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CHAPTER 1 

General Introduction 

Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) catalyzes hydrolysis of triacylglycerol into 

fatty acids and glycerol. This enzyme is distributed among a number of organisms from bac

teria to mammalians. In general, lipases possess characteristic properties most enzymes do 

not. First, their natural substrates, long-chain fatty acyl esters, are usually insoluble. Second, 

lipases remain stable and active in a variety of organic solvent (Zaks and Klibanov, 1984 ), so 

that catalyze reverse reactions in the ester synthetic direction. Third, reactions catalyzed by li

pases show high enantioselectivity around alcohol leaving group of substrate. For these rea

sons, lipases are expected as a versatile catalyst for potential applications such as food indus

try, detergent formulation, and medicinal chemistry. Particularly, lipases produced from 

Gram-negative bacterial genus Pseudomonas possess not only the above features, but also 

practical availability as follows (Jaeger et al., 1994). Pseudomonas lipase is one of the extra

cellular enzymes, thus the purified sample can be easily prepared from culture medium (Stuer 

et al., 1986, Gilbert et al., 1991, Chihara-Siomi et al., 1992, Sugihara et al., 1992, Taipa et 

al., 1992). In addition, enzymatic characteristics of the lipase such as thermostability (Iizumi 

et al., 1990, Sugihara et al., 1992) or substrate specificity (Inagaki et al., 1989a, Ihara et al., 

1991) vary according to its producing species of Pseudomonas. Typically, Lip A (molecular 

weight of 30, 100), an extracellular lipase from P. aeruginosa TE3285, expresses a character

istic substrate specificity, and can be utilized for kinetic resolution to obtain optically active 

chemicals. Namely, Lip A catalyzes the stereoselecti ve acylation of [ 1,1 '-binaphthyl]-2,2'-diol 

(binaphthol) (Inagaki et al., 1989a), benzaldehyde cyanohydrin (mandelonitrile) (Inagaki et 

al., 1989b), and a-aminonitrile (Nakai et al., 1992) (Fig. 1-1). Notably, the kinetic resolu-

tion of binaphthol through acylation was accomplished only by P. aeruginosa LipA, but not 

by lipases from other organisms such asP. cepacia M-12-33 (Inagaki et al., 1989a, Nishioka 

et al., 1991). This result suggests that Lip A possesses a substrate recognition site distinct 

from that of the other lipases. Therefore, it is expected that analyses of LipA based on 
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Fig. 1-1. Stereoselective acylation catalyzed by LipA, lipase from Pseudomonas 

aerugin osa TE3285. (A) Acylation of binaphthol (Inagaki et al., 1989a); (B) acylation of 

mandelonitrile (Inagaki et al., 1989b ); and (C) acylation of a-aminonitrile (Nakai et al., 1992). 

protein structure could elucidate this substrate recognition mechanism, and to give an insight 

into design of a noble enzyme to catalyze a particular reaction. 

For this purpose, at the beginning, the structural gene (lipA) of the P. aeruginosa LipA 

has been cloned and sequenced (Chihara-Siomi et al., 1992) (Fig. 1-2). The lip A gene con

sists of an open reading frame of 936 bases, and encodes a polypeptide of 311 amino acid 

residues containing a signal sequence of 26 residues at theN-terminus. However, when only 

the lipA gene was introduced into E. coli host-vector system, no detectable lipase activity was 

observed. This observation caused by a fact that an additional DNA region at closely down

stream of lipA was essential for the production of the active LipA protein (Chihara-Siomi et 

a!., 1992). This region includes another set of Shine-Dalgarno sequence and subsequent open 

reading frame (lip B) of 1,023 bases, which is deduced to encode 340-residue polypeptide. 

On the basis of the gene structure, lip A and lipB are likely to form a single bicistronic operon. 

These features sugge t that the lipB gene product (LipB; molecular weight of 37,700) specifi-
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cally acts on active LipA production system. However, even in the presence of lipB, remark

able fractions of the LipA polypeptide are produced as inactive inclusion bodies in E. coli. In 

order to establish more effective production system of LipA, it is important to understand 

function of LipB in molecular level. 

It has been found by in vitro experiments that LipB assists folding of Lip A into its ac

tive conformation (Oshima-Hirayama et al., 1993). In this study, LipB was prepared as are

combinant fusion protein with glutathione transferase. This fusion protein recovered the li

pase activity of two preparations of inactive LipA, that is, recombinant Lip A solubilized from 

inclusion bodies accumulated in E. coli, and denatured LipA purified from the culture medium 

of Pseudomonas. These results suggest that LipB refolds and reactivates LipA losing the ac

tive structure at a post-translational event in the cell. This function seems to be similar to 

molecular chaperones, which act on a number of non-native polypeptides so as to mediate 

their folding at stages of biosynthesis and translocation in the cell (Ellis, 1987, Hartl, 1996). 

One of the common characteristics of the chaperones is that their binding of the substrate 

polypeptide is coupled with their ATP hydrolytic activity. On the other hand, LipB-assisted 

reactivation was not affected by ATP or magnesium ion (Oshima-Hirayama et al., 1993). 

Thus, LipB is a different type of folding factor from general molecular chaperones. So far, 

protein folding factors similar to LipB have been found only from Pseudomonas species 

(Gilbert, 1993) and Acinetobacter, that is, LimL from Pseudomonas sp. 109 (Ihara et al., 

1992, Ihara et al., 1995), LipH from P. aeruginosa PA01 (Wohlfarth et al., 1992), LimA 

from P. cepacia DSM3959 (J ¢rgensen et a!., 1991, Hobson et al., 1993, Aamand et al., 

1994, Hobson et al., 1995), Act from Pseudomonas sp. KWI-56 (Iizumi et al., 1991, Iizumi 

and Fukase, 1994), LipX from P. cepacia M-12-33 (Nakanishi et al., 1991), LipB from P. 

glumae PG 1 (Frenken eta!., 1993a, Frenken et al., 1993b ), and LipB from A. calcoaceticus 

BD413 (Kok et al., 1995). All of these proteins are encoded closely to the gene of the corre

sponding lipase. Amino acid sequences of the lipase activator proteins from Pseudomonas 

species are aligned in Fig. 1-3. LimL and LipH show more than 90o/o sequence identities 

against P. aeruginosa LipB, whereas the other four activator proteins show less than 30% 

identities. This propensity among the activator proteins is applied to that among the corre

sponding lipases from the respective species (Fig. 1-4). In any case, the e activator proteins 
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1 GTCGACCATTTCAGCCTGTTTTGCTCGCAAAACGACGCCGCGGGCGTGCGCACCGCACAC 

61 TCGGTCGCTGGGCGTTGTGCGGGGAAGATTCAAACGAGCGTTTCGCGCCGTAACAACCCG 

121 CCTCTTCCGCTCTGCCACGCAGGTTATGACCGGCCGCCAGGAAGCCGCGGATTTCCTGGC 

181 CTGGAGGAAAAAAGCCGAAGCTGGCACGGTTCCTGCGCAAGGGACAGCGAAGCGGTTCTC 

241 CCGGAAGGATTCGGGCGATGGCTGGCAGGACGCGCCCCTCGGCCCCATCAACCT~TG 

301 AGACAACATGAAGAAGAAGTCTCTGCTCCCCCTCGGCCTGGCCATCGGCCTCGCCTCTCT 
-2 6 Li pA ~ K K K S L L P L G L A I G L A S L 

361 CGCTGCCAGCCCTCTGATCCAGGCCAGCACCTACACCCAGACCAAATACCCCATCGTGCT 
-8 A A S P L I Q A! S T Y T Q T K Y P I V L 

421 GGCCCACGGCATGCTCGGCTTCGACAACATCCTCGGGGTCGACTACTGGTTCGGCATTCC 
13 A H G M L G F D N I L G V D Y W F G I p 

481 CAGCGCCTTGCGCCGTGACGGTGCCCAGGTCTACGTCACCGAAGTCAGCCAGTTGGACAC 
33 S A L R R D G A Q V Y V T E V S Q L D T 

541 CTCGGAAGTCCGCGGCGAGCAGTTGCTGCAACAGGTGGAGGAAATCGTCGCCCTCAGCGG 
53 S E V R G E Q L L Q Q V E E I V A L S G 

601 CCAGCCCAAGGTCAACCTGATCGGCCACAGCCACGGCGGGCCGACCATCCGCTACGTCGC 
73 Q P K V N L I G H S H G G P T I R Y V A 

661 CGCCGTACGTCCCGACCTGATCGCTTCCGCCACCAGCGTCGGCGCCCCGCACAAGGGTTC 
93 A V R P D L I A S A T S V G A P H K G S 

721 GGACACCGCCGACTTCCTGCGCCAGATCCCACCGGGTTCGGCCGGCGAGGCAATCCTCTC 
113 D T A D F L R Q I P P G S A G E A I L S 

781 CGGGCTGGTCAACAGCCTCGGCGCGCTGATCAGCTTCCTTTCCAGCGGCAGCACCGGTAC 
133 G L V N S L G A L I S F L S S G S T G T 

841 GCAGAATTCACTGGGCTCGCTGGAGTCGCTGAACAGCGAGGGGGCCGCGCGCTTCAACGC 
153 Q N S L G S L E S L N S E G A A R F N A 

901 CAAGTACCCGCATGGCGTCCCCACCTCGGCCTGCGGCGAGGGCGCCTACAAGGTCAACGG 
173 K Y P H G V P T S A C G E G A Y K V N G 

961 CGTGAGCTATTACTCCTGGAGCGGTTCCTCGCCGCTGACCAACTTCCTCGATCCGAGCGA 
193 V S Y Y S W S G S S P L T N F L D P S D 

1021 CGCCTTCCTCGGCGCCTCGTCGCTGACCTTCAAGAACGGCACCGCCAACGACGGCCTGGT 
213 A F L G A S S L T F K N G T A N D G L V 

1081 CGGCACCTGCAGTTCGCACCTGGGCATGGTGATCCGCGACAACTACCGGATGAACCACCT 
233 G T C S S H L G M V I R D N Y R M N H L 

1141 GGACGAGGTGAACCAGGTCTTCGGCCTCACCAGCCTGTTCGAGACCAGCCCGGTCAGCGT 
253 D E V N Q V F G L T S L F E T S P V S V 

1201 CTACCGCCAGCACGCCAACCGCCTGAAGAACGCCAGCCTGTAGGACCCCGGCCGGGGCCT 
273 Y R Q H A N R L K N A S L 

1261 CGGCCCCGGCCCTTTCCCGpAAG~CCCCTCGCGTGAAGAAAATCCTCCTGCTGATTCCAC 
1 LipS ~ K K I L L L I P L 

1321 TGGCGTTCGCCGCCAGCCTGGCCTGGTTCGTCTGGCTGGAACCTTCCCCCGCCCCCGAGA 
11 A F A A S L A W F V W L E P S P A p E T 

1381 CGGCGCCCCCGGCCAGCCCGCAGGCGGGCGCAGACCGCGCCCCGCCAGCAGCCTCCGCGG 
31 A P P A S P Q A G A D R A P P A A S A G 
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1441 GAGAAGCGGTGCCGGCCCCCCAGGTCATGCCGGCCAAGGTCGCGCCGCTGCCAACCTCCT 
51 E A V P A P Q V M P A K V A P L P T S F 

1501 TCAGGGGCACCAGCGTCGATGGCAGTTTCAGTGTCGACGCCAGCGGCAACCTGCTGATCA 
71 R G T S V D G S F S V D A S G N L L I T 

1561 CCCGCGACATCCGCAACCTGTTCGACTACTTCCTCAGCGCCGTCGGCGAAGAGCCCCTGC 
91 R D I R N L F D Y F L S A V G E E P L Q 

1621 AGCAAAGCCTGGACCGCCTGCGCGCCTACATCGCCGCCGAACTCCAGGAGCCGGCGCGCG 
111 Q S L D R L R A Y I A A E L Q E P A R G 

1681 GCCAGGCGTTGGCGCTGATGCAGCAATACATCGACTACAAGAAGGAACTGGTGCTGCTCG 
131 Q A L A L M Q Q Y I D Y K K E L V L L E 

1741 AACGCGACCTGCCGCGCCTGGCCGACCTCGACGCCCTGCGCCAGCGGGAAGCCGCGGTGA 
151 R D L P R L A D L D A L R Q R E A A V K 

1801 AAGCCCTGCGCGCGCGGATCTTCAGCAACGAAGCGCACGTGGCGTTCTTCGCCGACGAGG 
171 A L R A R I F S N E A H V A F F A D E E 

1861 AAACCTACAACCAGTTCACCCTGGAGCGCCTGGCGATCCGCCAGGATGGCAAGCTCAGCA 
191 T Y N Q F T L E R L A I R Q D G K L S T 

1921 CCGAGGAAAAGGCCGCCGCCATCGACCGCCTGCGCGCCAGCCTGCCGGAAGACCAGCAGG 
211 E E K A A A I D R L R A S L P E D Q Q E 

1981 AAAGCGTGCTGCCGCAACTGCAAAGCGAACTGCAGCAGCAGACCGCCGCCCTCCAGGCCG 
231 S V L P Q L Q S E L Q Q Q T A A L Q A A 

2041 CTGGCGCCGGCCCGGAAGCCATCCGCCAGATGCGTCAGCAACTGGTGGGCGCCGAAGCCA 
251 G A G P E A I R Q M R Q Q L V G A E A T 

2101 CCACCCGCCTGGAGCAACTCGATCGGCAACGCTCGGCCTGGAAGGGCCGGCTGGACGACT 
271 T R L E Q L D R Q R S A W K G R L D D Y 

2161 ATTTCGCCGAGAAGAGCCGGATCGAAGGCAATGCCGGGCTGAGCGAAGCCGACCGCCGCG 
291 F A E K S R I E G N A G L S E A D R R A 

2221 CGGCGGTCGAACGCCTGGCCGAGGAGCGCTTCAGCGAACAGGAACGCTTGCGCCTGGGCG 
311 A V E R L A E E R F S E Q E R L R L G A 

2281 CGCTGGAACAGATGCGCCAGGCCGAGCAGCGCTGACCGGCACGGAAACGCCGAGAACGCG 
331 L E Q M R Q A E Q R 7 ~ 

2341 GCGAAGGGCGCTTCGGCGGATAACGCTACCCTCAGGGGTGCAGCCCTGGCGTGGCCGGCG 

2401 AGGCGGAAACCTGTGCTGCGCGCCGCAACGAAAAAGGGCGGCCACCCGAAGGTGTCCGCC 

2461 CTTTTTCGTCGCCAGCCCGGTTCAGCGGGACAGCTTGCCGTCCAGCGAGAACTTGCCGGC 

2521 GCCATCGATCAGCAGCGCCACGCTGATCATCAGCAGGGTCAGGGCATATTCATAGCCGTT 

2581 GTCGGTGATGAAGAAGCCATTGCCGATGTGCACGCTGAAGATCGCCACGATCCGTTGACC 

2641 TGCAGGTCGACCCAGATC 

Fig. 1-2. Nucleotide sequence of lipA and lipB genes from Pseudomonas 

aeruginosa TE3285. Putative Shine-Dalgarno sequences arc boxed. Filled triangle indi

cates the position of the release of the signal peptide. Horizontal arrows indicate palindromic 

sequences, which are putative termination signals. The lipB sequence reported by Chihara

Siomi et al. (1992) has been corrected, and new sequence has been incorporated into the DDBJ/ 

EMBL/databases with accession number of AB008452. 
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1 10 20 30 40 
TE3285 LipB 
109 LimL 
PA01 LipH 
DSM3959 LimA 
KWI56 Act 
M-12-33 LipX 
PG1 LipB 

--MKKILLLIPLAFAASLAWFVWLEP----SPAPETAPPASPQAGADRAPPAASA 
--MKKILLLIPLAFAASLAWFVWLEP----SPAPETAPPASAQAGADRAPPAAST 

--MTARGGRAPLARRAVVYGAVGLAAIAGVAMWSGAGRHGGTGASGEPPDASAAR 
--MTSREGRAPLARRAVVYGVVGLAAIAGVAMWSGAGWHRATGASGESPEASVAG 
--MASRDG------------------------------HGRRVAG-----RGSAG 
MAQADRPARGGLAARPMRGASFALAGLVACAACAAVVLWLRPAAPSPAPAGAVAG 

LipB 
LimL 
LipH 
LimA 
Act 
LipX 
LipB ( PGl) 

LipB 
LimL 
LipH 
LimA 
Act 
Lip X 
LipB(PG1) 

LipB 
LimL 
LipH 
LimA 
Act 
LipX 
LipB(PG1) 

LipB 
LimL 
LipH 
LimA 
Act 
LipX 
LipB (PGl} 

LipB 
LimL 
LipH 
LimA 
Act 
LipX 
LipB (PG1) 

so 60 70 80 90 100 
GEAVPAP-------QVMPAKVAPLPTSFRGTSVDGSFSVDASGNLLITRDIRNLFDYFLSAVG 
GEAVPAP-------QVMPAKVAPLPTSFRGTSVDGSFSVDASGNLLITRDIRNLFDYFLSAVG 
----------------MPAKVAPLPTSFRGTSVDGSFSVDASGNLLITRDIRNLFDYFLSAVG 
GPAAAPP-------QAAVPASTSLPPSLAGSSAP-RLPLDAGGHLAKARAVRDFFDYCLTAQS 
GSVTAPP-------QAAVPASTGLPPSLAGSSAP-RLPLDAGGHLAKSRAVRDFFDYCLTAQS 
GAAAAPP-------QAALPASTGLPSSLAGSSAP-RLPLDAGGHLAKSRAVRDFFDYCLTAQS 
GPAAGVPAAASGAAEAAMPLPAALPGALAGSHAP-RLPLAAGGRLARTRAVREFFDYCLTAQG 

** * * * * * * *** * * 
110 120 130 140 150 160 

EEPLQQSLDRLRAYIAAELQEP-ARGQALALMQQYIDYKKELVLLERDLPRL--A-DLDALRQ 
EEPLQQSLDRLRAYIAAELQEP-ARGQALALMQQYIDYKKELVLLERDLPRL--A-DLDALRQ 
EEPLQQSLDRLRAYIAAELQEP-ARGQALALMQQYIDYKKELVLLERDLPRL--A-DLDALRQ 
DLSAAGLDAFVMREIAAQLDGTVAQAEALDVWHRYRAYLDALAKLRDAGAVD--KSDLGALQL 
DLSAAGLDAFVMREIAAQLDGTVAQAEALDVWHRYRAYLDALAKLRDAGAAD--KCDLGALQL 
DLSAAALDAFVVRQIAAQLDGTVAQAEALDVWHRYRAYLDALAKLRDAGAVD--KSDLGALQL 
ELTPAALDALVRREIAAQLDGSPAQAEALGVWRRYRAYFDALAQLPGDGAVLGDKLDPAAMQL 

*** * * ** * * * * * 
170 180 190 200 210 220 

REAAVKALRARIFSNEAHVAFFADEETYNQFTLERLAIRQDGKLSTEEKAAAIDRLRASLPED 
REAAVKALRARIFSNEAHVAFFADEETYNQFTLERLAIRQDGKLSAEEKAAAIDRLRASLPED 
REAAVKALRARIFSNEAHVAFFADEETYNQFTLERLAIRQDGKLSAEEKAAAIDRLRASLPED 
ALDQRASIAYRWLGDWS-QPFFGAEQWRQRYDLARLKIAQDPALTDAQKAERLAALEQQMPAD 
ALDQRASIAYRTLGDWS-QPFFGAEQWRQRYDLARLKIAQDPTLTDAQKAERLAALEQQMPAD 
ALDQRASIAYRTLGDWS-QPFFGAEQWRQRYDLARLKIAQDRTLTDAQKAQRLAALEQQMPAD 
ALDQRAALADRTLGEWA-EPFFGDEQRRQRHDLERIRIANDTTLSPEQKAARLAALDAQLTPD 

* ** * * * * * * ** * * 
230 240 250 260 270 280 

-QQESVLPQLQSELQQQTAALQAAGAGPEAIRQMRQQLVGAEATTRLEQLDRQRSAWKG----
-QQESVLPQLQSELQQQTAALQAAGAGPEAIRQMRQQLVGAEATTRLEQLDRQRSAWKG----
-QQESVLPQLQSELQQQTAALQAAGAGPEAIRQMRQQLVGAEATTRLEQLDRQRSAWKG----
ERAAQQRVDRQRAAIDQIAQLQKSGATPDAMRAQLTQTLGPEAAARVAQMQQDDASWQR---
ERAAQQHIDQQRAAIDQIAQLQESGATPDAMRAQLTQTLGPEAAARVAQMQQDDASWQS---
ERAAQQRVDQQRAAIDRIAQLQKSGATPDAMRAQLTQTLGPEAAARVAQMQQDDASWQSATRT 
ERAQQAALHAQQDAVTKIADLQKAGATPDQMRAQIAQTLGPEAAARAAQMQQDDEAWQT----

* * ** ** * * * * ** * * * 
290 300 310 320 330 340 

-----RLDDYFAEKSRIEGNAGLSEADRRAAVERLAEERFSEQER--LRLGALEQMRQAEQR 
-----RLDDYFAEKSRIEGNTGLSEADRRAAVERLAEERFSEQER--LRLGALEQMRQAEQR 
-----RLDDYFAEKSRIEGNTG-AERSRPPRGGRNAWPRSASANRNACAWARWEQMRQAEQR 
-----RYADYAAQR-AQIESAGLSPQDRDAQI-AALRQRVFTKPGEAVR-AASLDRGAGSAR 
-----RYADYAAQR-TQIESAGLSPQDRDAQI-AALRQRVFTRPGEAVR-AASLDRGAGSAR 
MRRSVRRSSRPACR-RRIATP-RSPHCGSARS-RNPAKRCGRHRSIAARGSAAVTRAARCA
-----RYQAYAAER-DRIAAQGLAPQDRDARI-AQLRQQTFTAPGEAIR-AASLDRGAGG--

* * 

Fig. 1-3. Amino acid sequence alignment among Pseudomonas lipase activator 

protein . Conserved re idue are indicated with asterisk. The numbering of amino acids is 

given for P. aeruginosa TE3285 lipase activator protein (LipB). P. aeruginosa TE3285, (Chihara

Siomi eta!., 1992); Pseudomonas p. 109, (Ihara eta!., 1992); P. aeruginosa PAO 1, (Wohlfarth 

et al., 1992); P. cepacia DSM3959, (J¢rgensen eta!., 1991); Pseudomonas sp. KWI-56, (Iizumi et 

a!., 1991 ); P. cepacia M-12-33, (Nakani hi et al., 1991 ); P. glumae PG 1, (Frenken et al., 1993). 
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1 10 20 30 40 50 60 
-STYTQTKYPIVLAHGMLGFDNILG-VDYWFGIPSALRRDGAQVYVTEVSQLDTS---EVRGEQL 
-STYTQTKYPIVLAHGMLGFDNILG-VDYWFGIPSALRRDGAQVYVTEVSQLDTS---EVRGEQL 
-STYTQTKYPIVLAHGMLGFDNILG-VDYWFGIPSALRRDGAQVYVTEVSQLDTS---EVRGEQL 
AAGYAATRYPIILVHGLSGTDKYAGVLEYWYGIQEDLQQNGATVYVANLSGFQSDDGPNGRGEQL 
ADGYAATRYPIILVHGLSGTDKYAGVVEYWYG IQEDLQQNGATVYVANLSGFQSDDGANGRGEQL 
ADNYAATRYPIILVHGLTGTDKYAGVLEYWYGIQEDLQQRGATVYVANLSGFQSDDGPNGRGEQL 
ADTYAATRYPVILVHGLAGTDKFANVVDYWYGIQSDLQSHGAKVYVANLSGFQSDDGPNGRGEQL 

* * ** * ** * * ** ** * ** *** * ***** 
70 80 90 100 110 120 

LQQVEEIVALSGQPKVNLIGHSHGGPTIRYVAAVRPDLIASATSVGAPHKGSDTADFLRQIP--
LQQVEEIVALSGQPKVNLIGHSHGGPTIRYVAAVRPDLMPSATSVGAPHKGSDTADFLRQIP--
LQQVEEIVALSGQPKVNLIGHSHGGPTIRYVAAVRPDLIASATSVGAPHKGSDTADFLRQIP--
LAYVKTVLAATGATKVNLVGHSQGGLSSRYVAAVAPDLVASVTTIGPADRGSEFADFVQDVLAYD 
LAYVKTVLAATGATKVNLVGHSQGGLTSRYVAAVAPDLVA SVTTIGTPHRGSEFADFVQNVLAYD 
LAYVKTVLAATGATKVNLVGHSQGGLTSRYVAAVAPDLVASVTTIGTPHRGSEFADFVQGVLAYD 
LAYVKQVLAATGATKVNLIGHSQGGLTSRYVAAVAPQLVASVTTIGTPHRGSEFADFVQDVLKTD 
* * * * **** *** ** ****** * * * * * ** *** 

130 140 150 160 170 180 
PGSAGEAILSGLVNSLGALISFLSSGSTGTQNSLGSLESLNSEGAARFNAKYP---HGVP-TSAC 
PGSAGEAVLSGLVNSLGALISFLSSGSAGTQNSLGSLESLNSEGAARFNAKYP---QGIP-TSAC 
PGSAGEAVLSGLVNSLGALISFLSSGSTGTQNSLGSLESLNSEGAARFNAKYP---QGIP-TSAC 
PTGLSSSVIAAFVNVFGILTS --SSHNT-NQDALAALQTLTTARAATYNQNYPSAGLGAPGSCQT 
PTGLSSSVIAAFVNVFGILTS- -SSHNT-NQDALAALQTLTTARAATYNQNYPSAGLGAPGSCQT 
PTGLSSTVIAAFVNVFGILTS- -SSNNT-NQDALAALKTLTTAQAATYNQNYPSAGLGAPGSCQT 
PTGLSSTVIAAFVNVFGTLVS--SSHNT-DQDALAALRTLTTAQTATYNRNFPSAGLGAPGSCQT 
* ** * * * ** * * * * * * * * * 

190 200 210 220 
GEGAYKVNGVS--YYSWSGS --SP---------------L-----TNFLDPSD-AFLGASSLTFK 
GEGAYKVNGVS--YYSWSGS--SP---------------L-----TNFLDPSD-AFLGASSLTFK 
GEGAYKVNGVS--YYSWSGS- -SP---------------L-----TNFLDPSD-AFLGASSLTFK 
GAPTETVGGNTHLLYSWAGTAIQPTLSVFGVTGATDTSTLPLVDPANVLDLSTLALFGTGTVMIN 
GAPTETVGGNTHLLYSWAGTAIQPTLSVFGITGATDTSTVPLVDLANVLDPSTLALFGTGTVMIN 
GAPTETVGGNTHLLYSWAGTAIQPTISVFGVTGATDTSTIPLVDPANALDPSTLALFGTGTVMVN 
GAATETVGGSQHLLYSWGGTAIQPTSTVLGVTGATDTSTG-TLDVANVTDPSTLALLATGAVMIN 
* * * *** * * * * * 

230 240 250 260 270 280 
NGT-ANDGLVGTCSSHLGMVIRDNYRMNHLDEVNQVFGLT SLFETSPVSVYRQHANRLKNASL 
NGT-ANDGLVGTCSSHLGMVIRDNYRMNHLDEVNQVFGLTSLFET SPVSVYRQHANRLKNASL 
NGT-ANDGLVGTCSSHLGMVIRDNYRMNHLDEVNQVFGLTSLFET SPVSVYRQHANRLKNASL 
RGSGQNDGLVSKCSALYGKVLSTSYKWNHLDEINQLLGVRGAYAEDPVAVIRTHANRLKLAGV 
RGSGQNDGLVSKCSALYGKVLSTSYKWNHLDEINQLLGVRGAYAEDPVAVIRTHANRLKLAGV 
RGSGQNDGVVSKCSALYGQVLSTSYKWNHLDEINQLLGVRGANAEDPVAVIRTHANRLKLAGV 
RASGQNDGLVSRCSSLFGQVISTSYHWNHLDEINQLLGVRGANAEDPVAVIRTHVNRLKLQGV 

*** * ** * * * ***** ** * ** * * * **** 

Fig. 1-4. Amino acid sequence alignment among lipases from Pseudomonas 

species. Conserved residues are indicated with asterisk. The numbering of amino acids is given 

for P. aeruginosa TE3285 lipase. P. aeruginosa TE3285, (Chihara-Siomi et al., 1992); Pseu

domonas sp. 109, (lhara et al., 1991); P. aeruginosa PA01, (Wohlfarth eta!., 1992); P. cepacia 

DSM3959, (J¢rgensen etal., 1991); Pseudomonas sp. KWI-56, (Iizumi et al., 1991); P. cepacia 

M-12-33, (Nakanishi et al., 1991 ); P. glumae PG 1, (Frenken et al., 1992). 

are believed to reactivate the lipase by means of a common mechanism. From analogy with 

other lipase activator proteins (Frenken et al., 1993a, Jaeger et al., 1994, Ihara et al., 1995), 

LipB would be localized in the peri plasm of the Pseudomonas cell, and anchored in the inner 

membrane by its N-terminal hydrophobic segment. Thus, in the cell, it is considered that un

folded LipA is permeated through the inner membrane in a signal peptide-dependent manner, 
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then this polypeptide is refolded by LipB in the periplasm following secretion into the extracel

lular medium. 

With respect to genetic structure and in vivo function, LipB is likely to be similar toN

terminal propeptide of several pro teases, such as subtilisin (Ikemura et al., 1987), car

boxypeptidase Y (Winther and S¢rensen, 1991), and a-lytic protease (Silen et al., 1989). 

These propeptides are synthesized as a single polypeptide with its mature protease region, and 

specifically mediate folding of the protease after translocation through cellular membrane 

(Shinde and Inouye, 1993, Eder and Fersht, 1995). From the crystallographic analysis of the 

complex between subtilisin and its propeptide (Gallagher et al., 1995), the propeptide is likely 

to recognize specific structural elements of the mature region through the refolding process. 

Considering the functional similarity to the propeptides, also LipB could recognize some 

structural segments of LipA. Candidates of such substructures can be presumed by three-di

mensional structures of bacteriallipases (Noble et al., 1994, Lang et al., 1996, Schrag et al., 

1997, Kim et al., 1997). From these analyses, common structural features of bacteriallipases 

have been found, that is, ( 1) serine protease-like active site including catalytic triad and 

oxyanion hole, (2) hydrophobic surface on the walls of the active site cleft and helical lid 

structure for masking the hydrophobic site, and (3) calcium binding site. The first two fea

tures are also applicable to eukaryotic lipases according to their crystal structures, whereas the 

third one is fit to only bacteriallipases. Although three-dimensional structure of LipA from P. 

aeruginosa TE3285 has not been resolved, LipA is expected to possess the above three fea

tures. Thus, LipB could mediate construction of such structural features of LipA in its folding 

process. However, properties of LipB such as reactivation kinetics, requirements, and func

tional amino acid residues have been unknown because purification of LipB is difficult. It is 

considered that elucidation of its properties enables us to understand key process of protein 

folding in a molecular level. Furthermore, this could contribute to give an important insight 

into the protein translocation in the cell. 

In the pre ent tudy, the Lip A reactivation mediated by LipB was analyzed in the 

molecular level by protein engineering techniques. In Chapter 2, LipB was overproduced in 

E. coli, and purified in the pre ence of detergent. By using this LipB sample, fundamental 
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characteristics of LipB were investigated by kinetic analysi of Lip A reactivation and chemical 

cross-linking (Jaenicke and Rudolph, 1989) with denatured LipA. In Chapter 3, to inve tigate 

the characteristics of N-terminal region of LipB, two forms of N-tern1inal truncated LipBs 

were prepared, and their molecular properties and reactivation activity were compared with 

those of full-length form. In Chapter 4, to find important amino acid residues of LipB in re

activation, random mutagenesis using error-prone PCR (Leung eta/., 1989) was performed 

on a gene encoding the functional region of LipB. Given DNA library was introduced into li

pase expression system using E. coli, and mutant LipB losing its activity was selected by two 

simple screening procedures. Consequently, five single-residue substituted LipBs were 

newly prepared, and their properties were compared with that of wild-type Lip B. 
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CHAPTER 2 

Overexpression, Purification, and Characterization 
of LipB, Lipase Activator Protein from 
Pseudomonas aeruginosa TE3285 

2-1. Introduction 

LipB, the lipase activator protein from Pseudomonas aeruginosa TE3285, is encoded at the 

position adjacent to the gene of its substrate LipA. Therefore, LipB would be a specific fold

ing factor for LipA. In this respect, LipB seems to be more similar toN-terminal propeptide 

of several pro teases such as subtilisin (Ikemura et al., 1987) than to general molecular chaper

ones. In the case of subtilisin, calcium ion plays an important role in the propeptide-mediated 

folding. It has been considered that calcium binding to subtilisin during folding process is 

regulated by its propeptide (Gallagher et al., 1995). This calcium binding contributes to the 

stability of the subtilisin structure, and so to the expression of its enzymatic activity. Bacterial 

lipases also have a calcium binding site that is important for maintaining their structure (Noble 

et al., 1994, Lang et al., 1996, Schrag et al., 1997, Kim et al., 1997). Thus, it could be pre

sumed that LipB participates in this calcium binding during the reactivation process of LipA. 

However, the characteristics of LipB during reactivation have been little elucidated. 

In this chapter, the recombinant full-length LipB was purified, and its function was ki

netically analyzed in vitro. The purified LipB reactivated denatured LipA, but did not dissoci

ate from the reactivated LipA in vitro. Furthermore, the effect of calcium ion on the LipB

assisted reactivation was examined, and it is proposed that LipB specifically assists the bind

ing of calcium ion to LipA. 
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2-2. Experimental Procedures 

Materials. Bacterial strain Escherichia coli BL21 (DE3) [F-, ompT, hsdS B(rB -mB -), gal, 

dcm, (DE3)] and plasmid pET-3d (Novagen Inc., Madison, WI) were used as a host and a 

vector (Studier et al., 1990) for expression of lipB, respectively. Bacterial strain E. coli 

BW313 (dut, ung, thi-1, relA, spoT1/F'lysA) was used for the preparation of single strand 

DNA including uracil on site-directed mutagenesis (Kunkel, 1985). Plasmid p UL 11 is a 

pUC19 derivative carrying both lipA and lipB from Pseudomonas aeruginosa TE3285 

(Chihara-Siomi et al., 1992). M13mp19 was provided by Takara Shuzo Co., Ltd. (Kyoto, 

Japan). Synthetic oligonucleotide was a gift from Toyobo Co., Ltd. (Osaka, Japan). Restric

tion enzymes and DNA modifying enzymes were obtained from Toyobo Co., Ltd. and Takara 

Shuzo Co., Ltd. The LipA protein purified from culture medium of P. aeruginosa TE3285 

(Chihara-Siomi et al., 1992) was a special gift from Toyobo Co., Ltd. The purified lipases 

from Pseudomonas sp. 109 (Ihara et al., 1991) and P. cepacia M-12-33 were generous gifts 

from Nagase Biochemicals Ltd. (Tokyo, Japan) and Amano Pharmaceutical Co., Ltd. 

(Nagoya, Japan), respectively. The purified lipases from Candida cylindracea and porcine 

pancreas were obtained from Sigma Chemical Co (St. Louis, Missouri). Cellulofine GCL-

1000m was a gift from Chisso Co. Ltd. (Tokyo, Japan). All other chemicals used in the pre

sent work were of the purest grade commercially available. 

Plasmid construction. An expression plasmid of lipB, pELB 10, was constructed as 

shown in Fig. 2-1. A Kpn 1-BamH I fragment of pUL 11 containing lip A and lipB was in

serted into M13mpl9. By use of the given phage vector (M13D1) as a template, a new Nco I 

site was introduced at the position of the initiation codon of lipB by site-directed mutagenesis 

according to the method of Kunkel (1985). The mutational primer consists of the sequence 

5'-GCCCCCTCCCATGGGGAAAATCCTCCTGC-3'. The plasmid pELBlO was prepared 

by i olating an Nco I-H ind III fragment including lipB from the resulting phage vector 

(M13LB 10), and in erting the fragment at the position downstream of the T7 promoter in 

pET-3d. 
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M G K 
- CCTCCCATGGGGAAA-

Fig. 2-1. Construction of pELB 10, the expression plasmid of lipB. 

Overproduction and purification of Lip B. E. coli BL21 (DE3) was transformed with 

the expression plasmid pELB 10 and was cultured at 37 OC in 1 liter of Luria-Bcrtani broth 

(1% Bacto tryptone, O.So/o Bacto yeast extract, and 1% NaCl) containing 50 f..lg/ml ampicillin. 

Expression of lipB was induced by addition of 1 mM isopropyl ~-D-thiogalactopyranoside 

when the absorbance at 600 nm of the growing culture reached 0.7. After a total 5-h culture, 

bacterial cells were harvested by centrifugation at 7,000 x g, and cell pellets (3.5 g) were re

suspended in 30 ml of the extraction buffer (20 mM Tris-HCl, pH 8.0, 0.2 M NaCl, 5 mM 

CaCb, and 0.5 mM EDTA). The cell suspension was sonicated 20 times for 30 sat 0 OC us

ing a Branson Sonifier 250, then centrifuged at 25,000 x g for 30 min at 4 °C, and the super

natant was recovered as crude extract. The fraction containing LipB was precipitated from the 

crude extract with 20 to 30o/o saturated ammonium sulfate. The precipitates were separated by 

centrifugation at 25,000 x g for 30 min at 4 OC and resuspended in the buffer (20 mM Tris

HCl, pH 8.0, 0.1 M NaCl, and 0.5 mM EDT A) . The solution was dialyzed against the same 

buffer. The dialyzate was mixed with one-fourth volume of 1 Oo/o SDS and applied to a Cel

lulofine GCL-1 OOOm gel filtration column (2.6 x 90 em) equilibrated with the eluent (20 mM 

Tris-HCl, pH 8.0, 0.1 M NaCI, 0.5 mM EDTA, and 1% SDS) at room temperature. The ac-
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tive fractions including 1.5 mg proteins were applied to SDS polyacrylamide gels ( 180 x 180 

x 2 mm) and electrophoresed as described by Laemmli (Laemmli, 1970) at 20 °C. The gels 

were stained with Copper Stain (Bio-Rad Laboratories , Inc., Hercules, CA) (Lee et al., 

1987), and a band including LipB was excised from the gels. The purified protein was recov

ered by electroelution (Findlay, 1990). The eluate was applied to an Extracti-Gel D column 

(Pierce Chemical Co., Rockford, IL) to remove SDS. 

Denaturation of LipA. Denatured LipA was prepared by addition of 48 ~M native LipA 

solution (20 mM Tris-HCl, pH 8.0 and 0.2 M NaCl) to three volumes of the same buffer 

containing 8 M guanidine hydrochloride, followed by incubation for more than 1 h at room 

temperature. The denaturation of Lip A was checked by examination of the circular dichroism 

in the range between 200 and 240 nm. 

Assay of lipase activity. Protein concentration was determined with BCA Protein Assay 

Reagent (Pierce Chemical Co.) (Smith et al., 1985). Bovine serum albumin was used as a 

standard. Lipase activity was measured with Lipase Kit S (Dainippon Pharmaceutical Co., 

Ltd., Osaka), in which 2,3-dimercaptopropan-1-ol tributyrate was used as a substrate 

(Kurooka et al., 1977). One unit (U) was defined as an amount of lipase catalyzing the hy

drolysis of one ~mol of the ester to butyric acid per minute at 30 °C. 

Assay of reactivation of the denatured LipA. The standard reactivation reaction was 

measured under the following conditions. The reactivation was initiated by diluting 5 ~l of the 

denatured Lip A solution ( 12 ~M) into 200 ~1 of an appropriate concentration of the LipB so

lution including 20 mM Tris-HCl, pH 8.0, 0.2 M NaCl, 5 mM CaCl2, 0.5 mM EDTA, and 

0.5o/o Triton X-100. After incubation at 20 OC for a given period, an aliquot of the mixture 

was withdrawn and the lipase activity was measured immediately with Lipase Kit S. 

Cross-linking between LipA and LipB. Samples for chemical cross-linking were pre

pared as follows: 40 ~1 of 12 ~M denatured LipA solution (20 mM triethanolamine-HCl, pH 

8.0, 0.2 M NaCl, and 6 M guanidine hydrochloride) was mixed with 1.6 ml of LipB solution 

in 20 mM triethanolamine-HCl, pH 8.0, 0.2 M NaCl, 5 mM CaCl2, 0.5 mM EDTA, and 

0.5o/o Triton X-100, and was incubated for 4 hat 20 °C. The cross-linking reaction was car-
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ried out by addition of 5 ~l of 70% glutaraldehyde to the sample mixture and incubation for 5 

min at 20 OC (Jaenicke and Rudolph, 1989). The reaction was then quenched by adding 40 ~1 

of 2 M sodium borohydride dissolved in 0.1 M NaOH. After the 20-min incubation, protein 

mixtures were precipitated with 7o/o trichloroacetic acid (Bensadoun and Weinstein, 1976), 

and analyzed by SDS-PAGE (Laemmli, 1970). 

2-3. Results 

Overexpression of lipB in E. coli. LipB was overproduced by ustng the T7 expres

sion system (Studier et al., 1990). An expression plasmid for lipB, pELB 10, was constructed 

by inserting lipB at the position downstream of the T7 promoter in pET-3d (Fig. 2-1). The 

plasmid pELB 10 was introduced into E. coli BL21 (DE3), and the trans formant was grown 

with induction by isopropyl ~-D-thiogalactopyranoside. Crude extract of the cultured cells 

was analyzed by SDS-PAGE (Fig. 2-2, lane 2). A 37-kDa protein was detected only for the 

induced cells, and its molecular weight is consistent with that calculated from the DNA se

quence of lipB (37.7 kDa). The 37-kDa protein fraction was blotted onto a polyvinylidene di

fluoride membrane, and its N-terminal amino acid sequence was analyzed by a gas-phase se

quencer (Applied Biosystems Model477 A). This protein has theN-terminal sequence Met

Gly-Lys-Ile-Leu, as predicted from the DNA sequence of lipB (Fig. 1-2) except for the sec

ond Gly; this Gly is substituted for Lys of the native LipB owing to the site-directed mutagen

esis. The expression level of LipB was estimated as 25% of the total cell proteins on the basis 

of densitometric analysis of the gels stained with Coomassie Brilliant Blue R-250. 

Purification of LipB. LipB was purified 4.9-fold from the crude extract in three steps; 

ammonium sulfate fractionation, gel filtration chromatography, and polyacrylamide gel elec

trophoresis (Table 2-1). The SDS-PAGE analysis of each purification step is shown in Fig. 

2-2. 
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Table 2-1. Purification of recombinant full-length LipB. Specific activity of LipB was deter

mined from the initial rate of reactivation of denatured LipA. One unit of LipB was defined as the amount of 

LipB reactivating one unit of the denatured Lip A per minute under the standard assay conditions. 

Purification Total 
step protein (mg) 

Crude extract 310 
Salting-out 80 

Gel filtration 38 
SDS-PAGE 5.8 

LipB-

1 2 3 4 5 

Total Yield Specific Purity 
activity (U) (%) activity (U/mg) (-fold) 

827 100 2.64 1.0 
483 58 6.05 2.3 

421 51 11.0 4.2 
75.1 9.1 12.9 4.9 

-94 

-67 Fig. 2-2. SDS-PAGE analysis of the pu

rification of LipB. A 12.5% polyacrylamide 

gel was used, and proteins were stained with 

Coomassie Brilliant Blue R-250. Lane 1, total 

cells; lane 2, crude extract; lane 3, ammonium sul-

fate fraction; lane 4, Cellulofine GCL-1 OOOm elu-

- 20 ate; lane 5, preparative SDS-PAGE fraction. 

(kDa) 

SDS was added to protein solutions and buffers at the steps of gel filtration and elec

trophoresis during the purification process. Without SDS, LipB was eluted in the void vol

ume on gel filtration using Cellulofine GCL-1 OOOm, of which the exclusion limit is 500 k.Da, 

and it could not be separated from the other proteins. These results indicate that LipB readily 

forms large soluble aggregates. When LipB solution containing 1 o/o SDS was diluted 500-

fold into the reactivation buffer, its reactivation activity was the same as that of LipB without 

SDS treatment. Thus, it is likely that SDS effectively disperses the aggregates and does not 

inactivate LipB irreversibly. 

Reactivation kinetics of LipB. Denatured LipA gradually recovered its lipase activity in 

the presence of LipB, whereas no lipase activity wa recovered without LipB (Fig. 2-3). In 

-16-

CHAPTER2 

the presence of 0.28 f.!M LipB (at the LipB!LipA molar ratio of 1: 1), the recovery of the lipase 

activity reached maximum at least 1 h after the initiation of the reactivation. When the concen

tration of LipB was lower than that of the denatured Lip A, the maximum recovery increased 

with the amount of LipB. However, the maximum recovery of the lipase activity was inhib

ited by an excess amount of LipB. At LipB concentrations lower than 8.8 nM (at a LipB/LipA 

molar ratio of 1:30), no more than 14.7 U of the lipase activity was recovered by one 

nanomole of LipB. Since the activity of 1 nM native LipA is 34.3 U/1, LipB was expected to 

reactivate less than an equimolar amount of the denatured LipA. Thus, multiple turnover is 

not involved in the LipB-assisted reactivation of the denatured Lip A. Moreover, reactivation 

was observed in the same manner when the purified LipA denatured with additional thiol 

reagents or the recombinant LipA produced as inclusion bodies in E. coli (Oshima-Hirayama 

et al., 1993) was used for a substrate of LipB (data not shown). In addition, it was observed 

that the reactivated LipA possesses hydrolytic activity for triolein as well as 2,3-dimercapto

propan-1-ol used as the standard substrate in the present study. 

500 

§ 10 ~ 5 
c <( 

0.. ·:; :.:J 
t5 "0 
Cll Cl> 
Cl> cu 
CJ) 

5 > 
Cll t5 g. Cll 

~ 

~----- -----------~---1,~'----o 0 
0 120 240 720 

time (min) 

Fig. 2-3. Time course of the LipB-assisted reactivation of the 

denatured LipA. The denatured LipA solution was diluted 41 -fold into 

LipB solution and incubated at 20 °C. The final concentration of the dena

tured LipA was 0.29 )lM. The concentrations of LipB were as follows: 0.0 

nM (O); 11 nM (e); 56 nM (6..); 0.28 )lM (A.); 1.4 )lM [J); 7.1 )lM (. ). 
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complex-

LipB-

LipA-

--. (kDa) 

1 2 3 4 5 6 

Fig. 2-4. SDS-PAGE analysis of the LipA

LipB complex cross-linked with glutaralde

hyde. Protein mixtures on reactivation were treated 

with glutaraldehyde. A 12.5% polyacrylamide gel was 

used, and proteins were stained with Coomassie Brilliant 

Blue R-250. Lane 1, LipB; lane 2, denatured LipA; 

lanes 3-6, LipB and denatured LipA. The final LipA 

concentration was 0.29 11-M. The concentrations of 

LipB were as follows: lane 3, 11 nM (at LipB/LipA 

molar ratio of 1 :25); lane 4, 56 nM (1 :5); lane 5, 280 

nM (1: 1); lane 6, 1400 nM (5: 1). A band that does not 

permeate into the separating polyacrylamide gel is seen 

on lanes 1 and 3-6. These bands are considered to be 

cross-linked LipB aggregates. In addition, the 80-kDa 

band on lanes 1 and 6 is considered to be a dimerized 

LipB. 

Cross-linking between LipB and reactivated LipA. It was thought that LipB would 

still be bound to LipA after the reactivation, since no multiple turnover was observed in the 

LipB-assisted reactivation (Fig. 2-3). To detect this LipA-LipB complex, chemical cross

linking experiments were carried out. A mixture of LipB and the denatured LipA was incu

bated for 4 h, then glutaraldehyde was added to the solution for cross-linking. The products 

were analyzed by SDS-PAGE (Fig. 2-4). A 68-kDa protein was newly observed (lanes 3-6), 

corresponding in size to the sum of LipA (30.1 kDa) and LipB (37.7 kDa). When either LipB 

or the denatured LipA was alone, no intermolecular cross-linked product was detected around 

the position of the 68 kDa protein (lane 1 or 2, respectively). These results indicate that the 

68-kDa protein is the cross-linked 1:1 complex between LipB and LipA. This cross-linked 

product increased with the LipB concentration (lanes 3-5), but diminished with an excess 

amount of LipB (lane 6). The e effects of the LipB concentration on the amount of the cross

linked product seem to be compatible with the effect of the LipB concentration on the recovery 

of lipase activity described above (Fig. 2-3). Thus, it is suggested that this complex detected 

by cross-linking expresses the lipase activity recovered with LipB. 
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Fig. 2-5. Inactivation of the reactivated LipA by 

addition of EDTA. Reactivation was started by addition 

of 25 1-11 of the denatured LipA solution to 1 ml of 6 nM 

LipB solution at 20 OC under the standard condition. EDTA 

solution (final 10 mM) was added at 270 min from start of 

the reactivation. Total lipase activities are plotted for there

activation mixture with EDTA (e) and without EDTA (0). 
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Effect of calcium ion. The effects of divalent cations on the LipB-assisted reactivation of 

the denatured LipA were examined. CaCl2 was the most effective cation for the reactivation 

among those examined. The recovery of the lipase activity with 5 mM MnCh was 59o/o of 

that with 5 mM CaCl2, but in the presence of 5 mM MgCb, the reactivation was not observed. 

In the absence of divalent cations, the recovery of activity was undetectable. When 10 mM 

EDT A was added to the reaction mixture after 4.5-h reactivation, the recovered lipase activity 

was completely lost within 5 min (Fig. 2-5). In contrast, the native LipA was inactivated 

more slowly by the addition of EDTA; the activity of 3 nM LipA was reduced by half during 

2-h incubation in the reactivation buffer with 10 mM EDTA (data not shown). Thus, LipA re

activated with LipB is more sensitive to inactivation by EDT A addition than the native LipA. 

Therefore, the effect of calcium ion on the complex formation between LipB and LipA was 

analyzed by cross-linking (Fig. 2-6). Without CaCh the cross-linked band was not clearly 

detected (lane 2), indicating that calcium ion also affected the complex formation between 
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complex-

LipB-

Lip A-

1 2 3 4 5 6 

-94 

-67 

-43 
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Fig. 2-6. SDS-PAGE analysis of the ef

fect of calcium ion on the LipA-LipB 

complex. A 12.5% polyacrylamide gel was used, 

and proteins were stained with Coomassie Brilliant 

Blue R-250. The reactivation buffer contained Tri

ton X-100 at the concentration of 0.5% (lane 1-3) or 

0.05% (lane 4-6) . For lanes 1 and 4, the 4-h reacti

vation reaction was carried out with 5 mM CaCl2. 

For lanes 2 and 5, the reaction was carried out with

out CaCl2. For lanes 3 and 6, the 4-h reactivation 

- 20 mixture with 5 mM CaCl2 was further treated with 

(kDa) 10 mM EDTA for 1 h. Protein mixtures were cross

linked with glutaraldehyde as described in Experi-

mental Procedures. 

LipB and LipA in the reactivation. Moreover, the cross-linked band was smeared (lane 3) 

when excess EDTA was added to the reactivation mixture that had been incubated sufficiently 

to allow the complex formation. 

The absence of detergent in the reactivation assay lowered the recovery of the Lip A ac

tivity to one-tenth of that with 0.5% Triton X -100. At least 0.05% Triton X -100 was needed 

to give the same level of reactivation as with 0.5% Triton X-100 (data not shown). At lower 

concentration of Triton X-100 (0.05% ), without calcium ion, reactivation was not observed, 

and LipA-LipB complex formation was not clearly detected (Fig. 2-6, lane 5). The addition of 

EDTA also inactivated the lipase activity within 5 min in this case, though a considerable 

amount of the cross-linked product was observed (lane 6). 

Substrate specificity of LipB. The substrate specificity of LipB in the reactivation was 

examined using denatured lipases from Pseudomonas sp. 109, P. cepacia M-12-33, Candida 

cylindracea and porcine pancreas. The final concentration of LipB was 14.2 nM, and that of 

the denatured lipa e corresponded to 490 U/1 of the native lipase. The denatured lipase from 

Pseudomonas sp. 109 was reactivated with LipB up to 205 U/1 during 4-h incubation at 20 oC 

(without LipB: 2.0 U/1). In contrast, the denatured lipases from P. cepacia M-12-33, Candida 

cylindracea and porcine pancrea were little reactivated with LipB: the values of recovery (U/1) 

with LipB (without LipB) were 1.8 (5.7), 0.4 (0.0), and 0.7 (0.9), respectively. 
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2-4. Discussion 

The full-length LipB of P. aeruginosa TE3285 has been purified, and the isolation of the puri

fied LipB allowed the analysis of its molecular propertie in the reactivation of LipA. The ki

netic observations suggested that the reactivation reaction with LipB doe not involve multiple 

turnover. The formation of the stoichiometric (1: 1) complex between LipB and LipA was 

demonstrated by cross-linking experiments. By the addition of EDTA, this complex was 

readily dissociated, and its lipase activity was simultaneously lost. These phenomena sug

gested that LipA in the active form seems not to be released from LipB after reactivation in 

vitro, unlike molecular chaperones. Accordingly, some additional factors appear to be neces

sary for the release of the active LipA. To find such factors, the effects of several coenzymes 

on the LipB-assisted reactivation of the denatured LipA were examined. Neither the initial rate 

nor the maximum recovery in the reactivation was influenced by coenzymes such as A TP, 

GTP, NAD(P)H, and NAD(P)+ (data not shown). However, the active LipA unbound with 

LipB is secreted into the extracellular medium of Pseudomonas. Consequently an unknown 

factor is anticipated to mediate the release of the active LipA from LipB during the secretion 

process in Pseudomonas cells. Pseudomonas has a characteristic complex of membrane pro

teins, Xcp proteins, which is considered to be an apparatus for the permeation of extracellular 

proteins through the outer cellular membrane (Tommassen et al., 1992). Secretion of Pseu

domonas lipase is also proposed to be mediated by Xcp proteins (Filloux et al., 1987). Fur

thermore, it is observed that the lipase activator protein is located in peri plasm (Frenken et al., 

1993a, Ihara et al., 1995). Thus, one or more Xcp proteins are candidates for direct partici

pation in the dissociation of the complex between LipB and the active LipA in periplasm. 

It has been observed that the LipB-assisted reactivation is significantly stimulated by 

calcium ion. The complex formation of LipB with denatured Lip A was found also to require 

calcium ion, since the cross-linked product between LipA and LipB was not detected in the 

absence of calcium ion. The LipA reactivated with LipB rapidly lost it enzymatic activity 

upon the addition of EDT A. These results suggest two possibilities for the function of cal

cium ion in the LipB-assisted reactivation of denatured LipA; one i that calcium ion is nec

essary for the interaction between LipA and LipB, and the other is that calcium ion is required 
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for the enzymatic activity of the reactivated LipA. Regarding the first possibility, calcium ion 

seems to participate in the formation of the LipA-LipB complex during the reactivation pro

cess. However, the removal of calcium ion by EDTA seems not necessarily to cause the dis

sociation of the complex, because the cross-linked product between LipA and LipB was not 

lost completely at a lower concentration (0.05o/o) of Triton X-100. Thus, calcium ion may 

indirectly play a role in the control of association and dissociation of the complex. On the 

other hand, the second possibility would be rather plausible, that is, calcium ion is needed to 

express the enzymatic activity of LipA refolded with LipB. It has been reported that the active 

conformation of Pseudomonas lipases is stabilized by calcium ion (Svendsen et al., 1995). 

The calcium binding site of other bacteriallipases was determined by crystal structure analyses 

(Noble et al., 1994, Lang et al., 1996, Schrag et al., 1997, Kim et al., 1997). These lipases 

have two aspartic acid residues coordinated to the calcium ion. These residues are also con

served in LipA. Thus, LipA is believed to have a calcium binding site similar to that of the 

above bacteriallipases. In this respect, the reactivated LipA forming the complex with LipB is 

expected to differ from the native LipA in structure, because the reactivated complex was more 

rapidly inactivated by EDT A addition than the native LipA. Thus, it is suggested that LipB 

could affect this calcium binding to LipA in the reactivation process. This proposed function 

of LipB seems to be similar to that of the subtilisin propeptide as a protein-folding factor, 

since its refolding is also accompanied by calcium binding to the enzyme. The crystal struc

ture of the propeptide-subtilisin complex suggests that the propeptide prevents the complete 

fonnation of the high-affinity calcium binding site of subtilisin until folding has occurred 

(Gallagher et al., 1995). 

It was found that LipB specifically recognizes and reactivates the denatured lipase from 

the same source. The lipase specificity of LipB appears to be related to the amino acid se

quence of lipases since LipB also reactivates the Pseudomonas sp. 109 lipase, of which the 

amino acid sequence is 98o/o identical with that of LipA, but does not reactivate the denatured 

lipase from P. cepacia M-12-33 with 36% equence identity to LipA. LipB reactivated neither 

of two eukaryotic lipa es with little similarity to LipA in amino acid sequence. This strict 

specificity sugge ts that LipB recognizes a unique structural element of Lip A during its folding 

process. In addition, regarding the sequence identity of the activator proteins, LirnL from 
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Pseudomonas sp. 109 and LipX from P. cepacia M-12-33 are 98o/o and 37o/o identical with 

LipB, respectively. The extent of the identity among the activator proteins is similar to that 

among the corresponding lipases. Thus, the other lipase activator proteins could also essen

tially recognize and activate their own lipase. Hobson et al. ( 1993) suggested that lipase acti

vator proteins function as a private chaperone for the Pseudomonas lipases based on their gene 

construction. The present results experimentally confirmed this idea of the specificity of the 

lipase activator protein. 

LipB is considered to form soluble aggregates in buffer solution without detergents. 

By the addition of detergents to disperse the aggregates, the property of LipB was altered 

during the process of purification and during reactivation of the denatured Lip A. These alter

ations seem to be attributed to anN-terminal hydrophobic segment of LipB, of which first 20 

amino acid residues contain 17 hydrophobic residues. It is known that the LipB protein from 

P. glumae PG 1 is anchored into the inner cellular membrane by its N-terminal hydrophobic 

segment (Frenken et al., 1993a). In the case of the LimL protein from Pseudomonas sp. 109, 

its mutant protein lacking anN-terminal hydrophobic region can be separated by conventional 

chromatographic techniques without a detergent (Ihara et al., 1995). On the basis of these ob

servations, LipB from P. aeruginosa TE3285 is also expected to be buried in the cellular 

membrane at the hydrophobic N-terminal region. In vitro, LipB would be anchored by its N

terminal segment into detergent micelles, so that it would effectively disperse and reactivate the 

denatured LipA. 
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CHAPTER 3 

Molecular Properties and Activity of Amino

Terminal Truncated Forms of LipB 

3-1. Introduction 

In the purification of full-length LipB, SDS was necessary for separating LipB from other 

proteins. Purified LipB did not reactivate even an equimolar amount of denatured LipA. 

From these observations it was suspected that full-length LipB readily fonns soluble aggre

gates. It is considered that theN-terminal hydrophobic region of LipB cause aggregation, be

cause in other lipase activator proteins, this N-terminal hydrophobic region is associated with 

the inner cellular membrane, and the main part of the molecule is in the peri plasm, helping to 

refold the transported lipase (Frenken et al., 1993a, Ihara et al., 1995). 

To identify characteristics of theN-terminal region, in this chapter, two forms of trun

cated LipB mutant proteins: ~21LipB (LipB lacking the N-terminal21 residues) and ~61LipB 

(LipB lacking the N -terminal 61 

residues) were prepared. Differences 

in the original and mutant proteins 

are shown in Fig. 3-1. It was ob

served that when N-terminal 21 

~ hydrophobic segment 30 

Full-length (miLLLIPLAFAASLAWFVWLE~SPAPET 
LipB 3 60 

APPASPQAGADRAPPAASAGEAVPAPQVMP 
61 90 
~APLPTSFRGTSVDGSFSVDASGNLLIT-

22 30 
residues were lacking, LipB was .:121 LipB MEPSPAPET 

31 60 
dispersed in solution and reactivated APPASPQAGADRAPPAASAGEAVPAPQVMP 

denatured LipA more effectively than 

full-length LipB. Furthermore, it 

was found that ~61LipB reactivated 

denatured LipA. 

.:161 LipB 

61 90 
~APLPTSFRGTSVDGSFSVDASGNLLIT

susceptible to proteolysis 

~ 00 
MVAPLPTSFRGTSVDGSFSVDASGNLLIT-

Fig. 3-1. N-terminal amino acid sequences of full

length and truncated LipBs. 
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3-2. Experimental Procedures 

Materials. Bacterial strain Escherichia coli BL21 (DE3) and plasmid pET -3d (Studier et al., 

1990) were used as the host and vector for production of theN-terminal truncated mutants of 

LipB, respectively. Synthetic oligonucleotides were obtained from Takara Shuzo Co., Ltd. 

Plasmid construction. For expression of the gene of ~61LipB, a plasmid named pELB31 

was constructed. A new initiation codon with an Nco I site was introduced into the position 

encoding Lys62 of LipB by site-directed mutagenesis. The mutagenesis was done by the 

method of Eckstein (Taylor et al., 1985) with the Sculptor in vitro mutagenesis system 

(Amersham, Buckinghamshire, UK). The mutational primer consists of the sequence 5'

GCCGGCCATGGTCGCGCC-3'. M13D1 was used as a template for the mutagenesis (Fig. 

2-1 ). The gene of ~61LipB was isolated from the resulting phage vector (Ml3LB30) digested 

by Nco I and Hind III. The plasmid pELB31 was prepared by insertion of this fragment into 

pET-3d. 

pELB20, an expression plasmid for the gene of ~21LipB was designed in a similar 

way to pELB31. A new initiation codon was introduced into the position encoding Leu22 of 

LipB. The mutational primer consists of the sequence 5'-GGCCTGGTTCGTCTCCATGG

AACCTTCCCC-3'. 

Production and purification of truncated LipBs. E. coli BL2l(DE3) pELB31 was 

cultured for the production of ~61LipB in the same way as for overproduction of full-length 

LipB in Chapter 2. From 6 liters of culture fluid, 20.4 g of cell pellets was obtained. These 

pellets were resuspended in 100 ml of the extraction buffer containing 20 mM Tris-HCl, pH 

7.5, 0.2 M NaCl, 0.5 1nM EDTA, and 0.5 mM phenylmethylsulfonyl fluoride (PMSF), and 

were sonicated 20 times for 30 s at 0 OC with a Branson Sonifier 250. By centrifugation at 

25,000 x g for 30 min at 4 °C, the supernatant was recovered as crude extract for later steps of 

purification. 

Column chromatography was performed at 4 °C. The crude extract was mixed with an 

equal volume of the extraction buffer, which contains 2.0 M (NH4)2S04, and the mixture was 

centrifuged at 25,000 x g for 30 min at 4 °C. The supernatant was applied to a Butyl-
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Toyopearl 650M column (2.6 x 30 em) equilibrated with the starting buffer (20 mM Tris-HCl, 

pH 7.5, 0.5 mM EDTA, 1.0 M (NH4)2S04, and 0.5 mM PMSF). Proteins were eluted with 

a linear gradient from 1.0 to 0.0 M (NH4)2S04, and the active fraction was dialyzed against a 

mixture of 20 mM MES-NaOH, pH 6.5, 0.5 mM EDT A, and 0.5 mM PMSF. The dialyzate 

(12 ml) was mixed with 60 Jll of 1 M MnCh, and applied to an AF-Red Toyopearl 650M col

umn (1.6 x 7.5 em) equilibrated with the starting buffer (20 mM MES-NaOH, pH 6.5, 0.5 

mM EDT A, 5 mM MnCl2, and 0.5 mM PMSF). After the column was washed with the san1e 

buffer for removal of unbound proteins, the active fraction was eluted stepwise with 20 mM 

MES-NaOH, pH 6.5, 10 mM EDTA, and 0.5 mM PMSF. The eluate was dialyzed against a 

mixture of 20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, and 0.5 mM PMSF, and applied to a Q 

Sepharose FF column (2.6 x 20 em) equilibrated with the same buffer. The active fraction 

was eluted with a linear gradient from 0.0 to 0.5 M NaCl. The purity of ~61LipB in each step 

was checked by SDS-PAGE (Laemmli, 1970). 

~21LipB was overproduced by the culture of E. coli BL21(DE3) pELB20, and puri

fied from crude extract of the cells by the same protocol as ~61LipB. However, for ~21LipB, 

conditions for Butyl-Toyopearl column chromatography were slightly different: the crude ex

tract was mixed with an extraction buffer that contains 1.6 M (NH4)2S04, and the Butyl

Toyopearl column was equilibrated with a buffer that contains 0.8 M (NH4)2S04. 

The purified full-length LipB was prepared as described in Chapter 2. 

Gel filtration analysis. HPLC gel filtration was done with a Tosoh instrument using a 

TSKgel G3000SWxL PEEK column at 25 °C. The running buffer consists of 20 mM Tris

HCl, pH 7.5, 0.2 M NaCl, 0.5 mM EDTA, and 0.02% NaN3. The flow rate was 0.5 

ml/min, and the elution of protein was detected by absorbance at 280 nm. The column was 

calibrated using Calibration proteins for gel chromatography (Boehringer Mannheim, 

Mannheim, Germany). 

Assay of denatured LipA reactivation. The LipB-assisted reactivation of denatured 

LipA was carried out as described in Chapter 2. 
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3-3. Results 

Overproduction and purification of truncated LipBs. ~21LipB was overproduced 

with use of the T7 expression system in the same way as full-length LipB. Detergent was not 

required for the purification of ~21LipB in any column chromatography, whereas SDS was 

necessary for the separation of full-length LipB from the other proteins. 

When the purified ~21LipB was stored without PMSF at 0 °C, ~21LipB was readily 

digested, and a 30-kDa fragment was accumulated (data not shown). This fragment also reac

tivated denatured LipA. It was found that this fragment has an N-terrninal sequence, Val-Ala

Pro-Leu-Pro, which is consistent with the sequence Val63-Pro67 of full-length LipB. Ac-

~61LipB-

1 2 3 4 

-94 

-67 

-43 

-20 

(k.Da) 

5 

Fig. 3-2. SDS-PAGE analysis of the 

purification of ~61LipB. A 12.5% poly

acrylamide gel was used, and proteins were stained 

with Coomassie Brilliant Blue R-250. Lane 1, 

total cells; lane 2, crude extract; lane 3, Butyl

Toyopearl 650M eluate; lane 4, AF-Red Toyo

pearl 650M eluate; lane 5, Q Sepharose FF elu

ate. 

Table 3-1. Purification of ~61LipB. The specific activity of LipB was determined from the ini

tial rate of reactivation of denatured LipA. One unit was defined as the amount of LipB reactivating one 

unit of denatured LipA per minute at 20 OC. 

Purification Total Total Yield Specific Purity 

step protein (mg) activity (U) (%) activity (U/mg) (-fold) 

Crude extract 982 3660 100 3.73 1.0 

Butyl-Toyopearl 38.9 2700 74 69.4 18.6 

AF-Red Toyopearl 15.5 1480 40 95.5 25.6 

Q Sepharose FF 5.57 727 20 131 35.1 
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cordingly, a gene of LipB lacking theN-terminal 61 residues (Fig. 3-1) was prepared by site

directed mutagenesis. This mutant form , ~61 LipB, was overproduced and purified in the 

similar procedure as ~21LipB. The SDS-PAGE after each purification step on ~61LipB is 

shown in Fig. 3-2. The ~61LipB was purified 35-fold with a yield of 20% (Table 3-1 ). 

Molecular dispersion of truncated LipBs. Because detergent was not needed in the 

purification of ~21LipB or ~61LipB, the molecular dispersion of these proteins in solution 

was examined by gel filtration analysis using TSKgel G3000SWxL PEEK column (Fig. 3-3). 

The exclusion limit of the column is 500 kDa. Full-length LipB was eluted in the void volume 

(6.5 ml) with a broad peak although monomers of this LipB have the molecular mass of 37.5 

kDa. This finding indicates that full-length LipB forms large soluble aggregates. In contrast, 

~21LipB (35.3 kDa) was eluted in a sharp peak from gel filtration at the elution volume of 9.3 

ml. This location corresponds to a molecular 

mass of 63 kDa, which is close to a dimeric 

size. Similarly, ~61LipB (31.5 kDa) was 

sharply eluted at the elution volume of 9.9 

ml, which corresponds to 50 kDa, close to a 

dimeric size. These results suggest that the 

truncation of at least the N -terminal 21 

residues allows homogeneous dispersion of 

the molecules in solution. 

Reactivation of denatured LipA with 

truncated LipBs. The reactivation of de

natured LipA with full-length and two trun

cated LipBs was kinetically analyzed. Reac

tivation reached a maximum with 1 h of in

cubation with the truncated LipBs as with 

full-length LipB (Fig. 2-3). The maximum 

concentration of the reactivated LipA, which 

was determined after 4 h of incubation, is 

F.ull-length .0-
LlpB _ 

-------

~21 LipB 

~61 LipB 

4 6 8 10 12 

Elution volume (ml) 

Fig. 3-3. Gel filtration of full-length and 

truncated LipBs. Ten microliters of purified 

LipB proteins (1 mg/m1) was applied to TSKgel 

G3000SW XL PEEK column. Elution of the pro

teins at the flow rate of 0.5 ml/min was monitored 

by the absorption at 280 nm. 
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plotted against the LipB concentration in Fig. 3-4. In all concentrations tested, either truncated 

LipBs recovered lipase activity much more effectively than the full-length LipB. When the 

concentration of the truncated LipB was less than 59 nM, 1 mole of Lip A was fully reactivated 

per mole of LipB. In contrast, only 0.4 mole of LipA was reactivated per mole of full-length 

LipB even under the most suitable conditions with the LipB concentration less than 8.8 nM. 

These results indicate that the N-terrninal 21 residues prevent LipB from the stoichiometric re

activation of the denatured LipA. This reactivation with truncated LipBs would involve no 

multiple turnover in the same way as full-length LipB. 

<( 
0... 

0.10 

:.:J 0.05 
"0 
Q.) ...... 
ro 
> 
~ 
(.) 

Cd 
Q.) 
lo... 

0.00 0.05 0.10 0.15 1.0 5.0 

LipB (!JM) 

Fig. 3-4. Effects of the concentration of LipBs on maximum 

recovery of LipA activity. A solution of denatured LipA was diluted 

41 - fold in LipB solution (20 mM Tris-HCl, pH 7.5, 0.2 M NaCl, 5 mM 

CaCl2, 0.5 mM EDTA, and 0.5% Triton X-1 00) and incubated at 20 OC for 4 

h. The final concentration of denatured LipA was 0.29 jlM. The solid and 

dashed lines indicate theoretical results when 1.0 and 0.4 equimolar amounts, 

respectively, of denatured LipA are reactivated per mole of LipB. Full-length 

LipB (A); l121LipB C.); l161LipB (o). 
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3-4. Discussion 

It was observed that truncation of theN-terminal region containing 21 residues affects the dis

tribution of apparent molecular weight of LipB. The results of gel filtration suggest that the 

molecules forms soluble aggregates larger than 500 kDa, although the monomeric size is 37.5 

kDa. The region containing theN-terminal 21 residues seems to cause aggregation of LipB 

molecules. In other lipase activator proteins, theN-terminal region of them is also hydropho

bic (J¢rgensen et al., 1991, Ihara et al., 1992, Frenken et al., 1993a). The lipase activator 

protein of P. glumae PG 1, is anchored in the inner membrane by its N-terminal hydrophobic 

segment, and acts on the lipase in the peri plasm (Frenken et al., 1993a). TheN-terminal hy

drophobic region of the lipase activator protein from Pseudomonas sp. 109, is considered to 

be a signal sequence for translocation into the peri plasm (Ihara et al., 1995). In this respect, 

theN-terminal region of LipB would be a similar membrane-associated segment. In vivo, be

cause theN-terminal segment is anchored in the membrane or cleaved off, LipB could beef

fectively dispersed, and activate LipA in the periplasm. 

The results of kinetic analysis show that truncation of the N -terminal 21 residues in

creases LipB-assisted reactivation of denatured LipA in vitro. ~21LipB can quantitatively re

activate LipA although full-length LipB reactivated only 0.4 equivalent of LipA at the tnost. 

These results indicate that theN-terminal region of full-length LipB inhibits the reactivation 

activity of LipB in vitro. Thus, LipB would essentially reactivate a stoichiometric amount of 

denatured LipA. In addition, because the reactivation with ~21LipB does not involve multiple 

turnover, ~21LipB would complex with the reactivated LipA. This reactivated LipA is likely 

to have the same level of lipase activity as native LipA. In contrast, the lipase activator protein 

LimL from Pseudomonas sp. 109 was prepared as anN-terminal truncated mutant, and the 

complex between the lipase and the truncated LimL has a lower specific activity than the native 

lipase (Ihara et al., 1995). Considering the behavior of LipB in the present study, LimL is 

expected to recover full activity of the lipase under certain conditions, such as in the presence 

of calcium ion. 
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It was further demonstrated that the N-terminal region of LipB containing 61 amino 

acid residues was not involved in its reactivation activity of denatured LipA. ~61LipB is ca

pable of reactivating the denatured LipA quantitatively, like ~21LipB. ~21LipB is readily di

gested between Lys62 and Val63, a position that may be exposed into the solvent. Thus, it is 

proposed that the region containing theN-terminal 62 residues of full-length LipB forms an 

independent domain from the residual C-terminal segment that reactivates LipA. 
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Exploring Functional Amino Acid Residues of LipB 

by Random Mutagenesis 

4-1. Introduction 

CHAPTER4 

Random mutagenesis is one of the useful methods for exploring functional amino acid 

residues of a protein. This method includes two processes: introduction of mutation into the 

gene of target protein, and subsequent screening of objective clones from the given mutational 

library. It is particularly important to establish a screening system suitable for the purpose to 

get successful results. Simple and effective screening procedures allow to identify the func

tional residues of target protein. Even after elucidation of three-dimensional structure of target 

protein, information deduced by the random mutagenesis must contribute to understanding its 

functional sites on the basis of the structure. 

In Chapter 3, it was described that at least theN-terminal 61 residues of LipB was un

necessary for its reactivation activity. This finding indicates that ~61LipB contains all of the 

functional amino acid residues required for the reactivation. For the purpose of exploring the 

functional residues, in this chapter, random mutagenesis was introduced into the gene coding 

for ~61LipB by error-prone PCR (Leung eta!., 1989). Subsequently, inactive mutant LipBs 

losing reactivation activity were selected from the given library by two screening steps: plate 

assay with the guidance of active LipA secretion (Chihara-Siomi et al., 1992), and detection of 

the molecular size of LipB by Western blotting to exclude nonsense mutants and frameshift 

ones. As a result, we found four amino acid residues that play an important role in the reacti

vation activity of LipB. 
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4-2. Experimental Procedures 

Materials. Bacterial strain Escherichia coli 1100 (F-, prototrophic, endo J·) (Dtirwald and 

Hoffmann-Berling, 1968) was used as the host for screening of inactive LipBs. E. coli 

JM109 (recAJ, endAJ, gyrA96, thi, hsdR17, supE44, relAJ, A,-, !1(lac-proAB), [F', proAB, 

lac[qzf}M 15, traD36]) and plasmid pRSET B (Invitrogen Co., San Diego, CA) were used for 

overproduction of mutant LipBs (Kroll et al., 1993). pULl is a pUC19 derivative, in which 

lip A and lipB are cloned (Chihara-Siomi et al., 1992). Synthetic oligonucleotides were ob

tained from Cruachem. (Kyoto, Japan). Restriction enzymes and DNA modifying enzymes 

were obtained from Toyobo Co., Ltd., Takara Shuzo Co., Ltd., and New England Biolabs, 

Inc. (Beverly, MA). Rabbit anti-/161LipB was purchased from Sawady Technology Co., 

Ltd. (Tokyo, Japan). Chelate Cellulofine was a gift from Chisso Co., Ltd. 

Plas1nid construction. A plasmid pULB200 was constructed for the template DNA on 

error-prone PCR for random mutagenesis (Fig. 4-1 A). Plasmid pELB31 was digested by 

Nco I, treated with Klenow fragment, and digested by Hind III. A 900-bp fragment contain

ing /161LipB gene was ligated into pUC18 digested by Sma !Hind III to give pULB200. 

pUL32 was derived from pULll for expression of lipA in E. coli (Fig. 4-lB). First, 

a DNA fragment containing lipB with an Nco I site was isolated from M13LB30 digested by 

PpuM I and Hind III. The resulting fragment (1.1 kbp) was substituted for the corresponding 

segment of pUL 11. The given plasmid, named pUL31, has two Nco I sites on lip A and lip B. 

Second, 430-bp of an Xmn I-Spl I fragment without Nco I site on lipA was isolated from 

pUL 1, and ligated with fragments of pUL31 digested by Xmn I and Spl I. The resulting 

plasmid, pUL32, contains a single Nco I site on lipB, which encodes K62M mutant LipB. 

pRSLB30 was constructed for overproduction of /161LipB as a fusion protein contain

ing hexahistidylleader equence (Kroll et al., 1993). The gene coding for /161LipB was iso

lated from pUL32 digested by Nco I and Hind III, and inserted into pRSET B to obtain 

pRSLB30 (Fig. 4-1 C). 
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Fig. 4-1. Construction of the plasmids containing the gene coding for 
~61LipB. (A) pULB200 was used for the template of error-prone PCR on the gene coding for 
~61LipB. (B) pUL32 was the expression plasmid of lipA, and used for tributyrin plate assay, 
Western blotting for detection of LipB production, and DNA sequencing of the gene coding for 
~61LipB. (C) pRSLB30 was the expression vector for H6-~61LipB. Restriction sites are indi
cated as follows: H, Hind III; N, Nco I; P, Pml I; S, Spl I; and X, Xmn l. 
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Random mutagenesis. Random mutation was introduced into the gene coding for 

~61LipB on the basis of error-prone PCR described by Leung et al. (1989) with some modi-

fications. The linearized pULB200 (Nde !-digested) was used as the template DNA. Two 

synthetic oligonucleotides, 5'-TGTAAAACGACGGCCAGT-3' and 5'-CAGGAAACAGCT

ATGAC-3', were used as primers for amplification of the gene of ~61LipB sequence. PCR 

was carried out using 10 ng of the template DNA, 40 pM each primer, 0.2 mM each dNTP, 1 

x PCR buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, and 1.5 mM MgCl2), 0.2-0.3 mM 

MnCh, 1 o/o dimethyl sulfoxide, and 1.25 unit of Taq DNA polymerase in a total volume of 50 

)..ll. PCR consists of 30 cycles using 30 s of denaturing at 94 °C, followed by annealing at 55 

OC for 2 min and extension at 72 OC for 3 min. The PCR product was digested by Nco I and 

Hind III, and a 900-bp fragment containing the gene coding for ~61LipB was isolated. This 

fragment was ligated with the 3.9-kbp fragment of pUL32 digested by Nco I and Hind III to 

produce a plasmid library. 

Assay of LipB activity. In vivo activity of LipB produced in E. coli 1100 pUL32 was 

detected with the guidance of Lip A secretion. Activity of secreted Lip A was detected by hy

drolysis of tributyrin on agar plate as described by Chihara-Siomi et al. (1992). In the present 

study, agar plates contain no isopropyl ~-D-thiogalactopyranoside. 

To detect in vitro activity of LipB, two kinds of assays; reactivation of denatured LipA 

and eros -linking with LipA by glutaraldehyde, were carried out as described in Chapter 2. 

Western blotting. Cell harvest of 1 ml culture of E. coli 1100 pUL32 was solubilized and 

applied to SDS-PAGE according to Laemmli ( 1970). After the electrophoresis, separated 

proteins in th gels were blotted to polyvinylidene difluoride membrane. Then, the membrane 

wa treated with Immun-Blot A say Kit (Bio-Rad Laboratories). Rabbit anti-~61LipB and 

g at anti-rabbit IgG conjugated with horseradish peroxidase (Blake et al., 1984) were used for 

the first and econd antibody, re pectively. Activity staining for peroxidase was performed 

with 4-chloro-1-naphthol and hydrogen peroxide as substrates. 

DNA sequencing. Plasmid i alated from cell harvest of 3 ml culture of E. coli 1100 

pUL32 were u ed for DNA sequencing on the gene coding for ~61LipB . The sequencing 

wa carried out by use of ABI PRISM Dye Terminator Cycle Sequencing Kit With AmpliTaq 
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DNA Polymerase, FS. DNA encoding C-terminal half and N-terminal half of ~61LipB was 

sequenced with primer I (5'-TGTAAAACGACGGCCAGT-3') and II (5'-AGCAGCCTCC

GCGGGAGAA-3'), respectively (Fig. 4-2). Electrophoresi and equence analysis of there

sulting samples were carried out by ABI PRISM 377 DNA equencer. 

Site-directed mutagenesis. Site-directed mutagene is was carried out on the basi. of the 

modification of the overlap extension PCR method (Ito et al., 1991 ). Mutagenized pUL32 

plasmid was used as the template. Primers described below are named according to Ito et al. 

(1991), and are schematically represented in Fig. 4-2. Primers I and II in the sequencing ex

periments were used for both rounds of PCR. Primer III (5'-CCT AGCTTGCA TGCCTGC

AGG-3') corresponds to the sequence located between primer I and the gene coding for 

~61LipB with one mismatched base that destroys the Hind III site. Primers IV -a (5'-CGGA-

ACCTGTTCGACT ACTTCCTCAGC-3') or IV -b (5'-GAACCCCTTCAGCAAAGCCTG-3') 

were used for mutation in which the region encoding the amino acid residue of Arg94-Ser 102 

or Glu107-Leul13 is replaced by the wild-type sequence, respectively. The e primers are 

designed to introduce a silent mutation with a restriction site: a BspE I site for primer IV -a, 

and an Xmn I site for primer IV -b. On the first PCR, two DNA fragments were amplified 

using either primers I and IV or primers II and III. After these products were mixed and an

nealed, the second PCR was performed with primers I and II. The resulting product was di

gested with Nco I and Hind III, and then was substituted for the corre ponding segment of 

pUL32. 

Construction of plasmids encoding single-residue substituted 1161 Lip B. From 

multiple-residue mutagenized plasmids, five single-residue substituted mutants (D76G, Y99C, 

Y99H, S 1 02R, and R 115C) were prepared as follows . The mutational sites of each mutant 

and restriction sites are illustrated in Fig.4-2. 

(1) D76G. pUL32 (D76G/F100Y/F195L/1256T/R261H/D277G/R309C) was digested 

by Nco I and Pml I, and a 360-bp fragment containing the region of D76G/FIOOY was in

serted into the corresponding position of wild-type pUL32. Next, TyrlOO in the re ulting 

plasmid was returned to phenylalanine residue by site-directed mutagenesis using the primer 

IV -a, so that pUL32 (D76G) was constructed. 
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/ 
/ 

/ 
/Ace I 

D76G· 

pUL32 

-lipB(K62M) ....... _ 
Ban II, 

....... 
IV-b """", 

• (F1 OOY)

·Y99C
-Y99H(E107G) -

.............. 

-51 02R - - - (E126G) 

- - (L109Q) R115c-

Fig. 4-2. Schematic drawing of 

restriction sites and primer loca

tions in pUL32. Filled triangles 

show annealing regions of primers used in 

DNA sequencing and site-directed mutage

neses. Five single-residue substituted 

LipBs are represented in bold letters. 

Residues replaced by that of the wild-type 

to prepare the single-substituted mutants 

are shown in parentheses with arranging 

in the respective line. 

(2) Y99C. pUL32 (V75A/Y99C) was digested by Ace I, and an 820-bp fragment 

containing the region of Cys99 was inserted into the corresponding region of pULB200 with 

wild-type sequence of ~61LipB. Then, a 900-bp Nco I-Hind III fragment from the resulting 

plastnid was substituted for the corresponding segment of wild-type pUL32 to give pUL32 

(Y99C). 

(3) Y99H. pUL32 (Y99H) was prepared by site-directed mutagenesis of pUL32 

(Y99H/E 1 07G) using the primer IV -b. Gly 107 was then replaced by glutamic acid residue. 

(4) S102R. pUL32 (S102RIE126G) was digested by Nco I and Hind III, and a 900-

bp fragment was once inserted into the corresponding position of pULB200. This plasmid 

was digested by Ban II, and a 150-bp fragment with the region of Arg102 was substituted for 

the corresponding segment of wild-type pULB200. The resulting plasmid was then digested 

by Nco I and Hind III, and a 900-bp fragment was replaced by the corresponding region of 

wild-type pUL32 to obtain pUL32 (S 102R). 

(5) Rll5C. pUL32 (R115C) was prepared by site-directed mutagenesis of pUL32 

(Ll09Q/Rl15C) using the primer IV-b. Gln109 was then replaced by leucine residue. 

Overproduction and purification of H6-!J61 Lip B. For preparation of H6-~61 Li pB 

(~61LipB fusion protein containing hexahistidylleader sequence), E. coli JM109 pRSLB30 

was cultured in 100 rnl of SOB medium (2o/o Bacto tryptone, 0.5% Bacto yeast extract, 0.05o/o 
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NaCl, 2.5 mM KCl, and 10 mM MgCb) containing 50 )lg/ml ampicillin at 37 °C. When ab

sorbance at 600 nm reached 0.3, 1 mM of isopropyl ~-D-thiogalactopyranoside was added. 

After further 1-h culture, M13 phage including the gene ofT7 RNA polymerase was mixed 

with the culture, and the cells were grown for 5 h. 

Pellets of the cells were suspended in 10 ml of the extraction buffer containing 20 mM 

sodium phosphate buffer, pH 7.5, 0.2 M NaCl, 10 mM imidazole, 0.02% NaN3, and 0.5 

mM PMSF, and sonicated 10 times for 30 s at 0 OC with a Branson Sonifier 250. After cen

trifugation at 20,000 x g for 20 min at 4 °C, the supernatant was applied to a Ni2+ -bound 

Chelate Cellulofine affinity chromatography column (1.1 x 5 em) equilibrated with the starting 

buffer (20 mM sodium phosphate buffer, pH 7.5, 0.5 M NaCl, 30 mM itnidazole, 0.5 mM 

PMSF, and 0.02% NaN3). The active fraction was eluted with 300 mM imidazole. 

4-3. Results 

Random mutagenesis and screening of in

active LipBs. To explore amino acid residues of 

LipB required for reactivation of LipA, random 

mutagenesis was carried out on the gene coding for 

~61LipB, and inactive LipB mutants were selected 

by two steps of screening, as summarized in Fig. 4-

3. The mutation was introduced by error-prone 

PCR method (Leung et al., 1989) using pULB200 

as the template. Addition of 0.2-0.3 mM MnCb to 

the PCR reaction mixture stimulated incorporation 

of incorrect nucleotides during the polymerization. 

The PCR products were inserted at immediate 

downstream of the N-terminal 61-residue region of 

LipB into pUL32 to prepare plasmid library (Fig. 4-

1). 
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Fig. 4-3. Scheme of random mutagen

esis and subsequent screening steps for 

obtain inactive forms of LipB. 
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(A) (B) 

LipB-
~ 

LipB- --~ 

.. 
~ ......... 

(digested) 

1 2 3 4 5 6 

Fig. 4-4. Tributyrin plate assay for de

termining LipB activity in E. coli 1100 

pUL32. (A) Clear zone-positive colonies that 

possess wild-type lipB sequence in pUL32. (B) 

Clear zone-negative colonies. These clones are 

expected not to produce active LipB. 

Fig. 4-5. Western blotting analysis of 

LipB production in E. coli 1100 

pUL32. Lane 1, wild-type LipB; lanes 2-6, 

LipB from clear zone-negative clones. Sample 

on lane 6 was selected as a clone with producing 

a normal size LipB. Digested product was al

ways detected even in the wild-type (lane 1). 

E. coli 1100 was transformed with this pUL32 library, and was cultured on tributyrin 

agar plate for the first screening of inactive LipBs (Fig. 4-4). Colony of E. coli 1100 pUL32 

with wild-type LipB formed clear zone due to hydrolysis of tributyrin by secreted active Lip A. 

In the case of mutational library of pUL32, up to 20 colonies formed no clear zone out of 

about 3000 colonies from one plate (15 em of diameter). Then, 175 of colonies without clear 

zone were picked up and cultured for the second screening to exclude frameshift mutants and 

nonsense ones. This screening was carried out by Western blotting with anti-~61LipB to de-

tect the molecular weight of produced LipB in each cell. Some examples of this Western blot

ting analysis are shown in Fig. 4-5. On lane 6, a band was detected at the same position as 

wild-type LipB on lane 1. As a result, 27 types of such samples that contain the normal size 

of LipB were selected. Plasmids were isolated from these selected mutant cells, and were se

quenced on the gene coding for ~61 LipB. In all of these mutants, multiple amino acids (2-16 

residues) were replaced (Table 4-1). 
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Table 4-1. List of ~61LipB mutants obtained by random mutagenesis. 

No. Amino acids Mutational sites 

(Bases) 

30B 2 (2) 

29A 2 (2) 

30C 2 (3) 

30E 2 (2) 

26H 3 (3) 

26E 3 (6) 

26K 3 (5) 

19G 3 (7) 

29B 3 (4) 

27D 3 (4) 

26M 3 (5) 

30F 4 (4) 

261 4 (5) 

26L 4 (7) 

26D 5 (5) 

26G 5 (7) 

26C 6 (9) 

26N 6 (9) 

26B 6 (6) 

261 6 (7) 

liB 6 (6) 

27C 6 (8) 

27E 6 (7) 

26A 7 (7) 

21A 10 (14) 

17C 12 (14) 

21C 16 (18) 

V75A Y99C 

Y99H E107G 

S 102R El26G 

L109Q Rl15C 

S69P Ll46Q D289V 

F80S L287P E293G 

D98G Fl86L E317V 

LlOlF Yl19N R314C 

El07G E145K E324G 

F186L F320C L328P 

T270S L315P L331P 

F97S A128T L220P E239G 

Vl04D R163H R327S E338V 

E107V L146R K294V N300Y 

V63A G77S T210I I257T E317V 

L 101 P S 1 02G I140T K207G E305G 

P67L S69P S74C L96Q A216T S321G 

G72S S78C D92G Lll3Q K207E A245V 

S80G D92Y Al71V F195S E230G R308S 

R91C P127L Q131R L162R L208P R314H 

Y99H S112G Ll53P Q229R L247P L331P 

Y139F S178R E211D A246T E274K L287P 

R165L A181V K207R Q263R L287P I297V 

D76G F100Y F195L I257T R261H D277G R309C 

I93V FlOOS Sl02R Ql11L El80G L224P Q228R F291S 

E317G R340C 

S78R N86S El23K K170R L200P S209G L247P A250V 

M260V V265A E324G L331P 

L88P F97S E106V L109Q Ll33S Ll35P Yl39C Dl60G 

Nl79D V183A K207V S209G S223G L240P A245T Q275R 
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Preparation of single-residue substituted inactive LipBs. Preparation of single

residue substituted LipBs from above mutants was attempted by genetic engineering tech

niques to detennine functional residue for activity of LipB . A DNA fragment containing a part 

of the mutational sites was substituted for the corresponding segment of wild-type pUL32 to 

obtain a new plasmid with the other part of the mutational sites. In other cases, site-directed 

mutagenesis was performed to replace one of the mutational sites by wild-type sequence. 

New plasmids prepared in these procedures were introduced into E. coli 1100, and the clones 

of inactive LipB were further selected by tributyrin plate assay. The constructed plasmid was 

checked again by DNA sequencing. As a result, five genes of single-residue substituted mu

tant LipBs missing their in vivo activity (D76G, Y99C, Y99H, Sl02R, and Rl15C) were 

obtained from multiple-residue mutagenized plasmids, pUL32 (D76G/F100Y/F195L/I256T/ 

R261H/D277G/R309C), pUL32 (V75A/Y99C), pUL32 (Y99H/E107G), pUL32 (S102R/ 

E 126G), and pUL32 (Ll09Q/R115C), respectively. The mutational positions of single

residue or double-residue substituted LipB finally obtained are illustrated in Fig. 4-6. 

Preparation of the purified H6-iJ61 LipB mutants. Purified samples of the five 

single-residue substituted mutants were prepared as hexahistidyl fusion proteins (H6-

~61LipB) for examination of their in vitro properties. A DNA fragment encoding ~61LipB 

62 100 
I I 

D76G 
Y99C 
Y99H 

Sl02R 
RllSC 

V63A G77S 
S69P L146Q 

~61 LipB 200 
I 

LlOlP S102G 
V104D 

E107V 
Rl63H 

L146R 

300 
I 

L287P E293G 

340 

F320C L328P 

Fig. 4-6. Mutational sites of single- or double-residue substituted mutants of 

t-.61LipB. Substituted residues are identified by DNA sequencing of the gene coding for L161LipB. 

-42-

CHAPTER4 

mutant from pUL32 was inserted into an expression plasmid pRSET B. The resulting plas

mid was introduced into E. coli JM109, and H6-~61LipB was overproduced. Five mutants 

of H6-~61LipB as well as the wild-type were readily purified with the Ni2+ -bound Chelate 

Cellulofine. Five mutant H6-~61LipBs were observed to show similar circular dichroism 

spectra to wild-type H6-~61LipB . Typical examples are shown in Fig. 4-7. Thus, the fold

ing of each mutant LipB would not be significantly changed by substitution of the amino acid 

residue. 

In the case of Y99C and R115C, effect of the substitution of cysteine residue on 

molecular assembly was analyzed by SDS-PAGE with or without 2-mercaptoethanol (Fig. 4-

8). Without the reductant, both mutants appeared as two bands, which are close to the sizes 

of monomer (36 kDa) and dimer (72 kDa). In contrast, dimeric size of the band disappeared 

by addition of 2-mercaptoethanol. Because these mutants have only one cysteine residue in

troduced by the mutagenesis, parts of molecules of Y99C and R 115C are likely to form 

dimers by the disulfide bond with the substituted cysteine residue, Cys99 and Cys 115, re

spectively. 

(A) (C) 

0~-----------------=------~ 

~ -10000 
(\J~ 
E 
() 

0) 

~ 0 

~ 

-10000 

210 

(B) 

220 230 240 250 260 210 220 

wave lenqth (nm) 

230 240 250 

Fig. 4-7. Circular dichroism spectra of the wild-type and mutant H6-L161LipBs. 

(A) Wild-type; (B) Y99C; (C) Sl02R; (D) Rll5C. 
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94-
67-

30-

20-

(kDa) 

1 2 3 

-D 

~.~~· -M 

4 5 6 

Fig. 4-8. SDS-PAGE analysis of the effect 

of 2-mercaptoethanol on molecular sizes of 

Y99C and R115C of H6-~61LipB. Lanes 1 and 

4, the wild-type; lanes 2 and 5, Y99C; and lanes 3 and 

6, R115C. The samples on lanes 1-3 were treated with 

2-mercaptoethanol, whereas those on lanes 4-6 were not. 

The letters M and D represent monomeric and dimeric 

sizes of H6-~61LipB, respectively. A 12.5% polyac

rylamide gel was used , and proteins were stained 

Coomassie Brilliant Blue R-250. 

In vitro reactivation of mutant LipBs. Activity of single-residue substituted H6-

L\61LipB was determined by measurement of reactivation of denatured LipA. H6-L\61LipB 

with the wild-type sequence was observed to recover lipase activity of denatured LipA in the 

same way as L\61 Lip B. Activity of the mutant LipBs relative to the wild-type is shown in 

Table 4-2. The recovery of lipase activity with all the mutants was lower than that with wild

type H6-L\61LipB: this result was consistent with the features in tributyrin plate assay. No-

tably, Y99C, Y99H, Sl02R, and R115C expressed less than 1% activity of wild-type H6-

L\61LipB in 4-h reactivation of denatured LipA. Thus, amino acid residues ofTyr99, Ser102, 

and Arg115 play a significant role in reactivation activity of LipB. In contrast, D76G recov

ered lipase activity that is about one third of the recovery with wild type H6-L\61LipB. Initial 

rate of reactivation with D76G was observed to be 3% of that with wild-type H6-L\61LipB. 

Ability of the mutants to form a complex with denatured Lip A was further examined by 

cross-linking with glutaraldehyde (Fig. 4-9). Wild-type H6-L\61LipB was cross-linked with 

LipA after reactivation, and a 66-kDa band was detected by the SDS-PAGE. In contrast, 

Y99C, Y99H, S 102R, and R115C, which almost lost reactivation activity, showed no de

tectable cross-linked product with LipA. Thus, these mutants altered to lose the ability to 

complex with LipA. In addition, D76G was slightly cross-linked with LipA. 
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Table 4-2. Reactivation of denatured lipase with H6-~61LipB mutants. Reac

tivation was started by addition of 5 ~l of 12 ~M LipA denatured with 6 M guanidine hydrochlo

ride into 200 ~l of LipB solution (20 mM Tris-HCI, pH 8.0, 0 .2 M NaCl , 5 mM CaCl2, 0.5 

mM EDTA, and 0.5% Triton X-1 00) . The mixture was incubated at 20 °C, then lipase activity 

was measured. The relative lipase activities to the wild-type are shown. 

Mutants 

D76G 
Y99C 
Y99H 
S102R 
R115C 
wild-type 

Initial rate a 

(%) 

2.8 
N.D. c 

N.D. 
N.D. 
N.D. 

100 

Recovery with 
4-h reactivation b 

(%) 

35.1 
0.21 
0.08 
0.53 
0.51 

100 

a Initial rate of reactivation during 5-min reactivation. 

b Recovery of lipase activity by 4-h incubation. In the case of wild-type H6-~61 LipB, reactiva

tion reached maximum at the period. 

c Not determined. 

complex-

H6-
L\61LipB-

LipA-

1 2 3 4 5 6 

-20 

(kDa) 

Fig. 4-9. Cross-linking between mutant H6-

~61LipB and Lip A with glutaraldehyde. A ftcr 

4-h reactivation, glutaraldehyde was added to a mixture 

of H6-~61LipB (56 nM) and denatured LipA (290 nM). 

Lane 1, wild-type; lane 2, D76G; lane 3, Y99C; lane 4, 

Y99H; lane 5, S102R; and lane 6, RJ I5C. A 12.5% 

polyacrylamide gel was used, and proteins were stained 

Coomassie Brilliant Blue R-250. 
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4-4. Discussion 

To find the functional amino acid residues of LipB, random mutagenesis was carried out on 

the gene of L161LipB, and mutant LipBs missing the activity were selected, of which an amino 

acid residue is substituted. The random mutation itself is readily introduced by error-prone 

PCR (Leung et al., 1989). Subsequently, two steps of screening methods were adopted to 

select the inactive LipBs from the given library: tributyrin plate assay in the first step and 

Western blotting to detect the molecular size of LipB in the second step. On the tributyrin 

plate, the secretion of lipase from bacterial colonies can be detected (Lawrence et al., 1967). It 

has been observed that the active LipA was secreted by an E. coli strain carrying pUL11, a 

plasmid containing lipB as well as lipA, so that the colonies formed clear zone due to the 

(Chihara-Siomi et al., 1992) hydrolysis of tributyrin . Furthermore, when the lipB gene was 

disrupted in the plasmid, the transformant did not secrete the active LipA, then the clear zone 

was not detected. By utilizing these features, the clones with inactive LipB were selected on 

tributyrin plate assay from the library of pUL32, a derivative of pUL11. However, a series of 

the clear zone-negative clones included the frameshift mutants and nonsense mutants (data not 

shown). It is reported that the error-prone PCR using MnCh induces not only the base 

substitution but al o the base deletion (Leung et al., 1989). The frameshift or nonsense mu

tants do not fit the present purpose , that is, determining the amino acid residues important to 

the activity of LipB. It is expected that such clones would produce a different molecular size 

of LipB from the wild-type one. Thus, the LipB production in each cell selected in the first 

creening was subsequently analyzed by Western blotting using anti-L161LipB to exclude 

those unnecessary mutants. The selected mutants with the normal molecular size were ob

served to be ba e-, ubstituted proteins by DNA sequencing experiments. Consequently, these 

imple creening teps have allowed rapid discrimination of functional amino acid residues of 

LipB. 

In Chapter 3, it is demon trated that theN-terminal 61 residues of LipB is unnecessary 

for it reactivation activity. Thi feature indicates that all of the functional residues in the reac

tivation exi ton the region of L161LipB. Therefore, for the purpose of the present study, it is 

sufficient that only the gene of ~61LipB is erved as a target DNA in the random mutagenesis. 
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However, it was observed that the production of the full-length LipB (containing N-terminal 

61 residues) is needed to detect the activity of LipB by the tributyrin plate assay. When the 

gene of the L161LipB instead of the full-length LipB gene wa directly inserted at downstream 

of lip A in p UL 11, clear zone was little detected around the colony of E. coli 1100 carrying this 

plasmid (data not shown). This result indicates that the secretion of LipA by E. coli cells 

seems to require theN-terminal region of the full-length LipB. Thus, it is relevant to employ 

the strategy that the gene library of L161LipB derived from the error-prone PCR was directly 

ligated to the DNA encoding theN-terminal 61 residues of pUL32. As a result, E. coli 1100 

pUL32 produces the full-length LipB that is a mutant of K62M due to the plastnid construc

tion. However, it was observed that this mutation does not affect the ability to form clear 

zone. After all, a reliable system of random mutagenesis was established that the gene of 

L161LipB is readily isolated from and ligated to the plasmid used in the present study at the 

common cloning sites of Nco I and Hind III (Fig.4-1). 

The random mutagenesis suggests that four residues of LipB, Asp76, Tyr99, Ser I 02, 

and Arg 115 are likely to participate in its reactivation activity. The single-residue substituted 

mutants, Y99C, Y99H, S 102R, and R115C were observed to decrease the activity of reacti

vating the denatured Lip A, and to form no detectable complex with Lip A. Notably, it is pro

posed that Tyr99 and Arg115 are the residues on the surface of the LipB molecule, because 

the single cysteine residue of Y99C and R115C formed the intermolecular disulfide bond. 

Thus, Tyr99 and Arg115 could directly interact with LipA. Regarding above four residues of 

LipB, only Tyr99 is completely conserved among the lipase activator proteins (Fig. 1-3). In 

the case of the activator proteins form P. cepacia group (Iizumi et al., 1991, J ¢rgensen et al., 

1991, Nakanishi et al., 1991), residues corresponding to Ser102 and Arg115 are threonine 

and alanine, respectively. In Chapter 2, it is demonstrated that LipB of P. aeruginosa TE3285 

reactivated Lip A from the same origin and Pseudomonas sp. 109 lipase that has 98o/o identical 

sequence with LipA, but not from the other Pseudomonas species. This feature suggests that 

several amino acid residues of LipB would be attributed to the strict substrate specificity. In 

this respect, such residues important to specific recognition of LipA would not be necessarily 

conserved among the lipase activator proteins. Therefore, Serl 02 and Arg 115 of LipB may 

be responsible for the specificity of LipB. 
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CHAPTER 5 

Conclusions 

LipB, lipase activator protein of Pseudomonas aeruginosa TE3285, is a folding factor for pro

ducing active extracellular lipase (LipA) in the cell. In this study, roles of LipB in the reacti

vation process of LipA were analyzed in the molecular level by means of protein engineering 

techniques. 

LipB was overproduced in Escherichia coli, and purified 4.9-fold over the crude ex

tract in the presence of SDS. The purified LipB reactivated LipA that is denatured with 

guanidine hydrochloride, and this reactivation did not involve multiple turnover. In this reac

tivation, a 1: 1 complex between Lip A and LipB was detected in a cross-linking experiment, 

suggesting that LipB still binds to LipA after the reactivation. Calcium ion was essential for 

the complex formation and the reactivation, and addition of EDT A caused inactivation of the 

reactivated LipA bound to LipB more rapidly than the native LipA. These findings suggest 

that LipB could affect the calcium binding to LipA in the reactivation process. LipB was un

able to reactivate lipases from other sources except Pseudomonas sp. 1 09; this lipase has an 

amino acid sequence which is 98o/o identical to that of LipA. Thus, it may be concluded that 

LipB specifically recognizes a unique structural element of Lip A. 

Two mutant forms, which had truncated N-terminals, of LipB were prepared, and their 

molecular properties and activity were compared with those of the full-length form. A trun

cated LipB lacking its hydrophobic N-terminal 21 residues was dispersed homogeneously in 

solution, and could reactivate the stoichiometric amount of denatured LipA. In contrast, full

length LipB formed soluble aggregates, and reactivated less than an equimolar amount of LipA 

even under the most suitable conditions. These findings suggest that some or all of the N

terminal 21 residues caused aggregation of the protein molecules, and prevented LipB from 

fully stoichiometric reactivation. A truncated LipB lacking theN-terminal 61 residues also re-
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activated denatured Lip A, suggesting that the N -terminal 61-residue region of LipB is not 

involved in reactivation. 

To find important amino acid residues of LipB in reactivation of Lip A, random muta

genesis using error-prone PCR was performed on a gene encoding ~61LipB. The given 

DNA library was introduced into the lipase expression system using E. coli, and LipBs losing 

its activity was selected by two screening procedures. First, on agar plates containing tribu

tyrin for substrate of LipA, single colonies without active LipA secretion were selected as 

clones missing active LipB. Second, to exclude nonsense mutants and frameshift ones, 

molecular size of LipB in the given clones was confirmed by Western blotting. From these

lected mutants, of which multiple residues are replaced, five single-residue substituted mutants 

were newly prepared. Consequently, Y99C, Y99H, S102R, and R115C mutants formed no 

detectable complex with LipA and lost the in vitro reactivation activity. In the case of Y99C 

and R 115C, their single cysteine residue formed the intermolecular disulfide bridge. Thus, 

Tyr99 and Arg 115 are likely to exist on the molecular surface of LipB, and directly interact 

with the denatured LipA in the reactivation process. 
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