb-NM R 

• • 

• 

10 20 30 40 50 60 
Magnetic Field (kOe) 

External magnetic field dependence of FWHM of YbSb#2 

at 4.2 K and 6 K. 

46 



Chapter 4 Analysis and Discussion 

Chapter 4 Analysis and Discussion 

4.1 Paramagnetic States in Yb-monopnictides 

4.1.1 Temperature Dependent Hyperfine Coupling Constants 

First we discuss the Knight shift and the temperature-dependent hyperfine coupling 

constants in Yb-monopnictides. The temperature-dependent hyperfine coupling constants 

were observed in all Yb-monopnictides. Since we have performed NMR measurements 

on the ligand nucleus, the experimentally obtained hyperfine coupling constants are 

affected by both the hybridization of the £-electrons with ligand electrons and the intra­

atomic interaction. The mechanism of the hyperfine coupling is not clear in Yb­

monopnictides, though the importance of the p-f mixing for the hybridization of the £­

electrons with ligand electrons was discussed for YbP. (4-l) As can be seen in Table 3-1 

the temperatures T HF where the hyperfine coupling constants change are almost the same 

in all Yb-monopnictides, although the magnitude of the CEF splittings in YbN are about 

two times larger than those in YbSb. Thus it is difficult to account the temperature­

dependent hyperfine coupling constants by the p-f mixing model. Here it is interesting to 

investigate the pnictogen dependence of the hybridization of the £-electrons with ligand 

electrons. The intra-atomic hyperfine coupling constants have been calculated for the 

outer 3s, 4s and Ss electrons in P, As and Sb atoms, respectively. (4-
2

) We summarize the 

experimental and calculated ratios of hyperfine coupling constants in Table 4-1 by using 

the values of the hyperfine coupling constants 31 AHF, 75 Am- and 121 Am- for YbP, YbAs 

and YbSb, respectively, for the experimental values. It is found that the experimental 

values of 
75 .Am<f 1 Am< and 

121 .Am<f1 Am< above and below THF are close to those of the 

calculated values, respectively. The values of the Knight shifts for YbPo.4Aso. 6 measured 

at the 31 P and 75 As sites are almost the same with those for YbP and YbAs, respectively. 

This indicates that there is no pnictogen dependence of the hybridization of the £-electrons 

with ligand electrons. Thus it is found that the Knight shift for Yb-monopnictides are 

primarily due to the intra-atomic interaction of the polarization of outer s electrons in the 

ligand atoms, though there must be the hybridization of the £-electrons with ligand 

electrons. These resul~s are similar to the case of Ce-monopnictides.c4
-
3

) :O:owever, the 

origin of the temperature dependent hyperfine coupling is not clear. Below about the 

same temperature of 70 K, neutron scattering experiments show the anomalies in Yb 

monopnictides: (1) the anomalous splitting of the r 8 CEF first excited states.C4
-
4

• 
4 -s, 4-

6
) 
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(2) the cross-over from the Lorentzian-typed spectrum to the Gaussian-typed one in the 

quasi -elastic neutron scattering experiments. ( 4-
7
) The difference of the hyperfine coupling 

constants above and below about 70 K is possibly related to these anomalies observed 

by neutron scattering experiments. 

T>THF 

THF> T 

Calculated value 

Table 4-1 

75~~1~ 121~(1~ 

2.2 

2.8 

2.5 

The ratios of the hyperfine coupling constants 

in Yb-monopnictides and the calculated values. 
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4.1.2 Temperature Dependence of Spin Fluctuation Rate 

Next we discuss the spin-lattice relaxation rate 1!f 1 in the paramagnetic state. In 

general the relaxation rate 1!f 1 can be expressed in terms of the dynamical susceptibility 

x(q,w) as follows,c4
-l) 

(4-1) 

where YN is the nuclear gyromagnetic ratio of the probe nucleus, Aq is the spatial Fourier 

transform of the hyperfine coupling constant. The relaxation rate in this temperature range 

is mainly dominated by the fluctuation of 4f moments. To estimate the fluctuation rate of 

Yb 4f magnetic moments 1/tf from the results for the relaxation rate 1!f 1, we here 

assume that the fluctuation spectrum of Yb 4f moments is Lorentzian and the fluctuation 

rate of the 4 f moments 1/'tf has no q-dependence. Then the imaginary part of the 

dynamical susceptibility is given as 

(4-2) 

Further, it is assumed that x( q) has no q-dependence and is given as the static 

susceptibility per mole xo. It is noted that the inelastic neutron scattering experiment 

showed that short-range spin correlations begin to develop below about 20 K. (4-B) Thus, 

it is proper to assume that 1/'tf and x( q) have no q-dependence above 20 K. Then, we get 

the following expression, 

(4-3) 

where ATIIF is the transferred hyperfine coupling constant and the second term of the 

square brackets is the dipolar contribution, which is calculated over 100 x 100x 100 unit 
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cells to be 12.04x10
6

, 4.99x10
6

, 4.25x10
6

, 4.llx10
6 

and 2.86x10
6 (Oe/~B)2 for YbN, 

YbP, YbAs, YbAs 0.8Sb0.2 and YbSb, respectively. Here, it should be noted that the 

dipole interaction contributes to l!f 1, while it does not contribute to the Knight shift in 

the cubic symmetry of magnetic ions. It is further assumed to estimate 'tf quantitatively 

that only the nearest-neighbor Yb 4f moments contribute to the transferred hyperfine 

coupling. Thus, the first term of the square brackets is replaced by zo(AHFIZD)
2, where Z{) 

(=6) is the number of the nearest-neighbor Yb ions, and Am- is the hyperfine coupling 

constant deduced from the K(T) vs x plot. We use the lower temperature values of the 

transferred hyperfine coupling constant. We show the temperature dependence of the 

fluctuation rate 11-rf below 50 K deduced by the above mentioned procedure for YbN, 

YbP, YbAs, YbAso.sSbo.2 and YbSb in Fig. 4-1. 

200 

• YbSb#2 
0 YbSb#1 

150 • YbAs0 88 b o.
2 

Q' '\7 YbAs • ...._.. 

1-J 100 • YbP • 
(I) 

.::s:. ....... YbN -- • ~ 0 
50 ~ • • ~ '\7 • '\7 • ~. 

0 
0 10 20 30 40 50 60 

Temperature (K) 

Fig. 4-1. Temperature dependence of the spin fluctuation rate for 

Yb-monopnictides. 
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There are two remarkable points in Fig. 4-1: (1) in all Yb-monopnictides, the 

fluctuation rate 1/-cf decreases with ,fT dependence and approaches to zero as 

temperature decreases; (2) the values of 11-cf become large as the pnictogen changes from 

As to Sb, though the rate 1/'tf are almost the same quantitatively among YbN, YbP and 

YbAs. Below we discuss the temperature and the pnictogen dependence of the fluctuation 

rate 11-cf. 

Temperature (K) 

30 
10 25 50 

• 

25 YbP 
31 P-NMR 

20 12.600MHz 
Q' ..._ 

~- 15 (I) 

:X -'of= 10 

5 
• 

• •• 
0 

0 2 3 4 5 6 7 8 

Square root temperature (K112 
) 

Fig. 4-2. Temperature dependence of the spin fluctuation rate for YbP. 

Solid line shows square root temperature dependence. 

Firstly, we discuss the temperature dependence of the fluctuation rate 1/-cf. The ,fT 

dependence of the rate 1/-cf is confirmed by plotting the rate 1/-cf vs square root 

temperature as in Fig. 4-2. In all Yb-monopnictides, the rate 1/-cf show the ,fT 

dependence as many other heavy Fermion compounds. <4-
9

' 
4

-lO, 
4
-ll) This behavior is 

theoretically discussed by the calculation based on the degenerate Anderson model using 

1/N expansion, where N is the degree of orbital degeneracy for the 4f states.<4
-
12

) On this 

model the localized 4f electron spin fluctuates through the mixing with conduction 
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electrons. The JT dependence of 1/Tf in Yb-monopnictides suggests that the dynamical 

properties in Yb-monopnictides can be explained by the degenerate Anderson model as in 

other heavy Fermion compounds. On the other hand, the fluctuation rate 1/Tf shown in 

Fig. 4-1 can be compared with a half width r of the fluctuation spectrum measured by 

quasi-elastic neutron scattering experiments.c4
-?) The temperature dependence of 1/Tf is 

consistent with the results of quasi-elastic neutron scattering experiments above 20 K. 

However, there is a difference between the fluctuation rate 1/Tf and the half width r 

below about 20 K: the rate 1/Tf continues to decrease with decreasing temperature, while 

the half width r approaches to a finite value.c4
-
7

) This difference can be attributed to the 

failure of the assumption that the fluctuation rate 1/Tf and x( q) are q-indepcr:dent. Indeed 

the development of the short-range spin correlations up to 20 K which is observed by 

inelastic neutron scattering experiments indicates the presence of the q-dependence of 

X( q,w). 

Next, we concern the pnictogen dependence of the fluctuation rate 1/Tf. As 

mentioned above, the values of 1/Tf are almost the same among YbN, YbP and YbAs, 

though the values of spin-lattice relaxation time, gyromagnetic ratios and hyperfine 

coupling constants are different each other in these compounds, respectively. This is 

consistent with the fact that these compounds have similar physical properties: broad 

peaks in specific heat around 5 K, Neel temperatures. On the other hand, the values of 1/ 

Tf become large as the pnictogen changes from As to Sb. This is also consistent with the 

fact that YbSb is an exceptional case in Yb-monopnictides: only YbSb does not show 

distinct magnetic ordering and physical properties of YbSb does not obey the systematic 

change in Yb-monopnictides. (4-
13

) Therefore, both the similarities in the physical 

properties of YbN, YbP and YbAs and the anomalous behavior in YbSb are confirmed 

by this NMR measurements in terms of dynamical aspect. 
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4.2 Phase Transition and Fermi Liquid Like Behavior in YbAs 

4. 2.1 Phase Transition 

In this subsection we discuss the properties of the ordered state and the phase 

transition in YbAs from both a static and a dynamical point of view. 

The NMR spectrum below 0.40 K is an extremely broad one with a HWHM of 

-1.35 kOe and almost temperature independent. This extremely broad spectrum clearly 

shows the existence of a magnetic ordering. In the presence of the ordered magnetic 

moment, the effective local magnetic field at a nuclear site is the vector sum of the 

external magnetic field H ext and the internal magnetic field HA. This broad spectrum 

cannot be explained by simple antiferromagnetically ordered moment of which the 

direction distributes randomly in the powdered sample,C4
-
14

) because this broad spectrum 

has a peak at its center. It is unlikely that this peak originates from the paramagnetic 

region because the width of this peak is about 10 times larger than that of the narrower 

component of the spectrum above 0.40 K. This broad spectrum including a peak can be 

explained by the model that the ordered magnetic moment partially orients its direction 

perpendicular to Hext· There are two probable mechanisms for the orientation of the 

magnetic moment perpendicular to Hext· The first mechanism is the domain motion in a 

single crystal as observed by the neutron diffraction experiments under external magnetic 

field up to 6 T.c4
-lS) The second mechanism is a rotation of particles of sample so as to 

orient the magnetic moment perpendicular to Hext· The magnitude of H ext in this study is 

as low as about 1 T. Then, not all of the direction of the particles of sample must orient 

perpendicular to Hext· It is not clear that the orientation of magnetic moment originates 

from either or both of the above mechanisms. So we tentatively suppose that the partial 

orientation of magnetic moment perpendicular to Hext is expressed by one Gaussian 

function with width !J.. Then, the number of the nuclei dN of which the direction of HA is 

between 8 and 8+d8 to the direction of Hext is given by 

dN oc [A + B exp {- ( 
8 
-::

2 
)' } ] sin 8 d8 , (4-4) 

where the first term of square brackets comes from randomly distributed moment(4
-
14

) 

and the second term is due to partially oriented magnetic moment perpendicular to HA. As 
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we have measured the NMR spectrum at a fixed resonance frequency, a resonant 

magnetic field Ho is given as a function of Hext as follows, 

(4-5) 

where 8 is the angle between HA and Hext· From the derivative of eq.( 4-5) by 8 and 

eq .( 4-4 ), we get the number of the nuclei ldN/dHextl of which the effective field is equal 

to Ho as a function of Hext· The internal magnetic field HA, the constants A and Band the 

orientation width 11 are obtained by fitting the experimental spectra. Figure 4-3 shows the 

NMR spectrum at 0.32 K with the fitting curve calculated by the above procedure using 

the values of HA=l.35 kOe, A/B=l and 11=0.075 Jt rad. The fitting curve which is 

convoluted by a Lorentzian function with a HWHM of 150 Oe is also shown in Fig. 4-3. 

-

8 9 

YbAs 
75As-NMR 
7.800 MHz 

0.32K 

10 11 12 13 

Field (kOe) 

14 

Fig. 4-3. An NMR spectrum of YbAs in the ordered state (open circle). 

The dashed and solid lines show the fitting curves before and 

after the convolution, respectively. 
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The magnitude of the antiferromagnetically ordered moment is estimated to be 0.61 ~B 

from the value of HA of 1.35 kOe and the calculated dipole field of 2.20 kOe/~B· Here, it 

should be noted that if the transferred hyperfine interaction is isotropic, the transferred 

hyperfine field is canceled out each other at As sites in the NaCl-type crystal structure due 

to their symmetry of the magnetic structure of type III . The magnitude of the ordered 

moment is consistent with that of 0.6 ~B(4-lS) and 0.86 ~B(4 - 16) determined by neutron 

diffraction measurements. The previous Mossbauer-spectroscopy measurements also 

showed that the direction of the magnetic moment is almost perpendicular to Hext· (4-
17

) 

The NMR spectrum between 0.40 K and 0.61 K seems to consist of two 

components as is shown in Fig. 3-19. The presence of such two components in this 

temperature region indicates that the paramagnetic and the antiferromagneticall y ordered 

regions coexist. The broader component of the spectrum is fitted by the same procedure 

which used in the fitting of the spectrum below 0.40 K. Figure 4-4 shows the 

temperature dependence of the magnitude of HA. The temperature dependence of the 

relative proportion of the ordered region to the whole of the sample is obtained from the 

ratios of areas of the paramagnetic and ordered components in the spectrum as also 

shown in Fig. 4-4. 

I I I I 1.5 

I I I Iii I ____,.. 
c YbAs 0 ·-e 1.0 - • • • • 0 ~ - 1.0 I 0.. 
0 order )> 
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<J.) • 0 
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·.;:::~ r- 0.5 -co -
<J.) • a: 

• 
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Fig. 4-4. Temperature dependence of the relative proportion of ordered state 

(solid circle) and the internal field HA (solid triangle). 
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By the above analysis, it becomes clear that the paramagnetic and the 

antiferromagnetically ordered regions coexist in the temperature range between 0.40 K 

and 0.61 K. Further, in this temperature range, the internal magnetic field HA is almost 

temperature independent, though the relative proportion of the ordered region increases 

with decreasing temperature. This means that the phase transition in· YbAs is first order. 

However, no hysteresis was observed which is characteristic of a first order transition. 

This can be interrupted as follows: the lattice defects and/or inhomogeneities of the 

sample give rise to a distribution of transition temperatures in the sample and overshadow 

the hysteretic behavior. These results are quite consistent with those obtained from 

neutron-diffraction and Mossbauer-spectroscopy. In neutron-diffraction measurements ( 4-

15' 
4

-
16

), an unusual tail in the temperature dependence of the staggered magnetization 

was observed as shown in Fig. 4-5. 

YbAs 

+ • + + + + 
+f 0.8 

t 
'G t 3 0.6 

! t J 0.~ ft 

0.2 ''1,1 
0 0.2 0.4 0.6 0.8 

T~rfl)e'ratur•(K) 

Fig. 4-5. Temperature dependence of the staggered magnetization 

measured by neutron diffraction.c4
-
15

) 
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Further, in 170Yb Mossbauer-spectroscopy measurements, (4-
17

) the similar behavior of 

the Mossbauer spectrum with that of NMR was observed. Figure 4-6 shows the 

Moss bauer spectrum of YbAs around TN· In the temperature range well below TN, the 

Mossbauer spectrum has the magnetic hyperfine structure (Zeeman quintet). On the other 

hand, it is a single paramagnetic line well above TN· At the temperature near the phase 

transition, the Mossbauer spectrum is the superposition of the above mentioned two 

spectra. The temperature dependence of the Yb 3+ hyperfine field, which remains constant 

below TN was obtained from these Mossbauer spectra as shown in Fig. 4-7(a). Figure 4-

7(b) shows the temperature dependence of the relative proportion of the ordered region. 

Our results are quite consistent with the results obtained by these Mossbauer­

spectroscopy measurements. Therefore, it seems that the magnetic transition in YbAs is 

first order. However, the relaxation rate l{f 1 shows a small peak around 0.8 K. The 

origin of this small peak remains unclear for the moment. 
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The relaxation rate l{f 1 below 0.8 K exhibits a rapid decrease of three orders of 

magnitude with decreasing temperature down to 0.3 K. This rapid decr~ase of l{f 1 

seems to be due to the scattering of spin waves. The temperature dependence of l{f 1 for 

the two-magnon, or Raman process for kB T <<Eg in antiferromagnet is expressed by 

(4-6) 

where Eg is an energy gap. (4-
18

) The relaxation rate in the temperature range between 0.3 

K and 0.8 K can be well fitted by eq. (4-6) with Eg=3.6 K as shown in Fig. 4-8. Two 

spin wave excitations with energy gaps were observed by neutron scattering 

experiments.c4
-
19

) One spin wave branch has a constant excitation energy of 3.6 K, 

whereas the other has a strong dispersion with an energy gap of 0.93 K. The magnitude 

of the energy gap is the same with that of the dispersionless spin wave excitation 

observed by neutron scattering experiments. On the other hand, the temperature 

dependence of l{f 1 below 0.2 K cannot be explained by the scattering of th~ spin waves. 

Instead it is explained by the Korringa process as mentioned in the next subsection. 
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Fig. 4-8. Temperature dependence of l!f1 for YbAs down to 20 mK. 

The dashed line indicates the temperature dependence of l!f 1 due to the 

two magnon process with an energy gap of 3.6 K. The solid line 

indicates the Korringa relation with (T11)-1=2.9 (s Kr 1
. 
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4.2.2 Fermi Liquid Like Behavior 

Next, we discuss the Fermi-liquid-like behavior in YbAs. The relaxation rate below 

0.2 K follows the Korringa relation with (T 1T)-1
=2.9 (s Kf

1
. The spin-lattice relaxation 

rate l!f 1 follow.s the Korringa relation given as (T 1 T)-1=constant when the nuclear 

energy relaxes to conduction electrons. We have measured the temperature dependence of 

l!f 1 for 
75 

As in the non-magnetic reference compound LuAs which has no 4f-holes to 

examine the effect of the 4f-holes in YbAs. The relaxation rate l!f 1 for LuAs follows the 

Korringa relation with (T1T)-1
=0.03 (s Kr 1

. Now it becomes clear that the value of 

(T1T)-1 for YbAs is about 100 times larger than that for LuAs. This clearly shows that 

there is a large enhancement of the number of low energy excitation due to the 4f-holes. 

For a single rare-earth impurity obeying the H und 's rule in a simple metal, 

Kuramoto and Miiller-Hartmann proved that the Korringa relation holds well below the 

Kondo temperature.(4
-
20

) We discuss our results on the basis of this theory. The relation 

between the w-linear part of Im x( q,w) and the static susceptibility x 4f was obtained at 

absolute zero temperature as follows: 

2 
. Imx(q,w) n:?lx4f 

hm =---
w-o (1) k 8 N C' 

(4-7) 

where N is the orbital degeneracy of 4f moment and C is the Curie constant. This relation 

is considered to be valid as long as a single impurity is considered. Then, using the 

Knight shift K and ~: • .., ~ ... ...,: .. ar gyromagnetic ratio YN, we get the Korringa constant from 

eqs. (3-2), (4-1) and (4-7) as follows, 

(4-8) 

For YbAs, using the experimentally obtained values of (T 1 T)-1=2.9 (s Kf1 and 

K=-3.8 %, we get (T1TK
2
r

1
=2.0x103 (s Kr1

. This value is by one order of magnitude 

smaller than the right-hand side value of eq. (4-8) of 6.3 x104 (s Kf\ which is obtained 

by using the values for the CEF ground state of N =2 and C=(1.33 ~B)2 lkB. The theory 
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which treats the effects of periodic £-electrons and the magnetic order is highly desired to 

explain the difference between the experimental and theoretical values of (T 1 TK2r1 for 

YbAs. 

Here, it is interesting to compare the experimentally obtained value of (T 1 TK2r1 

for YbAs with those for other heavy Fermion compounds. Equation ( 4-8) is reduced to 

NC 
---2-2 = 2 Jt 'h. 
Tl T K YN 

(4-9) 

Because the value of the right-hand side of eq. (4-9) contains no parameter, the value of 

the left-hand side of eq. (4-9) (from now on, referred to as MKC) should be the same 

value for all heavy Fermion compounds as long as the spin fluctuations could be 

described in the framework of the single impurity model. Figure 4-9 shows the values of 

MKC multiplied by kBf~B 2 for many heavy Fermion compounds, in which the Fermi­

liquid-like relation given as (T1 T)-1=constant was observed. In calculating the value of 

MKC, the values of the degeneracy N and the Curie constant C for free Yb3
+ or Ce3

+ 

ions are used for YbAh (4 -
21

' 
4

-
22

), YbAh (4-2
1 ' 4-2

2) and CeSix (4-23 ' 4-24) system. For the 

other compounds, the values of N and C for the CEF ground state are used. 
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Fig. 4-9. The modified Korringa constants (MKC, see text) for many heavy 

Fermion compounds. Open and solid circles indicate the compounds 

with non-magnetic and magnetically ordered ground state, respectively . 

The arrow indicates the theoretical values of 2rt'h ks/~8 2. The points of 

CeCu2Si2 marked (H.H.) and (G.O.) represent, respectively, the 

calculated values using the CEF ground state reported by Horn et al. 

and by Goremychkin and Osborn. 
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In Fig. 4-9, we can find a tendency as follows. The values of MKC for the 

compounds with non-magnetic ground state such as YbAI2, YbAI 3, CeRu2Sh(4-25 · 4-26), 

CeSi2 and CeAI 3 (
4-27 ' 4-28 · 4-29· 4-30) are near the theoretical value. The deviation of the 

values of MKC from the theoretical value is considered to be the inherent difference in the 

dynamical behavior between the single impurity and the periodic 4f ion systems. Indeed, 

from the calculation performed by using the slave-boson approach to the periodic 

Anderson model, it was reported that the theoretical value of (T1T)-1 in the periodic 

system differs by a factor of the Curie constant C multiplied by ksf~B 2 from the single 

impurity model.C4-31) This slave-boson calculation accounts for the value of (T1T)- 1 in 

CeRu2Sh. 

On the other hand, the values of MKC for CeA1 2 (
4-32· 4-33 · 4-34· 4-35) and YbAs 

with magnetically ordered ground state are much smaller than the theoreticai value. The 

values of MKC for CeA12 and YbAs are almost the same, though the values of (T1 T)-\ 

YN and the Curie constant C are different in the two compounds, respectively. The value 

of MKC for CeSix system becomes small and approaches to the values of MKC for 

CeA12 and YbAs with decreasing x from the value of 2 to 1.86. The CeSix system with 

x<l.80 exhibits a ferromagnetic phase transition.c4-23) This indicates that the value of 

MKC becomes small with the system approaching to the magnetic transition. Thus it 

seems that the value of MKC is reduced by a magnetic order. The reduction of the value 

of (T 1 T)-
1 

in the magnetically ordered state compared to that in the paramagnetic state was 

observed in other heavy Fermion compounds such as URu2Si2(4-36), CePd 2In(4-37) and 

UPd2Al3(4-38). Unfortunately we cannot obtain the values of MKC for URu2Si2, 

UPd2Al3 and the paramagnetic state in CePd2In, because some of the values of the Curie 

constant, the degeneracy and the Knight shift for these compounds are not available. So 

the values of MKC for these compounds do not appear in Fig. 4-9. 

However, the values of MKC for CeCu 2Sh(4-39' 4-40 ' 4-41 ) and the ordered state in 

CePd2In(4-37) deviate from the above mentioned tendency. For CeCu2Sh, two different 

CEF level schemes were proposed by Horn et al . ( 4-42) and by Goremychkin and 

Osborn(4-43) from inelastic-neutron-scattering measurements. The values of MKC for 

both CEF ground states were plotted in Fig. 4-9 and exhibit large deviations from the 

theoretical value. The origin of this deviation might be associated with the non-Fermi­

liquid behavior. The Fermi-liquid-like relation (T 1 TY
1
=constant in CeCu2Sb was 

observed just above the superconducting transition temperature T c, where the non-Fermi-
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liquid behavior typically given as the -T ln T dependence of the specific heat was 

observed.C4
-
44

) For CePd2In, there is no appropriate explanation for the larc;c deviation in 

the Korringa relation. However, the large value of (T1 T)- 1 in non-magnetic reference 

compound LaPd2In with no 4f electron may be related with this large deviation.c4
-
37

) 

From these results, the value of MKC for YbAs can be explained by the above 

mentioned tendency for heavy Fermion compounds. This means that the relaxation rate 

for YbAs below 0.2 K is dominated by the Korringa process just like in other heavy 

Fermion compounds. Therefore, it is found that the large enhancement of the number of 

excitation in YbAs originates from the large density of states at Fermi level. However, the 

question why the heavy Fermion state can be realized in the low carrier concentration 

system remains. For this question, it has been pointed out that the localized spins 

mutually quench their spins by the antiferromagnetic correlations between the localized 

spins. The Kondo type screening of the localized spins by conduction electron spins just 

help the mutual quenching of the localized spins to make the whole system a singlet. (4-
45

) 

By this mechanism it seems that the heavy Fermion state can be realized in the low carrier 

concentration compounds such as YbAs. 
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4.3 Phase Transition in YbS b around 5 K 

In this section, we discuss anomalous properties in YbSb around 5 K . As shown in 

section 3.3, our NMR measurements on YbSb#l and YbSb#2 clearly show the presence 

of a phase transition at about 5 K, though neutron diffraction measurements did not detect 

any phase transition down to 7 mK. (4-
46

) Below, we discuss the magnetic·properties of 

the ordered state in YbSb. 

First, we discuss the external magnetic field dependence of FWHM. The FWHM in 

the ordered state depends on the external magnetic field stronger than that in the 

paramagnetic state. There is little difference between the magnitude of the susceptibility at 

the temperature of 4 .2 K and 6 K. Thus, the difference in the magnitude of the FWHM at 

4.2 K and 6 K cannot be explained by the difference of the susceptibility. It seems that a 

new mechanism arises for the FWHM in the ordered state. Now, we recall the fact that 

the external magnetic field can induce antiferromagneticall y ordered moments in the 

presence of antiferroquadrupolar ordering. (4-
47

) Indeed, prevtous Mossbauer 

spectroscopy measurements showed that antiferromagnetic moments are induced in the 

presence of the external magnetic field. (4-
48

) Thus, it seems that antiferroquadrupolar 

ordering is realized in the ordered state. However, the CEF ground-state r 6 doublet has 

no quadrupole moment. For this discrepancy, from the theoretical point ·of view, the 

magnetic polaron model was proposed.c4
-
49

) On this model, the first excited r 8 quartet, 

which has quadrupole moment, is placed energetically very close to the ground state. 

This may related to the anomalous splitting of CEF excitations between 4f- r 6 and 4f-r 8 

in inelastic neutron scattering experiments.c4-
4

) 

Next, we discuss the additional broadening of the NMR spectrum at the 

extrapolated magnetic field of zero in the ordered phase. The specific heat 

measurements(4
-SO) and Mossbauer spectroscopy experiments(4

-
48

) detected a phase 

transition around 5K without external magnetic field. Thus, it seems that there is an 

additional broadening of the NMR spectrum under zero field, though the external 

magnetic field dependence of the FWHM is not measured under external magnetic field 

below about 5 kOe. An antiferromagnetic order broadens an NMR spectrum, if hyperfine 

fields at the nucleus are not canceled each other by their symmetry. We suppose that the 

additional broadening of the NMR spectrum at the extrapolated field of zero comes from 

the ordered magnetic moment. If a magnetic structure is known, the magnitude of the 
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ordered magnetic moment can be estimated from the magnitude of the FWHM. However, 

the magnetic structure of YbSb is unknown because neutron diffraction experiments did 

not detect any long-range magnetic ordering. Thus, it is necessary to suppose a magnetic 

structure of YbSb to estimate the magnitude of the ordered moment. From the previous 

neutron diffraction measurements, it is reported that YbN and YbAs have a magnetic 

structure of type III with ordering wave vector k=[1 0 1/2] and YbP has a structure of 

type II with k=[1/2 1/2 1/2]. (4-
46

) In YbP with a type II structure, both the transferred 

hyperfine field and the dipole field at P nucleus are entirely canceled. It wa~ . !"eported that 

the additional broadening of the NMR spectrum below the Neel temperature is as small as 

about 10 Oe in YbP .c4
-
1

) The magnitude of this additional broadening is one tenth of that 

in YbSb. Thus, we assume that YbSb has the magnetic structure of type III. Here, it 

should be noted that the hyperfine field is considered to be a sum of the transferred 

hyperfine field and the dipole field. However, the transferred hyperfine field induced by 

the magnetic moment with type III structure is entirely canceled at Sb site in the NaCl­

type crystal structure. Thus, the ordered magnetic moment makes the hyperfine field at 

Sb site only through the dipole-dipole interaction. The magnetic moment of Yb ion m, at 

site l with a ordering wave vector k is given as follows: 

( 4-10) 

where Ak is the amplitude of the sine wave modulation, <Pk is the phase fa~i.or, R 1 is the 

position of the magnetic moment and u k is a unit vector along the direction of the 

magnetic moment. By the analogy with the results of the previous neutron diffraction (4-

15) and Mossbauer spectroscopy(4
-
17

) studies in YbAs, the following are assumed: the 

magnetic moments are arrayed perpendicular to the c-axis; the phase factor is n;/4 

corresponding to a ( ++--) sequence. Using the above mentioned assumption and k=[1 0 

1/2], the hyperfine field at Sb site is calculated over 100x100x100 unit cells to be 1.825 

kOe/~B· Therefore, the magnitude of the FWHM at the extrapolated external magnetic 

field of zero (130 Oe) is corresponding to the hyperfine field induced by the magnetic 

moment of about 0.07 ~B· The ordering of this extremely reduced moment can explain 

the discrepancy between the Mossbauer spectroscopy measurements(4
-
48

) and the neutron 
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diffraction experiments(4
-
46

) at 5 K. The neutron diffraction experiments exclude the 

existence of only the antiferromagnetic ordering with magnetic moment larger than 0.1 

~B· Therefore, our NMR measurements explain both the neutron diffraction and the 

Mossbauer effect measurements consistently. The existence of the phase transition 

around 5 K in the different samples indicates that this transition is intrinsic not due to 

impurity effects, though it s nature remains unclear. 
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Chapter 5 Conclusions 

We have performed NMR measurements on low carrier semi-metallic compounds 

Yb-monopnictides. In particular, YbAs has been investigated at low temperatures down 

to 20 mK. 

In all Yb-monopnictides including YbP 0.4As0 _6 and YbAs0 .8 Sb0 ? alloys, the 

distinct changes of the slopes in K-x plots are observed. The temperatures where the 

hyperfine coupling constants change are almost the same in Yb-monopnictides, although 

the magnitude of the CEF splittings in YbN are about two times larger than those in 

YbSb . Thus, it is difficult to explaine the temperature-dependent hyperfine coupling 

constants by the p-f mixing model. The importance of the s-electron for the hyperfine 

coupling is discussed by comparing the hyperfine coupling constants for Yb­

monopnictides with those for the atomics-electron in pnictogen atoms. The values of the 

Knight shifts in YbP0.4As0 .6 measured at the 
31 P and 

75 As sites are almost the same with 

those in YbP and YbAs, respectively. Thus, it is found that the hyperfine interaction in 

Yb-monopnictides is primarily dominated by the intra-atomic interaction. However, the 

origin of the temperature dependence of the hyperfine coupling remains unclear. 

The temperature dependence of the spin fluctuation rate 11-rf is estimated from l!f1 . 

The values of fluctuation rates for YbN, YbP and YbAs are almost the san1e, reflecting 

the similarity of physical properties. However, the rates 1/-rf become larger with changing 

the pnictogen from As to Sb. From these results, it is confirmed that YbSb is exceptional 

case in Yb-monopnictides in terms of dynamical aspect. On the other hand, the rates 1/-rf 

follows the~ behavior as theoretically predicted for heavy Fermion compounds. Thus, 

it is found that dynamical properties of Yb-monopnictides are similar to those in heavy 

Fermion compounds. The difference between 1/-rf and the half width r of quasi-elastic 

neutron scattering spectra below about 20 K is attributed to the failure of the assumption 

that the fluctuation rate 1/-rf and x( q) are q-independent. 

In YbAs, an NMR spectrum between 0.40 K and 0.61 K consists of two 

components, indicating that the paramagnetic and the magnetically ordered region coexist. 

The temperature dependence of the internal field and relative proportion of the ordered 

region are obtained from these spectra. The magnitude of the internal field is almost 
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temperature independent throughout the temperature where the paramagnetic and antiferro 

magnetically ordered regions coexist. Thus, it seems that the phase transition is first 

order. However, the spin-lattice relaxation rate l!f 1 shows a small peak around 0.8 K. 

The origin of this peak is not clear so far. Further extensive experiments are necessary to 

clarify the nature of this transition. 

Below 0.2 K, Fermi-liquid-like behavior of the spin-lattice relaxation rate given as 

(T1 Tr1=2.9 (s Kr1 is observed in YbAs. This large value of (T 1 Tr
1 

in comparison with 

that in non-magnetic reference compound LuAs shows clearly that there is a large 

enhancement of the number of low energy excitation in YbAs. In order to compare the 

absolute value of (T 1 Tr1 for YbAs with those in other heavy Fermion compounds, the 

Korringa relation for the single impurity region is used. The Korringa relation gives 

almost the same values for YbAs and CeA1 2 , though the values of (T1 Tr\ YN and the 

Curie constant Care different in the two compounds, respectively. The value of (T1 Tr
1 

for YbAs is explained by the tendency which is found for heavy Fermion compounds. 

This shows that the large enhancement of the number of low energy excitation in YbAs is 

due to a large density of state at the Fermi level just like other heavy Fermion 

compounds. It becomes clear from the microscopic point of view that low carrier semi­

metallic compounds Yb-monopnictides are the heavy Fermion compounds with the 

magnetically ordered ground state. 

For YbSb, our NMR measurements clarify the presence of the phase transition 

around 5 K both in the samples prepared by us and by ETH group. The FWHM of NMR 

spectra in the ordered state depend on external field stronger than those in the 

paramagnetic state. There is an additional broadening of an NMR spectrum at the 

extrapolated external magnetic field of zero in the ordered state. This additional 

broadening of NMR spectrum seems to be due to the ordering of extremely reduced 

magnetic moment of about 0.07 ~8 . This can explain consistently the reason why this 

transition was not observed by neutron diffraction measurements. However, the nature of 

the ordered state remained unclear. Further experimental and theoretical investigations are 

required. 

72 



List of Publications 

(1) NMR study of the phase transition around 5K in YbSb 

A. Oyamada, K. Hashi, S. Maegawa, T. Goto, D. X. Li, T. Suzuki, A. Donni and 

F. Hulliger 

Physica B 199&200 (1994) 42 

(2) Study of physical properties of Yb-monopnictides 

D. X. Li, A. Oyamada, K. Hashi, Y. Haga,T. Matsumura, H. Shida, T. Suzuki, 

T. Kasuya, A. Donni and F. Hulliger 

Journal of Magnetism and Magnetic Materials 140-144 (1995) 1169 

(3) NQR studies o(the structual instabilities in CePd2Al3 

A. Oyamada, H. Tsukada, K. Hashi, S. Maegawa, T. Go to and H. Kitazawa 

Physica B 206&207 (1995) 237 

( 4) Anomalous physical properties of the low carrier concentration state in f-electron 

systems 

T. Suzuki, Y. Haga, D. X. Li, T. Matsumura, E. Hotta, A. Uesawa, M. Kohgi, 

T. Osakabe, S. Takagi, H. Suzuki, T. Kasuya, Y. Chiba, T. Goto, S. Nakamura, 

R. Settai, S. Sakatsume, A. Ochiai, K . Suzuki, S. Nimori, G. Kido, K. Ohyama, 

M. Date, Y. Morii, T. Terashima, S. Uji, H. Aoki, T. Naka, T. Mat~umoto, 

Y. Ohara, H. Yoshizawa, Y. Okayama, Y. Okunuki, A. Ichikawa, H. Takahashi, 

N. Mori, T. Inoue, T. Kuroda, K. Sugiyama, K. Kindo, A. Mitsuda, S. Kimura, 

S. Takayanagi, N. Wada, A. Oyamada, K. Hashi, S. Maegawa, T. Goto, 

Y. S. Kwon, E. Vincent, P. Bonville 

Physica B 206&207 (1995) 771 

(5) NMR studies of the Antiferromagnetic Heavy Fermion Compound CePdAl 

A. Oyamada, K. Kamioka, K. Hashi, S. Maegawa, T. Goto and H. Kitazawa 

Journal of the Physical Society of Japan 65 (1996) Supplement B 123 

73 



(6) A neutron scattering study of short range spin correlations in Yb monopnictides 

K. Ohoyama, M. Kohgi, K. Hashi, A. Oyamada and T. Suzuki 

Journal of Magnetism and Magnetic Materials 17 7-181 (in press) 

(7) nuclear magnetic relaxation measurements in Yb-monopnictides 

A. Oyamada, K. Hashi, S. Maegawa, T. Goto, D. X. Li, T. Suzuki and 

F. Hulliger 

Journal of Magnetism and Magnetic Materials 17 7-181 (in press) 

(8) NMR study of the magnetic transition and the Fermi-liquid behavior in YbAs 

K. Hashi, A. Oyamada, S. Maegawa, T. Goto, D. X. Li and T. Suzuki 

Journal of Magnetism and Magnetic Materials 17 7-181 (in press) 

74 



Acknowledgements 

I would like to express sincere thanks to Prof. T. Goto, Graduate School of 

Human and Environmental Studies, Kyoto University, for his guidance and many advice 

throughout the course of this work. 

I am also very thankful to Prof. S. Maegawa, Graduate School of Human and 

Environmental Studies, Kyoto University, for his valuable discussions and warm 

encouragement. 

I am very grateful to Dr. A. Oyamada, Graduate School of Human and 

Environmental Studies, Kyoto University, for his fruitful discussions on heavy fermion 

compounds. 

I express sincere thanks to Prof. T. Suzuki, Department of Physics, Tohoku 

University, and Dr. D. X. Li, Institute for Materials Research, Tohoku University, for 

collaboration in preparing the sample and valuable discussions. 

I am also very thankful to Prof. M. Kohgi, Department of Physics, Tokyo 

Metropolitan University, and Dr. K. Ohoyama, Institute for Materials Research, Tohoku 

University, for their advice especially about neutron experiments. 

I would like to acknowledge to Mr. Y. Fujii, Faculty of Integrated Human Studies, 

Kyoto University, and Mr. H. Nishishita, Department of Chemistry, Kyoto University, 

for their technical support of the experiments. 

I am very thankful to Prof. Y. Oka, Faculty of Integrated Human Studies, Kyoto 

University, for the X-ray diffraction measurements. 

I would like to acknowledge to Dr. A. Donni and Dr. F. Hulliger, ETH Zi.irich, for 

supply of the sample. 

I also express sincere thanks to all the members of the Goto and Magawa 

laboratories, Graduate School of Human and Environmental Studies, Kyoto University, 

for their assistance and friendship. 

Finally, I would like to thank my parents and my friends for their enc.-:,~ragement. 

75 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084

