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CHAPTER 3. SKEW PRODUCTS

[07s]
(03]

Lemma 3.1.1. With the same notations as the above. let G = (f1, fa. ... fin)
be a finitely generated expanding rational semigroup. Then for each set of
Holder continuous functions {2;}j=1...m. there ezists a unique probability
measure 7 on J such that

o for cach € C(J). LM — r(u)ell; — 0.n — =, where we set
a = limy_. LY1) € C(J) and we denote by || - ||; the supremum norm

o T 1s an equilibriwn state for (j:]j‘ 2).

Lemma 3.1.2. Let G = (f1, fo. ... fm) be a finitely generated expanding ra-
tional semigroup. Then there exists a unique number & > 0 such that if we
set oi(x) = =dlog([lfi(x)l]), ) =1,....m, then P =0.

From Lemma 3.1.1, for this ¢ there exists a unique  obability measure
7 on J such that Lj7 = 7 where Lg is an operator on C'(J) defined by

Lyv({w.x)) = Z L”((“'“!/))

o U W

Also § satisties that

 Das(f) <10S(>:;‘”:1deg(fj))~

o [jeadr — [;adr

where o = linyo L f)-(l): we denote by /z,,,.(f) the metric entropy of (f aT)
an ¢ 1s a function on J defined by o((w, 2)) = log(|| fi., (2)]}).
By these arguments and results in section of 3-(sub) conformal measures

, we get the following result.

Theorem 3.1.3. Let G = (fi. fa,. .. fu) be a finitely generated expanding
rational scnigroup and § the nuwmber in the above argument. Then

dimy (J(G)) < s(G) <.

Morcover, if the scts {fj-_l (J(G)) Y are mutwally disjoint, then dimy (J(G)) =

0 < 2 and 0 < Hy(J(G)) < oo, where we denote by Hy the §-Hausdorff

THCASUTC.
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Corollary 3.1.4. Let G = (f1, fa.... fm) be a finitely generated expanding
rational semigroup. Then

dimp (J(G)) < IOS(Z;; deg(fj))ﬁ

. log A

where A denotes the number in Definition 2.1.40.
Example 3.1.5. 1. Let G = (f1, fo) where fi(z) = z? and fy(z) =

2 'z —3)+ 3. Then we can see easily that {|z] < 0.9} C F(G) and G
is hyperbolic. By the corollary 3.1.4, we get

log 3
li J(G)) < —= 2.
dimy (J(G)) < oo 1S <

In particular, J(G) has no interior points. In Proposition 2.6.3, it was
shown that if a finitely generated rational semigroup satisfies the open
set condition with an open set O, then the Julia set is equal to the
¢ ure of the open set O or has no interior points. Note that the fact
that the 1lia set of the above semigroup G has no interior points was
shown by only using analytic quantity. It secins to be true that G does
not satisfy the open set condition.

2. Let G = (—:—, z2+8). Then we can see casily that {|z] < 2} C F(G)
and G is hyperbolic. Hence we have

logd

djl]l;{ ](G) < < 2.

(V%]

o
)O

In particular, J(G) has no interior points.

3.2 It ckward self-simi.ar measure

We now consider about invariant measures and sclf-sim 1w measures on Julia
scts. In the cases of iterations of rational functions, Brolin's and Lyubich’s
studics arc well known([Br], [L]). Re utly, 1.Boyd imvestigated “invariant
measure” (that is, the measure (w5)./tin the notation in Theorem 3.2.3) in the
case that cach f;1s of degree at least two and have shown the uniqueness in
[Bo]. We introduce some notations and results from [L]. Let A be a bounded
operator 1 the complex Banach space 5. The operator A is called almost
periodic if the orbit {A™@}°_, of any vector 0 € B is strongly conditionally
compact. The eigenvalue A and related cigenvector are called unitary if
Al = 1. The set of unitary eigenvectors of the operator - will be denoted
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1. (f. f2a) 15 ezact.

2. ha (f) > H{(el(f)™e) = — 2 ajlogay + 377 ajlogd;, where we

denote by € the partition of S,, x C into one point subsets.

9

Proof. By Theorem 3.2.3, the measure [, is B -invariant. Hence for each

s eC(s, xO).
/;ofc/[z = /Ba(;of)clﬂ = / o

Hence ji, 1s f—in\'z-lrimlt.

Let v. denote the conditional measure on the element of partition f~'e
containing z € &, x Cwith respect to the  easure f2,. Then by Theorem 3.2.3
and using the same argument as that in p366-367 in [L]. we can show that

; -~ - .
— 7 R 293
v. = >4 /. ¢, (3.23)
J=1 CES~ f(2)NT 0
where S, = {w € S,, | wy = Jj}. By Theorer 3.2.3 and (3.23), using the

sanie argument as that in P367 in [I  again, we can show that (j [a) i3
exact.
By Lemma 3.2.8, we have ma. i, 18 non-atonmic. In particular,

fta(cv (f)) = 0. (3.

By (3.25) and (3.26), we get that

(o8]
(]
D
~

s - a; a; - a; o
[(e]f_lc)(:):~Zdj‘([—jlogd—j:—2(z,jlogj, (3.27)

j=1

for jr-almost all = € £,, x C. Hence

T (:
Helf 1()—*‘/ 6[] e)(z)dp(z ):—Z Jl()%j{

Now we will estimate the topological entropy of f from above.
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Theorem 3.3.2. Let G = (f,..., fm) be a rational semigroup and f m X
C — I, x C the skew product map constructed by the generator system
{fi,-.., fm}. Then the toplogical entropy h(f) on S, x C satifies that

) <log()  deg f;).
7=1

To prove this theorem, we need several lemmas.

The first one is the Ruelle’s inequality for skew product maps. Let X be a
compact metric space and A a compact C™ manifold. Let f: X' x 1/ — \x
A be a continuous me  such that f(z,y) = (0(2),¢:(y)) where 0 : X — X
1s a continuous map, g, : M — M is a differential map for cach »r € X.
Let D, T ,M — T, ()M be the lincar map induced by g,. Assume that
(z,y) = DygI is contmuous For each positive integer n and (z,y) € X' x \/,
we define Dy ) f* : Ty M = Toy(pnzyy M as v = D(Gon(zy0---09¢.)(v). Then
we ;b the following result by a slight modification of Theorem 2. 1 [Ru).

Lemma 3.3.3. Under the above, let p be an f-invariant probability measure
on X X M. Then,

1. there ez s a Borel set  in X x M such that p(Q2) = 1 and for each
(x,y) € Q the fc owing holds. There is a strictly increasing sequence
of subspaces:

0=V c1,,(1)c - cviEw =T, a1

such that, forr=1,... s(x,y),
1
Zloo —\() sy =1
nh_lllol log || Dy, =AY fue VTV
and ,\Et',?J < /\5-'“?3, < - < /\E;\:ff‘y)) . here we may have /\E:I‘L = —oo. The
\‘;(,ry) an \irfj are uniquely defined with t :se properties and independent

of the choice of the Riemannian metric on M. The maps (x,y) —
s(ayy), (VAo vy a0 NSy wre Borel.

o

Let 771% = dim \v’}(";] — dim \/},[.’;J—l) forr=1,... s(2,y) and define
Nelry) = Y miA
HA&L>O
Then, the metric entropy h,(f) of (f,p) satesfics that
ho(f) S Np(f) + himalo),
where xo(f) = [ N (. g)dolr. y).
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Lemma 3.3.8. Let p be an f-invariant probability measure on ¥, x C and
7: S, xC = [0,1) @ function such thatlog 7 is a p-integrable function. Then
there ezists a measurable partition P of ©,, x C such that hp(f, P) < o0 and
diamP(z) < 7(z) for p-almost all z € S, x C. where P(z) denotes the atomn
of P containing =.

Lemma 3.3.9. Let p be an f-invariant ergodic probability measure on T, x
C with hp(f) > Nizy).p(0). Then there exists a measurable partition P ofi,, x

C such that h (f P) < 20 and P 1s a generator for (j p) i.e. \/“"lj_”( ) =¢
(mod O ) where € denotes the partition of ¥, X C into one point subscts.

Proof. Bv Lemma 3 3 5. there exists a constant A with < A < 1 such that
for p-almost all = € ¥, x C,

1 , .
lim —|/(/") ()7 =0. (3.32)
n—o0 /\
For this &, take7:%,, x C — [0,1) in Lemma 3.3.7. By Le 1 3.3.6 and
Lemma 3.3.7, we have log 7 1s p-integrable. By Lemma 3.3. e get that

there exists a measurable partition P on U, X C such that h,p(f,’P) < 00
and diar 2(z) < 7(z) for p=« nc  all z € S, C. We will show that P is a
generator for (f, p). For cach n € N, let P, = Vi o f M (P). Tt is sufficient to
show that

lim diam P,(z) =0 (3:33)
for p-almost all = € Sm @ Let z; € Pu(z), § = . Then j (=) €
P(fI(z)), i =12, forallj= n. Since diam 'P(f]( )) <7(fi(2)), j =
1,...n, we have

de(m Pz, mfi (=) 2 M () delma i (1), maf ™ (22)),
for cach y =1,...  n. Hence we get
de(ma F(20). maf () = B I de(ma(z). (=),
Let €' be the diameter of C. get,
1 IRV - 2
dg(ma(z1). ma(z2)) < C- = YN (3.34)
Henee
diam m (P, () < C /”H Y () (3.39)
We can assume that for cach @ = 1,. .. m, the set Y = {{w, ) € 8, % C j
wy = ¢} a union of atoms of P. Hence by (3.32) and (3.35), we get that

(3.33) holds. Thus we have proved the lemma. O
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Lemma 3.3.10. Letp be an f—inva7‘iant ergodic probability measure on X, X

C with h,(f) > hizy.pl0). Then

mmzﬂ‘;%ﬂmmm:/ Tl 7€) (2)dp(z).

TaxC

Proof. By Lemma 3.3.9. there exists a generator 77 with h,(f. P) < . By
Remark 8.10 and Lemma 10.5 in [Par]. we get h,(f) = [ zlogJ,(z)dp(2).
a

Proof. of Theorem 3.3.2 Suppose /z(f) < log m. Then we Lhave nothing to do.
Suppose h(f) > logm. Let p be any f—invariant ergodic probability measure
on ¥, x € with h,(f) > logm. Then since h(g) = logm. by variational
principle we get

h‘ﬂ(j:) > hz).p(0)-

By Lemma 10.5 in [Par] and Lemma 3.3.10, we have I(e|f~Ye)(z) = log J,(z)
and h,(f) = [ zlogJ,(z)dp(z). Since fisad: 1 map whered = > 7", deg(f;)
we have I{e] f~'e)(z) < log(3__, deg(f;)). Hence we get

f) <log(> " deglf))
=1

Bv the variational principle, we get

b

g

Theorem 3.3.11. Let G = (fi...., fu) be a fin :ly generated rational
semigroup. As  ne that there exists an clement go € G of degree at least
two, the exceptional set E(G) for G is included in F(G) and F(H) D J(G)
where H is a rational semigroup defined by H = {h™" | h € Aut (C)NGY.(if
H is empty, put F(H) = C.) Let ji, be the self-similar measure with respect
to the weight a € W(See Theorem 5.2.3). Then it is f-invariant and

i m

/?,},X(JE) = Z log a; + ‘7 a; oo (/

j=1

Also we have that (7). f1, is the Bernoulli measure on X, corresponding to
the weight a. Morcover, let fi be the self-similar measure unth respect to the















	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075

