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Chapter 1 

INTRODUCTION 

A translational diffusion process in solution is one of fundamental and important processes in 

chemistry and physics and has attracted many investigators for a long time. Therefore, the 

diffusion constants (D) have been measured by many methods (capirally method, NMR spin echo, 

dynamic light scattering, Tayler dispersion naethod, etc.). l-
3 The diffusion is the flow of 

substance to achieve the equilibrium condition from a macroscopic point of view. According to the 

Fick's low, the amount of the flowing matter is proportional to the gradient of the concentration 

(strictly, of chemical potential), and this proportional constant is the diffusion constants (D). 4 

Such the flow of the substance are described by the hyrododynamic theory by using the 

macroscopic parameter of solvents (melting point, boiling point, density, dielectric constant, or 

viscosity, etc.). 5 On the other hand, the diffusion is also described as the movement of molecules 

by the random force from surrounding molecules from a microscopic point of view. Such the 

behavior is expressed by the statistical theory by using the microscopic parameter (molecular 

structure, location, or intermolecular interaction, etc.,). 6 On the basis of the statistical theory, 

diffusion constant is often obtained by the molecular dynamics (MD) simulation. l-Z, 
6 However, 

obtaining D of the solute molecules in solution by the simulation are generally difficult and obtained 

values of Dare hardly reproduce the experimental one. 

In many case, Dare treated by the hydrodynamic theory because it is simple and convenient. 

Simply, according to the hydrodynamic theory, Dis given by the Stokes-Einstein (SE) formula 

with the radius of the solute molecule (r) , the viscosity of the solvent (Yl), and the temperature (T). 

l-
3

, 
5 However, in many cases , the calculated D by the SE equation cannot reproduce the 
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experimentally observed D. The discrepancy may come from several factors. For example, theSE 

equation is based on some assumptions such that the sol vent is treated as a continuous fluid , the 

form of the solute molecule is spherical, and solute-solvent and/or solute-solute interactions are 

disregarded. Perrin proposed a method for correcting the deviation from the spherical shape. 7 

Spernol and Wiltz modified theSE equation in terms of a molecular interaction semiempirically.8 

Many empirical equations have been proposed so far.9
-
12 By using these modified equations, the 

calculated D, in many case, can reproduce the experimental D. 

An interesting case will arise, when there is a strong intermolecular interaction among the 

molecules. In such a case, these calculated I) no longer agrees with the experimental D. For 

1 . 1 3 . d" 1 14 h . . . h 1 h c 1 b" examp e, Ions or Ion ra 1ca s ave strong Interactions Wit so vents by t e ou om IC 

potentials and this electrostatic interaction influences the diffusion process. This effect should be 

taken into account in the diffusion theories. For example, Zwanzig, 1 5 Hubbord and On sager, 16 

and Bagchi 17 have proposed dielectric friction models. The influence of the solute-solvent 

interaction through the hydrogen bonding was reported by Chan and Chan 183
, and Tominaga et 

al. 
18

b recently. The hydrogen bonding between the -OH or -NH2 group of a solute molecule and 

pro tic sol vents makes the diffusion process very slow. Naturally, this effect was not observed in 

non-polar solvents. As shown from these exa·mples, it is apparent that Dis very sensitive to the 

environment around the solute molecule. 

In this respect, it is very interesting and important to examine the diffusion process of the 

intermediate radicals from the following view points. First, the diffusion processes of radicals are 

essential for understanding the reaction mechanisms because most of chemical reactions are 

controlled by the diffusion processes of intermediate radicals. 1 9 Therefore, we have to know the 

diffusion of the intermediate radicals for understanding the rate constant, yield, and activation 

energy, etc., of the chemical reaction . Second, radical diffusion also influences the chemically 

induced dynamic electron (nuclear) polarization (CIDEP, CIDNP) and magnetic field effect on the 

reactions. 
2 ° For example, mutual diffusion of radicals in a radical pair governs the electron spin 

dynamics through the electron-electron interaction and, then, the spin dynamics control the 

recombination probability of the radicals as well as the magnitude of the electron or nuclear spin 
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polarization. 2 0 Third, it is important to know the relationship between the intermolecular 

interaction and the molecular dynamics in solution. Since radicals have unpaired electrons and the 

chemical reactivities of radicals are generally high, we expect that the molecular interaction of 

radicals is quite different from those of stable molecules and ionic species. Fourth, it is interesting 

to study the microscopic structure or microscopic aggregation around chemically active molecules. 

The solvation and aggregation in solution are important processes especially, in aqueous solutions. 

Since D is very sensitive to the environment around the solute molecule, information of the 

solvation structure and the existence of microscopic aggregation, etc. of radicals may be extracted 

from the studies of the diffusion process. 

However, only a few attempts have so far been made to measureD of transient radicals mainly 

because of the experimental difficulties. Most of the traditional methods require relatively long 

times for measurements. Naturally such methods cannot be applied to transient radicals that appear 

during chemical reaction for just short periods. Usually concentrations of the radicals are not very 

high unless very strong light intensity is used to produce radicals . Even if such a high radical 

concentration can be established, it will induce undesirable side reactions and will not be suitable 

for the study on the diffusion. Therefore, D of radicals are often assumed to be similar to those of 

the non-radical molecules with similar molecule volumes. 2 1 Such an assumption seems to be 

reasonable because D is governed by only three parameters, r, 11, and T, from the SE relation. 

However, when there is a strong intermolecular interaction among the molecules, D no longer can 

be treated only by the hydrodynamic models. Then, there is no a priori reason why D of the 

radicals should be similar to that of the non-radical molecules. 

In spite of these difficulties, there have been several reports on the measurement of D of the 

transient species. For example, Burkhart et al. have measured D of the some alkyl radicals using 

the photochemical space intermittency (PCSI) method, 2 2 which was developed by Noyes. 
2 3 

They have shown that alkyl radicals diffuse more slowly compared with the parent molecules even 

though the molecular sizes are similar. 2 2 However, probably because of the difficulties in the 

procedures and relatively large uncertainties, 2 4 the application of this method has been limited. 

Nickel and co-workers have developed a method for measuring D of transient species by modifying 
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., -
the PCSI method with an interference pattern between two laser beams. - ~ They have detected 

delayed florescence and succeeded in determining D of several aromatic molecules in the triplet 

states with high accuracy. Although, potentially this method could be applied to photochemical 

reaction system, the sample is limited to a molecule that shows luminescence. More recently, Levin 

et al. suggested slow diffusion of a benzophenone ketyl radical created by the photoinduced 

hydrogen abstraction reaction in glycerin on the basis of the magnetic field effect on the 

disappearing rate of the radical. 2 6 However, this method is not a direct detection of the diffusive 

motion in solution. 

The laser induced transient grating (TG) method is another method to measure D of 

photochromic molecules. In the TG experiment, a sinusoidal pattern is created by the interference 

of two excitation beams. If the sample contains photochemically active molecules, these molecules 

are converted to other species in the bright region but not in the dark region. This site-selective 

excitation induces a spatially modulated distribution of the chemical species and it causes a spatially 

modulated refractive index and/or absorbance. This modulation (grating) diffracts another probe 

beam entering in this region. The signal decays as the modulation smears out by the diffusion. 

Therefore, the decay of the TG signal reflects the diffusion process of the probe molecules. Since 

this method has the advantage that it detects the diffusion in a short distance ("'Jim), the 

measurement time is dramatically reduced. Also because of the high sensitivity of this method, the 

concentration of the probe molecules can be low enough not to perturb the solution dynamics. On 

the basis of these advantages, the TG method has been applied to measure the D of dye molecules 

l . . 1 . 27 b l . l l . 28 1 l 29 1 30 not on y 1n organic so utions ut a so tn po ymer so uttons, po ymer g asses, a ge , 

and liquid crystals. 3 1 The diffusion processes in such mediums are too slow to measureD by the 

traditional methods. 

In this thesis, I describe the measurements of D of transient radicals in solution. In chapter 2, 

the theory and the experimental set up for the TG method are described. 3 2 
In chapter 3, 

measurements of D of the transient radicals created by the photoinduced hydrogen abstraction 

reactions are discussed.3 3 Anomalously slow diffusion processes of such the radicals were found. 

33 I h 4 h 1 . . 34 1 . 35 d 36 d d f n c apter , t e so vent VISCOSity, so ute size, an temperature epen ences o 
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radical's D were investigated to know the factors which control the diffusion process. In chapter 5 , 

diffusion process of the benzyl radical created by the photodissociation is compared with those of 

the hydrogen abstracted radicals. 3 7 In chapter 6, D of anion radicals are compared with D of the 

electrically neutral radicals to know the charge effect. 3 8 The radical diffusion in the aqueous 

sol uti on 3 9 and the micellar sol uti on 4 0 are shown in chapter 7 and 8, respectively. 
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Chapter 2 

METHOD 

2.1 Principle of the Transient Grating Method. 

The transient grating (TG) method is one of third ordered nonlinear optical spectroscopy. l- 2 

The fourth electromagnetic wave (TG signal) is created by the mixing from the three 

electromagnetic waves (two excitation beams and a probe beam). Such a nonlinear effect of the TG 

method is interpreted by the diffraction of the probe beam from grating created by the two excitation 

beams. 3 First, a sinusoidal bright-dark pattern in the sample solution is created by crossing two 

coherent beams (optical grating). Solute molecule_s in the cell were excited by the interference 

pattern. The excited molecules release the heat by non-radiative relaxation and the temperature of 

the sample is modulated (thermal grating). The excited molecules partly react and the 

concentrations of the reactant and product are also modulated (species grating). The optical 

properties (refractive index and /or absorbance) of the sample solution are spatially modulated by 

the spatially periodic distributions of the tetnperature and the concentration of reactants and 

products. Therefore, a probe beam is partly diffracted by the grating when the phase matching 

condition was satisfied. The diffracted probe light intensity ( the TG signal ) is related to the 

magnitude of these modulations. 

The modulated light intensity for the optical grating is obtained by superposition of two 

monotony plane waves and given by 

I (x) = 1
0
12 ( 1+ cos qx) (2-2) 
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where 1
0
/2 is the light intensity of the excitation beams. q is the magnitude of grating vector and 

descri bed by the difference of the direction vector of two excitation beams (k 1 and k 2). 

(2-3) 

The relationship between the magnitude of q and the fringe spacing A is given by 

q = 2Jt/ 11 (2-4) 

A is obtained from the intrusion angle e e and the wavelength A e of the excitation beams by 

(2-5) 
2 sine e 

If the angle e P and the wavelength A P of the probe beam are satisfied the following Bragg 

condition , the TG signal is created . 

sine c A c 
(2-6) ----= 

This condition is illustrated in Fig. 2-1. 

Kogelnik calculated the diffraction efficiency [the ratio of the intensity of the TG signal (ITG) 

to that of the probe beam (I probe)] by solving the coupled wave equation with thin grating condition 

( d > 11
2/A P' d; width of the grating). 

4 

( 

- k d ) lTG/ I probe = exp e 
cos-P-

2 

sin-

( 

. 7 JlcL1n d 

e 
I ~-... cos-P-

prolJI:: 2 

7 !Jk d ) +sinh- e 
4cos-P-

2 

(2-7) 

where ~n and t1 k are the peak-null difference of the refractive index and absorbance, respectively, 

which induced by the thermal grating and species grating. When the diffraction efficiency is very 
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small ( ITG/Iprobc <0.01), eq. (2-7) is rewritten by 
4 

( )
') ( ~ ') JtL1n d - L1k d -

ITG/lprobc = I + 4 ) 
probe ) 

(2-8) 

Therefore, the intensity of the TG signals can be described by a sum of the square of the refractive 

index change and the absorbance change, both of which are induced by the optical grating. 

2.2 Measurement of Diffusion Constants. 

The thermal grating and the species grating are smeared out by the heat conduction and the 

mass diffusion between the fringes, respectively. Therefore, these processes can be measured 

from the time profile of the TG signal. In this section, we described the method of calculating D 

for reactants and products from the time dependence of the TG signals. 

When the sample is excited by the optical grating described by eq. (2-2) and consequence 

non-radiative relaxation and photochemical reaction occur, the spatial distribution of the induced 

temperature change(~ T) and concentration change (~C) of reactant (i) and product (j) are given by 

T(x) = r+L1T(x) = T
0 

+ L1T(0)/2(1+cosqx) 

L1Cj (0)/2 ( 1 +cos qx) 

(2-9a) 

(2-9b) 

(2-9c) 

where ~C/O) is the initial concentration of the product created by the reaction. The modulation of 

the refractive index change (~n) (phase grating) and absorbance change (~k) (intensity grating) is 

given by 

(2-lOa) 

-L L1ki (x, t) + L L1kj (x, t) (2-1 0b) 
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where ~n 1h(x , t), ~ni(x , t), and ~njCx, t) represent the refracti ve index change by the thermal 

grating, species grating of reactants and products. The refractive index becomes smaller with 

increasing the temperature. So, ~n1h(x , t) is negative. On the other hand, since the absorbance of 

the sample is usually insensitive to the temperature, L).k1
h(x, t) = 0. The refractive index change and 

the absorbance change relate to the temperature change and the concentration change as following. 

(2-lla) 

Lin i, (j) (x, t) = ( dd~ )Lie i, (j) (x, t) 
i' (j) 

(2-11 b) 

Lik i, (j) (x, t) = ( dd~ )Lie i, (j) (x, t) 
i, (j) 

(2- llc) 

where L). T(x, t) and L1Ci, (j) (x, t) are the space and time profile of the induced temperature change 

and concentration change, and these are described by the diffusion equation of Fourier and Fick, 

. l 5 respect1 ve y. 

a LiT (x, t ) a 2 Li T (x, t ) 
------D at - th ax 2 

a Lie i (x, t) a 2 Lie i (x, t) 
-----=D.------· at I ax 2 

(2- 12a) 

(2-12b) 

where D1h [=Aw/CP p (Aw:thermal conductivity, CP:heat capacity, p:density)] is the thermal 

diffusivity and Di is the mass diffusion constant of reactant i. In the case of products, if the 

subsequence reaction process of the product is exist, ~Cj (x, t) is given by the fo1lowing diffusion­

reaction couple equation. 

a Lie j (x, t) a 2 Lie j (x, t) 
--~-- = DJ. - fJ· (x , t) at ax:?. (2-13) 

where f}x, t) is the reaction velocities of the products. When the reaction is the first or the second 
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") 

order, f.(x, t)=k 1.6.CJ. (x, t) and f.(x. t)=2k2.6.CJ· (x, t)-, respectively. The solution of the 
J J 

diffusion-reaction couple equation with the first and the second order reaction will describe later 

chapter (chapter 4). Now, we neglect the subsequence reaction [f(x, t)=O], then, eq. (2-13) is the 

same as eq. (2-12b). The time profiles of the concentration modulation are determined by only the 

diffusion process and the solution of eqs (2-]2,....,13) are given by 

(2-14a) 

A A 7 

L1 C i, U> (q, t) = L1 C i, U> (q, 0 ) exp ( - D i, U> q -t) (2-14b) 

A 
where C i (q, t) is the q-component of the Fourier transform of Ci (x, t). From eqs (2-10, 11, 14), 

the time dependence of the TG signal is given by 

~ 0 2 ~ B { - ~ oki exp (--Di q t ) + ~ 
0 2 2 Dk - exp (-D. q t)} 

J J 
(2-] 5) 

A A A 

where (dn/dT)-6. T (q, 0), (dn/dC i, (j) ).6. C i, (j) (q, 0), and (dk/dC i, (j) ).6. C i, (j) (q, 0) are rewritten 

as Onth
0

, Oni , (j)o' and Oki , (j)o' respectively. A and Bare the constants. 

2.3 Experimental Setup of the 1[G Method. 

The experimental setup for the TG measurements is shown in figure 2-2. 6 An excitation 

beam from an excimer laser [XeCI (308nm); Lumonics Hyper-400] was split to two beams by a 

beam splitter. The repetition rate of the excitation pulse was 1"'3 Hz, the pulse width is about 20ns, 

and the beam size is J,--2mm. These beams crossed inside a 10-mm-path quartz sample cell and the 

interference pattern between these beams (optical grating) was created. The laser power at the 

crossing point was measured by a pyroelectric jouelemeter (Molectron 13-09) and it was typically 

") 

~0.3 mJ/cm-. A probe beam from a He-Ne laser was partly diffracted by the grating when the 
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phase matching condition was satisfied. The TG signal was detected by a photomultiplier tube 

(Hamamatsu R-928) after isolation with a pinhole and a glass filter (Toshiba R-62) and recorded 

with a digital oscilloscope (Tektronix 2430A). The time profile of the TG signal was analyzed with 

a microcomputer. The signal was averaged by a digital oscilloscope and a microcomputer to 

improve the S/N ratio. The fringe spacing I\ was roughly estimated from the crossing angle 8 

and then calibrated by the decay rate of the thermal grating signal from a benzene solution 

containing a light absorbing solute and the reported thermal diffusion constant. 
7 

Spectroscopic grade organic solvents, distilled water, and solute were purchased from 

Nacalai tesque Co. Benzoquinone and dibenzyl ketone were purified by recrystallization. 

Benzophenone, acetophenone, benzaldehyde, and aniline were purified by vacuum sublimation. 

The other solute and the solvent were used without further purification. Typical concentrations of 

the solutes were "'10-
2 M. Sample solutions were deoxygenated by the nitrogen bubbling method 

and flowed by a peristaltic pump (Atto SJ-1211) to avoid the effect of reaction products in the 

signal. The irradiated volume is so small (typically ~Xl0-3cm3 ) compared with the entire volume 

of the sample solution ( ~ cm
3

) that the interference due to the reaction product in the signal is not 

serious during one measuring. The temperature of the sample solution was controlled (50 OC "'-50 

oC) by flowing temperature-regulated methanol around a cell holder with a temperature control 

system (Lauda RSD60). 

For a transient absorption (TA) measurement, the sample was excited by the excimer laser 

light (1 "'5 mJ/cm
2

) and probed by light from a lOOW Xe lamp. The probe light was 

monochromated with a Spex model 1704 and detected by a photomultiplier. TheTA measurements 

were carried out at room temperature ( "'20 °C). 

An EPR spectrum was measured by same spectrometer with 100kHz field modulation under 

the laser light irradiation (repetition rate=20 Hz). For the decay measurement, the signal from the 

spectrometer was averaged by the digital oscilloscope with a slower repetition rate (3 Hz). The 

response time of the spectrometer is several Jmilliseconds. CIDEP spectra of the time resolved 

EPR were measured by the same spectrometer as reported previously. 
8 The EPR measurements 

were carried out at room temperature ( "'20 °C). 
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Pulsed field gradient spin-echo (PGSE) measurements [NMR spectrometer (JEOL JNM-

9 
EX270-W)] were made to independently measure D of stable molecules . T he PGSE 

measurements were carried out at 30 °C. 

The van der Waals volumes V \\ of the rnolecules were obtained from the atomic increments 

method given by Edward. 10 The radii of the molecules r were calculated from Vw using the 

relation; r = (3Vw /4n:) 113
. The values of r/ A in this study are as following. benzophenone (3.43) , 

acetone (2.46) , acetaldehyde (2.25) , benzaldehyde (2.88), acetophenone (3.04), benzoquinone 

(2.67), a-naphthoquinone (3.19) , ~ - naphthoquinone (3.19), xanthone (3 .40) , 1,4-

chrysenequinone (3.66), pyrazine (2.59), quinoline (3.05) , quinoxaline (3.01) , acridine (3.38), 

phenazine (3.34), octahydrophenazine (3.54), and 2,2-biquinoline (3.78). 
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Chapter 3 

DIFFUSION OF THE RADICALS 
CREATED BY HYDROGEN 
ABSTRACTION 

3.1 Photochemical Reaction of H:ydrogen Abstraction. 

C!ug!er 3 

In this chapter, the diffusion processes of the intermediate radicals created by the 

photoinduced hydrogen abstraction of carbonyl, quinones , and azaromatic compounds are 

investigated. l-
6 Based on previous studies, the hydrogen abstraction reaction scheme of 

carbonyl, quinones, and azaromatic compounds (M) from alcohol and alkane (RH) are described 

by the scheme 3-1. 7 The ground state of the solute molecule (M) are excited to the higher excited 

singlet states (1M**) by the UV irradiation (process a) and relaxed to the lowest excited singlet (S 1) 

states ( 1M*) (process b) by the internal conversion. The lowest excited triplet (T 1) state (3M*) is 

created by the intersystem crossing from the lowest S 1 state (process c). process a'""C are completed 

within an excitation laser pulse (-,20ns). The hydrogen abstracted radical (MH.) are created from 

T 1 state by the hydrogen abstraction from the solvent (process d). The recombination reaction of 

the two radicals is a dominant subsequent reaction (process e). 

We used benzoquinone (BQ), pyrazine (Py), and benzophenone (BP) as the reactant in 2-

propanol. The hydrogen abstraction reactions of these molecules are shown in scheme 3-2. 

Benzosemiquinone radical (BQH), pyrazinyl radical (PyH), and BP ketyl radical (BPK) are created 

from BQ, Py, and BP, respectively. 

3.2 Time Profile of the TG Signals. 

Figure 3-1 shows that the time dependence of the TG signal after the photo excitation of BQ 
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(0.01 M) in 2-propanol at the room temperature. This signal consists of a strong signal which 

decays in a few microseconds and a subsequent slowly developing one. The spike-like signal in 

Fig. 3-1 originates from the thermal grating created by the non-radiative transitions of the 

photoexcited molecules. The decay of the thermal grating signal is determined by the heat 

conduction process. After the thermal grating signal decays to the baseline completely, another 

signal appears and then decays again with a lifetime of millisecond order. The time development of 

this component reflects the spatial movement of several chemical species and, from this profile, D 

of each species can be measured. 

The time profile of the root square of the TG signal liTG(t)
112

] can be fitted well with a sum 

of three exponential functions. 

1/ 2 
ITG(t) = -a 1 exp (-k 1 t)- a2 exp (-~ t) + ~ exp (-k3 t) (3-1) 

where, k 1 > k2 > k3 > 0 are the decay constants and a 1 > a2 > ~ > 0 are the pre-exponential 

factors. The solid line in Fig. la is the line fitted by using the non-linear least-squares method with 

eq. (3-1) and the profiles of the three components are shown in Fig. lb. Similar signals are 

observed from Py in 2-propanol and BP in 2-·propanol (Fig. 3-2), which are also fitted by eq. (3-

1 ). 

Analytically, the intensity of the TG signals can be described by a sum of the square of the 

refractive index changes and the absorption changes [eq. (2-8)], both of which are induced by the 

optical grating. 8
 In this reaction system, absorption bands of any species are on the far blue side 

from the probe wavelength (633nm) . 9
-
12 Thus, the TG intensity is proportional to only the 

square of the refractive index change. The thermal effect (thermal grating) and the creation or 

depletion of chemical species (species grating) can contribute to the refractive index change. The 

time profiles of the signals due to the thermal grating and the species grating are given by solving 

the Fourier's thermal diffusion equation and Fick's reaction-diffusion equation, respectively [ eq. 

(2-15)1. 13 Since in the observation time range of the TG signal, the creation and termination 

reaction of the radicals can be neglected as shown later, the time dependence of the TG signal is 
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given by the following equation [eq. (2-15) with 8=0] . 

+ L onR 
0 

exp (- DR q
2 

t ) 
R 

Clug!er 3 

(3-2) 

where Onp 
0 

and OnR 0 are the initial refractive index changes by the species grating of the parent 

molecules and the radicals, respectively. Dp and DR are the diffusion constants of the parent 

molecules and the radicals, respectively. Comparing eq. (3-2) with eq. (3-1), D
1
h is given by 

k 1 =D1h q
2

. Dth from the TG signal agrees well with the calculated one from Dth =f...w/CP p 

(f...w:thermal conductivity, Cp:heatcapacity p:density) within ""10%. 
14 

As both the parent molecules and the radicals in this system have the absorption bands at 

shorter wavelengths than that of the probe beaJm, both Onp0
, 6nR0 are expected to be positive from 

Kra mers-Kronig relationship. Therefore, the sign of the second term of eq. (3-2) is negative, 

which is the same as the sign of the fiest term. On the basis of this reason, component 2 in the TG 

signal (Fig. 3-lb) is assigned to the signal due to the parent molecule. On the other hand, the third 

term should be positive. Component 3 in Fig. 3-1 b should be due to the radical. It has been 

reported that the BQH radical is created by photoexcitation of BQ in a pure alcoholic solvent. 9 In 

this reaction system , four chemical species (BQ, BQH, 2-propanol, 2hydroxypropyl radical) could 

contribute to the signal. However, since the absorption coefficient of 2-propanol and 

2hydroxypropyl radica1 1 2 are smaller than those of BQ and the BQH radical, 9 the refractive index 

changes of 2-propanol and 2hydroxypropyl radical 12 should be smaller than those of BQ and the 

BQH radical. Therefore, the TG signal due to 2-propanol and 2hydroxypropyl radical could not be 

detected. We assign component 2 to the species grating of BQ and component 3 to that of the 

BQH radical. Then , Dr, DR are the diffusion constants of BQ and the BQH radical, respectively . 

The time profiles of the TG signal of Py/2-Pr()H and BP/2-PrOH (Fig. 3-2) are also analyzed in a 

similar manner. 
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3.3 Anomalous Slow Diffusion of Radicals. 

The decay rate constants Is, k3 obtained by the fitting of the TG signals at various fringe 

spacing are plotted against the square of the grating vector q in Fig. 3-3. Based on the assignment 

given above and from eqs. (3-l) and (3-2), the following relationships are obtained. 

2 
k3 =DR q 

(3 -3a) 

(3-3b) 

The TG signal decays not only by the diffusion process but also by any reaction processes. In this 

case, the decay rate of the TG signal is accelerated by the reaction, and more detailed consideration 

is necessary for the analysis as we will rr1ention in chapter 4. However, the good linear 

relationship between the decay rate constants and q
2 

with small intercepts with the ordinate 

indicates that the intrinsic lifetimes of transient radicals are negligible in the observation time scale. 

Therefore, D of each species can be determined from the slope of the plot. The obtained D of the 

parent molecule and the radicals are listed in table 3-1. 

Comparing D of the radicals with those of the parent molecules, we found that the intermediate 

radicals created by photoinduced hydrogen abstraction reactions diffuse much more slowly than the 

stable parent molecules, even though the radical and the parent molecule possess nearly the same 

size and the same shape. Such an anomalously slow diffusion of the radicals suggests a strong 

intermolecular interaction between the radicals and the surround molecules. This fact points out 

that D of a transient radical should not be sirnply substituted by that of a stable molecule with a 

similar molecular volume in an analysis of chemical reaction dynamics. It is very important to 

explain the exact origin of the slow diffusion of the radicals. 

3.4 Support from T A, EPR, and NMR Measurement. 

We investigated the reaction and the kinetics by theTA, EPR, and NMR methods to support 

the result of the TG measurement. Until now, TA and EPR have been used to detect the transient 

radicals and theTA and EPR spectra have been reported about several radicals. Fig. 3-4 shows the 
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observed TA spectra of (a) BQ, (b) Py, and (c) BP in 2-propanol. These observed spectra are 

similar to the reported spectra of transient radicals of BQH, 
9 

PyH, 
1 0 

and BPK, 
1 1 

respectively. 

') 

These TA signals are detected with a stronger laser power ( -5 n1J/cm-) because theTA signals 

were too weak to be detected with the same excitation laser power as in the TG experiment ( ,..,0.3 

mJ/cm2
). The decay of the T A signal of BQH is shown in Fig. 3 -5. This decay is expressed by 

the second-order decay and the half-lifetime (-r; 1 12 ) is ,..., lOms under our experimental conditions. 

The decay of theTA signal of BPK and PyH are also expressed by the second-order decay and 1: 112 

is also a few tens millisecond. This fact is reasonable because the termination reactions of these 

radicals are due to the collision of the two radicals. 1 5 
The intensities of these T A signals are 

nearly constant in the time range of our TG experiment. Therefore the neglecting of the 

subsequence reaction processes in the analysis of the TG signals is reasonable. 

Figure 3-6 shows the cw EPR spectrum of BQ/2-propanol measured under the irradiation by 

laser pulse with a 20Hz repetition rate. The spectrum is unambiguously assigned to BQH. There 

is no other detectable EPR signal. This fact gives conclusive evidence that the transient radical seen 

in the TG signal is BQH. Furthermore, the fact that the signal can be detected under the cw 

operation of EPR with the pulse excitation indicates that the lifetime of BQH is sufficiently long in 

the millisecond time range. Indeed, the decay of the EPR signal could be detected at few-tens-

millisecond order (Fig. 3-6). The half-lifetime of this decay is ,...,20ms under the excitation laser 

? 
power of ,...,2 mJ/cm-. 

Using the TG method, one can measure D of both the transient radicals and the parent 

molecules at the same time. Therefore D of the radicals can be compared with D of the parent 

molecules at the same conditions. D of the transient radicals have never been detected by the 

traditional methods. However , D of the parent molecules can be measured by such the method. 

We measured D of BQ, BP and Py in 2-propanol by using the pulsed field gradient spin-echo 

(PGSE) method of NMR spectroscopy and compared with that for the TG method (Table 3-1 ). All 

of the D measured by the PGSE method are very close to 0 of the parent molecules rather than D of 

the radicals obtained by the TG method. This fact supports the assignment of the TG signals. 

Recently , Donkers and Leaist reported D of carbonyl, quinones , and azaromatic compounds 
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by using the Taylar dispersion (TD) method. 1 6 They found that D of several stable molecules 

obtained by the TD method are slight different from those determined by the TG method. 

Compared with the rather simple and stable setup of the TD method , D fron1 the TG method have to 

be determined by taking account of several factors , and the accuracy is not generally as good as that 

from the TD method. 3 The fitting of the double-exponential function for the tin1e profile of the TG 

signals leads to some uncertainties. In particullar, since the time profile due to the parent molecule 

is superimposed on the decay of the radical signal, the error in D of parent molecules is more 

serious than D of the radicals. We also listed the reported 0 of BQ, BP and Py in 2-propanol by 

TD method in Table 3-1. Considering the different method and experimental conditions for TG and 

TO, we think that the 0 from the TG method agree reasonably with those from the TO method 

witrun the error range. 

3.5 Comparison of Experimental D with the Calculated D. 

In this section, we compareD obtained by the TG method with the calculated D from several 

method. Since the diffusion process of molecules in solution is one of fundamental and important 

processes, diffusion constants (D) have been measured by various methods and theoretically treated 

in many ways. 1 3 Simply, according to the hydrodynamic theory , D is given by the Stokes­

Einstein (SE) formula: 13 

kB T 
DsE = ---­

fJtr11 
(3-4) 

where r, 11, and Tare the radius of the solute, the viscosity of the solution, and the temperature, 

respectively. f is a constant which depends on the boundary condition between the solute-solvent 

molecules; f=4 (slip)"" 6 (stick). When the solute size becomes much larger than the solvent size, f 

obtained from experimental D becomes closer to 6 (stick boundary). However, in many case, f 

have to be much smaller than 4 (slip) to reproduce experimental 0 by eq (3-4) . Generally, DsE 

gives the under estimation. The discrepancy nnay come from two factors, mainly. First is the non­

hydrodynamics effect, which is due to the breakdown of the some approximation of the SE 
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equation , e.g. , the solvent is treated as a continuous fluid or the shape of the solute molecule is 

treated as a spherical form. Second is the intennolecular interaction effect. In SE equation , solute-

solvent and/or solute-solute interactions are disregarded. If the special solute-solute and/or solute-

solvent interaction exist, the friction of the solute molecule becomes larger and 0 becomes smaller. 

The slow diffusion of ions, hydrogen bonded rrlolecules, and transient radicals are classified to this 

effect. Many groups proposed equations to estimate the non-hydrodynamic effect. For example, 

Perrin proposed a method for correcting the deviation fron1 the spherical shape. 
17 

Spernol and 

Wiltz modified theSE equation in terms of a nnolecular interaction semiempirically. 
18 

Scheibel 

proposed an empirical equation to reproduce the solute size dependence of D. 19 
Wilke and Chang 

corrected theSE formula empirically by using the solute-solvent interaction factor. 
2° King et al. 

corrected theSE formula empirically by the ratios of vapor enthalpy changes of the solutes to that 

of the solvents. 21 By using these modified equations, experimental determined 0 for molecules 

without any intermolecular interaction can be reproduced reasonably well. Especially, by using the 

modified equation proposed by Evans et al., 22
-
23 the calculated D can reproduce the experimental 

Din a wide range of the viscosity, solute size, and temperature. They empirically described D/1 0-

9 2 -1 22 
m s (DEY) by 

DEV = AT 

YJP 
(3-5a) 

where A is a constant, which is equivalent to k8/6nr in theSE equation with p=l. Evans et al. 

found that both A and p depend on the solute molecular size by measuring D of many solutes at 

variable temperatures. They proposed that A and pare given by 2 3 

A = exp ( a/r + b ) (3-5b) 

p = c/r + d (3-5c) 
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where a, b, c and d are constants and they are a=5. 9734 A, b=-7 .3401, c=-0.86365 A and 

d= 1.0741. Equation (3-Sb) indicates that D increases exponentially with increasing 1/r. Equation 

(3-Sc) means that the effective viscosity of the solvent against the solute increases with increasing 

the solute molecular size. When r approaches infinity, IJP becomes IJ. 

We compare the obtained D of the radicals (DR) and the parent molecules (DP) with DsE under 

the stick condition and Evans eta!. equation (DEv) in Table 3-1. We found that DP are close to D r:y 

rather than DsE· D of the parent molecules are able to reproduce by the hydrodynamic theory with 

the non-hydrodynamic effect without intermolecular interaction effect (normal diffusion). On the 

other hand, DR are close to DsE rather than D EV . This fact suggests that the diffusion processes of 

the transient radicals can be described by the simple hydrodynamic theory (anomalous diffusion). 

In this case, the intermolecular interaction effect which make D smaller may be compensate the non­

hydrodynamic effect which make D larger. Then, D of the radicals can be reproduced by the 

simple hydrodynamic theory without both intermolecular interaction and non-hydrodynamic effect. 

3.6 Molecular Size and Solvent dependence. 

To understand the diffusion in solution , it is useful to investigate factors which control the 

diffusion process. According to the hydrodynamic theory, Dis governed by three parameters; r, IJ, 

and T. 
13 

Therefore, for elucidating the diffusion mechanism of the radicals, the first step is to 

investigate the influence of these factors . 

Firstly, we investigate the solvent dependence of DR and Dp. We plotted D of BP and 

acetophenone (AP) against the viscosities of the proti c polar solvents (mthanol, ethanol , 2-

propanol, btanol, pentanol, hexanol, and ethyrenglycol), aprotic polar solvents (aceton, acetonitril, 

N,N-dimethylformamid, dimethylsulfoxide, benzene, and toluene), and non-polar solvents 

(hexane, cyclohexane, methylcyclohexane, decane, undecane, tetradecane, dodecane, hexadecane, 

and squarane) in Fig. 3-7. 
2

-
4 

DR was found to be smaller than Dp in a variety of solvents 

regardless of the solvent properties, such as the polarity, the dipole moment and the protic (or 

aprotic) character of the solvent. From these observations, we have concluded that the hydrogen 

bonding between the radical and the sol vent cannot be the essential origin of the slow diffusion. 
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3-'i 
Next, we investigate the molecular size (radius) dependence of DR and Dp. - For the 

reactants, we choose carbonyls (benzaldehyde, acetophenone, benzophenone, xanthone) , quinones 

( benzoquinone, 1 ,2-naphthoquinone, 1 ,4-naphthoquinone, 1 ,4-chrysenquinone), and azaromatics 

(pyrazine, quinoline, q uinoxaline, acridine, phenazine, octahydrophenazi ne, 2,2-biq uinonl ine) in 

ethanol and in 2-propanol. These molecules create the intermediate radicals by the photoinduced 

hydrogen abstraction reaction similar to BQ, BP, and Py. There are three aims in this study. First, 

measurements of various radicals will give us a clue to answer the question: whether or not the 

slower radical diffusion is a general phenomenon and if there is a characteristic behavior depending 

on the type of molecules (such as carbonyls, qui nones, and azaromatic compounds). Second, DR 

will provide valuable data for the analysis of many works on photochemical reactions. Third, the 

molecular size effect on DR may give us an insight for understanding the movement of the radicals 

in solution. Figure 3-8 shows the molecular size dependence of DR and Dp· It is found that D of 

all the radicals studies here are generally two to three times smaller than those of the parent 

molecules. Therefore, we conclude that the anomalous slow diffusion is the general property of 

hydrogen abstracted radicals. Moreover, thits result suggests that the slow diffusion of radicals is 

not related to their detailed molecular structure and the type of molecules. 

We also found that DR are close to DsE (straight line in Fig. 7, 8) although Dp are close to DEY 

(curved line) in the wide range of 1/r and 1/11. The reported D of the parent molecules by the TO 

method are also plotted in Fig. 3-7, 8. D of the parent molecules in this work are very close to the 

reported D within the error bar. We found that the ratios of DR to Dp depend on the molecular size 

and solvent viscosities, and it becomes larger with decreasing the molecular size and increasing the 

solvent viscosities. 

3. 7 Temperature Dependence. 

In this section , we focus our attention on the temperature dependence of D to obtain a further 

insight into the diffusion processes of the transient radicals in solution. 
6 The temperature 

dependence of stable molecules have been studied extensively in liquids and solids so far.
13 

Almost all results revealed that the logarithm of Dis proportional to the reciprocal ofT. This 
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Arrhenius-type expression of Dis described as follows with a diffusion activation energy E 0 and a 

pre-exponential factor 0 
0 

. 

(3-6) 

If the radical diffusion is governed solely by the molecular dynamics of the solvent, we expect that 

the temperature dependence of D should be expressed by this Arrhenius type expression and E 0 

should be close to that of the viscosity(~). However, when the solute interacts with the solvent 

rather strongly by a specific interaction such as hydrogen bonding and the interaction influences the 

diffusion process seriously, E0 should deviate from E'Yf For example, E0 for hydrogen bonded 

molecules was found to be larger than E
11 

by about 2---4 kcal/mol because of the activation energy of 

the hydrogen bonding. 
24 

Or if the fraction of the hydrogen-bonded structure depends on the 

temperature, the Arrhenius plot of D would not be represented well by a single activation energy.
2 5 

In other words, the specific intermolecular interaction between solutes and solvents like a hydrogen 

bonding can be manifested itself by a larger ED than E
11 

and/or a deviation from a linear relation in 

the Arrhenius plot. 

The 0 of BP and BPK in 2-propanol are plotted against the various temperatures in Fig. 3 -9a 

and the Arrhenius-type plots are shown in Fig.3-9b. The logD vs. 1/T plots show a linear 

relationship. The linear Arrhenius plot suggest that the diffusion process is dominantly controlled 

by the hydrodynamic force of the solvent. The activation energies of BP (Ep) and BPK (ER) 

obtained from the slopes are listed in table 3--2. By a similar manner, Ep and ER of other solutes 

were obtained and also listed in table 3-2. An important point to be noticed from table 3-2 is the 

resemblance of E0 of the radicals and the parent molecules with the activation energy of the 

viscosity (E
11

). Furthermore, although E0 of BPK and BP are similar, the small difference is 

beyond our experimental uncertainty. ED of BPK is slightly smaller than that of BP. We will 

come back to this point in a later section. 

Table 3-2 summarizes ED of the radicals and their parent molecules in 2-propanol and in 

ethanol. As shown before in the BP case, ED of the radical are slightly smaller than those of the 
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parent molecule in all the reaction systems. More importantly, although E0 in a solvent is close to 

that of ETI, there is a definitive variation depending on the solutes. 

3.8 Activation Energy of Diffusion 

According to the SE theory , D depends on r, 11, and T. 11 depends on temperature and is 

frequently given by 
26 

(3-7) 

where ETI is the activation energy of viscosity 11· The SE equation can be written with eq.(3-7) as 

kB ( DsE = --- exp -
6rtrYJ 

0 

(3-8) 

When eq.(3-8) is compared with eq. (3-6), we obtain the following relationship 

The temperature dependences of the viscosities of 2-propanol 27 and ethanol 
28 

have been already 

reported and from these values, we obtain E
11

= 5.854 kca]/mol for 2-propanol and ETI= 3.957 

kcal/mol for ethanol. The results in table 3-2: indeed show that the obtained E0 in 2-propanol and 

ethanol are close to these E
11

. This resemblance would indicate that the diffusion process of the 

radicals as well as the parent molecules are mainly controlled by the sol vent dynamics as stated 

before. Moreover, if the specific interaction such as the hydrogen bonding between the radical and 

the sol vents dominantly control the diffusion process, the activation energy would not be close to 

As stated previously, there is a difference between~ and Ep, and the solute dependence of 

E0 is also noticeable. Before discussing the difference in E0 between the radicals and the parent 

molecules , we consider the dependence of ED on the molecular size of the parent molecule. Figure 

-28 -



Cha(Xer 3 

3-10 is the plotted E0 against the reciprocal of the solute radii r in 2-propanol and ethanol. From 

this figure, E0 seems to relate to 1/r. For simplicity , we assume that E0 is linear in 1/r, 

a 
Eo= - --+E 

r 11 
(3-9) 

where a is a constant. The relation ensures that if r""' co, then~ = E0 . Therefore, (eq.3-6) may be 

rewritten as the following. 

(3-1 0) 

The size-dependence of E0 for stable molecules has been studied by Evans et al.22
-
23 Equation 

(3-5b) indicates that D increases exponentially with the increase in 1/r. Equation (3-5c) means that 

the effective viscosity of the solvent against the solute increases with increase of the solute 

molecular size. Wben r approaches infinity, Y]P becomes Y]. 

Our experimentally observed relation leg. (3-10)] is very close to the relation derived by 

Evans et al. Since the viscosity of the solvent is expressed by eq. (3-7), eq. (3-5b) can be 

described as follows. 

AT l-p 1- E (~+d) I DEY = --- exp 11 r 

11~ kB T 

(3-11) 

Therefore, when pis close to ] the activation energy for diffusion is given by 

(3 - 12) 

Comparing eq. (3-9) and eq. (3-12) , we find that both equations become identical when a = -~c, 

d=l. Indeed, the value of d obtained by Evans et. al. was 1.0741, which is sufficiently close to 
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uruty. Therefore the molecular size dependence of E0 proposed for the parent molecule [eq. (3-9)] 

is almost equivalent to the previously proposed relation ( Fig.3-10 ). Equation (3-1 0) is identical to 

eq. (3-11) when AT 1-p/ll
0
P=D

0
. The values of E0 calculated f ron1 eq. (3-12) with c=-0.85365, 

d= 1 and E'Tl =5.854 kcal/mol in 2-PrOH, E T
1
=3.957 kcal/mol in EtOH are plotted in Fig. 3-10 . 

Since this line agrees with experimental values fairly well. 

The 1/r dependence of E0 can be explained by the breakdown of the continuous fluid 

approximation of the solvent in the theory of the hydrodynamics. The viscosity of the sol vent is 

the macroscopic parameter and the hydrodynamic theory treats the solvent as continuous fluid. 

When the solute size is as small as the solvent molecular size, the solvent can be no longer treated 

as continuous fluid and the microscopic viscosity (local viscosity around the solute molecules) of 

the solvent is apparently reduced by the non-hydrodynamic effect. In such a solvent, the activation 

energy for diffusion is also reduced by similar effect. Contrary, when the solute molecules become 

larger, the solvent molecules can be treated as continuous fluid. If the solute molecule has a infinite 

size, the microscopic viscosity should coincide with the macroscopic viscosity Yl· Actually , Fig. 3-

10 suggests that the values of E0 of the parent molecules are close to E
11 

(E'Tl=5.854 kcal/mol in 2-

PrOH, E
11

=3 .957 kcal/mol in EtOH) when 1/r approaches zero; i.e. r approaches infinity. 

3.9 The Excess Volume Model of Diffusion. 

We will interpret the different E0 of radicals and parent molecules in terms of the previously 

proposed model of the radical diffusion. We considered that the transient radicals are surrounded 

by the solvent or solute molecules with an attractive intermolecular interaction, and the effect of the 

attractive interaction was treated as an increase of the effective molecular volume. Namely we have 

treated the small D of the radical s in terms of the apparent molecular size expansion (the excess 

volume n1odel). 

Assuming that the excess volume by the interaction is V 
0

, apparent radius of the radical (r *) is 

calculated from 
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( 
3 v ) 

1 

r * = r 3 + __ o_ 3 

4 n: 

(3-13) 

If we replace r in eq. (3-9) by r *, E0 of the radical is described by 

a. 
Eo = - -------

(r + -::
0 )~ 

+~ (3-14) 

This equation reduces to eq. (3-9) when r3>>3V 
0
/4rt. In other words, E0 of the radical becomes 

closer to that of the parent molecule with increasing the molecular volume. When r becomes 

smaller, E0 of the radicals approaches a constant value. The curved lines in Fig.3-10 are fitted 

lines calculated from eq.( 3-14) with V 
0
=8 x 102 A 3 in 2-propanol and ethanol. They reproduce 

the observed molecular size dependence of ED fairly well. 

It should be noted that eq. (3-12) as well as eq. (3-14) predict that~ and Ep should approach 

~ as the molecular size increases. For the parent molecule, this tendency is consistent with the 

continuous model of the medium in the hydrodynamic theory. For the radicals, when the molecular 

size becomes large, the character of the radical (probably the spin density ) is diluted and the 

diffusion process becomes similar to that of the parent molecule. Then the activation energy should 

be again close to E•r 

In the analysis in this section, we assume that the increase of the effective volume is a constant 

which is independent of the solute size and the temperature. If we assume that the volume 

expansion is the result of the aggregation of the solvent molecules around the radicals, the estimated 

'") . 3 
volume V 

0
=8 x 10- A corresponds to about ten solvent molecules in 2-propanol or ethanol. 

We try to reproduce the molecular size dependence of DR [Fig. 3-8] by using the excess 

volume model. From eq. (3-5) and (3-13), diffusion constant from the excess volume model (Dy ) 

is given by 

[ 
3 1/3 ] 

D v = T exp l a/(r3 +3V o/4n)l /3 + b] 11 - c/( r +3V ol4n) - d (3- 15) 
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The plot of Dy vs. r is shown in Fig. 3-8. For calculating Dy, we fix the values a, b, c and d 

determined by Evans et al.2 1 and use the increase of the molecular volume V 
0 

as an adjustable 

parameter. The best fitted lines by eq.(3-15) are obtained using V 
0
=5 x 10

2 A. 3 
as shown in Fig. 

3-8. The calculated values of Dy are close to DsE and the experimental D of radicals. The value 

V 
0 

=5 x 102 A 3 is close to V 
0 

=8 x 102 A 3 which obtained from the fitting of the size dependence 

of the activation energies in this section. 

The attractive intermolecular interaction is recently supported by the time resolved transient 

Ramman spectroscopy by Terazima and Hamaguchi.2 9 More recently , Terazima and co-workers 

investigated the diffusion of 2,2,5,5-tetramethyl-l-piperidinyloxy (TEMPO) or some other stable 

radicals by using the Taylar dispersion (TD) method. 
3 0 

They found that D of such stable radicals 

are not small but close to D of the analogous non-radicals molecules, and discussed in terms of the 

chemical stability. Therefore, the anomalous slow diffusion must be the character of the chemically 

unstable radicals created by the photoinduced hydrogen abstraction. 

3.10 Conclusion. 

We succeeded in measuring D of the short-lived radicals accurately by using the laser induced 

transient grating (TG) method, which requires only a short time (micro....,millisecond) for the 

measurement of the diffusion constants (D). We have found that D of the radicals created by 

photoinduced hydrogen abstraction reactions of ketones, quinones, and azaromatic compounds 

from organic solvents are 2"·3 times smaller than those of the parent molecules, even though the 

radicals and parent molecules possess nearly the same sizes and the same shapes. Such an 

anomalously slow diffusion of the radicals should be due to a strong intermolecular interaction 

between the radicals and the surround molecules. Extended researches was investigated, such as 

the solvent dependence, the solute size dependence, the temperature dependence. The differences 

in D between the radical s and the parent molecules become larger with increasing 11 , 1/r, or 1/T. 

These Dare compared with the values calculated based on the Stokes-Einstein equation (DsE) and 

the equation proposed by Evans et al. (DE\'). D of the parent molecules are close to D8 ,, whileD 

of the radicals are close to Dsc in wide ranges of sol vent viscosities, solute size, and temperatures. 
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The temperature dependences of D of both the radicals and the parent molecules can be 

expressed by the Arrheni us relationship with one activation energy. The activation energies (E0 ) 

fo r diffusion of the radicals are larger than those of the parent molecules and also they depend on 

the solute molecular size. When the solute molecular sizes become larger, the values of E0 become 

larger. The solute molecular size dependence of the parent molecule's E0 could be explained by the 

empirical formula obtained by Evans et. al. 

Different values in ED between the transient radicals and their parent molecules are interpreted 

in terms of the excess volume model; the radicals are surrounded by other molecules (solvent 

and/or parent molecules) in solution by an attractive interaction. The equation of ED as a function 

of solute radii derived by assuming that the apparent volume increase of the radical is constant for 

all of the radicals can reproduce the molecular size dependence of E0 of the radicals. The results of 

this investigation will give us a clue to understand the anomalous slow diffusion process of 

transient radicals. 
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Table 3-1 Diffusion constants (D) of the transient radicals (DR) and parent molecules (Dp) obtained by 

the TG method in 2-propanol at "'23 °C. DsE and DEv are the calculated value from Stokes-Einstein and 

Evans et al. equation, respectively at "'20 °C. DPGSE are 0 of the parent molecules obtained by the PGSE 

method at "'30 °C. DTG are reported 0 of the parent molecules by the TO method at "'25 °C (ref. 16). 

Diffusion constants ( 10-9 m2s-1
) 

Solute DR Dp DsE DEV DPGSE DTD 

Benzoquinone 0.36+0.03 0.98+0.11 0.34 0.95 1 . 1 0.94 

Benzophenone 0.33 +0.02 0.68+0.13 0.26 0.54 0.65 0.57 

Pyrazine 0.38 +0.03 1.2+0.2 0.35 1.02 1 .5 0.92 



Table 3-2 The activation energies for diffusion of the transient radicals created 

by a photoinduced hydrogen abstraction reaction (ER) and their parent molecules 

(Ep) in 2-propenol and ethanol. For comparison, the activation energy of solvent 

viscosity are EYI=5.854 kcal/mol in 2-PrOH, EYI=3.957 kcal/mol in EtOH. 

ER Ep ER Ep 
solute 

( I kcal mol-l in 2 ·-PrOH) ( I kcal mol-l in EtOH) 

acetone 4.85+0.20 

acetoaldehyde 3.23+0.31 

benzophenone 5.12+0.10 4.34+0.12 3.53+0.20 3.16+0.13 

benzaldehyde 5.21 +0.06 4.08+0.04 3.70+0.03 2.85+0.05 

acetophenone 5.19+0.05 4.45+0.12 3.43+0.06 3.15+0.12 

benzoquione 5.06+0.31 4.36+0.29 3.52+0.07 2.62+0.09 

pyraz1ne 4.87+0.26 4.37+0.52 3.61+0.10 3.09+0.22 

phenazine 5.16+0.15 4.17+0.27 3.44+0.13 3.07+0.26 

xanthone 5.07+0.13 4.40+0.09 3.50+0.09 3.22+0.14 

2.2.biquinoline 5.30+0.31 4.56+0.28 3.53+0.15 3.46+0.08 
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Fig. 3- 1 (a) Typical temporal profile of the TG signal (ITO 
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) after the photoexcitation of 

benzoquinone in 2-propanol under the nitrogen-bubbled condition at room temperature (dotted line) 

and the best-fitted curve by eq. (3-1) (solid line). (b) Phase grating contributions to the signal in 

(a) as given by the fitting procedure described in the text. The assignments of these component are 

(1) the thermal grating, (2) the species grating of benzoquinone, and (3) the species grating of 

benzosemiquinone radical. 
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Chapter 4 

DIFFUSION OF TilE BENZYL 
RADICALS CREAI,ED BY 
PHOTODISSOCJAjrJON 

4.1 Photochemical Reaction of Photodissociation. 

CluyXer 4 

An anomalously slow diffusion of the hydrogen abstracted radicals should be due to a strong 

intennolecular interaction between the radicals and the surround molecules. The origin of such a 

strong molecular interaction of the radicals is still unclear. However, the difference between the 

radicals and the parent molecules is only the unpaired electron. That electron may lead to the 

anomalously slow diffusion process of the radicals. We must examine the role of the unpaired 

electron in affecting the diffusion process in solution. So far we have mostly studied the diffusion 

of the radicals created by photoinduced hydrogen abstraction reactions. l-
4 In this chapter, we 

measure D of the benzyl radical (BR), which is created by the photodissociation reaction from 

dibenzyl ketone (DBK). 
5 

We have two aims in this study. First, since BR frequently appears in 

chemical reactions as an intermediate radical, it would be interesting and important to know the 

diffusion constant of BR for the analysis of the chemical reaction. Second, D of BR is compared 

with those of other transient radicals created by the hydrogen abstraction reactions to see if there is 

a noticeable difference in D. If there is a difference, a detailed comparison of the n1olecular 

character could provide an insight into the rnechanism of the slow diffusion of many transient 

radicals. 

The photodissociation process of DBK has been studied extensively in various sol vents.6
...., 

16 

The reaction scheme is shown in scheme 4-l. The lowest excited triplet (T 1) state of DBK is 

created by the intersystem crossing from the lowest excited singlet (S 1) state within a picosecond 
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time scale after the UV irradiation (process a~c). The a cleavage of the C-CO bond (Norish type 1) 

occurs from the excited triplet state of DBK and brings BRand the phenylacetyl radical within a 

few nanoseconds (process d).
6 

Successively, carbon monoxide (CO) is separated fron1 the 

phenylacetyl radical in a few hundred nanoseconds at room temperature in the solution phase and 

another BR is produced (process e).7 The quantum yield of the photodissociation of DBK has 

been reported to be ~0.7.8 BR is known as a relatively stable radical because the unpaired electron 

of BR is delocalized into the phenyl ring. 1 7 The recombination reaction of two BR to bibenzyl is a 

dominant subsequent reaction compared with a reaction between BR and the solvent molecules 

(process f). It has been reported that the reaction process of the self-termination of BR is a pseudo­

diffusion-controlled reaction and the steric facltor of this reaction is 0.8.9 The rate constant (2k2) of 

such a second ordered reaction has been measured in various solvents and it is reported to be 

109M! - t d. d. I . 10--]6 ,....., s as 1scusse 1n a ater section. 

We first examine the chemical stability of BR during the observation time range of the TG 

signal by the T A method. Fig. 4-la shows the transient absorption spectrum monitored at 1 01-1s 

after the photo excitation of DBK in 2-propanol (0.01 M). This spectrum is in excellent agreement 

with the reported absorption spectrum of BR. llS The time profile of theTA signal of BR is shown 

in Fig. 4-1 b. The decay profile can be expressed well by the second-order self-termination reaction 

with -r112= l/2isC(0)= 150!-ls l C(O): initial concentration of BR] in 2-propanol at the excitation laser 

power,....., 1.3mJ/cm2
. The excitation laser power dependence of 2isC(O) is shown in Fig. 4-2a. 

Figure 2b shows the ~00= C(O) · £i'dax at the peak of the extinction coefficient (£Max) of BR 

(314nm) plotted against the excitation laser power. ~OD is proportional to the laser power, which 

indicates that the one photon excitation process is dominant within this range of the laser power. 

4.2 Time Dependence of the TG Signals. 

Figure 4-3 shows that the time dependence of the TG signal after the photoexcitation of DBK 

in 2-propanol. Similar signals were obtained in other solvents (n-hexane, cyclohexane, and 

ethanol). In a rather fast time scale (Fig. 4-3 a) , three components are observable in the TG signal. 

The fast component decays in a few microseconds and an intermediate component decays in a few 
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tens of microseconds. Finally there is a background signal which does not decay to the baseline 

completely in this time scale. In a wider time range and an enlarged vertical scale (Fig. 4-3b), the 

slower component becomes apparent, and we found that the signal consists of a slow rise and a 

slow decay. The signal decays to the baseline completely in this tin1e scale. 

On the basis of a theoretical prediction as described later, we tried to reproduce the square 

root of the observed TG signal (IT0 (t)
112

) with a four-exponential function [eq. (4-l)j. 

(4-1) 

where ka>kb>kc>kct, and Aa' .... Act>O are the pre--exponential factors. By using the non-linear least-

squares method, the TG signal can be fitted very well by eq. (4-1) as shown in Fig. 4-3c. 

Generally a rather large ambiguity is expected for the curve fitting with four exponential functions. 

However, in this case, since the time constants of the three components are very different [e.g. , 

-1 -1 -1 -1 ') _') 
ka=l.3 ~s , kb=89 ms , and (kc=l3 ms and kcr=ll ms ) for the q-= 19 ~m- case] and the 

signs of Ac and Ad are opposite, they can be easily separated. Even though kc and kd are rather 

close, the determined values are stable for varying the initial values for the least square method. 

The errors of the time constants obtained by this fitting are less than 1 Oo/o. The TG signals observed 

in other solvents can be fitted by the same manner. 

4.3 Origin of the TG Signals. 

Any sinusoidally modulated refractive index or absorbance gives rise to the TG signal.
19 In 

this reaction system, no absorbance change was observed after the photoexcitation at the probe 

wavelength (633nm) as reported previously 18
'
20 and as confirmed in the previous section. 

Hence , we consider only the refractive index change as the cause of the TG signal. Apparently, the 

fastest decaying component (A ) should be originated from the modulation of the temperature 

(thermal gratin g) caused by the non-radiative transitions of the photoexcited molecules (process a-c 

in scheme 4-1 ). The decay of the thermal grating signal is determined by the heat conduction 

process. By solving the thermal diffusion equation with an appropriate initial condition , the time 
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dependence of the temperature variation[~ T(t, q )] is expressed by eq. (2-14a). Comparing eq. (2-

l4a) with eq. (4-1), we obtain, 

(4-2) 

The themal diffusion constant (Dth ) determined from the TG signals in these solvents are in 

excellent agreement with the literature values in ref. 21. The other slower TG signal must represent 

the dynamics of chemical species. 

As described in introduction, the photochernical reaction of DBK has been extensively studied 

(scheme 4-1 ). The photodissociation of DBK creates CO and BR. Therefore, three chemical 

species CO, BRand DBK could contribute to the TG signal. On the basis of these considerations, 

the TG signal obtained from this reaction system should be described as 

112 ( dn ) ( dn ) ( dn ) ( dn ) ITG(t) ex: ~n= dT ~ T(t) + dC co Cco(t) + dCBR CBR(t)- dCoaK CDBK(t) ( 4-3) 

where dn/dCc0 , dn/dCBR' and dn/dCDBK are the concentration dependence of the refractive index 

change by the presence of CO, BR, and DBK, respectively, and Cc0 (t), C8 R(t), and C08K(t) are 

the time response functions of the peak-null difference of the concentrations of these species. Since 

DBK is depleted in the bright region of the interference pattern, the sign of the DBK term is minus. 

As the refractive index decreases with the increase of the temperature, the refractive index change of 

the thermal grating is negative (dn/dT <0). Since all of the absorption bands of both BRand DBK 

are located in a wavelength region shorter than the probe wavelength, the presence of both BRand 

DBK creates a positive refractive index change at the probe wavelength (dn/dC8 R, dn/dC08K >0). 

According to the Kramers-Kronig relation and the absorption bands of CO, the refrac6ve index 

change by the presence of CO is expected to be positive , too. However, the creation of CO 

increases the vo lume of the system so that a part of the space which is filled by the sol vent molecule 

is placed by CO. Since the polarizability of CO is smaller than that of the solvent, the refractive 

index change by the creation of CO becomes negative (dn/dCco<O) as previously shown by our 
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group .
2 2 

On the basis of these considerations, it is concluded that only the dn/dC13 R term in eq. (4-

3) gives a positive contribution, and the other contributions should be negative. Considering these 

signs in eq. (4-3) and the decay rate constants of the TG signal whjch are determined mainly by the 

diffusion constants of the chemical species as discussed in a later section, the fitted components, 

A3 , Ab , Ac and Ad in eq. (4-1) are attributed to dn/dT , dn/dCco• dn/dCBR' and dn/dCDBK' 

respectively. 

Cc0 (t), C8 R(t), and C08K(t) are governed by the translational diffusion and subsequent 

chemical reactions of the transient species . The time dependence can be obtained from the 

following differential equations [See eq. (2-13)] 

a ci (x, t) a ~ ci (x , t) 
---- =D. - f

1
. (x , t) at I a X 2 (4-4) 

where i represents the chemical species (CO, BR, or DBK). Ci(x, t) and fi (x, t) are time and 

space dependent concentrations and reaction velocities of these species, respectively. 

In the case of the stable m.olecules, DBI( and CO, the time profiles of the concentration 

modulation are determined by only the diffusion process (fi (x, t)=O). The solution of this equation 

is given by 

A A 7 
C i (q, t) = C i (q, 0) exp (- Di q- t) (4-5) 

A 
where C i (q, t) is the q-component of the Fourier transform of Ci (x, t) [See eq. (2-14b)]. 

Therefore, by comparing eq. (4-5) with eq. (4- 1), we obtain, 

and 
') 

kDBK = DDBK q- (4-6) 

') 

The q- dependences of kco and k0 8 K are shown in Fig. 4-4. The plots of CO and DBK show a 

good linear relationship with a negligibly small intercept with the ordinate axis , which agrees with 
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the prediction of eq. (4-6). Dco and D08K in other solvents obtained from the slope of similar plots 

are listed in Table 4-1. 

4.4 Analysis of the TG Signals fro1m BR 

The plot of k8 R vs. q2 also shows a linear relationship in a certain q2 range, but it deviates 

from the liner relation in a small q2 range. The non linear behavior suggests that the modulation of 

the BR component decays by not only the diffusion process but also subsequent chemical 

reactions. If this reaction proceeds with the first-order reaction [f(t)=k 1 C(x, t)], the solution of eq. 

(4-4) is given by 

(4-7) 

The decay rate constants (k) of the TG signal in eq. (4-1) is given by 

(4-8) 

I 

Therefore, the intercept of the k vs. q- plot gives k 1 and the slope gives D8 R. However, previous 

researches on the BR reaction indicates that the main reaction of BR is the self-termination reaction 

and we also confinn it as described in section 4.1. In this case, eq. (4-4) should be described with 

') 

f(x, t)=21sC(x, t)- and the differential equation can no longer be solved analytically, but numerical 

analysis is required. Here, we first consider an analytical treatment with a short time approximation 

and then the result is compared with the numerical result. 

If we ignore the diffusion process in eq. (Llr-4), the time dependence of C(t) is described as 

C(O) 
C(t)=-----

1+2k2C(O) t 

During a short period after the excitation, in which a condition of 
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( 4- 1 0) 

is satisfied, the second-order reaction can be approximated by the first-order reaction with a rate 

constant of2k2C(O). Under this approximation , the solution of eq. (4-4) is given by 

(4-11) 

and the decay rate constant (k) of the square root of the TG signals is given by 

(4-12) 

Therefore as long as the short time approximation is correct, the TG signal can be analyzed with an 

') 

exponential function and the intercept and the slope of the k vs. q- plot give 2k2C(O) and D8 R, 

respectively. 

To obtain a reliable fitting by eq. ( 4-11 ), we should make the fitting range for the least square 

method as wide as possible. Normally, the data up to a time when the square root of the TG signal 

intensity (lTG 
112

) becomes 1120 of the initial intensity of the species grating signal is used. For 

satisfying the short time approximation during this fitting range, we should limit the TG 

measurement in a rather large q
2 range. Neglecting the subsequent reaction, the TG signal decays 

to the r-J 1120 intensity at around 

(4-13) 

by the diffusion process. Therefore, combining with eq. (4-12), we can conclude that the TG 

signal measured in a range of 

(4-14) 
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can be used for determining D from the k vs, q2 plot. In other words, the TG signal measured in 

this range can be analyzed as if the subsequent reaction is the first order decay with a rate constant 

of 2k2C(O). We solve the second ordered reaction-diffusion coupled equation [eq. (4-4) with 

f(x,t)=2~C(x,t)2 ] numerically to examine this applicable range [eq. (4-14)]. Fig. 4-5 shows C(q, 

t)/C(q, 0) calculated numerically by eq. (4-4) (solid lines) and calculated by eq. (4-1 1) (doted lines) 

for Dq2/k2C(O) = 1,2,4 and 6. Evidently from the figure, when eq. ( 4-14) is satisfied, the time 

profile from eq. (4-4) is sufficiently close to that from eq. (4-1 1) within the experimental error of 

this work(+ 10%). 

In this way, we judged that the first and second points of the plot (Fig. 4-4) are out of the 

range of q2 > 4~C(O)/DBR" Therefore, we fit the other data by the least-squares method without 

these two points. The results of this fitting give DBR=0.64m2s-1
, 2~C(0)=1.31ms- 1 in 2-

propanol. The values of DBR and 2k2C(O) in various solvents determined by this method are listed 

in Table 4-l. 

Next, a consistency of the results from the TG experiment and from the T A experiment is 

examined. The plot of 2~C(O) against the laser power from the transient absorption (Fig. 4-2b) 

shows 2~C(0)= 1.6ms-1 at 0.3 mJ/cm2 (a typical laser power for the TG measurement). The 

reaction rate obtained from the plot of the decay rate vs. q2 
( 1.3ms- 1

) is close to 2k2C(O) from the 

transient absorption measurement. Therefore we believe that the above procedure for determining 

DBR from the k vs. q2 plot is adequate. 

We further confirm the adequacy of our TG analysis by independent measurement of D08K. 

Though D of the transient species BR cannot be measured by other traditional methods, D of the 

stable parent molecule DBK can be measured besides the TG method. We use the PGSE method 

for DDBK· The values of DDBK detenninedby the PGSE method at 30°C are shown in Table 4-2. 

This table also shows similar comparisons of D of benzophenone, pyrazine, and benzoquinone 

which have been reported in chapter 3 (table 3-1 ). All of D obtained by the POSE method are very 

close to the values determined by the TG method. Dco obtained by this work agrees with D 

reported in ref. 23 fairy well. This fact again supports the assignment of the signal. 

. ~ 

At the laser power for the TG expenrnent (0.3mJ/cm-), ~OD=C(O) · EMax IS 0.006 and 
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k2/E~l a x= 1 .19X 105 M 1 s-1
. T his val ue is used to estimate the value of k2 and C(O) in a later section . 

"') 

T he initial concentration of BR (C(O)) at the condition of the TG measurement ( ~0.3mJ/cm-) is 

estimated to be S.Ox l0-
7 ---5.5xl0-6 M from the reported E~lax =1100---12000cm-

1M 1 
as described in 

the next section . This value of C(O) is consistent with the estimated value (""1 0-6 M) from the 

excitation laser power ( ~.3 mJ/cm2
) , the extinction coefficient of DBK at 308nm ( ""200cm-

1M 1
) 

2 0
, and the quantum yield of photodissociation of DBK ( ~.7). 8 

4.5 Estimation of Rate Constant 2k2 of Self-Termination Reaction 

We plot the determined kziEMax in various solvents against the inverse of the viscosities ( llll ) 

in Fig. 4-6. The linear relationship between k2/EMax and 1/ll supports the previously reported 

conclusion that the self-termination reaction of BR is the diffusion controlled process. Next , we 

compare these k2/EMax from the TG measurement with those reported previously from the transient 

absorption measurements. The values of ~ and EMax have been reported by many groups: EMax 

= 1100 cm-1M 1 and Js=1.8xl07 M 1s-1 by McClarthy and MacLachlan reported in a mixed solvent 

of ethanol and glycol, 
10 

k2=2.3x 10
9M 1s-1 and EMax =12000cm-

1M 1 by Hagemann and Schwartz 

in cyclohexane,
11 

EMax = 1500 cm-
1M 1

, k2=6.8x10
9 M 1

s-
1 

by Meiggs et al. in methanol , 
12 

EMax 

=8800 em - I M 1
, kz= 1.8x 109 M 1 s - l , 

133 or k
2
=2.3x 109 M 1s - l 

13 
b by Fischer and co-workers in 

cyclohexane , EMax =5500cm-
1M 1 and k2=1.55x109M 1s-

1 in water by Christensen et al. , 
14 

k 3 5 109M 1 - 1 . b b 1 s k 09 M -1 - 1 B 1 6 
2= . x s m enzene y Lauter and Dreeskamp, and 2=4x 1 s by urkhart. 

As shown above, the reported EMax and k2 are so much scattered . Even if we plot these reported k2 

against 1/Y), we cannot see any correlation between kz and llll. However, if we plot ~/EMax 

against 1/yt (Fig. 4-6) , it is found that both quantities have a linear relationship ( broken line in Fig. 

4-6). Probable cause of the scattered kz in various literatures comes from the uncertainty of EMax 

estimated by these groups. The k2/E ~ ·I a x values obtained in this work are plotted together in Fi g. 4-

6. We find that our determined kz!E~lax f rom the TG experiment are consistent with these literatural 

values. 

-57 -



Cluy¥r 4 

4.6 D of the Chemical Species 

In Fig. 4-7, Dis plotted against 1/1'). D of the each species (DBK, CO, and BR) decrea e with 

decreasing l/11 regardless of the solvent properties (polarity , dipole moment, protic character etc. ). 

The calculated D from theSE equation (DsE) are shown in Fig. 7 (full lines). It is known that D E 

underestimates Din many cases and actually, the experimental values of Din Fig. 7a,c are larger 

than DsE· In section 3.6, we found that 0 of stable molecules can be reproduced by an empirical 

equation derived by Evans. et al ( DEv) [See eq. (3-5)]. 
24 

T exp ( air+ b ) 
DEY=-----­

( clr +d) 
11 

(17) 

The broken lines in Fig. 4-7 indicate the viscosity dependence of DEY. We found that DEY is closer 

to D for all species. 

In chapter 3, we have reported that the D of various transient radicals created by the 

photoinduced hydrogen abstraction of ketones, quinones, and N-hetero aromatic molecules show 

anomalously slow diffusions. D of such radicals are close to DsE rather than DEY (section 3.6). 

However, Fig. 4-7c shows that DBR is larger than DsE and close to DEV similar to DBR and DDBK· 

This fact suggests that the diffusion process of BR is analogous to those of stable molecules. 

23 
Indeed, D of BR are close to the literature values of D of toluene (closed square of Fig. 7c), 

which is a stable molecule with nearly the same size and shape as BR. 

Furthermore, we compare DDBK with DBR· According to the SE relationship, D should be 

inversely proportional to the radii of the solute molecules. As the molecular volume of BR is close 

to the half of that of DBK, the ratio DBJ/DDBK should be near equal to 2
113 

=1.25. Actually, these 

ratios obtained by experimental D are very close to 1.25 in all of the solvents (table 4-1 ). 

Therefore, the diffusion process of BR created by the photodissociation of DBK is not like those of 

the transient radical we have previously investigated, but it is similar to that of a stable molecule. 

Moreover, we showed the molecular size dependence of D of BR, toluene, other hydrogen 

abstracted radicals and their parent molecules in ethanol in Fig. 4-8. D8 R is not close to D of the 

hydrogen abstructed radicals bet close to D of the parent molecules. A possible origin of the 
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difference between the previous radicals and BR is discussed in the next section. 

D of short-lived radicals have been scarcety reported because of the experimental difficulties. 

Exceptionally, Burkhat et al. measured D of some alkyl radicals and BR created by 

photodissociation of alkanes and toluene, respectively, in cyclohexane by using the photochemical 

space intermittency (PCSI) method.
2 5 For the PCSI measurement, the sample solutions are 

illuminated by a "leopard" light-dark pattern of circular spot and the steady-state concentrations of 

radicals are detected as a function of the light intensity as well as of the total area illuminated. To 

estimateD from the experimental data, one must know independently the quantum yield for the 

production of the radicals, the rate of absorption of the light, and the rate constant of the 

recombination of the radicals. Moreover, this method is based on some assumptions such as, the 

reaction process of the radical is diffusion controlled and follow the SmoluchowslG equation, etc .. 

Considering the many assumptions and many a1mbiguous parameters used in the method, it is rather 

surprising that their value of DBR in cyclohexane (D=l.lxl0-9m2s- 1
) is close to our value 

-9 2 -1 
(D=0.95x 10 m s ). 

4. 7 Properities of Benzyl Radical. 

In chapter 3, we have described anomalously slow diffusion of many transient radicals created 

by the hydrogen abstraction reaction compared with the stable parent molecules with similar sizes 

and shapes in various solvents. While, D of BR, which is also a transient radical, is similar to that 

of the stable molecule with a similar size and a shape such as toluene. The cause of the different 

diffusion behaviors between BRand the other radicals produced by hydrogen abstraction (RH") is 

important to study because it will provide a clue to understand the diffusion process of the radicals 

in solution. There are three factors which might cause the difference. 

(a) distribution of the unpaired electron in the molecule 

(b) hydrogen bonding effect 

(c) electrostatic effect 

(a) Burkhart et al. have also found that some alkyl radicals diffuse slower than the parent 

molecules , while BR diffuses with a similar velocity as toluene. They attributed the species 
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dependent diffusion to the degree of the delocalization of the unpaired electron in the molecule. 

Since the unpaired electron of BR is delocalized to the phenyl ring by the Jt-electron resonance , the 

spin density on each atom of BR is reduced and the intennolecul ar interaction between the unpaired 

electron and other molecules could be weak. On the other hand , the unpaired electron of an a lkyl 

radical is localized on several carbon atoms and the intennolecular interaction which comes from the 

unpaired electron could be enhanced. In order to examine this idea, we tried to see a correlation 

between the spin density distribution and D of the transient radicals we have studied so far by the 

TG method. a-hydroxy benzyl radical (BR-OH) and benzophenone ketyl radical (BPK) are taken 

as example for the comparison with BR. D of these species are listed in table 3. D of BR-OH in 

ethanol and 2-propanol are about 2 times smaller than D of BR. Furthermore, D of BR-OH is 

smaller than the parent molecule (benzaldehyde) , whileD of BR is similar to toluene. The spin 

density on each atom of BR was determined from an EPR measurement 
26 and also from an MO 

calculation. 
27 

About 50o/o of the unpaired electron is localized on the a -carbon and the other is 

delocalized on the ortho and meta carbons in the phenyl ring. The hyperfine splitting of BR-OH 
2 8 

was also reported. More directly Fieber and co-workers compared the spin density distribution of 

BR with that of BR-OH.2 9 They found that the spin density on the 0 atom of BR-OH is less than 

a few % and the spin density distribution of BR-OH is nearly the same as that of BR. Therefore, 

contrary to the very different diffusion constant, the spin density distribution of BRand BR-OH is 

very similar. We should conclude that the slow diffusion of BR-OH than BR cannot be attributed 

to the property of the unpaired electron distribution of the molecule. 

(b) Next, we consider the effect of the hydrogen bonding. Recently , Tominaga et al. reported 

that the molecules which have -OH or -NH2 substituent diffuse anomalously slowly in protic 

sol vents due to the stron g intennolecular interactions between the substituent and the solvents.3 0 

All of RH. we investigated have -OH or -NH substituent while BR does not. The hydrogen 

bonding could be the main ori gin of the slow d:iffusion of RH .. However, there are some evidence 

to exclude the participation of the hydrogen bonding in the radical diffusion as follows 

(1) If the hydrogen bonding is the main cause of the slow di ffusion of th e radical s, the effect 

should be pronounced in a solvent which can make the hydrogen bond easi ly. In section 3 .6 , 
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however, we found that the radicals diffuse slower than the parent molecules not only in protic 

sol vents but also in nonpolar sol vents such as benzene or cyclohexane (Fig. 3-7). 

(2) D of BPK is close to that of diphenyl methyl radical, which does not have an -OH group to 

3 1 
form a hydrogen bond. 

(3) Temperature dependence of D of the radicals can be expressed by the Arrhenius relation with a 

single activation energy and it is close to that. of the viscosity of the solvent (section 3.7). The 

similarity indicates that the activation energy of the hydrogen bond is not involved in the diffusion 

process. 

( 4) Our recent investigation on the substituent effect of several radicals indicates that> C -0 H and 

> N H groups can make only a weak hydrogen bonding with solvents. 32 

We conclude that the interaction of the hydrogen bonding cannot be the origin of the slow 

diffusion of the radicals. 

(c) Finally, we consider the interaction of the electrostatic force. It is well established that the 

molecules with a large dipole, or a large polarizability, diffuse slowly by the electrostatic interaction 

with solvent molecules. This phenomenon has been explained by dielectric friction. This dielectric 

friction depends on the electrostatic property of the solvent and has been believed to be effective 

only in a polar solvent. 33
-

35 However, Maroncelli et al. proposed that even in a non-polar 

solvent (no dipole moment), the dielectric friction can occur by the interaction with the quadrupole 

moment of the solvent from the dynamic Stokes shift measurement. 
36 

Recently, Okazaki et al. 

reported that D of the merocyanine fonn of benzospiropyran, which has a large dipole moment 

(about 12 Debye) are "'2 times smaller than that of the spiro form in cyclohexane and ethanol, 
3 7 

although cyclohexane has no dipole and no quadrupole. We considered that the origin of a solute­

nonpolar solvent electrostatic interaction could be due to the interaction between the solute and the 

intramolecular partial dipole of solvent (for example, C-H). As both BRand RH. radicals have no 

charge, possible electrostatic forces of the radicals are due to dipole interaction and/or dispersion 

force . If the charge distributions of the radicals are quite different from these of the parent 

molecules and the radicals have large dipole moments and/or polarizabilities, the diffusion could be 

slower by the enhanced dielectric friction in poJar and non-polar solvents. We calculated the dipole 
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moments and polarizabilities of BR, RH ., and parent molecules by using a semiempirical molecular 

orbital (MO) calculation with modified neglect of diatomic overlap (MNDO) method. 
3 8 

The 

results are listed in table 4-3 (toluene is used as the parent molecule of BR). Actually, the dipole 

moments of benzoquinone and pyrazine are increased from 0 D to 2.5---3 D by converting to the 

radicals. On the other hand, both BRand toluene have no dipole moment. The dipole moments of 

ketones decrease from 2.5-v3 D (for parent molecules) to 0 D (for the radicals). Apparently the 

slow diffusion of such radicals cannot be explained by the dipole interaction. The polarizability of 

the radicals and their parent molecules are similar. The charge distribution of both radicals and the 

parent molecules are similar, too. 

We could not find any significant differences which can affect the molecular diffusion by the 

simple MO calculations. However, recently, Morita and Kato revealed a very prominent difference 

in the electric character between a transient radical (pyrazinyl radical) and the closed shell molecules 

(pyrazine and benzene) by the ab initio MO method. 
3 9 

They calculated the charge sensitivity for 

each atom of the molecule by an external electric field, and found that the intramolecular local 

polarizability of the pyrazinyl radical is much larger than that of pyrazine or benzene despite the fact 

that the usual polarizability under a uniform electronic field is very similar for these molecules. The 

normal mode analysis of the local polarizability indicates that the charge sensitivity of the pyrazinyl 

radical is due to the o-Jt mixing that is caused by the deformation of the 1t electron orbital. A 

similar enhanced local polarizability was observed for BPK but not for BR. 
4 0 This weak local 

polarizability of BR comes from the stable 1t electron resonance structure. Although the dynamic 

property such as the translational diffusion should be calculated by another method e.g. MD 

simulation with taking into account this character, it is plausible that such an enhanced polarizability 

increases the friction during the molecular movement and slows down the diffusion process. 

In a series of our studies, we have reported slow diffusion for many transient radicals in many 

solvents even in supercritical fluids. 41 Among the radicals so far studied BR is only one radical 

that has 0 similar to that of the dosed shell molecule (toluene). 
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4.8 Conclusion. 

Diffusion processes of the benzyl radical (BR) created by the photodissociation from dibenzyl 

ketone (DBK) were studied by the transient grating (TG) method in several organic solvents 

(hexane, cyclohexane, ethanol, and 2-propanol). The observed TG signals can be well fitted by a 

sum of four exponential functions and they are attributed to the thennal gra6ng signal and the 

species gratings due to CO, BR, and DBK. From the slope of the decay rate constants against q2 

plots, the thennal diffusion constants, the diffusion constants (D) of CO and DBK are determined. 

The plot of the BR component has a finite intercept with the ordinate, which indicates that the 

subsequent chemical reaction cannot be neglected. By applying a short period approximation , we 

found that the slope and the intercept represent D of BR and the self-termination reaction rate 

constants (2k2), respectively. D of CO, DBK, and BR are larger than those calculated by using the 

SE equation (DsE) and closer to those calculated by an equation proposed by Evans et al. (DEV). 

In all solvents we examined, the ratios of D of BR to those of DBK are close to 1.25, which is 

expected from the difference of the molecular volumes of BRand DBK. Furthermore D of BR is 

close to that of toluene. This result is very different from what is expected from the previous 

studies of the transient radicals created by the hydrogen abstraction reaction. We compare the 

property of BR with those of the radicals produced by hydrogen abstraction (RH") to find a 

possible origin of the different diffusion process of BR and others. The spin densities, dipole 

moments, and the polarizabilities cannot explain the difference satisfactorily. Recently, Morita and 

Kato showed an enhancement of the intramolecular charge sensitivity to local electric field for RH" 

based on the ab initio molecular orbital theory. This effect is not observed for BR because the o-Jt 

mixing, which is the origin of the particular sensitivity enhancement is less effective due to the 

stability of Jt-electron orbital of BR. The intermolecular interaction between the radicals and 

solvents could be the origin of the anomalously slow diffusion process. 
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Table 4-1 Diffusion constants (D) of CO, [>BK, and BRand rate constans (2k2) of the 
self-termination reaction of BR measured by the TG method in several solutions at the 

room temperature. 

solvent D I 10-9 m 2 s-1 2k2 C
0 

I ms-1 

co DBK BR BRIDBK 

hexane 8.8+ 1.2 3.3+0.3 4.1 +0.2 1.24+0.17 6.7+2.2 

cyclohexane 5.5+0.8 0.78+0.1 0.95+0.1 1.22+0.15 2.5+0.6 

ethanol 5.7+0.6 0.92+0.08 1.1 +0.06 1.20+0.08 1.9+0.4 
2-propanol 4.9+0.4 0.57+0.04 0.64+0.06 1.12+0.09 1.3+0.4 

Table 4-2 Diffusion constants (D) of the radicals and parent molecules measured by 

the TG method at ""'20C0 and D of the parent molecules measured by the PGSE method 

at,...., 30C0
. 

D I 10-9 m 2 s-1 

TG (-20C0
) PGSE ( -30C0

) 

solute solvent radical parent parent 

dibenzyl ketone 2-propanol 0.64 0.57 0.57 
cyclohexane 0.95 0.78 0.73 

pyrazine 2-propanol 0.38 1.2 1.5 
ethanol 0.74 1.6 1.6 

benzoquinone 2-propanol 0.36 0.98 1.1 
benzophenone 2-propanol 0.33 0.68 0.65 



Table 4-3 Diffusion constants by the TG method and dipole moments and polarizabirities calculated by the semiempirical 
MO method (MNDO) of BR, the radicals produced by hydrogen abstraction, and each parent molecules. 

r · 1 1 o-9 2 -l dif uston constants m s dipole moment I D polarizabirity I A 3 

parent radical parent radical parent radical 

benzyl in ethanol a) 
1.1 0.02 0.02 8.62 7.99 

in 2-propanol 0.64 
aOH-benzyl in ethanol 1.5 0.66 2.85 1.06 9.13 8.78 

in 2-propanol 0.99 0.37 
benzoquinone in ethanol 1.6 0.57 0.00 3.10 8.24 8.01 
pyrazine in ethanol 1.6 0.74 0.01 2.97 6.30 6.21 
benzophenone in ethanol 1.0 0.55 2.52 1.36 17.13 16.39 
acetophenone in ethanol 1.3 0.58 2.72 1.55 10.31 9.99 

a) toluene is used as the parent molecule of BR 
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Chapter 5 

DIFFUSION OF E1SECTRICALLY 
NEUTRAL RADICA.LS AND ANION 
RADICALS 

5.1 Charge Effect of Diffusion. 

In the previous chapter, we showed that the hydrogen abstracted radicals diffuse slower than 

that of the parent molecules by the dielectric interaction, though, benzyl radical diffuse normally. 

On the other hand, ions and ion radical have been known to behave the slow diffusion processes. 

Mobilities(!-!) or conductivities (A.) of ions have been measured by several methods to elucidate 

solvation structures and charge effects on mobilities. 1 
'
3 The mobilities of ions can be transformed 

to the diffusion constants by the Nemst relationship. 1
'
3 Generally, D of ions are smaller than 

those of neutral molecules of similar sizes in the same solvent and at the same temperature.3 This 

is due to the strong intermolecular interaction between the charge of ions and solvent molecules by 

Coulomb force. With decreasing the molecular size, this effect becomes stronger and the difference 

between the ion's D and stable molecule's D will increase. Two models are well known to interpret 

this size dependence of ionic mobilities. One is the excess size model,4 which is based on an 

increase of the molecular radius by the solvation structure of ions. The other is the dielectric 

friction model, 5 which is based on a friction which arises when the polarization of solvents 

follows the movement of the charges of ions. Both of two models can explain the size dependence 

of ion's D qualitatively. Boyd, 6 Zwanzig, 7 and Hubbard-Onsager 8 proposed equations to 

estimate the contribution of the dielectric friction by the continuous fluid theory. These equations 

can reproduce the experimental 0 qualitatively, but not quantitatively. Recently, Bagchi et al. 

succeeded in reproducing the experimental D quantitatively by a theory based on the dielectric 
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nct10n. 

A natural extension of these researches is the studies of the diffusion of ion radicals , which 

have an unpaired electron and a charge. In this case, since the motion of the radicals can be 

detected as electronic current, experimental measurement is easier. Indeed, the mobilities of the 

photochemically produced intermediate radical cations and anions probed by the time of flight 

(TOF) technique have been reported by Houser and Jarnagin, 1° Freeman and co-workers, 
1 1 and 

Albrecht and co-workers. 1 2 They found that D of the ion radicals are smaller than those of neutral 

molecules of similar shapes and sizes. Freeman and co-workers attributed the origin of the slow 

diffusion to the electrostrictive drag by the charged species and dimerization for some compounds. 

11 Albrecht and co-workers found that D of the charged radicals can be well reproduced by theSE 

equation. 12 This result, good agreement with the SE relation, is similar to that found for the 

neutral radicals we have studied. However, even if one wants to extract the effect of the charge or 

the unpaired electron by comparison of D of the charged radicals determined by this method with 

those of closed shell molecules, one has to use D of closed shell molecules measured by other 

methods under different conditions. Because Dis very sensitive to environment and experimental 

conditions, accurate comparison should be very difficult. However, if we use the TG method, D 

of the stable molecules can be measured simultaneously with those of the transient species. For 

example, Terazima et al. have determined D of a cation radical and its parent molecule, 

N,N,N',N'-tetramethyl-p-phenylendiamine (T.MPD), by the TG method under exactly the same 

condition. 1 3 
The result showed that the TMPD cation radical diffuses only half as quickly as the 

TMPD parent molecule in ethanol. However, the contribution of the charge and the unpaired 

electron could not be separated from this measurement. It would be very useful, if D of closed 

shell molecules, neutral radicals, and ion radicals of similar shapes and sizes can be measured 

under the same condition. 

In this chapter, we performed TG experin1ents along this line. D of parent molecules, neutral 

radicals, and anion radicals of ketones are determined by the TG method under the same condition 

and compared with each other. 1
4 
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5.2 Photochemical Reaction. 

To create the neutral radicals , we used the hydrogen abstraction reaction (See scheme 3- 1 ). 

Charged radicals can be created from the neutral radicals by subsequent reactions. For example, 

the photochemical process of acetophenone (AP) is described in scheme 5-1. 
15 

The lowest excited triplet (T 1) state of AP is created by the intersystem crossing from the 

lowest excited singlet (S 1) state by the UV irradi1ation within a excitation laser pulse width ("' lOns). 

The neutral radical is created from the T 1 state of AP by the hydrogen abstraction (process b ). 

The neutral radical and the anion radical are in equilibrium (process c). Therefore, one can create 

the anion radical or the neutral radical selectively by controlling the pH (pOH) of the solution. In 

an aqueous solution, such a selective creation of the AP anion radical was reported and pKa was 

determined to be 9.9. 16 Here we create the anion radicals or the neutral radicals of acetophenone, 

benzaldehyde, xanthone, benzophenone, and benzil in alcoholic solvents by controlling the 

concentration of sodium hydroxide (NaOH). D of the anion radicals, the neutral ketyl radicals, and 

the parent stable molecules are measured under the same condition and compared with each other. 

The role of the charge and unpaired electron in the diffusion is discussed on the basis of the 

obtained results. 

We examine the created intermediates in pure ethanol and ethanol+NaOH by the transient 

absorption (T A) method. Figure 5-1 a shows the T A spectra with a J OO!Js time delay after the 

excitation in pure water and in NaOH+water. The observed TA spectrum in pure water (closed 

circle in Fig. 5-la) is assigned to the AP neutral radical (reported T A spectrum 
1 6 

is shown by the 

solid line in Fig. 5- la). Upon adding NaOH to that solution, the T A spectrum changes and it 

becomes similar to the reported spectrum of the AP anion radical (dotted line in Fig. 5-la). 
16 

Hayon et al. have reported pKa of AP, benzophenone, and benzil as 9.9, 9.25, and 5.5, 

. 1 16 respective y. 

TheTA spectra observed in pure ethanol and NaOH+ethanol are shown in Fig. 5- 1 b. TheTA 

spectrum in pure ethanol (closed circle in Fig. 5-1 b) is close to the reported spectrum of the AP 

neutral radical in ethanol (solid line). 
17 

TheTA spectrum in AP/NaOH+ethanol (open square in 

Fig. 5-lb) is similar to the spectrum of the AP anion radical in water 16 (dotted line in Fig. 5-la, 
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b). Therefore, we assigned tlDs spectrum to the AP anion radical. 

Based on these observations, we conclude that the electrically neutral radicals and the anion 

radicals can be created selectively by controlling the concentration of NaOH in alcoholic solvents. 

The created radicals are relatively stable and their T A signals are observable for tens milliseconds 

after the excitation (1 , .... 5 mJ/cm2
). TheTA signals show the second-order decay which should be 

due to the self-termination reaction of the radicals. 16
' 
18 Under a week excitation laser power for 

the TG measuren1ent ( ~.3 mJ/cm2
), the intensities of theTA signals are almost constant and the 

shapes of theTA spectra do not change within the time range for the TG measurement (a few 

milliseconds). Therefore, it is evident that the created radicals do not react with the solvent or the 

parent n1olecules, and the time profile of the TG signal can be analyzed by only the diffusion 

process of each species similar to chapter 3 [eq. (3-2)]. 

5.3 Assignment of the TG signal. 

The time profile of the TG signal after the photoexcitation of AP in ethanol is shown in Figure 

5-2a. The time profile of the root square of the TG signal [ITG(t)
112

] can be fitted well with a sum 

of three exponential functions. 

1/2 
ITG(t) = a 1 exp ( -k1 t) + a2 exp ( -k2 t) - ·~ exp ( -k3 t) (5-1) 

where, k 1 > k2 > k3 are the decay constants and a 1 > a3 > a2 > 0 are the pre-exponential factors. 

The solid line in Fig. 5-2a is the line fitted by using the non-linear least-squares method with eq. 

(5-1) and the profiles of the three components are shown in Fig. 5-2 b. The method for assignment 

of each exponential component of the TG signal to its origin has been described in chapter 3 in 

detail. Therefore, we assign component 1 in the obtained TG signal to the thermal grating. We 

also assign component 2 to the species grating of AP and component 3 to that of the AP ketyl 

radical. 

Next, we performed a similar measurement for AP in ethanol which contains sodium 

hydroxide. Figure 5-3a shows the time profile of the TG signal of API ethanol+(O.OlM) NaOH. 
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The shape of this signal is slightly different from that given in Fig. 5-2a. This time profile can be 

fitted by eq. (5-1) very well, too (so lid li ne in Fig. 5-3a) . The three exponential components are 

shown in Fig. 5-3 b. Comparing Fi g. 5-3b with Fig. 5-2b, we fi nd that the intensity of component 

3 is enhanced relative to the other components. The enhancement suggests that the transient in pure 

ethanol is different from that in ethanol+NaOH. 

Figure 5-4 shows the intensities of theTA signals at 450nm and the intensities of the TG 

signals at various concentrations of NaOH in ethanol. Both of the intensities steeply change at 

pOH - -log[NaOH] = 3'-4. Under the dilute condition of NaOH below --- 10-4 M, the neutral 

radical is created. If the concentration of NaOH is larger than---10-3 M , the anion radical is 

dominant in ethanol. Since the spectra do not depend on the monitoring time ( lO!J.s --- a few ms) , 

the neutral radical and the anion radical of AP are in equilibrium within lO!J.S after the creation 

(scheme 5-1) in water and in ethanol. The pKb value of this equilibrium is pKb=3---4 in ethanol 

(pKb= 14- 9.9 = 4.1 in water 16 
). According to this result, component 3 in the TG signal in pure 

ethanol (Fig. 5-2b) is assigned to the AP neutral radical and that in ethanol+ NaOH(O.Ol) (Fig. 5-

3 b) is to the AP anion radical. 

5.4 Comparison of D of the Neutral Radicals with the Anion Radicals. 

We plotted the decay rate constants Js, k3 against the square of the grating vector q in Fig. 5-

5. The linear relationship between the decay rate constants and q2 with small intercepts with the 

ordinate (Fig. 5-5) and also the slow radical decays measured by theTA method ensure that D can 

be determined from the slope of the plot [See eq. (3-3)]. The obtained D of the parent molecule , 

the neutral radical , and the anion radical in ethanol are listed in table 5- 1. D of AP in ethanol is the 

same as that in ethanol + NaOH within experimental error. This suggests that the effect of addition 

of NaOH (0.01M) on diffusion is negligibly stnall. A main source of the experimental error comes 

from the fitting error of the double-exponential function and 0 of parent molecules have large 

errors . 
19 

Recently, Donkers and Leaist have reported D of AP by using the Tayler dispersion 

(TO) method as 1.24xl0-9 and 0.76xl0-9m2s-1 in ethanol and 2-propanol , respectively. 20 Our 

values from the TG method are close to their values from the TO method with relati ve errors of 
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10% and 17o/o in ethanol and 2-propanol , respectively. 

The solvent viscosity depends on the concentration of electrolytes. In diluted solution ( < 1M 

), the Jones-Dole equation describes the concentration dependence of the viscosity well. 
2 1 

I o c1 12 
ll ll = 1 + A + BC (5-2) 

where ll and llo are the viscosities of the electrolytes solution and the pure solvent, respectively. 

The parameter A expresses the ion-ion interaction and A=O when the sol vent is neutral. C is the 

concentration (M) of the solute, while B is well known as the B coefficient of the solvent viscosity, 

which indicates the ion-solvent interaction. B of Na +, and OH- have been reported; 0.086, and 

0.112 dm3 mor 1
, respectively in water. 22 Generally, B depends on the ion volume mainly and 

does not change much with variation of solvent. 2 3 We estimated the viscosity change of the 

solution by the addition of NaOH from eq. (5-2). Using B data in water, we obtained ll/ll
0
= 1.002 

at 0.01M of NaOH. Because, roughly, D is inversely proportional to the viscosity, this small 

change of the viscosity is within the experimental error of this work. Therefore, the viscosity 

change upon the addition of NaOH (O.OlM) is ncegligible and D of the neutral radical and the anion 

radical can be compared direct] y. 

Both D of the neutral radical and anion radical of AP are smaller than that of the parent 

molecule. Previously, the reductions of D of neutral radicals from D of the parent molecules were 

explained in terms of intermolecular interactions between the radicals and the solvent molecules. In 

this case, we suspect that the intermolecular interactions between both the neutral and anion radical 

and the solvent molecules are similarly strong. Before this study, we expected that D of the anion 

radical a to be smaller than those of the neutral radicals because the anion radical has both charge 

and an unpaired electron, both of which can affect the diffusion process. However, this is not the 

case, although a slight difference between D of the neutral radical and the anion radical is just 

detectable beyond experimental error (table 5-1). This slight difference may be due to the 

contribution of the charge to the diffusion process or a possible ion pair formation between the 

anion and sodium cation. However, previous EPR studies showed that the ion pairs of ketyls tend 
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to dissociate in alcohol. 2 4 Another possibility its that the anion radicals are associative active and 

from the dimer. 2 5 In this case, D of the anion radical dimer is expected to be "'1.2.5(=2
1 3

) times 

larger than that of monomer, 
128 because Dis inversely proportional to radius of solute. 

It is interesting to note that this charge effect on D of the anion radical is much smaller 

compared with the reported charge effect on D of the ions of similar sizes. 
1 

'
3 

The charge effect 

on diffusion in the anion radical may be reduced by some factors. This phenomenon could be 

related with the origin of the anomalously slow diffusion of the radicals . In later sections, we 

discuss the solvent viscosity dependence, the solute size dependence, and the temperature 

dependence of D of the neutral and anion radicals to clarify this behavior. 

5. 5 Solvent Viscosity, Solute Size, and Temperature Dependence of D 

Contrary to our initial expectation, the diffusion of the AP anion radical is similar to that of the 

neutral radical. In order to further examine the cause of the effects of the charge and unpaired 

electron on the diffusion process, we investigate D under various conditions. According to the 

Stokes-Einstein (SE) equation, Dis proportional to temperature (T) and inversely proportional to 

viscosity of solvent (yt) and radius of solute (r). Below, dependencies of D of these species on 

solvent viscosity, solute size, and temperature are reported below. 

ln order to monitor the effect of viscosity, we measured the TG signal of AP in methanol , 2-

propanol, 1-butanol, and 1-pentanol. The time profiles of the TG signals in various sol vents are 

similar to that in ethanol and D can be determined by the same method as before. D of the parent 

molecules, the neutral radicals, and the anion radicals in these sol vents are listed in table 1 and 

plotted against 11-l in Fig. 5-6. 

To monitor the effect of molecular sizes, benzaldehyde, xanthone, benzophenone, and benzil 

were studied with their neutral radicals and the anion radicals being created by the same method for 

AP. The time profiles of the TG signals of such solutes are quite similar to that of AP in both pure 

ethanol and ethanol+ NaOH(O.OlM). The obtained D of these species are listed in table 5-2 and 

plotted against 1/r in Fig. 5-7. D of the parent molecules are close to the literature values (1.39, 

0.90, and 0.95xl0-9m2s- 1 of benzaldehyde, xanthone, and benzophenone, respectively) within + 
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15o/o. 2 ° From Fig. 5-6 and 5-7, it is evident that the anion radical's D of all solutes in all solvents 

in this work are close to those of the neutral radicals. Therefore the reduction of the charge effect 

on D seems to be general for the intermediate ketyl radicals created by the hydrogen abstraction 

reaction. 

We compare the experimental D of these species with theoretical calculations where D is 

described by the Stokes low. 1 

k
8 

T 
D=--

s 
(5-3) 

where sis the friction of the solute molecules in the solvent. Einstein estimated s by assuming the 

solvent to be a continuous fluid . 1 

SsE= frtl)r (5-4) 

Equations (5-3) and (5-4) are well known as the Stokes-Einstein (SE) formula, which gives one of 

the most fundamental equation forD [eq. (3-4)]. Constant fin eq. (5-4) indicates the boundary 

condition of the friction between the solute and solvent. For the stick boundary condition, f=6, and 

for the slip boundary condition, f=4. The calculated D of the SE equation (DsE) generally 

reproduce experimental Dwell when the sizes of solute molecules are sufficiency large. However, 

if the volume of a solute molecule is small or dose to the solvent volume, DsE underestimates the 

experimentally observed D because the continuous fluid approximation for the solvent is no longer 

valid. 

Some modifications of the SE equation have been proposed. 2 Evans et al. proposed an 

empirical equation, which is given by 2 6 

( c/r + d ) 
r: - Yl 
~.:lEV-

k 8 exp ( air + b ) 
(5-5) 

. • 2 7 
where a=5.9734A, b= -7.3401 , c=-0.86365Al and d=l.0741 [eq. (3-5)]. In previous chapter, 
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we have shown that the calculated D from this equation (DE\.) agree very well with D of the parent 

molecules. On the other hand , D of the radicals are dose to DsE under the stick condition. Figs. 5-

6 and 5-7 show plots of DE\l and DsE (stick boundary) . As can be seen, D of the parent molecules 

are close to DEY and D of both the neutral and anion radicals are close to DsE· It is interesting to 

note that the experimental data indicate that the difference in D between the parent molecules and the 

anion radicals increases with increasing yt and/or decreasing r. This tendency is what we observed 

before in the neutral radicals. 

The temperature dependence of Din pure ethanol and ethanol+NaOH between 50°C "' -50°C 

is shown in Fig. 5-8. The temperature dependence of D in various solutions can generally be 

expressed by the Arrhenius-type equation with the diffusion activation energy (Er) and the pre­

exponential factor (D
0

) [eq. (3-6)]. 1 The logD vs. 1fT plots of Fig. 5-7 indicate that the Arrhenius 

type relation holds for this system. Determined Eo and D
0 

are listed in table 5-3. It is worth while 

to note that, although D of the parent molecules and neutral (or anion) radicals are very different, 

D
0 

of these species are very similar. On the other hand, Eo of the both radicals are larger than 

those of the parent molecules. This behavior can be again reproduced by the calculation from eqs. 

(5-4) and (5-5), both qualitatively and quantitatively (Fig. 5-8). Again this is similar to the case of 

the neutral radicals reported in section 3.8. In chapter 3, we explained the temperature dependence 

by the excess size model. The activation energy of the anion radical is almost the same as that of 

the neutral radical. The charge in the radical does not change the activation energy of diffusion. 

We consider a possible origin of this fact below. 

5.6 Comparison of D between the Ionic Radicals and Stable Ions. 

In the previous section, we compared D of the charged radicals with those of the neutral 

radicals. This comparison will provide information of the charge effect on the radicals. In order to 

discuss the charge effect on the radicals and also that on the closed shell molecules, D of stable ions 

are compared with those of the closed shell molecules. A large number of studies have been made 

on the diffusion process of metal ions. 1 As the metal ions become small, the effect of the 

Coulomb force becomes remarkably large and D of the meta] ions become much smaJler than DsE· 
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This effect has been explained by the formation of the complex with a large number of solvent 

molecules. 
4 

Since the sizes of the metal ions are too small for the hydrodynamic theory based on 

the continuous fluid model, it would not be appropriate to use such data for comparison with our 

samples. D of larger non-metallic ions have been measured by the ionic conductance method for 

some tetraalkylammonium ions and the values are compared with D of some tetraalkyltins by the 

Try lor dispersion technique. 
3 

The results show that the ionic mobility is slower than that of non 

-ionic molecules and such difference was analyzed by the dielectric friction model. 

The effect of the dielectric friction is given by 

3 S = S0 + R/r (5-6) 

where s
0 

is the hydrodynamic friction and the R/r3 term is the dielectric friction. Generally, s
0 

is 

calculated from the Einstein's formula feq. (5-4)]. According to the theory by Zwanzig, R is given 

by 7 

A e\Eo - E }to 
00 

Rz = --------
E0(2E0 + E ) 

00 

(5-7) 

Based on the Hubbard-Onsager (HO) theory, R is written as 8 

A e 2
(E 0 - E }to 

00 RHO= _____ 2 ___ _ (5-8) 
Eo 

where, E
0 

and E00 are the static and optical dielectric constants, respectively, and 'tn is Debye's 

relaxation time. Constant A have a value of A==3/8 for the stick boundary condition and A=3/4 for 

the slip boundary condition of eq. (5-7), A=l7/280 for the stick boundary condition and A= 1115 

for the slip boundary condition of eq. (5-8). 

Evans et al. experimentally determined R of some tetraalkylammonium ions in several sol vents 

by comparison of D of non ionic molecules. The experimentally obtained D of the ionic molecules 

by Evans et al. are plotted against 1/r and l/Yj in Fig. 5-9 along with our data. Both DsE and DEV 

-87 -



CluqXer 5 

calculated from eqs. (5-4) and (5-5) are plotted. It is evident from the figures that D of the ions are 

close to DsE of stick condition, which is similar to the radical 's case. This agreement indicates that 

the diffusion of the stable ions is expressed by the stick boundary condition of the hydrodynamic 

model rather than the dielectric model. (The agreement of non-ionic molecule's D with DEV ts 

expected since equation (5-5) was empirically determined from these data.) 

5. 7 Models of the Slow Diffusion. 

For a detailed comparison of D of the neutral radicals, the anion radicals, and the stable ions , 

the size dependence of diffusion of three species are plotted in Fig. 5-9b. Although DsE (straight 

solid line in Fig. 5-9b) reproduceD of three species, some difference is notable. D decreases in 

order of stable ions, neutral radicals, and anion radicals. 

We have explained the diffusion process of the neutral radicals based on the excess volume 

model in section 3.9. In this model, the equation derived by Evans et al. was modified as if the 

molecular volume of the radical was expanded. An equation from this model is given by 

c 

Sv = k -sl exp[ -a 
(r3 +3Y 0 /4n) 

113 

(r
3 +3V 0 /4n) 

113 (5-9) 

where V 
0 

is the apparent excess volume of the radical [See eq. (3 - 15)]. In a series of our 

investigations on the radical diffusion, we succeed in reproducing the size dependences of the 

radical's D by this model with V 
0 

= 5 X 102 A 3 (Fig. 3-8). Although D calculated from this model 

(Dy) are close to DSE' the size dependence of the diffusion activation energies of radicals agrees 

better with the calculation based on this model than on the SE equation. DsE are proportional to 1/r 

(straight line in Fig. 5-9b), while the dependence of Dv on 1/r is more moderate (dotted line in Fig. 

5-9b). Dv are close to D of the neutral and anion radicals but those of the stable ions are slightly 

larger than Dv· 

Felderhof showed that the HO theory for ionic mobility need to be corrected and performed 

more careful numerical studies based on the dielectric friction theory. 28 In a similar manner, lbuki 

and Nakahara tested the dielectric friction theory for ion mobility in polar solvents. They found that 
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the HO theory is better than the Zwanzig theory to describeD of an ionic species and proposed an 

. HO . 29 approXJmate equation. 

t; = t;o + 11 RI-u' 2 an ( R 00' I r ) n (5-lOa) 

n 

R00' ~ [ 
e2(Eo- E }-en r (5-10b) 00 

..., 

16 Jt l) E; 

where, an are constants and Ibuki and Nakahara recommended a 1=-2.78664, a2=8.62163, 3.:3=-

3.34252, and a4=0.395501 for the stick condition and a 1=-2.21448, a2=6.95787, 3.:3=-2.72959, 

and a4=0.3377% for the slip condition. We calculated D from their approximated equation and 

compared them with the experimental D. However, the calculated D are very different from the 

experimental values. For example, D of Et4 N+ in ethanol is 0.72xl0-9m2s-1
, while the calculated D 

is 0.47x10-9m2s- 1
. A similar result has been reported by Terazima et al. for the TMPD cation 

radical. 13 The disagreement is expected because Ibuki and Nakahara used the Einstein equation 

leq. (5-3)] for s
0 

in eq (5-6), yet DsE cannot reproduce the experimental D. In order to improve 

t;
0

, we used t;EV [eq. (5-5)] instead of t;sE· The calculated values by the corrected HO equations 

with the slip boundary constants (DI-r) are plotted in Fig. 5-9 (broken line) and compared with the 

experimental D of these species. We find that Dr-u reproduce well D of the stable ions rather than 

those of the radicals in region of r-1 < 0.3 A -l. From Fig. 5-9, it is evident that D00 increase 

exponentially with increasing 1/r. This deviation becomes larger with increasing 1/r of ions. In 

this region, the corrected HO equations can no longer reproduce the experimental D,therefore, in a 

wide range of 1/r, the experimental D can be better reproduced by DsE rather than D00. 

5.8 Intermolecular Interreaction of the Neutral and Anion Radicals. 

One of main interesting findings in this research is that D of the neutral radicals are quite close 

to those of the anion radicals and ions. This fact indicates that the friction of the neutral radicals , 

(whatever the origin is), and the dielectric friction of ions are not additive. It is interesting to note 

·- 89 -



Cluq¥r 5 

that D of the ions, the neutral radicals, and ionitc radicals are close to D E under the stick boundary 

condition under a variety of conditions of solvent, temperature, and molecular size (although there 

is a slight difference) . This fact may suggest that DsE of sti ck boundary condition could be the 

lowest limit of D. If the boundary condition is already completely stick-like for the neutral radicals 

and ions, the condition cannot be 'more stick-like' even if a charge is attached to the neutral radical 

or an unpaired electron is attached to the ion. l\nother possible explanation for the similar D of the 

neutral and ionic radicals may be related to the origin of the slow diffusion of the neutral radicals. 

D of the neutral radicals and that of the stable ions are very similar over wide ranges of 

viscosities and molecular sizes (Fig. 5-9). It suggests that the solute-solvent intermolecular 

interaction of the ions and the neutral radicals could be similar, in more specifically, similar to the 

electrostatic interaction. Of course the neutral radicals have no charge in total , but if the charge 

densities of the radicals are polarized significantly, they can interact with the solvent molecules by 

the electrostatic interaction. 

Nee and Zwanzig proposed a theory of the dielectric friction for a dipolar molecule, 30 and 

subsequently , many theories have been proposed to account for the dielectric friction to the rotation 

of polar solutes in polar solvents 31 or reorientation of polar solute molecules interacting with polar 

solvents. 
32 

No theory to explain the dielectric friction effect of a polar solute to the translational 

diffusion have not been reported. However, by analogy with the rotation process, it is natural to 

consider that the diffusion process of the polar solute should be influenced by the dielectric friction . 

Such the remarkable polar character of the radicals has been certified very recently by Morita 

and Kato, which have been described in section 4.7. 33 They proposed that the origin of the 

anomalous slow diff usion of radicals should be due to the enhanced sensitivities of the 

intramolecular charge polarization of radicals by an ab initio MO calculation . According to their 

analysis, such an enhancement is due to the o-Jt mixing that facilitates the deformation of the Jt ­

electron orbital of aromatic radical s. They suggested that this particular sensitivity of aromatic 

radicals could be the origin of the anomaloUts slow diffusion of the radicals. Their theoretical 

suggestion seems to be consistent with our finding that the friction of the neutral radicals is similar 

to that of the ions. 
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Their calculation show that the charge sensi tivity depends on the molecular structure. When a 

charge is attached to the neutra l radical, the structure should be changed and the o-n mixing which 

is the origin of the enhanced charge sensitivity could diminish. In that case, only the intermolecular 

interaction by the electric charge ( not the charge sensitivity) causes the slow diffusion of the ionic 

radicals like that of stable ions. This exclusive :mechanism of the slow diffusions of the neutral and 

ionic radicals may answer to the question as to why the effect of the charge and the unpaired 

electron is not additive. 

5.9 Conclusion. 

The translational diffusion constants (D) of the electrically neutral ketyl radicals, the anion 

radicals, and the parent molecules were measured by the transient grating (TG) method in alcoholic 

solutions. The neutral radicals and the anion radicals could be created selectively by controlling the 

concentration of sodium hydroxide not only in aqueous solution but also in alcoholic solutions. 

The presence and the decay kinetics are examined by the transient absorption and the time profile of 

the TG signal is interpreted in terms of the mass diffusion of these species. It was found that both 

the neutral and anion radicals diffuse slower than the parent molecules. 0 of the anion radicals are 

compared to those of the neutral radicals for studying the effect of the charge and the unpaired 

electron on the diffusion process. We measured the sol vent viscosity dependence, the solute size 

dependence , and the temperature dependence of D. These 0 are compared with the values 

calculated based on the Stokes-Einstein equation (DsE) and the equation proposed by Evans et al. 

(DEV) . D of the parent molecules are close to DEY , whileD of the both radicals are close to DsE· D 

of the anion radicals are close to that of the neutral radicals in wide ranges of sol vent viscosities, 

solute size, and temperatures. Comparing this result with reported D of stable ions, we found that 

the diffusion of the neutral radicals , the ionic radicals, and the ions are similar. For a more careful 

comparison, we calculated 0 using the excess volume model based on DEv (Dy) and the dielectric 

friction model , which is corrected by the Hubbard-Onsager equation (DHJ). The radicals D are 

close to D\ .. On the other hand, D of ions agree with 0 00 rather than Dv· At present, we think that 

the slow diff usion of the radicals and ions may be due to a similar origin, which could be solute-
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solvent electrostatic interaction. Recently , Morita and Kato reported that the sensitivities of the 

intramolecular charge polarization of the radicals are enhanced remarkably by the external 

electrostatic field. They proposed that such an enhancement is the origin of the anomalous slow 

diffusion of the radicals. Their proposal is consistent with our explanation. 
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Scheme 5-l 

Table 5-1 Diffusion constants (D I 10-9 m2s-1
) of acetophenone (AP), the neutral 

radical of AP in alcoholic solvents , and the anion radical of AP in alcohols+ NaOH 

(O.OlM) obtained by the TG method. 

solvent D in pure solvent D in solvent+ NaOH (O.OlM) 

AP neutral radical AP anion radical 

ethanol 1.36 + 0.11 0.58 + 0.01 1.37+0.10 0.52 + 0.03 
methanol 1.78+0.05 1.25 + 0.04 1.91 + 0.12 1.15 +0.02 
2-propanol 0.89 + 0.03 0.33 + 0.01 0.89 + 0.05 0.28 + 0.02 

1-butanol 0.77 + 0.08 0.26 + 0.01 0.80 + 0.20 0.19 + 0.03 

1-pentanol 0.66 + 0.09 0.19 + 0.01 0.63 + 0.06 0.14 + 0.05 



Table 5-2 Size dependence of the diffusion constants (D I 1 o-9 m2s -t) of the parent 

molecules , the neutral radicals, and the anion radicals in ethanol and ethanol + NaOH 

(O.OlM). 

solute Din ethanol D in ethanol+ NaOH (O.OlM) 

parent molecule neutral radical parent molecule anion radical 

benzaldehyde 1.60+0.05 0.58+0.01 1.52 +0.02 0.48+0.02 

r--- xanthone 0.90+0.05 0.50+0.01 0.87+0.04 0.46+0.01 
benzophenone 0.80+0.05 0.49+0.03 0.80+0.10 0.43+0.02 
benzil 0.77+0.05 0.50+0.03 0.70+0.10 0.45+0.01 

Table 5-3 Activation energy for diffusion (ED) and the pre-exponential factor (D0 ) 

[D=D0 exp( -ED/kB T)] of AP, the neutral radical, and the anion radical obtained by 
t 
he Arrhenius plot of D (Fig. 5-8) in ethanol and ethanol+ Na0H(0.01M). 

parent molecule 
(in ethanol) 
(in ethanol+NaOH O.OlM) 

neutral radical 
(in ethanol) 

anion radical 
(in ethanol+NaOH 0.01M) 

2.0+0.1 

1.7+0.2 

2.3+0.2 

1.9 + 0.1 

£ 0 I kcal mor 1 

2.97+0.04 

2.88+0.05 

3.52+0.06 

3.56 + 0.03 
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Fig. 5-1 (a) Transient absorption spectra at a lOOf.ls time delay after the excitation of AP in 

water (e) and AP in water+ NaOH (0.01M)( 0 ). (b) Transient absorption spectra of AP in pure 

ethanol (e) and AP in ethanol + NaOH (O.OlM)([]). Spectra of the neutral radical of AP (solid 

line) and the anion radical of AP (dotted line) frorn ref. 16 (in water) , 17 (in ethanol ) are shown in 

both figures for comparison. 
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Chapter 6 

RADICAL DIFFUSION IN AQUEOUS 
SOLUTONS 

6.1 Properties of the Water. 

In this chapter, the effect of water to the translational diffusion of the transient radicals was 

studied. 1 Water is a unique solvent in many senses. One of the most remarkable character of 

water is the strong and steric solvent structure framed by the hydrogen bonding network. In 

particular, the sol vent structures play a very important roll in the hydrophobic case. If the solute 

molecule is strongly hydrophobic, water network around the hydrophobic solute tends to be 

stronger than that of the bulk phase. It is called the hydrophobic hydration. In 1938, Butler et al. 

found that the dissolution entropy change of non-polar solutes are negative and heat capacity 

change are very large. 2 In 1945, Frank and Evans interpreted this observation by the iceberg 

hydration model, which is the basic model of the hydrophobic hydration. 3 In 1959, Kauzmann 

proposed the concept of the hydrophobic interaction, 4 and since ""'1970, Ben-Naim has developed 

the concept of the hydrophobic hydration. 5 After that, many observations 6 '""'
8 and calculations 9 

of the hydrophobic hydration have been reported. The solvent structure of water has been 

elucidated by the X-ray diffraction , 10 the neutron diffraction, 1 1 and several calculations. 12 The 

hydrogen bond of the water molecule can extend to four directions and the solvent structure is 

tetrahedral like diamond. 13 
..... 

14 

13 
Because of this structure, the diffusion in water is different from that in organic solvents. 

The diffusion processes of stable molecules in aqueous solution have been reported in many 

literatures so far. 14 Generally, D in the aqueous solutions are smaller than that in the organic 
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solutions. These observation have been interpreted based on several theories from the 

hydrodynamic model. Simply, 0 is calculated by the Stokes-Einstein (SE) equation (OsE) with 

parameters r, Y), T, and f [eq. (3-4)]. 
14 f is a constant which depends on the boundary condition 

between the solute-solvent molecules; f=4 (slip)'"'"' 6 (stick). However, in many organic solutions, 

f should be much smaller than 4 (slip) to reproduce experimental 0 by OsE· 

While fin an organic solvent becomes smtaller with increasing ll (decreasing T), Tominaga et 

al. found that fin water is nearly 6 and rather insensitive to the temperature. 1 5 This fact suggests 

that the hydrodynamic description with the stick boundary condition is more appropriate in water 

than in organic solvents. Tominaga et al. explained this observation by two factors; (1) the 

molecular size of water is smaller than that of many other organic solvents, so the continuous fluid 

approximation of the hydrodynamic theory becomes reasonable, (2) even iff in water becomes 

smaller with decreasing T like in an organic solvent, hydrogen bonding of water becomes stronger 

so that friction between solute and solvent increases (f increases) with decreasing T, and this effect 

15 
may compensate the decrease of f. Moreover, although the solute and solvent hydrogen 

bonding generally decreases the diffusion constant in protic solvents, Din water, which is one of 

pro tic sol vents, does not decrease. 1 6 

In other to examine the diffusion behavior in the hydrogen bond network, the diffusion 

constant of neutral radicals, anion radicals, and parent molecules are measured in mixed solutions 

of ethanol and water. Ethanol is miscible with water in any proportion and water-ethanol mixed 

solution is one of the typical mixed solution. The properties of this mixed solutions such as 

thermodynamic character, 17 structure, 18 and viscosity 19 have been already reported. 

We found that the difference in 0 between the radicals and the parent molecules becomes 

smaller with increasing the water concentration in the solution. This feature is discusses in terms of 

the solution structure of the mixture. We think that the difference in 0 between the radicals and the 

parent molecules decreases because of the hydrophobic hydration around the solutes. 

6.2 Photochemical Reactions in Aqueous Solutions. 

Before going into the TG experiment, we first examine the photochemistry of the solutes we 
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used (benzoquinone (BQ) and acetophenone (AP)). The photochemical scheme of BQ and AP are 

similar to scheme 3-1. The lowest excited triplet (T 1) state is created by the intersystem crossing 

from the lowest excited singlet (S 1) state by the UV excitation. The benzosemiquinone radical 

(BQH") or the AP ketyl radical (APH.) is created by the hydrogen abstraction from the lowest 

excited triplet (T 1) state created by the intersystem crossing from the lowest excited singlet (S 1) 

state by the UV irradiation. 2 0 

We investigate this reaction scheme and also the chemical stability of the radicals in 

ethanol+water mixed solution by the transient absorption (TA) and time-resolved EPR (TREPR) 

methods. TheTA spectrum at a 10!J,s time delay after the excitation of BQ and AP in ethanol and in 

a ethanol (10% (v/v)) +water (90% (v/v)) n1ixed solution ( EJW (1/9)) is shown in figure 6- 1. 

In pure ethanol (Fig. 1a,b), the observed spectra are similar to the reported spectra of BQH. and 

APH", 
21

-
23 and it is reasonable to assign these species to BQH" and APH". TheTA spectrum 

of AP in EJW ( 1/9) is also similar to the reported spectrum of APH. in an aqueous solution (Fig. 

1d). 
2 4 Therefore, APH" should be created dominantly in ethanol and E/W ( 1/9). Although, the 

neutral radical (MH.) and the anion radical (M" -)are in equilibrium, 23
-

25 

MH. 

or MH. + 

(a) 

(b) 

pKa of APH" was reported to be 9.9 24 and the relatively large pKa makes APH. dominant even 

in aqueous solution [See section 2 in chapter 5]. On the other hand, theTA spectrum of BQ in FJW 

(1/9) is similar to the reported spectrum of BQ anion radical (BQ.-) in an aqueous solution (Fig. 

1c). 2 3 Therefore, we assign the chemical species in water rich solution to BQ. -. Since pKa of 

BQH. is 4.0, 2 3 BQ. - is created dominantly in an aqueous solution (pH=7). On the other hand, as 

the autoprotolysis constant of ethanol is much smaller than that of water, BQH. is created 

dominantly in pure ethanol. 

Considering the chemical equilibrium (a) and (b), one can create the anion radical or the 

neutral radical selectively by controlling pH of the solution. TheTA spectra of BQ in EJW (1/9) 
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with H~S04 (O.lM) and AP in fJW (1/9) with NaOH (O.lM) are shown in Fig. le,f and each 

spectrum is similar to the reported spectra of BQH. 2 3 and AP.- 24 well, respectively. The time 

profiles of all theTA signals can be expressed well by the second ordered kinetics and the half life 

period is....., 1 Oms at a power of....., 1 mJ/cm2 for photoexcitation. 

Since theTA spectra of BQH. and BQ.- are rather similar, it is difficult to distinguish which 

species are dominantly created in mixed solvents. To identify the chemical species more clearly, 

we use the TREPR technique. The EPR spectra of BQH. and BQ. - have been reported and the 

spectra shape of both species are quite different.. 
2 6 Figure 6-2 shows the observed EPR spectra of 

BQ at a lf.!S time delay after the excitation (a) in ethanol, (b) in fJW (119), and (c) in E/W (5/5). 

The shapes of the obtained EPR spectra of three systems are quite different and it was found that 

BQH·and BQ.- are created in ethanol and EIW (119), respectively. 26 This fact is consistent with 

the conclusion from theTA measurement. The equilibrium process (f) and (g) should be very fast 

(the equilibrium should complete within 1 JA-S). The EPR spectrum of BQ in E/W (5/5) can be 

analyzed by the superposition of the spectra (a) and (b). It suggests that the both species of 

BQH. and BQ.- exist in FJW (5/5). 

6.3 TG signal in Water/Ethanol n1ixed Solvents. 

The time profiles of the TG signals after the excitation of BQ in FJW ( 10/0....., 1/9) are shown in 

figure 6-3. All signals consist of three components; a spike-like signal, a subsequent slow rise 

component, and slow decay. The TG signal of BQ in ethanol has been analyzed previously 

[section 3--4 in chapter 3]. The spike-like signal which decays in a few microseconds is originated 

from the thermal grating. The slower rise and decay components should be the species grating 

created by the photochemical reaction. In this reaction system, four chemical species (BQ, BQH., 

ethanol, and hydroxyethyl radical) could contribute to the TG signal. However, since the 

absorption coefficients of ethanol and the hydroxyethyl radical 2 7 are smaller than those of BQ and 

BQH. in the visible and near UV region , 21
' 
23 only two species (BQ and BQH· ) dominantly 

contribute to the species grating (Fig. 6-3). 

Similar signals were observed for AP. Because the absorption coefficients of AP and APH. 
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22
' 

24
-
25 are larger than those of ethanol and the hydroxyethyl radical, the species grating mainly 

comes from the AP and APH. contributions. 

In these systems, the solute molecules ( BQ, BQH., BQ.- , AP, APH., and AP. -) do not have 

. . ) 21-25 27 H h 
any absorption bands at the wavelength of the probe hght (633nm . ' ence, t e square 

root of the TG signal should be proportional to only the refractive index change. The species 

grating decays by the mass diffusion process and subsequent reaction process of the radicals, 

which is mainly the recombination of the radicals. The recombination of BQH. and APH. are 

reported as the diffusion controlled process .. 
2 8 As the excitation laser power for the TG 

") 

measurement is much weaker ( -0.3 mJ/cm-) than that for theTA experiment, the half life period of 

the radicals should be much longer than that of theTA measurement ("" 10ms). The concentrations 

of the radicals should be almost constant with]m the time range for the TG measurement (,..., 1 ms). 

Therefore, it is reasonable that the decay profile of the species grating signals can be analyzed by 

only the diffusion process. The time profile of the TG signal is given by 

112 0 2 0 2 ~ 0 2 
I TG (t) = onth exp (- D1h q t ) - onp exp (- Dp q t ) + unR exp (-DR q t) (6-1) 

where, on
1
h 

0
, onp 0 , and onR 0 are the initial refractive index changes of the thermal grating and the 

species gratings of parent molecules (BQ, AP) and radicals (BQH., APH. ), respectively [See 

eq.(3-l) and (3-2)]. Generally , the refractive index change of the thermal grating is negative (on1h 
0 

< 0) and the refractive index change of the species grating of all species in this systems is positive 

( 
~ 0 ~ 0 0) 2 1-2 5' 2 7 unp , unR > . 

The spike-like component of the TG signals is the thermal grating signal. D1h from the TG 

signal agrees well with the calculated one. 2 9 Comparing the sign of the refractive index in eq (6-

1) (onp 
0

, onR 
0 

> 0) with the TG signals (Fig. 6-3), we assigned that the slowly rising component 

and decay component of the TG signal are due to the species grating of the parent molecules and the 

radicals , respectively. We fitted the species grating component of the TG signals with double-

exponential function and determined Dp and DR (table 6-1). 

The TG signal of BQ in EJW (5/5"'1 /9)+H2S04 (0.1M) and AP in EJW (10/0"'l/9)+NaOH 
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(O.lM) are similar to the TG signal shown in Fig. 6-3. 0 of BQH. and AP.- in several mixed 

solutions are determined by the same analytical method (table 6-l). It is noteworthy that , although 

the TG signals of BQ in E/W (5/5) can be fitted by a double exponential function , the TREPR 

spectra (Fig. 6-3) clearly indicate the presence of three species (BQ, BQH· , and BQ. -). This fact 

suggests that D of BQH. and BQ.- are similar in ethanol+water. This observation is consistent 

with the similar diffusion constant of anion radicals and neutral radicals created from ketones in 

ethanol (chapter 3). D of the anion radicals and that of the neutral radicals of AP are also very close 

in the mixed solution of ethanol and water. The intensities of the TG signals in pure water are 

much smaller than that in the water-ethanol mixed solution, because the efficiency of the hydrogen 

abstraction reaction from water molecule may be smaller than that from the ethanol (next chapter). 

Our values of D from the TG method are close to literature values from the TD method 30 

( BQ -9 A -9 ') -1 . ) . . om Th fi 
; 1.44x 10 , P; 1.24 X 10 m-s In ethanol Within 1 -to. e 1tting errors of the radicals 

should be smaller those that of the parent molecules (~lOo/a ). 

6.4 Comparison of D of the Parent Molecules and Radicals. 

Dis plotted against the concentration of water(%) in ethanol in figure 6-4. Figure 6-4a shows 

that D of mixture of BQH. and BQ.- (white squares) are quite similar to D of BQH. (white circles) . 

Fig. 6-4b shows that D of APH. (white squares) are quite similar to D of AP.- (white circles). 

Therefore, D of the neutral radicals and the anion radicals are quite close each other in all the mixed 

solutions. 

We compare the obtained D with DsE [eq. (3-4)] and DEY [eq. (3-5), (4-15), or (5-5)]. In 

previous chapter, we have shown that D of parent molecules agree very well with DEY· On the 

other hand, D of the neutral or anion radicals are close to DsE with the stick boundary. DsE and 

~Y in several solutions are also shown in Fig. 6-4. 0 of the radicals are close to DsE in all the 

solutions. 0 of the parent molecules are close to DEY in ethanol rich solutions, but smaller than 

DEY in the water rich region. The difference becomes larger with increasing the content of water in 

solution and D becomes closer to DsE· 

Figure 6-5 shows the ratio of 0 between the parent molecules and the radicals against the 
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concentration of water in ethanol. The ratios of both systems decrease linearly with increasing the 

concentration of water. T he difference in D between the parent molecules and the radicals became 

smaller by add ition of water. In section 3 .6, the slow diffusion of radicals was observed 

regardless of the solvent property (the polarity , the dipole moment and the protic character, etc.). 

Only in the aqueous solution, the diffusion processes of the radical s are similar to those of the 

parent molecules. The possible origin of this fact is considered in later sections. 

Figure 6-6 shows 011 against 1/r of the parent molecule (open circle) and the radicals (open 

square) in ethanol and those of stable molecules in water (open triangle) reported in chapter 3. The 

curved and straight lines are calculated ones of DsEll and DEvll , respectively . It is evident that 

Dp11 and DRll agree with DsEll and DEvll, respectively in ethanol. On the other hand , Dpll in 

water are close to DsEll rather than DEvll· The agreement with DsEll could indicate that the water 

molecules can be treated as a continuous fluid. D'rl of BQ, AP (closed circle) and the radicals 

(BQH. , BQ. - and APH., AP. - ) (closed square) in EIW (119) are also plotted in Fig. 6-6. D11 of 

both the radicals and the parent molecules are close to DsE rather than DEv· 

6.5 Temperature Dependence of D in Ethanol and in Water. 

Temperature dependence of Dis examined in ethanol and in water for studying the diffusion 

processes in these solvents. In many cases , the temperature dependence of neutral stable molecules 

can be expressed by the Arrhenius-type equation with the diffusion activation energy (EJ and the 

pre-exponential factor (D
0

) [eq. (3-6)]. We plotted logO against liT (Arrhenius plot) in Fig. 6-7 

for the samples in ethanol. Although both Arrhenius plots in ethanol show a good liner 

relationship , the difference in the activation energy is notable. In section 3.8, the different 

activation energies between the radical s and parent molecules in ethanol and 2-propanol are 

explained as follow s. 

If the temperature dependence of the viscosity is written by the followin g equation req. (3-7)] 

(6-2) 
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where Ell ( = 3.96 kcal/mol in ethanol) is the activation energy of viscosity, 
3 1 we obtain E0 = 

~ from the hydrodynamic theory. On the other hand , if D is well expressed by the equation of 

Evans et a l. , E0 is given by 

(6-3) 

where c abd dare the constant, which determined c=-o.86365A3 and d= l.0741. In this case, since 

cis negative, E0 is slightly smaller than Ell and depends on the molecular size. Indeed, if we plot 

DsE and DEY (Fig. 6-7), it is evident that the temperature dependence of D of the radicals is 

expressed well with DsE' while, that of the parent molecules are close to DEY with eq (6-3). 

On the other hand, the Arrhenius plots of D of the radicals and the parent molecules in water 

( + 10% ethanol) (Fig. 6-8) are not linear and they resemble each other. We also plot DsE and DEY 

in Fig. 6-8. D of both the radicals and parent rnolecules are close to DsE rather than DEY which 

suggest that the temperature dependence of Dis mainly determined by that of 11· This nonlinearity 

of the Arrhenius plot of D in water has been reported by Tominaga et al. for stable molecules in 

water. 1 5 This nonlinearity was explained by the fact that the temperature dependence of the 

viscosity of water cannot be expressed by eq (6-2). Water is strongly hydrogen bonded and builds 

a steric structure. The hydrogen bonding and becomes stronger with decreasing T. Therefore, the 

slope of the Arrhenius plot becomes steeper with decreasing T. Our results are similar to their 

results. This result suggests that the hydrodynamic approximation of diffusion is reasonable. We 

conclude that D of the radicals and the parent rnolecules are similar in a wide range of temperature 

in water. 

6.6 Similar D of the Radicals and Parent Molecules in Water. 

In previous chapter, we reported D of the radicals and the parent molecules in various organic 

solvents, and founds that DR is always smaller than Dp. In this chapter, we for the first time find a 

solvent in which DR is similar to Dp. In this section, we consider a possible origin of the similarity 

of Dp and DR' This unique property of water could be explained by the hydration. 
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In the case of hydrophilic solutes (e.g. ionic, polar, or hydrogen bonded molecule), the 

hydrogen bonds of water are destroyed and/or complex-like hydration structures are constructed 

(hydrophilic hydration). 
3 2 On the other hand, in the case of hydrophobic solute, the solute 

molecules aggregate (hydrophobic bonded) 4 or the hydrogen bonds of water are reconstructed 

around the solute (hydrophobic hydration). 5 .....,
8 The hydrophobic hydration are sensitive not only 

to the polarity but also to the size and the shape of the solute molecules. The hydrophobic 

hydration has been observed for inert gas atoms, small alkanes, and also benzene. 6 Using the X­

ray diffraction, Nishikawa et al. reported that tert-buthyl alcohol solvated by the hydrophobic 

hydration in spite of the hydrophilic part ( -OH), while ethanol and propanol are not solvated by the 

hydrophobic hydration. 7 Moreover, the hydrophobic hydration was observed for the 

tetraalkylammmonium ions although it has a charge which could interact with water strongly. 8 

These facts suggest that the hydrophobic property should be more effective than the hydrophilic 

properties (hydrogen bonding or charge) of the solutes to the hydration mechanism. Tominaga et 

al. reported that the diffusion process of toluene, ethylbenzene, hexafluorobenzene, n­

buthylbenzene, biphenyl, naphthalene, and ethylnaphtalene are very similar to that of benzene in 

water (D of these molecules are close to DsE with stick boundary). 
15 

This fact suggests that these 

molecules are solvated by the hydrophobic hydration as in the case of benzene. Therefore, it is 

very plausible that BQ and AP are solvated by the hydrophobic hydration in a water rich solvent. 

Under this condition, D should be described by the SE equation with stick boundary (f=6). 

Indeed, D of AP and BQ are close to DsE rather than DEv· 

As we have described in previous chapter, D of the transient radicals are close to DsE with 

stick boundary condition in many organic solutions. The different DR from Dp in these organic 

solvents have been explained by an attractive interaction between the radicals and solvents, which 

was recently supported by a theoretical calculation by Morita and Kato. 3 3 We found, in this 

study, that D of the radicals in water rich solutions are still close to DsE with the stick boundary 

condition. This observation can be interpreted in two ways; the radicals diffuse under the influence 

of the attractive intermolecular interaction in aqueous solution as in the organic solvents or the 

diffusion is governed by the hydrophobic hydration as those of the parent molecules. We think that 
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the hydrophobic hydration is more important in aqueous solution because even tetraalkilammonium 

ions, which has an electric charge and should interact with solvent significantly, is solvated by the 

hydrophobic hydration. 8 We plot the reported D of the tetraalkylammoni urn ions in Fig. 6-6. 8 
c 

D of the radicals in water ( + 10% ethanol) are close to those of the tetraalkylammonium ions and 

both D are close to DsE with stick boundary (Fig. 6-4 and 6-6). This fact may indicate that the 

both species (radicals and tetraalkylammonium ions) are solvated by similar hydrophobic 

hydration. The solute molecules are surrounded by similar solvent structures of strong 

hydrophobic hydration, regardless the special solute-solvent interaction exist or not. As the 

solvation structure of both the parent molecules and the radicals should be quite similar, Dp and DR 

are close in water rich solutions. Moreover, the weaker hydrogen bonding effect in an aqueous 

solution reported by Tominaga et al. 1 5 have the same origin as the slow diffusion of the radicals 

(the magnitude of the intermolecular interactions of hydrogen bonding may be similar to that of the 

radicals in ethanol). 

The steric structure of water is gradually constructed by increasing the amount of water in 

7 34 
ethanol as revealed by several means. ' Therefore D of the parent molecules gradually change 

from DEY in ethanol to DsE in water. On the other hand, 0 of the radicals can be expressed by 

DsE in ethanol because of the attractive intermolecular interaction and also by DsE in water because 

of the hydrophobic hydration. Therefore, D of the radicals are close to Din the entire region of the 

mixed solutions. 

6. 7 Conclusion. 

The diffusion constants (D) of the parent rnolecules, the neutral radicals, and anion radicals of 

benzoquinone and acetophenone in ethanol-water mixed solvents were measured by using the 

transient grating (TG) method. The neutral radilcals and the anion radicals are created selectively by 

addition of the sodium hydroxide and sulfuric acid in water-ethanol mixed solution . D of the 

radicals are smaller than those of the parent n1olecules in ethanol as we have reported. D of the 

neutral radicals and the anion radicals are similar in any mixtures of ethanol and water. We found 

that the difference between DR and Dp becomes smaller with increasing the water content in the 
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solution. We compare the obtained D with those from the Stokes-Einstein equation (DsE) and D 

proposed by Evans et al. (DEy). DR are close to DsE in any solutions we investigated. On the 

other hand, Dp are close to DEY in ethanol and become smaller than DEY and approach DsE with 

increasing the water content. In FJW ( 1/9) solution, DR and Dp are similar and close to DsE· We 

consider that both the parent molecules and the radicals are solvated by the hydrophobic hydration. 

When the solvation structure of the hydrophobic hydration is constructed, the special intermolecular 

interaction of radicals may be reduced by the strong solvent structures. Therefore, in the water rich 

region, Dp are close to DR. We also measured the temperature dependence of D. D of the both 

radicals and parent molecules can be expressed by the Arrhenius type relationship with a single 

activation energy CEo) in ethanol. E0 of the radicals are close to the activation energies of 

viscosities(~), though E0 of the parent molecules are slightly smaller than E
11

. These features can 

be explained on the expressions of DsE and DEY· On the other hand, temperature dependence of 

D in water ( + 10% ethanol) cannot be expressed by a single activation energy. The temperature 

dependence of both the radicals and the parent molecules in water are reproduced well by that of 

DsE· This result is also attributed to the hydrophobic hydration of the radicals and the parent 

molecules in water. 
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Table 6-1 Diffusion constants (D) of the parent molecules, neutral radicals, and the anion radicals of benzoquinone (BQ) and 

acetophenone (AP) in ethanol-\vater mixed solutions. 

Diffusion constants ( 10-9 m2s-1) 

Content of 
• • a) BQ BQ + H2S04 Al1 Al1 + NaOH VISCOSity 

radical b) 
c) 

radical d) parent 
e) 

water (o/o) (cP) parent parent radical parent radical 

0 1.20 1.6 0.57 1.3 0.61 1.3 0.45 
10 1. 61 1 .2 0.44 0.89 0.44 1.0 0.39 
20 2.01 0.85 0.34 0.72 0.38 0.75 0.34 
30 2.37 0.72 0.36 0.55 0.33 0.61 0.31 
40 2.67 0.64 0.32 0.48 0.28 0.61 0.31 
50 2.87 0.58 0.32 0.58 0.31 0.42 0.27 0.43 0.29 
60 2.91 0.56 0.35 0.60 0.37 0.39 0.26 0.38 0.22 
70 2.71 0.62 0.42 0.65 0.39 0.42 0.30 0.41 0.28 
80 2.18 0.77 0.50 0.79 0.48 0.49 0.40 0.49 0.32 
90 1.54 0.76 0.61 0.76 0.57 0.55 0.46 0.57 0.45 

a) ref. 19 
b) neutral radical and anion radical of BQ are created 
c) BQ neutral radical are created 
d) A P neutral radical are created 
e) AP anion radical are created 
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Fig. 6- 1 Transient absorption spectra at a 1 011-s time delay after the excitation of (a) BQ in 

ethanol, (b) AP in ethanol , (c) BQ in E/W (119), (d) AP in EIW (1/9) , (e) BQ + H2SO-l in E/W 

( 1/9), and (f) AP + NaOH in FJW (1/9). Closed circles are observed T A spectra in this study and 

solid lines are reported spectra of, ( (a) and (e) ) BQ anion radical in ethanol from ref.23 , (b) AP 

neutral radical in ethanol from ref. 22, (c) BQ neutral radical in ethanol from ref. 23 , (d) AP 

neutral radical in water from ref. 24, and (f) AP anion radical in water from ref. 24. 
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Fig. 6 -2 The time resolved EPR spectra at a 11-!s time delay after the excitation of BQ (a) in 

ethanol , (b) in E/W (1/9), and (c) in E/W (5/5). 
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Fig. 6-3 Time profile of the TG signal after the photoexcitation of benzoquinone in ethanol­

water mixed solvents at room temperature ( ""20°C) . Volume o/o of water is indicated in the figure . 
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Fig. 6- 4 (a) Water concentration dependence of D of the parent molecules (.) and the 

radicals (0) of BQ and (b) AP, (a) D of the parent molecules (e) and the radicals (0) of BQ + 

0.1 M H
2
SO

4 
and (b) AP + 0.1 M NaOH. The broken line and the solid line are calculated values of 

DsE and DEY' respectively. 
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Fig. 6- 5 (a) Water concentration dependence of the ratio of parent molecule's D to radical's 

D of BQ (0) and BQ + O.lM H2SO-+ (e ), and (b) the ratio of D of the radicals of AP (0) and 

AP+ O.lMNaOH(e). 
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Fig. 6- 6 The solute size dependence of Drl of the parent molecules c•) and the radicals 

(. ) in E/W (1/9) solution. The reported values by the TG method (chapter 3) of the parent 

molecules (0) and the radicals (0) in ethanol are also plotted. The literature values of several 

molecules (.6) (ref. 14) and the tetraalkylammonium ions (A.) (ref. 8c) in water are also plotted. 

The broken line and the solid line are calculated values ofDsE and DEV' respectively. 
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Chapter 7 

RADICAL DIFFUSI~ON IN MICELLAR 
SOLUTIONS 

7.1 Properties of Micelles. 

Because micelles prepare local hydrophobic environments in polar aqueous solution 

inhomogeneously, they can present a special reaction field and chemical reactions in micelles can be 

very different from those in homogeneous solutions. 1 So far, many chemical reactions in various 

micellar systems have been investigated extensively. 
2

-
9 The reaction dynamics shall be greatly 

influenced by the molecular dynamics in the system such as, how do the solute and chemically 

active (intermediate) molecules distribute in the micellar phase and the bulk phase? How does the 

distribution depend on the molecular size, shape, and polarity? How are the diffusion processes 

affected by the presence of the micelles? For characterizing such properties, the micellar surface, 

the Stem layer, which has a few A width plays an important role because in the many cases, the 

trapped solute molecules may exist in the micellar surface rather than in the micellar core. 
10 

The 

strong electric field (""' 103 V /m) is one of the rernarkable property of the micelles when one regards 

it as the reaction field. For example, the micellar electric field may manifest itself in the charge 

separation or electron transfer reaction. In the homogeneous solutions, the created radicals are 

frequency quenched immediately by the fast reverse electron transfer processes. However, in the 

micellar surface , one of the pairs of the ion radicals are thrown out to the bulk phase by the 

electronic repulsion. Hence, the charge separation efficiency and the lifetimes of the ion radical s 

increase remarkably. Such effect has been actually observed by using the transient absorption (T A) 

method 3
-
6 and the time resolved EPR spectra 7

-
8 in ionic micellar solutions. For exampl e, 
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Wallace and co-workers reported that the biphotonic ionization processes of pyrene, triphenylene, 

and perylene in anionic micellar solution of Sodium dodecyl sulfate (SDS) probed by the TA 

method. 3 They observed theTA spectra of the hydrated electron and the solute cation radicals 

with high yields, and interpreted that the photoelectron should be thrown out to the bulk phase by 

the electric repulsion between the electron and the charge of the micellar surface. 3 Alkaitis et al. 

reported that the monophotonic ionization yields of phenothiazine and N,N,N' ,N' ­

tetramethylbenzidine in SDS micelles are much higher than that in methanol by using theTA 

method . 
4 

The micellar effect to the electron transfer of pyrene to N,N-dimethylaniline (DMA) 

have been investigated by the time-resolved TA signals of the created ion radicals in the anionic 

micelle of SDS and in the cationic micelle of cetyl trimethyl ammonium bromide (CT AB) . 
5 

They 

found that the lifetime of the pyrene cation radical became longer in CT AB because the DMA anion 

radical are separated from the micellar phase to the bulk phase by the electric repulsion. 5 

Similarly, efficient charge separation in ionic micellar solutions have been reported about Zinc 

porphyrin systems by T A 6 
, EPR 7 

, and florescence 8
 measurements. Moreover, an effect of the 

micellar charge was investigated for a benzophenone-aniline system probed by the line width of the 

CIDEP spectra of the created ion radicals. 9 

However, in spite of these many reports on reactions in micellar solutions, there has been no 

direct observation which shows that how many percentages of the created ion radicals are trapped 

in the Stem layer and how many percentages exist in the bulk phase. To reveal the molecular 

dynamics or the distribution in the micellar solution, diffusion constant (D) should be certainly a 

direct and good quantity. Although, D of stable ions or neutral molecules in micellar solutions have 

been reported by several methods, 1 1 direct measurement of D of any transient ion radical, which 

plays an important role in chemical reactions has never been reported in any micellar solution as far 

as we know. 

In this chapter, we report D of a transient anion radical and a cation radical created by the 

electron transfer reaction and also D of the neutral parent molecules simultaneously in anionic and 

cationic micellar solutions by using the transient grating (TG) method. We focused our attention on 

the electric charge effect between the transient ionic radicals and the micelles. 
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7.2 Photochemical Reactions in Micellar Solutions. 

In this study, we use benzoquinone (BQ) and aniline (AN) as the solutes. The photochemical 

· f BQ 12·14 dAN 15·16. reaction processes o an In water have been reported as scheme 1. 

Benzosemiquinone radical (BQH.) and anion radical (BQ.-) are created from the lowest excited 

triplet state of BQ by the hydrogen abstraction reaction (process a) and the electron transfer 

(process b) with the solvent (RH). The neutral radical (BQH.) and the anion radical (BQ.-) are in 

equilibrium (process c). This equilibrium con1pletes within lfts after the creation of the radical. 

Adams and Michel reported that pKa=4.0. 12 Therefore, in an aqueous solution (pH=7), BQ.- is 

created dominantly. On the other hand, the cation radical of AN (AN.+) is directly created by the 

one photon ionization in water (process d). 15 The created cation radical (AN.+) and the neutral 

radical (AN.) are in equilibrium (process e). Land and Porter reported pKa=7.0 for this 

equilibrium. 16 Therefore, in aqueous solution (pH=7), both AN.+ and AN. are produced. 

In this study, we use sodium dodecyl sulfate (SDS; anionic micelles) and cetyl trimethyl 

ammonium bromide (CTAB; cationic micelles). The photochemical reactions of BQ and AN in 

SDS and CTAB micellar solutions were studied by the transient absorption (TA) method. Fig. 7-

la shows the observed T A spectra at a 100f.!S time delay after the excitation of BQ in SDS and 

CT AB micellar solutions. A similar T A signal was observed for BQ in pure water. Reported 

spectra of BQ.- 13 in water are also shown in Fig. 7-1. The observed TA spectrum is similar to 

the reported one of BQ.- in water. Therefore, we conclude that BQ.- is created mainly from BQ 

not only in water but also in both SDS and CT AB micellar solutions. Fig. 7-1 b shows the 

observed T A spectra at a lOOf.!s time delay after the excitation of AN in SDS and CTAB micellar 

solutions. Reported spectra of AN.+ and AN. in water are also shown in this figure. 15 In this 

systems, both AN.+, and AN· are exist in micellar solutions. Decays of all these T A signals are 

well described by the second order kinetics and the half-lifes of the T A signals are few 

milliseconds. This fact suggests that the termination processes are mainly the radical recombination 

') 

of these radicals. As the excitation laser power for the TG measurement ( --0.3 mJ/cm-) is weaker 

than that of theTA measurement ( -..5 mJ/cm2
), the half-life of the radicals for the TG measurement 
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should be much longer than that for theTA measurement. 

7.3 TG signal in Neat Aqueous Sollution. 

Before examining the molecular diffusion in the micellar solutions, the TG signal of BQ in 

water is analyzed. The time profile of the TG signals of BQ in water is shown in Fig. 7-2. The 

square root of the TG signal (ITG
11 2

) can be fitted by a sum of four exponential functions. 

112 I I ITG(t) = - a 1 exp (-k 1 t) + a2 exp (-~ t)- ~ exp (-k3 t) + a4 exp (-k4 t) (7-1) 

where, k 1 > k2 > k3 > k4 are the decay constants and a 1 r-.J a4 > 0 are the pre-exponential factors. 

The solid line in Fig. 7-2a is the calculated line fitted by the non-linear least-squares method with 

eq. (7-1) and the time profiles of the four components are shown separately in Fig. 7-2b. If the 

termination of the radical follows the first order kinetics, the time profile of the TG signal is given 

by 

1/2 0 2 ~ 0 2 
I TG (t) = onth exp (- Dth q t ) - L Onp exp (- Dp q t ) 

p 

+ L onR
0 

exp (-DR q
2 

t -1/'tR) 

R 

(7-2) 

where, -r;R is the lifetime of the radicals when the termination of the radical follows the first order 

kinetics. From the rate constant, it is apparent: that a 1exp (-k 1t) term in eq. (7-1) represents the 

thermal grating term. 

Using theTA method, Ononye and Bolton found that photoexcited BQ abstracts the hydrogen 

atom from water and BQ"- is created immediately by the proton dissociation. 1 2 Therefore, the TG 

signal due to BQ and BQ.- shall be observed in neat water. By the same way to our previous 

reports in the homogeneous solvents, we can assign ~exp (-k3 t) and a4exp (-k4t) terms to the 

species gratings of the parent molecule (BQ) and the radical (BQ.- ), respectively. The origin of the 

component 2 is unknown. If the sample was not deoxygenated, the relative intensity of a2 becomes 
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larger while those of a3 and a-+ become smaller. Probably, component 2 may be due to the reaction 

between radical and oxygen dissolved in the sol ution. On the basis of these assignments, k3 and k-+ 

in eq (7-2) are given by 

2 
k3 = Dpq 

2 
k-+ = DRq + 1/lR 

(7-3a) 

(7-3b) 

Since k 1 is much larger than k3 and k4 , k 1 can be determined accurately by the fitting. On the other 

hand, because k3 and k4 are rather close, there is a larger ambiguity for k3 and k4 . We estimated 

that the fitting accuracies for k3 and k-+ are within 20% and 10%, respectively. We confirmed that 

the determined values of k3 and k4 are stable for varying the initial values for the least-squares 

fitting. 

The results of theTA measurements suggest that the subsequence reaction should be second 

order reaction. If the decay of the TG signal due to the diffusion process is much faster than that of 

the subsequence reaction, 1R in eq. (7-3b) could be approximately replaced by the half-lifetime of 

the concentration of the ion radical s. On the other hand , if the decay due to the subsequence 

reaction are much faster than that of the diffusion process, eq. (7-3b) is no longer satisfied and k 

vs. q2 plot should not be linear. The relationship between k and q
2 

are shown in Fig. 7-3a. The 

small intercepts with the ordinate and good linearity of these plots suggest that the decay of the TG 

signal should be faster than that of the reaction processes and eq. (7-3b) should be satisfied. Thi s 

fact is consistent with the long lifetime of the radicals observed by the TA measurement. 

Therefore, D can be determined from the slopes of the plots of Fig. 7-3a. The obtained D are listed 

in table 7- 1. Apparently , D of BQ and BQ.- are very similar each other (DpiDR r-J 1.22 ). This 

similarity between Dp and DR in water is very different from what we obtained in other organi c 

solutions [e.g. DrJDR r-J2.8 in ethanol (chapter 3)] but closed to what we obtained in 90% water -

10% ethanol mixed solution [Dp/DR r-J 1.3 (chapter 6)]. 
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7.4 TG signal in Micellar Solution. 

The time profile of the TG signals of BQ in SDS (O.lM) micellar solution is shown in Fig. 7-

4. The component 2, observed in water, did not: appear in this system. This fact may indicate that 

BQ.- is rather stable to oxygenation than BQH". Under this situation, most of BQH· created in 

micelles should change immediately to BQ. -. The TG signals can be fitted by a sum of the three 

exponential function [eq. (7-1) with a:2=0 ]. The fitted line and the time profile of each three 

component are shown in Fig. 7-4 a and b. Obviously, the fastest component (a 1) should be 

attributed to the thermal grating. It should be noted that the decay of the negative contribution ( -~) 

is now slower than that of the positive contribution (a4) and that the ratio of (C1:3/a4) is similar to that 

in water. The assignment of the chemical species for 3 and 4 should be the same as those in water. 

The plot of the rate constants (k) against q2 of BQ and BQ.- in SDS is shown in Fig. 7-3b. This 

plot shows a good linear relationship. We determined Dr and DR in SDS from the slopes of this 

plot and listed in table 7-1. The ratio of D (DrJT)R"" 11 ) in SDS micellar solutions is quite different 

from that in water, while ~/a4 is similar to that in water. 

The time profile of the TG signal of BQ in CT AB (O.lM) micellar solution is shown in Fig. 

7-5. This TG signal consists of two components; thermal grating and species grating signals . 

Considering the sign of On ( <0), we should attribute the chemical species of the species grating 

signal to BQ.-. The fitted line with a two-exponential function is shown in this figure. Although 

the intensity of theTA signal, which is proportional to the concentration of BQ.- is close to that of 

BQ/SDS, the root square of the TG signal intensity, which is also proportional to the concentration 

of BQ.- is much smaller than that of BQ/SDS. This weaker intensity of the species grating is 

interpreted by a similar decay rate constant of the TG signals due to BQ and BQ. -. Both signals 

are superposed each other, and the most part of the signal is cancelled by the opposite sign of these 

contributions. The remaining signal is due to BQ.- because the pre-exponential factors of the TG 

signal of BQ. - is larger than that of the BQ. Assuming that the TG intensity ratio of BQ.- to BQ is 

the same as that in SDS micelle (Fig. 7-4b), we can separate the species grating signal as shown in 

Fig. 7-5b [by using eq. (1) with a2=0 and k3=k4 ]. The plot of k vs q2 in CT AB is shown in Fig. 

7-3c and determined Dp (=DR) are listed in Table 7-1. 
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Fig. 7-7 shows the time profiles of the TG signals of (a) AN I SDS (0.1M) micellar solution 

and (b) AN I CTAB (0.1M) micellar solution. Since the absorption band of AN.+ are larger and 

closer to the probe wavelength (633nm) than those of AN', the species which mainly contribute to 

the TG signal should be AN.+ (Fig. 7-1 b). The TG signal of AN I SDS is quite similar to that of 

BQ I CTAB, while the TG signal of AN I CTAB is quite similar to that of BQ I SDS. Those 

signals in SDS and CT AB can be also fitted by a sum of two and three exponential functions, 

respectively. The k vs. q
2 plots of AN and AN'+ are shown in Fig. 7-7, and obtained Dare listed 

in table 7-1. 

D of BQ.- in SDS and AN. + in CTAB are similar to D of BQ.- in neat water, whileD of 

BQ.- in CTAB, AN .+ in SDS, and the parent molecules in both micellar solutions are much 

smaller than Din neat water. This fact suggests that the diffusion process of the ion radicals in 

ionic micellar solutions are very sensitive to the electric charge of the ion radicals and micelles. 

7.5 Interaction between the Ion Radicals and the Micellar Surface. 

If the solute molecules exist only in the bulk phase, Din the micellar solution should be equal 

to Din water. On the other hand, if the solute n1olecules exist in the micelles, D should be close to 

D of the micelles. D of BQ and BQ'- in water were already shown in the above section as 1.1 and 

0.9 X 10 -9m2s-1
, respectively (Table 7-1). We could not obtain D of AN and AN.+ in water 

because the TG signal is too weak to be analyzed. However, in chapter 6, we found that D in 

aqueous solutions are mostly controlled by the rnolecular size and shape, and the electric characters 

of the solute are not important for the speed of the diffusion. Therefore we can safely assume that 

D of AN and AN.+ are close to D ofBQ or BQ.- c.a. 1 +0.1Xl0-9 m2s-1 in neat water. 

When the charge of ion radicals and micellar surface are the same sign (BQ'- I SDS, AN'+ I 

CT AB), D of the ion radicals are larger than that of the parent molecules and close to Din aqueous 

solutions. The large D imply that the most part of the ion radicals exist in the bulk phase. We 

considered that the created ion radicals throw out to the bulk phase by the electric repulsion even 

though the parent molecules stays in the micelles and the photochemical reaction take place inside 

the micelles. On the other hand, when the charge of the ion radicals and the micellar surface are 
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opposite (BQ.- I CT AB , AN.+ I SDS), D of the ion radicals are close to D of the parent molecules 

and also D of the micelles. (The self diffusion constants of the micelles are reported as 0.07x 10-9 

and 0.04x 10-9 m2s- 1 for SDS 17 and CTAB, 18 respectively.) This fact suggests that the large 

amount of the ion radicals and the parent molecules exist in the micellar phase (on the micellar 

surface). The dominant presence of BQ and AN in micelles may be due to the hydrophobic nature. 

The equilibrium constant of the distribution will be described latter. It was reported that aromatic 

hydrocarbons such as benzene and toluen are in the micellar core by the strong hydrophobic 

character, but the hydrophobic solute which have the hydrophilic group ( -OH, =0, or -NH2 ) are 

trapped on the micellar surface (Stern layer) rather than in the micellar core. 
1 ° Considering these 

facts, we think that BQ and AN are located on the Stern layer rather than in the micellar core. This 

location might be one of causes of the efficient releasing and trapping of the photochemically 

created ion radicals. 

Because of the electric charge of the ion radicals, we may think that the ion radical could be 

located in water rather than in the non-polar micelles. However, D measured in this study strongly 

suggests that the created ion radicals are trapped on the micellar surface by the Coulomb force 

between the charges of ion radicals and the Stem layer. 

So far, many groups studied the electric interaction between ionic radicals and micelles 

indirectly. l- 9 For example, Kautusin-Razem et al 5 measured the lifetimes of the ion radicals 

created by the electron transfer between pyrene and N,N-dimethylaniline (DMA) in methanol 

(6ps), CT AB cationic micelle (500jis), SDS anionic micelle (66.6ps), and Igepal neutral micelle 

(13.ljis). They interpreted the long lifetime in the CTAB micellar solution by the hindrance of the 

reverse electron transfer due to the electronic repulsion between the cation radical of dimethyl 

aniline and cationic micellar surface of CT AB. (As pyrene is a large molecule, it hardly exists in 

water than DMA regardless of the micellar charge.) As another example, the line width of the EPR 

spectra of the benzophenone (BP) anion radical was found to be sharpe in the SDS micellar 

solution, while it was broad in the CTAB rrticellar solution. 9 The different line width was 

interpreted in terms of the different environment of the radical; that is , the anion radical trapped on 

the cationic micelle (CTAB) gives the broader spectrum by the motional restriction. In this study, 

- 136 -



Cha{Ur 7 

we obtain much more direct evidence for the trapping of the ion radicals from the D measurements. 

7.6 Micellar concentration dependence of D. 

To study the dynamics of the ion radicals in more deta il, the micellar concentrati on 

dependence of D is measured. D at various micellar concentrations for BQ and BQ"- are listed in 

Table 7-2 and plotted in figure 7-8. Micellar concentrations [M] are estimated by the followin g 

equation. 

[Det]- erne. 
[M]=----

n 
(7-4) 

where , [Det] is the concentration of detergent (SDS or CTAB) and n is the mean micelle 

aggregation number. -;:;-- of SDS and CTAB are~ 19 and "'70, 
20 

respectively. The critical 

micellar concentration (erne) of SDS and CfAB are 8.2mM and 0.92mM, respectively. 21 D of 

BQ.- in the SDS solution does not depend on the micellar concentration and always close to Din 

the aqueous solution (broken line in Fig. 7-8). This fact implies that most of BQ. exist in the bulk 

phase in the SDS solution at any concentration of the micelle. 

On the other hand, D of BQ.- in the CTAB solution and D of BQ in the SDS and CTAB 

solutions depend on the micellar concentration. D of BQ.- and BQ become smaller with increasing 

the micellar concentration and closer to D of the micelle (solid line in Fig. 7-8). It suggests that the 

relative amount of the solute molecules in the micellar phase compared with that in the bulk phase 

increases with increasing the micellar concentration. If the mjcellar concentration is high (~.1M) , 

almost of all solute molecules are trapped in the micellar phase. In the following , we quantitatively 

explain the observed micellar concentration dependence of D by taking into account the equilibrium 

between the bulk phase and the micelles . 

The solubilization of a solute molecule in the micellar solution may be expressed by the 

equilibrium between the micellar phase and the bulk phase as 2 2 

[S] + [MI [SM] (7-5) 
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where [S J and [SM] are the concentrations of the solute in the bulk phase and in the micellar phase, 

respectively. [M] is the concentration of the micelles obtained by eq (7-4). Generally , the 

equilibrium constant (K
5

) is given by 

K = s 
[SM] 

[S] [M] 
(7-6) 

If we assume that D of the solute (D
5

) can be described by the average between Din the bulk 

phase (Db) and in the micellar phase (Dm), Ds is given by the following equation. 
2 3 

D = s 

Dm [MS] + Db [S] 

[MS] + [S] 

From eqs (7-6) and (7-7), we obtained the following relationship. 

Ds = Dm [ 1 + _1_( DDrt:_n - 1) ] 
1 + Ks [M] 

(7-7) 

(7-8) 

Ds calculated with eq. (7-8) is plotted in Fig. 7-9. The calculated Ds reproduce the observed 

micellar concentration dependence of D fairly well with K
5 

= 1.1X104 
M-

1 
(BQ/SDS) and K

5 
= 

4.3X103 M-1 (BQ/Cf AB). This fact supports our diffusion model; that the solute diffuse in the 

micellar solution in equilibrium between the bulk phase and the micellar phase. It should be note 

that D ofBQ.- are close to D of BQ at any micellar concentration (Fig. 7-8). This suggests that the 

equilibrium constant (Ks) of BQ.- is close to that of BQ. This similar K
5 

may be due to a 

competition between the hydrophobic nature of BQ.-, which tends to be stabilized in water and the 

electric interaction with the micelles. 

7. 7 Conclusion. 

Diffusion constants (D) of the photochemical intermediate anion radicals ofBQ (BQ. ) and the 
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cation radical of AN (AN.+) in the anionic micellar sol uti on of SDS and the cationic micellar 

solution of CT AB were measured by using the transient grating (TG) method. It is found that D of 

BQ.- in the SDS solution and AN. + in the CT AB solution are larger than those of the parent 

molecules, while in BQ/CT AB and AN/SDS cases, D of both the ion radicals and the parent 

molecules are similar. These observations are consistently explained in term of the Coulomb 

interaction between the ion radicals and the charge in the Stern layer of the micelles. The ion radical 

with the like charge as the micelle exists in the bulk phase by the electric repulsion. On the other 

hand, the ion radical with the opposite charge to that of the micelle exists on the micellar surface 

rather than in the bulk phase. The micellar concentration dependence of D is also investigated by 

BQ in the SDS and the CT AB solutions. D of BQ.- in the SDS solution are insensitive to the 

micellar concentration and similar to D of BQ.- in neat water. However, D of BQ in the SDS 

solution and D of BQ and BQ.-in the CTAB solution are sensitive to the concentration of the 

micelle. The observed micellar concentration dependence of D can be reproduced by using a 

diffusion model, which takes into account the equilibrium between the micellar surface and bulk 

phase. Therefore if we measure the diffusion eonstant in the photochemical reaction system, we 

can determine the equilibrium constant. 
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Table 7-1; Diffusion constants of the ion radicals (DR) and parent molecules (Dp) 1n 

water, SDS and CT AB (O.lM) micellar solutions. 

Benzoquinone Aniline 

Dpfl0-9m2s-1 Dr'10-91in2s-1 Dpf10-9m2s-1 Dr'10-9m2s-1 

water 1 .1 + 0. 2 0.90+ 0.05 

SDS (O.lM) 0.1 0+0.06 1.1+0.1 0.11 +0.05 0.11 +0.05 

CTAB (O.lM) 0.19+0.06 0.19+0.06 0.08+0.01 1.0 +0.2 

Table 7 -2; Micellar concentration dependence of diffusion constants of the ion radicals 

and parent molecules of the parent molecules of benzoquinone in SDS and CT AB 

micellar solutions. 

[SDS] or [CTAB]IM D I 10-9m2s-1 in SIDS D I 10-9m2s-1 in CT AB 

BQ 1BQ.- BQ and Bg·-

0.01 1.2+0.2 0.56+0.05 0.83 +0.08 

0.02 1.0+0.2 0.32+0.03 0.68+0.06 

0.04 1.1 +0.2 0.26+0.03 0.40+0.04 

0.06 1.1 +0.1 0.15+0.02 0.28+0.04 

0.08 1.0+0.1 0.14+0.02 0.26+0.04 

0.10 1.1 +O.l 0.10+0.06 0.09+0.06 
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Fig. 7-1 (a) Transient absorption spectra at a 100f.!S delay after the excitation of BQ in SDS 

aqueous solution (0) and BQ in CTAB aqueous solution (e). Solid line is the reported spectrum 

of BQ anion radical in water (Ref. 19). (b) Transient absorption spectra at a 1 OOf.!s delay after the 

excitation of AN in SDS aqueous solution (0) and AN in CTAB aqueous solution (e). Solid 

line and broken line are the reported spectrum of AN cation radical and neutral radical in water 

(Ref. 14) 
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at 23°C (dotted line) and the best fitted curve (solid line) by eq (7-1) with a4=0. (b) Three 
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Chapter 8 

SUMMARY 

In this thesis, it was demonstrated that the laser induced transient grating (TG) method is a 

very useful and convenient technique to measure the diffusion coefficients (D) of short-lived 

radicals accurately. As a result, the following interesting facts were found. 

( 1) The photo reaction intermediate radicals created by the photoinduced hydrogen abstraction 

(HR.) diffuse much more slowly than the stable parent molecules in organic solvents though the 

radical and the parent molecule possess nearly the same size and the same shape. 

(2) On the other hand, D of the benzyl radical (BR.) created by the photodissociation is similar to 

that of the parent molecule. 

(3) The diffusions of the anion radicals created from HR. are similar to those of the electric 

neutral HR. in organic solution. 

(4) The differences in D between HR. and the parent molecules become larger with increasing 

the viscosities of solvent (11), decreasing the solute radii (r), and the temperature (T). 

(5) Diffusion of HR. are anomalously slow in a variety of solvents regardless of the solvent 

properties , such as the polarity , the dipole moment and the protic (or aprotic) character of the 

solvent. 

(6) The radical diffusion may be influenced by the solvent structure. For example, in aqueous 

solution, which has a very strong structure by the hydrogen bonding, D of HR. close to that of the 

parent molecule. 

(7) The diffusion of the ion radicals in the micellar solutions are influenced by the electric 

interaction between the ion radicals and the micellar surface. 

Especially, discovery of the anomalous slow diffusion phenon1enon of HR. is very important 

because it points out that D of a transient radical should not be simply substituted by that of a stable 
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molecule with a similar molecular volume in an analysis of chemical reaction . Such the different 

behaviors of the similar molecules can not be explained by the simple hydrodynamic modeL The 

anomalous slow diffusion of the radicals suggests the existence of the strong intermolecular 

interaction between the radicals and the surround molecules. To explain the origin and the 

mechanism of the anomalous slow diffusion of radicals is very important and interesting. 

Possible origin of the slow diffusion of HR. was proposed by Morita and Kato from a study 

of an ab initio molecular orbital (MO) theory. 
1 

They found that the intramolecular charge 

polarization of pyrazinyl radical (PyH·) and benzophenone ketyl radical (BPK.) are much enhanced 

than those of the parent molecules by the partial external electric field. On the other hand, such the 

enhancement was not observed for the benzyl radical. These facts suggest that the enhanced 

intramolecular charge polarization may be the origin of the anomalous slow diffusion of radicals. 

Quite recently, Morita and Kato demonstrated the molecular dynamics (MD) simulation which was 

taken care of the intramolecular charge polarization to represent the anomalous slow diffusion of 

radicals. 
2 

They found that the calculated value of D of PyH· are about three times smaller than that 

of the parent molecule (pyrazine) in methanol. These facts are very consistent to our experimental 

result ( 1) and (2). The result (3) can be also explained by the intramolecular charge polarization as 

follows. According to their analysis, the charge sensitivity depends on the molecular structure. 

When a charge is attached to the neutral radical (HR.) used in this work, the molecular structure 

could be altered and it becomes similar to that of the parent molecules. Then the enhanced 

intramolecular charge polarization could diminish. In that case, only the intermolecular interaction 

by the electric charge (not the charge sensitivity ) causes the slow diffusion of the ionic radicals 

like the stable ion's case. Morita and Kato described that the enhanced intramolecular charge 

polarization of radicals are induced by the partial external electric field on each site of the solute 

molecules, which is prepared by the fluctuation of the solvent molecules. However, some 

questions remain, for example, which properties of the solvent (dipole moment, polarizability, 

dielectric constant, or relaxation time, etc.) govern the partial external electric field on each site of 

radicals? How are the solvation structure of radicals? Therefore, it is unclear whether the detai I 

properties of the radical diffusion obtained by the TG experiment [(4); r, Y), and T dependence and 

-· 1 54 -



Cluy!er 8 

(5); solvent property dependence] can be reproduce by the their theory. Such questions would be 

solved by both the experiment and the calculation in the future. At least now, there is no 

discrepancy between the result of the TG method and that of the calculation by Morita and Kato, 

qualititively. 

On the other hand, D of the radicals can be reproduced quantitatively by the equation based on 

the hydrodynamic theory. In the wide range of the solvent viscosity, the solute radius, or the 

temperature, D of the radicals are very close to D of the Stokes-Einstein equation, while D of the 

parent molecules are very close to D of the equation of Evans et al. It should be important to 

consider about that agreement between experimental D and calculated D by the hydrodynamic 

theory. In spite of this agreement, the origin or mechanism of the anomalous slow diffusion can 

not be explained by only the hydrodynamic theory. Therefore, both interpretation form the 

hydrodynamic theory and the statistical theory must be needed for further investigation to 

understand more closely about the molecular diffusion in solution. 

1. A. Morita and S. Kato, J. Am. Chern. Soc., 119,4021 (1997). 

2. A. Morita and S. Kato, J. Phys. Chern., in press. 
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