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Preface 

Liposomes have been studied over the past three decades as both biomembrane models 

and drug carriers. Liposomes have various advantages as drug carriers , being 

biodegradable, having low toxicity and being able to encapsulate hydrophilic, 

lipophilic and amphiphilic drugs. The encapsulation of biologically active substances 

into liposomes is useful in that biologically active substances can be protected from 

inactivation in vivo and the toxicity of anticancer drugs such as cytosine arabinoside 

and adriamycin can be decreased [1-3]. However, there are inevitable drawbacks in 

the use of liposomes in vivo. Liposomes are recognized as foreign substances and 

phagocytosed by cells of the reticuloendothelial system (RES). Their rapid removal 

from the circulation following intravenous administration is primarily due to phago

cytosis by the Kupffer cells and macrophages of the spleen [4, 5]. Native liposomes 

are especially suitable for targeting diseases of the RES such as leishmaniasis and 

fungal infections [6, 7], but are undesirable for delivering drugs to other organs. 

There are many factors affecting the fate of liposomes in vivo such as lipid 

composition, liposome size, surface charge, and lipid fluidity. For example, sn1all 

unilamellar vesicles (SUVs) are taken up less rapidly than large ones [8]. Incorpora

tion of cholesterol (Chol) into liposomes increases the stability of liposomes in the 

serum and decreases the clearance rate from the blood circulation [9]. Coating lipo

somes with polysaccharides, particularly ganglioside GMl, can lead to a prolonged 

lifetime in the circulation due to low uptake by RES. Sialic acid plays an important 

role in the process of uptake ofGM1-liposomes by RES. However, GM2 and GM3, which 

have also a sialic group, have no such RES avoiding nature [10]. In another approach 

to avoiding phagocytosis by macrophages, the coating with polyethylene glycol (PEG) 

can prolong the circulation time of liposomes due to steric hindrance or increase lipo

somal surface hydrophilicity [11-14]. Cationic stearylamine-liposomes also remain in 

the blood longer than neutral or anionic liposomes (containing phosphatidylserine or 

phosphatidic acid) [15] and cationic liposomes containing a basic lipid, DOTMA (N[1-
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(2,3-dioleyloxy)propyl]-N,N,N-triethylamm onium ch l ori d e) a nd DOPE 

(dioleolylphsophatidylethanolamine) have been studied during the last 10 years as 

tools for the delivery of plasmid DNA a 1d RNA into cells [16-18] . The administration 

of liposomes containing stearylamine, however, gives rise to convulsions [19-21] , so 

t h a t the stearylamine-containing liposomes are unsuitable for clinical u se. Lipo-

somal vectors formulated with various basic lipids and DOPE have been also reported 

to be toxic [22-24] 

There is another problem in using liposomes as drug carriers. For th e 

therapeutic use ofliposomes, efficient encapsulation and retention of drugs is required 

before successful delivery can be achieved. However, little can be encapsulated into 

liposomes, since liposomes, especially multilamellar vesicles (MLVs) and small 

unilamellar vesicles (SUVs), have a low volume of entrapped aqueous space per mole 

of lipid. Reverse-phase evaporation[25] and pH gradient (or membrane potential) 

loading methods[26, 27] have been developed to entrap large amounts of substances 

into liposomes. However, these methods cannot be applied to entrap enzymes into 

liposomes, since the sonication in the reverse-phase evaporation procedure often inac-

tivates the enzymes. Also, pH gradient loading can be applied to only small lipophilic 

molecules that can pass through the lipid membranes. 

In this study, the author synthesized biodegradable monoesters of fatty acid with 

amino sugars to develop low toxic cationic liposomes that avoid uptake by RES. The 

author also tried to entrap superoxide dismutases (SODs) into cationic liposomes us-

ing an electrostatic attraction. Futhermore, the author investigated the in vivo be-

havior of cationic liposomes in rat and elucidated the mechanism of their uptake by 

the liver using a liver perfusion technique. 

The results obtained in this work should provide valuable information for the 

design of improved formulations of liposome. 
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Abbreviations 

[1 ,2(n)-3H] -chol steryl hexadecyl ether 

cholesterol 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat 

dioleolylphsopha tidyleth anolan1ine 

(N[1-(2,3-dioleyloxy )propyl] -N,N,N-tr iethyla mmoni urn ch loride 

1,2-dipalmitoyl-3-trimethylammonium propan e 

egg yolk L-a-phosphatidylcholine 

2- [ 4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid 

lactosylceramide 

m ul tilamellar vesicles 

phosphate buffered saline 

polyethylene glycol 

me thy l-6-0-palmi toy 1-D-galactopyranoside 

methyl-2-amino-2-deoxy-6-0-palmitoyl-D-galactoside 

methyl-6-0-palmi toy 1-D-gl ucopyranoside 

me thy 1-2-amino-2-deoxy -6-0-palmi toy I-D-gl ucoside 

methyl-6-0-palmi toyl-D-mannopyranoside 

methyl-2-amino-2-deoxy-6-0-palmitoyl-D-mannoside 

reticuloendothelial system 

reverse-phase evaporation vesicles 

stearylamine 

SDS-polyacrylamide gel electrophoresis 

superoxide dismutase 

small unilamellar vesicles 

tetramethylsilane 

2-p-toluidinylnaphthalene-6-sulfonate 

tris(hydroxymethyl)aminomethane 

vesicles with a diameter of 200 nm prepared by extrusion technique 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, hydrochloride 

xanthine oxidase 
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Con trol-L VET200 composed of EPC:Chol (60:20 in molar ratio) 
PGlcN-L VET200 composed ofEPC:Chol:PGlcN (60:20:20) 
PGalN-L VET200 composed ofEPC:Chol:PGalN (60:20:20) 
PManN-L VET200 composed ofEPC:Chol:PManN (60:20:20) 
PGlc-L VET200 composed ofEPC:Chol:PGlc (60:20:20) 

PGal-L VET200 composed ofEPC:Chol:PGal (60:20:20) 

PMan-L VET200 composed ofEPC:Chol:PMan (60:20:20) 
PGlcNlO-L VET200 composed ofEPC:Chol:PGlcN (70:20:10) 
PGlcN20-L VET200 composed ofEPC:Chol:PGlcN (60:20:20) 

PGlcN30-L VET200 composed ofEPC:Chol:PGlcN (50:20:30) 
PGlcN40-L VET200 composed ofEPC:Chol:PGlcN (40:20:40) 
SA5-L VET200 composed ofEPC:Chol:SA (75:20:5) 

SAlO-L VET200 composed ofEPC:Chol:SA (70:20:10) 

SA15-L VET200 composed ofEPC:Chol:SA (65:20:15) 

SA20-L VET200 composed of EPC:Chol:SA (60:20:20) 
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Chapter 1 
Physicochemical properties of cationic liposomes 

modified with novel synthetic aminoglycolipid and 
their application to entrapment of SOD 

S uperoxide dismutases (SODs) are metalloenzymes that defend against oxidative 

stress through the decomposition of superoxide radicals, especially superoxide anion 

C02-). SODs should be useful as drugs that suppress inflammatory disea e and 

ischemic myocardial injury. However, their rapid renal filtration and disappearance 

from the circulation (their half-lives in the circulation are <6 minutes) limit 

therapeutic use, since molecular mass of SODs range from 32000 to 80000 [28]. There-

fore, the circulation lifetime can be greatly increased by coupling SODs to variou 

polymers such as dextran, poly(ethylene glycol) (PEG), etc. with a view to increasing 

molecular weight [29]. However, this chemical modification causes loss of protein 

activity. 

The encapsulation of biologically active substances into liposomes is us ful in 

that these substances can subsequently be protected from inactivation in vivo and 

also the toxicity of anticancer drugs such as cytosine arabinoside and adriamycin can 

be decreased [1-3, 30]. Turrens et al. demonstrated that, when SODs were entrapped 

in liposomes, their half-lives in circulating blood increased from 6 minutes to 4.2 hours 

[28, 31]. For the therapeutic use of liposomes, efficient encapsulation and retention of 

drugs is required before successful delivery can be achieved. Liposomes, especially 

multilamellar vesicles (MLVs) and small unilamellar vesicles (SUVs), have a low vol-

ume of entrapped aqueous space per mole of lipid. Therefore reverse-phase evapora-

tion [25] and pH gradient (or membrane potential) loading methods [26, 27] have been 

developed to entrap large amounts of substances into liposomes. However, these meth-

ods cannot be applied to entrap enzyme into liposomes, since contact with organic 

solvent and/or the sonication in the reverse-phase evaporation procedure inactivate 

the enzyme. Also, pH gradient loading can be applied only to small lipophilic n1ol-
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ecules that can pass through the lipid membranes. 

Cu, Zn-SOD from bovine erythrocytes has an isoelectric point at 4.95 and thus 

bears a negative charge at physiological pH. The author tried to entrap SODs into 

cationic liposomes using an electrostatic attraction. Stearylamine (SA) is the mo t 

popular basic lipid used to give positive charge to liposomes. However, SA is difficult 

to apply therapeutically because of its toxicity [19-21]. Therefore, the author synthe

sized a biodegradable monoester of fatty acid with glucosamine, and tried to entrap 

SODs. This chapter deals with the physico-chemical properties of newly synthesized 

aminoglycolipid-modified liposomes and the entrapment efficiency of SODs into lipo

somes at a constant lipid concentration by various liposome preparation methods. 

The goal is to prepare liposomes containing a large amount of biologically active sub

stances which can survive long-term without loss of activity. 

1-1 Materials and Methods 

Materials 

Methyl-2-amino-6-palmitoyl-D-glucoside (PGlcN, Chart 1-5) was synthesized as 

described below according to the reaction scheme shown in Chart 1. Egg yolk L-cx

phosphatidylcholine (EPC) was obtained from Asahi Kasei Co. Ltd. (iodine value 65, 

Tokyo, Japan). Superoxide dismutase (Cu, Zn-SOD, 3000 units/mg) from bovine eryth

rocytes, xanthine oxidase (XOD) from buttermilk, stearylamine (SA), and 2-p

toluidinylnaphthalene-6-sulfonate (TNS) were purchased from Sigma Chemical Co. 

(St. Louis, MO, USA). Calcein (3,3'-bis[N,N-bis(carboxymethyl)aminomethyl]-fluo

rescein) was supplied by Dojin (Kumamoto, Japan). All other chemicals from Wako 

Pure Chemical Ind. Ltd. (Osaka, Japan) were of special grade, and cholesterol (ChoU 

was used after recrystallization from ethanol. Water was glass distilled twice. 
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Synthesis of 2-arnino 6-pal1nitoyl glucoside 

Synthesis. 2-(N-Benzyloxycarbonyl)arnino-2-deoxy-D-glucose (2): Benzyl chloroforn1atc 

(7 g) was added dropwise at 5 octo a mixed solution of water (90 mU and n1ethanol (50 

ml), containing glucosa111i11e 1 (8.3 g) and sodiun1 hydrogencarbonate (6 g). The 111ix

ture was stirred well for 6 hours at room temperature, and then wa hed ·with water, to 

give compound 2 (52 %) (step a in Chart 1). 

Methyl-2-(N-Benzyloxycarbonyl)amino-2-deoxy-D-glucoside (3): A mixture of compound 

2 (3.5 g) and p-toluenesulfonic acid (0.3 g) in anhydrous methanol (200 111l) wa r -

fluxed for 60 hours. After neutralization with sodium hydrogencarbonate, the n1ix

ture was filtered. The filtrate was evaporated and crystallized fron1 ethyl ac tat to 

give compound 3 (3.2g, 87 %) (step bin Chart 1) 

Methyl-2-(N-Benzyloxycarbonyl)amino-2-deoxy-6-0-palmitoyl-D-glucoside ( 4): A mix

ture of compound 3 (10 g) and palmitoyl chloride (7.7 g) in pyridine (60 ml) was stirred 

overnight. The reaction mixture was poured into 10% hydrochloric acid and extracted 

with ethyl acetate. The organic layer was washed with saturated sodium chloride 

solution, dried over sodium sulfate, and evaporated to afford a residue, which wa 

chromatographed over silica gel. Elution with chloroform-ethyl acetate (95:5) gav 

compound 4c at a 24% yield (step c in Chart 1) 

Methyl-2-amino-2-deoxy-6-0-palmitoyl-D-glucoside (5): Compound 4 (1.2 g) in 30 n1l 

of methanal-ethyl acetate (1:1) was stirred with 5 o/o palladium carbon in an a tina

sphere of hydrogen overnight. After removal of the catalyst by filtration, the olvent 

was evaporated to leave an oil which was purified by column chromatography over 

silica gel with chloroform-methanal (99:1) as an elute to give compound 5 (PGlcN) 

(step d in Chart 1) 

The synthesized compound was characterized by measurement of its 1H-NMR 

spectrum in DMSO-d6 using TMS as a reference on a spectrometer (JMN -GX400, 

JEOL), by elemental analysis, infrared and mass spectra. The positions of the e ter 

were determined by 2D H-H COSY. lH NMR 0.86 (t, J = 6.0 Hz, 3H), 1.24 (b, 24H), 

1.51 (m, 2H), 2.29 (t, J = 7.2 Hz, 2H), 2.40 (m, 1H), 3.10 (m, 2H), 3.26 (s, 3H), 3.53 (111, 
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1H), 4.04 (dd, J = 6.6 Hz, J = 6.8 Hz, 1H), 4.30 (d, J = 10.6 Hz, 1H), 4.51 (d, J = 3.4 Hz, 

1H), 5.00 (m, 1H), 5.15 (m, 1H) The erne value ofPGlcN was 0.71 ~Musing a TNS 

fluorescence technique [32]. 

Distribution of synthetic aminoglycolipid into phospftatidylcholine I cholesterol mem-

brane 

Multilamellar vesicles (MLVs) containing PGlcN were prepared in 10 mM HEPES/ 

150 mM NaCl buffer (pH 7.4). The suspensions were then frozen with liquid N2 and 

dissolved in a water bath at 25 oc [33]. These processes were repeated 5 times. The 

liposomal suspension was then ultracentrifuged (100,000 g x 1 hour), and the amount 

of hexosamine and phosphorous in the supernatant was determined by the Dische

Borenfreund method [34] and Bartlett method [35], respectively. The pellets were 

then resuspended with HEPES/150 mM NaCl buffer (pH 7.4). The suspensions were 

successively extruded 5 times each through polycarbonate filters with pore sizes of 

either 0.6 or 0.2 ~m (VET200: Vesicles with a diameter of 200 nm prepared by extru

sion technique). The amounts of hexosamine, phosphorous and cholesterol in the 

liposomal suspension were determined by the Dische-Borenfreund method, Bartlett 

method and Cholesterol Test Wako, respectively. 
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Hemolytic activities of positively charged liposomes 

Stearylamine enhances the permeability of biome1nbrane and da1nages the cells 

[36, 37]. Therefore, the hemolytic activity of positively charged liposomes (incorpora

tion of20 mol % PGlcN or SA) was investigated to compare SA and PGlcN. Liposomes 

were prepared by extrusion in 10 mM HEPES/150 mM NaCl (pH 7.4) buffer (VET200 ). 

Rat erythrocytes were dispersed in the same buffer, mixed with a liposomal suspen

sion, then incubated at 37 °C. Mter 1 hour, the suspension was centrifuged (2,000 g x 

1 minute), and the absorbance of supernatants was measured at 540 nm on a spectro

photometer (UV-265FW, Shimadzu Co., Japan) . The absorbance corresponding to 100 

% hemolysis was determined by adding 5 ml of water to 1 ml of the erythrocyte sus

pension. The lipid concentration was determined by Bartlett's method [35]. 

Toxicity of liposomes 

Since SA-liposomes show toxicity [21], the lethal dose of positively charged lipo

somes (incorporation of20 mol o/o PGlcN or SA) was investigated. Liposomes (VET2oo) 

were injected into the tail vein of ten male ddy mice weighing 25 g and the survival 

was observed immediately after the injection. 

SOD activity assay 

The SOD activity was determined by the nitrite method with a small modifica-

tion [38]. The sample (0.1 ml), reagent A (0.2 ml, 65 mM KH2P04 , 35 n1M Na2B40 7 

and 0.5 mM DTPA), and reagent B (0.2 ml, 0.5 mM hypoxanthine and hydroxylamine-

0-sulfonic acid) were mixed and incubated for 15 minutes at 37 °C. Reagent D (0.2 n1l , 

0.025 unit/ml XOD) was added to this mixture and incubated for 30 minutes at 37 °C. 

Thereafter the mixture was added to 2.0 ml of coloring reagent E (30 n1M N-1-

naphthylethylenediamine, 3 mM sulfanilic acid and 25 % acetic acid). The final solu-

tion was allowed to stand for 1 hour at room temperature and the optical absorption 

was measured at 550 nm. The 50 % inhibitory dilutions (ID 50) were obtained for 

different dilutions of samples; the amount of SOD in the samples was then calculated 
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fron1 the ID50 compared with the 50% inhibitory concentration (IC5o) of th e standard 

SOD solution, assuming no loss of the activity during liposom al prepar ation. 

Protein assay 

The SOD content was also m easured by the Lowry method with a small modifi-

ca tion [39] . 

Preparation of SOD entrapped liposomes 

1) Hydration method 

Multilamellar vesicles (MLVs) were prepared by extrusion [40]. The lipid mix-

ture in chloroform (EPC:Chol:PGlcN or SA in the desired molar ratios) was dried in a 

rotary evaporator to form a lipid film on the wall of a round-bottomed flask. The thin 

lipid film was left under reduced pressure for at least 12 hours to completely remove 

the solvent. The dried lipid was then dispersed with a 100 J-lg/ml SOD solution, which 

contained 10 mM Tris-HCl/150 mM NaCl (pH 7.4) as a buffer of high ionic strength or 

10 mM Tris-HCl/300 mM sorbitol (pH 7 .4) as a buffer of low ionic strength. The sus

pensions were successively extruded 5 times each through polycarbonate filters with 

pore sizes of either 0 .6 or 0.2 J-lm The total lipid concentration of liposomal solutions 

was kept constant at 10 mM. 

Untrapped SOD was removed by gel filtration (Bio-Gel1.5m, 2 em x 35 em, eluted 

with 10 mM Tris-HCl/150 mM NaCl (pH 8.4)). The liposomes containing SOD were 

assayed for SOD activity and the amount of phospholipid after the addition of Triton 

X-100. The addition of Triton X-100 hardly inhibited the SOD activity assay. The 

concentration of phosphatidylcholine was determined by Bartlett's method [35]. The 

trapping efficiency was expressed as a SOD g/lipid mol. Ten grams of SOD/n1ollipid 

corresponded to 100o/o trapping efficiency. 

2) Reverse-phase evaporation method 

Reverse-phase evaporation vesicles (REVs ) were prepared according to Szoka 
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and P apah a dj opoulos [25]. The thin lipid filn1s (20 !Jn1ollipids) were dissolved in 6 n1l 

of diethyl ether . Two n1illiliters of 100 !Jgln1l SOD solution was added to the lipid 

solutions and sonicated under nit rogen in a bath -type sonicator (BRANSON 2200 ) at 

25 oc for 5 min. Mter evaporation at 350-400 mmHg to r e1n ove eth er, th e suspension 

were vortexed, then again evaporated at 680-700 n1mHg. The suspen sions were th en 

extruded 5 times through polycarbonate filters of a 0.2 !Jm pore size . 

3) Freeze-thawing method 

The 11 empty 11 liposomes (VETzoo) were prepared in the buffer described a bove. 

The liposomal suspensions were added to SOD solutions (final SOD concentration 100 

!Jg/ml, lipid concentration 10 mM). The suspensions were then frozen with liquid N2 

and dissolved in a water bath at 25 °C. These processes were repeated 5 times [33]. 

The suspensions were also extruded 5 times through polycarbonate filters of a 0.2 11111 

pore size. 

4) Dehydration-rehydration method 

The 11 empty 11 liposomes (VET2oo) prepared in the buffer described above wer e 

frozen in liquid N2 and lyophilized on a KYOWA vacuum engineering model RL-10NB 

overnight. The dry samples were rehydrated to their original volumes with 100 !Jg/ml 

SOD solutions (lipid concentration 10 mM) [41]. The suspensions were then extruded 

5 times through polycarbonate filters of 0.2 J-lm pore size . 

Liposome size and zeta potential measurement 

The size of the liposomes was measured by dynamic light sca ttering on a Phota l 

laser particle analyzer LPA-3100 connected to a photon correlater LPA-3000 (Otsuka 

Electronics Co., Osaka, Japan) 

The zeta potentials of liposomes with a diameter of about 200 nn1 wer e calcu

lated from their electrophoretic mobilities [42] in 10 mM Tris-HCl/ 0 mM NaCl (a s a 

substitute for 300 mM sorbitol) or 10 mM Tris-HCl/150 mM NaCl buffer (pH 7.4) a t 25 
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°C. The mobilities were m ea sured by a Zetasizer 4 electrophoretic light s cattering 

spectrophotometer using a ZET 5103 small capillary cell (Malvern Instruments, Worcs. , 

UK). 

Stability of liposomes in serum 

The thin lipid films were hydrated with 1 mM calcein/10 mM Tris/150 mM NaCl 

buffer (pH 7 .4). The suspensions were vortexed and extruded through polycarbonate 

filters as described above. Untrapped calcein was removed by gel-filtration (Bio-Gel 

A-1.5m, 10 mM Tris/150 mM NaCl buffer (pH 7.4) as an elute). One milliliter of the 

liposomal suspension was mixed with 4 ml of prewarmed rat serum and the mixture 

was incubated at 37 °C. The retention of calcein in liposomes was deter1nined 

fluorometrically (excitation at 490 nm and emission at 520 nm) on a spectrofluorom-

eter (RF-5000, Shimadzu Co., Japan). The percentage of retention was calculated 

from Eqn 1. 

[ 

F 
-F x~l I 2 

retention (o/o) = 1- 3.1
3 

X 100 
F X-

3 3 
(1 ) 

where, F2 and F1 are the fluorescence intensity of calcein entrapped in liposomes with 

and without 1 mM cobalt chloride, respectively (Sawahara et al., 1991). F3 is the 

fluorescence intensity of calcein after addition of 10% v/v Triton X-100 corresponding 

to 100 % leakage. The factor, (3.1/3) is for volume correction. 

1-2 Results and discussion 

Lipid analysis 

In the supernatant after ultracentrifugation of liposomal suspension (MLVs ), 

hexosamine derived from free PGlcN was barely detectable (data not shown). This 

showed that the synthesized amino-glycolipid was stably incorporated into the EPC/ 

cholesterol bilayer. Table 1-1 shows the analyzed lipid composition of the extruded 
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liposomes (VET2oo). The lipid com- Table 1-1 Lipid analysis of liposomes modifie d 

position of the extruded liposomes with aminoglycolipid. 

was the same as the initial lipid com-

position, indicating no loss of a par

ticular lipid during the preparation 

of extruded liposomes. 

Characterization of liposomes 

Liposome 

Con trol-L 

PGlcN10-L 

PGlcN20-L 

PGlcN30-L 

Lipid Composition 

(initial) 
EPC Chol PGlcN 

(in molar ratio) 

80 20 

70 20 10 

60 20 20 

50 20 30 

Lipid composition 

(after preparation) 
EPC Chol PGlcN 

(in molar ratio) 

79.2 20.8 

70.5 19.9 9.6 

60. 19.?3 19.;) 

50.9 19.2 29.9 

The diameters ofVET2oo studied here were about 200 nm with hon1ogonous di s 

tribution as shown in Table 1-2. This indicated that basic lipids, PGlcN and SA did 

not influence the size of liposomes. Zeta potential values of liposomes con1posed of 

Egg PC, cholesterol and PGlcN or SA were positive in buffer solution at 25 oc a s 
' 

shown in Table 1-2. The glucosamine group ofPglcN has a positive charge due to the 

+NH3 groups in the buffer solution (pH= 7.4), and incorporation ofPGlcN into lipos o

mal bilayers led to positive charges of the membranes. The difference of zeta poten

tials reflected the difference of pKa between PGlcN- and SA-liposomes. The pKa of 

50 

40 

> 
E - 30 
nl .... 
!: 
Q) 20 
0 
a. 
~ 10 

0 

4 5 6 7 8 9 10 

pH 

Fig.1-1 ~potential of liposomes prepared 

in various pH. 

Liposomes were prepared by extrusion at various 
pH. 
(0 ), EPC:Chol:PGlcN (6:2:2 in molar ratio); 
C• ), EPC:Chol:SA (6:2:2 in molar ratio). 

Table 1-2 Diameter and zeta potential of lipo

somes prepared by extrusion method 

Liposomallipid composition Diameter Zeta potenti al 
(in molar ratio) (nm) (m V l 

(in 10 mM Tris/300 mM Sorbitol, pH 7.4) 
EPC:Chol (8:2) 223.1 ± 24 <3.94 _ 0. 32 

EPC:Chol:PGlcN (7:2: 1) 204.5 ± 48 2?3.94 ± 0.26 
EPC:Chol:PGlcN (6:2:2 ) 225.8 ± 25 41.12± 114 
EPC:Chol:PGlcN (5:2:3) 232.3 ± 24 48.84 ± 0.46 

EPC:Chol:SA (7:2:1 ) 236.8 ± 45 53.68 ± 0.67 
EPC:Chol:SA (6:2:2 ) 202.6 ± 44 54.70:!: 1.14 
EPC:Chol:SA (5:2:3) 213 .2 ± 38 66.58 ± 0.44 

(in 10 mM Tris/150 mM NaCl, pH 74 ) 
EPC:Chol:PGlcN (7:2:1) 222.1 ± 31 6.59 ± 0.67 

15.89 ± 0.:32 
23.;34 ± 1.38 

EPC:Chol:PGlcN (6:2:2) 
EPC:Chol:PGlcN (5:2:3) 
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EPC:Chol:SA (7:2:1) 
EPC:Chol:SA (6:2:2) 
EPC:Chol:SA (5:2:3) 

215.6 ± 45 
227.1 ± 28 

224.0 ± 31 13.00 ± o. ~n 
219.2 ± 25 31.40 ± 0. 97 
216.5 ± 27 42.92 ± 0.30 



PGlcN-liposomes was approx. 7.7 and that of SA-liposomes was over 10, determined 

by the zeta potentials of liposomes prepared with buffer at varied pH as shown in Fig. 

1-1. The zeta potentials of liposomes containing SA in 10 mM Tris buffer (pH 7.4) 

were higher than those in 10 mM Tris/150 mM NaCl (pH 7.4) buffer. This is due to the 

shielding of positive charge by the ionic atmosphere surrounding liposomes. 

Hemolytic activities and toxicity of cationic liposomes 

SA-liposomes showed hemolytic activity at a high lipid concentration range as 

shown in Fig. 1-2. On the other hand, there was no apparent hemolytic activity of 

conventional controlliposomes and PGlcN-liposomes. 

The 50 o/o lethal dose of SA-liposomes was about 1.5 mmol total lipid/kg in mice, 

while that of controlliposomes and PGlcN-liposomes was much higher as shown in 

Fig. 1-3. The toxicity ofPGlcN-liposomes needs further investigation, however, PGlcN

liposomes have the advantage of having low toxicity compared with SA-liposomes. 

40 

30 
(/) 

(/) 

> 
0 
E 20 
Q) 

J: 

~ 0 

10 

0 

0.1 10 

Lipid concentration (mM) 

Fig. 1-2 Hemolytic activity of liposomes. 
Liposomes were prepared by extrusion. Rat eryth
rocytes were incubated with a liposomal suspen
sion for 1 hour. After centrifugation, the absor
bance of the supernatants was measured. The val
ues are expressed as a percentage of hemolysis . 
(e ), EPC:Chol (8:2 in molar ratio); 
(0 ), EPC:Chol:PGlcN (6:2:2 in molar ratio ); 
(• ), EPC:Chol:SA (6:2:2 in molar ratio). 

14 

100 

80 

C\3 
.~ 60 > 
"-
::J 

CJ) 

~ 
40 

0 

20 

0 

0 0.5 1.5 2 

Dose (mmol lipid/kg) 

Fig.1-3 The survival of mice treated 
with liposomes. 

Liposomes were prepared by extrusion and injected 

into tail vein of mice. 
(e), EPC:Chol (8:2 in molar ratio); 
(0 ), EPC:Chol:PGlcN (6:2:2 in molar ratio ); 
c• ), EPC:Chol:SA (6:2:2 in molar ratio ). 

Stability of liposomes in serum 

Table 1-4 shows the calcein retention 

in rat serum at 37 °C. About 90 % of calcein 

was retained in allli posomes after 8 hour 

incubation with rat serum. Incorporation 

ofPGlcN into the egg PC/cholesterol bilayer 

did not cause an increase in calcein leak-

age from the liposomes in rat serum. 

Entrapment efficiency of SOD in liposomes 

prepared by hydration 

The entrapment efficiency of SOD into 

liposomes prepared by various methods 

was determined by SOD nitrite assay, as 

shown in Table 1-3. The controlliposomes 

100 
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Fig. 1-4 Stability of liposomes in rat serum. 
Liposomes with entrapped calcein were prepared by 
extrusion. Liposomal suspensions were incubated with 
rat serum at 37 °C, and retention of calcein in lipo
somes was measured fl uorometrically. 
(e), EPC:Chol (8:2 in molar ratio); 
( \7 ), EPC:Chol:PGlcN (7:2:1 in molar ratio ); 
(0), EPC:Chol:PGlcN (6:2:2 in molar ratio ); 
(6. ), EPC:Chol:PGlcN (5:2:3 in molar ratio ); 
(T), EPC:Chol:SA (7:2:1 in molar ratio ); 
C•), EPC:Chol:SA (6:2:2 in molar ratio ). 

composed ofEPC and Chol (8:2 in molar ratio) could entrap about 1% of SOD at 10 

mM of lipid concentration in both buffers. The trapped volume ofVET200 was deter

mined as 1.80 ± 0.18 1/mol (total lipid) by using calcein as an entrapped fluorescent 

marker. The entrapment efficiency of SOD in VET2oo is calculated as 1.8 o/o on the 

basis of the trap volume and lipid concentration of 10 mM. The experimental value 

determined by the nitrite method agreed roughly with the calculated value. Ten times 

the amount of SOD was entrapped into cationic liposomes composed ofEPC, Chol and 

PGlcN (7:2:1 in molar ratio) in buffer of low ionic strength containing sorbitol, as 

compared with controlliposomes by the hydration method. Cationic SA-liposo1nes 

also showed high entrapment efficiency when prepared in the buffer of low ionic 

strength. However, the entrapment efficiency of the PGlcN-liposomes in buffer of high 

ionic strength containing 150 mM NaCl , was only about 2 times higher than that of 

controlliposomes. This is due to reduced electrostatic interaction between the nega

tively charged SOD and the positively charged lipid membrane, since the zeta poten-
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tial of cationic liposomes in buffer containing 150 mM N aCl was lower than that in 

buffer containing sorbitol. 

Entrapment efficiency of SOD in liposomes prepared by reverse phase evaporation 

Reverse phase evaporation vesicles (REVs) have high entrapped aqueous vol-

ume per lipid [25]. Neutral REVs could entrap SOD about three times more than 

neutral extruded liposomes. The entrapment efficiency of cationic PGlcN-REVs in 

the buffer of low ionic strength determined by the nitrite method (SOD activity assay) 

was roughly similar to that of cationic PGlcN-extruded liposomes. The amount of 

entrapped SOD in PGlcN-REVs determined by the Lowry method was the highest, 

and almost 100 o/o of SOD was found in liposomes (data not shown). However, the 

amount of SOD in liposomes determined by the nitrite method (SOD activity assay) 

was much smaller (about 7 %as entrapment efficiency) than that determined by the 

Lowry method, indicating that more than 90 o/o of SOD entrapped into liposomes lost 

its enzymatic activity during preparation of REVs. Other methods did not inactivate 

SOD, because the activity of SOD in liposomal suspensions before gel filtration was 

the same as that in initial buffer. Therefore, the REV method is not suitable for 

entrapment of enzyme, since organic solvent and/or the sonication step in the prepa-

Table 1-3 The entrapment efficiency (%) of SOD into liposomes 

determined by SOD activity assay. 

Method of vesicle preparation 

liposomallipid compo ition buffer medium Hydration Reverse phase Freeze-thaw 

(in molar ratio) (Extrusion ) evaporation 

EPC:Chol (8:2) 10 mM Tri /150 mM NaCl 0.9 ± 0.1 2.4 ± 0.1 3.2 ± 0.1 

10 mM Tris/300 mM sorbitol 0.7 ± 0.4 2.9 ± 1.1 0.9 ± 0.0 

EPC:Chol:PGlcN (7:2:1) 10 mM Tris/150 mM NaCl 1.7 ± 0.2 2.8 ± 0.4 2.8 ± 0.1 

10 mM Tris/300 mM sorbitol 8.5 ± 1.0 7.1±4.6 6.8 ± 0.0 

EPC:Choi:SA (7:2:1) 10 ml\1 Tri /150 mM NaCl 1.3±0.1 2.9 ± 0.3 3.6 ± 0.1 

10 mM Tris/300 ml\1 orbital 21.3 ± 1.2 32.0 ± 2.8 12.8 ± 3.6 

Dehydration-

rehydration 

1.1 ± 0.1 

0.7 ± 0.1 

0.8 ± 0.4 

10.9 ± 0.6 

2.7 - 0.:3 

21.9 ± 0.9 

Liposomes were prepared by various methods at a total lipid concentration of 10 ml\1 as described in the text. 
Amount of SOD in lipo omes was determined by the Nitrite method after removal of untrapped OD by gel 
filtration assuming no los of activity. Value are expressed a the mean± S.D. (n = 3). 
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ration of liposomes probably inactivated the enzyme [ 43-45]. SOD alone in buffer \vas 

sonicated in order to confirm whether the sonication proce s inactivated SOD or not . 

The sonicated SOD retained its activity (data not shown) ; therefore, contact with 

organic solvent inactivated SOD. The problem remains that organic solvent may not 

be totally removed during reverse phase evaporation and cause discomfort during 

therapeutic applications. 

Cationic SA-REVs in the buffer of low-ionic strength were al o able to ntr p 

large amounts of SOD, about 30% as determined by the nitrite method and 100 c1r a 

determined by the Lowry method (data not shown). In this case, 70 % of th SODs 

was inactivated during liposome preparation. The different levels of SOD inactiva

tion between PGlcN-liposomes and SA-liposomes can be explained as follows: Th 

latter had a larger positive charge than the former and immediately trapped SOD 

with shorter contact time with organic solvent. 

Entrapment efficiency of SOD in liposomes prepared by freeze-thawing 

At high ionic strength, the freeze-thawing method gave three times larger trap

ping efficiency of SOD than the extrusion method in neutralliposomes. In contrast, 

at low ionic strength, both methods showed similar efficiencies as shovvn in Table 1-3. 

Table 1-4 shows the diameters of the li posomes before and after freeze-thawing with

out extrusion. In a buffer containing NaCl, liposomes fused and effectively encap u

lated SODs during freeze-thawing. On the other hand, in the presence of sorbitol, the 

Table 1-4 Diameters of liposomes before and after 

freeze-thaw and dehydration-rehydration 

--: 1o :SA r7:2:1 J Method Liposomes EPC:Chol (8:2 ) EPC:Chol:PGlcN (7 ·. 2.·1 ) EPC Cl 1 

Buffer medium before after before after before afll' r 

Freeze-thaw 150mM NaCl 237.2 ± 36 555 .9 ± 319 210 .9 ± 32 185.7 ± 87 226.9 - 86 17!> .R ~ !)~ 

300mM sorbitol 228.8 ± 32 233.8 ± 45 221.4 ± 36 170.4 ± 157 226.4 ± 32 128.:3 - !)4 

Dehydration 

-rehydration 

150mM NaCl 219.1 ± 19 893.0 ± 93 206.3 ± 20 877.0 ± 109 211 .3 ± 32 862 .:3 ± 2 : ~-t 

300mM sorbitol 233.1 ± 24 460.1 ± 126 204.5 ± 48 375 .3 ± 100 210.8 ± 37 4 

Liposomes were initially prepared by the extrusion method (VET2oo). 
Liposome size after freeze-thawing or dehydration-rehydration was measured before extru ·ion. 
Value are expressed a the mean diameter± S.D. (nm). 
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neutralliposomes did not collapse during freeze-th awing, becau se sorbitol prevented 

n1embrane fusion ofliposomes [46, 47]. Therefore, SOD was not entrapped in t o lipo

soines in sorbitol buffer by the freeze-thawing m ethod as shown in F ig. 1-3. 

In th e case of ca tionic PGlcN- or SA-liposomes in sorbitol buffer, a large an1ount 

of SOD was entrapped into liposomes. The diameter of cationic liposomes decreased 

after freeze-thawing. Westman et al. reported that freeze-thawing reconstructs lipo

son1es which are smaller in size than liposomes that had been only vortexed [48]. The 

decrease of liposome size indicated that liposomal membranes are disrupted by ice in 

the frozen state and form fragmented lipid assemblies. These assemblies are recon

stituted to liposomes during thawing. SODs could be effectively entrapped into cat

ionic liposomes through electrostatic attraction during the reconstitution ofliposomes . 

The electrostatic repulsion between fragmented lipid assemblies would induce the 

formation of smaller liposomes before freezing. 

Entrapment efficiency of SOD in liposomes prepared by dehydration-rehydration 

The entrapment efficiency of SOD by the rehydration-dehydration method was 

similar to that by hydration as shown in Fig. 1-3. Cationic liposomes in sorbitol buffer 

entrapped a large amount of SOD by the electrostatic interaction. Table 1-4 shows 

that the diameter ofliposomes increased after dehydration-rehydration. This indicats 

that the bilayer structure of liposomes after freeze-drying does not remain intact. The 

liposomes (closed vesicles) change to open fragments ofbilayers during freeze-drying , 

a nd entrap the SOD in the reconstruction during rehydration [49, 50]. 

Effect of amount of incorporated basic lipid 

From the findings described above, it was clear that hydration followed by extru

sion in a buffer of low ionic strength was simple and entrapped a large amount of 

SOD. Thus, we investigated the effect of the amount of incorporated basic lipids on 

the trapping efficiency. Fig. 1-5 shows the entrapment efficiency of SOD by hydra tion 

m ethod as a function of mol% of basic lipid (PGlcN or SA) in liposomes prepa r ed in 
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N aCl or sorbitol buffer. In the buffer 

of low ionic strength , t h e entrapment 

of SOD into cat i on ic l iposomes 

markedly increas ed \vith t h e basic 

lipid content. The hydration m ethod 

u sing high mol% of basic lipid with 

buffer of low ionic strength, was most 

effective for entrapment of enzyme 

without loss of activity. Entrapment 

efficiency of SOD into PGlcN- or SA-

liposomes in buffer of high ionic 

strength was low due to decreased 

electrostatic interaction of lipid bilayer 

and SOD. 

Fig. 1-6 shows the entrapment 

efficiency of SOD versus the zeta 

potential of liposomes. The entrap-

ment in buffer of low ionic strength 

increased with the zeta potential of 

liposomes. Despite high zeta potential 

of SA-liposomes (i.e . EPC:Chol:SA = 

6:2:2 or 5:2:3), the entrapment efficiency 

was lower in N aCl buffer than that of 

PGlcN-liposomes (EPC:Chol:PGlcN = 

7:2 :1 or 6:2:2) in sorbitol buffer. These 

results indicate that electrostatic 

interaction is crucial for effective 

entrapment. 
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Fig. 1-5 The trapping efficiency of SOD into 

liposomes 

The tr apping effi ciency of SOD into lipo.·o mes d t rm inecl 

by the nitrite method a a fun ction of the mol c;. o[ bas ic 

lipid. Liposomes were prepa red by extrus ion at 10 m l\ f 

lipid concen tration as d cribed in t he text. 

( 7 ) liposomes CEPC:Chol=8:2 in mola r ratio ) in 10 m l\ I 

Tris/300 mM sorbitol (pH 7.4); (e ) PGlcN-lipo ·om ~i n 

10 mM Tris/300 mM sorbitol (pH 7.4 ); (0 ) PG!c r_Jipo

somes in 10 mM Tris/1 50 mM NaC l (pH 7.4 ); ( • ) SA
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Fig. 1-6 Zeta potential versus SOD entrapment. 

C,) liposome.s (EPC:C'hol=8:2 in molar ralio J in 10 ml\1 Tri:..:/ 

300 ml\I sorbitol <pH 7.4 ); <e ) PGlc - l ipo~om e~ in 10 m :\1 

Tris/300 ml\1. orbital <pH 7.4 ); (0 ) PGlc -lipo~o nws in 10 

mM Tris/150 mM NaCI (pH 7.4 ); (• ) SA-Iipo~onw~ in 10 ml\ [ 

Tris/300 ml\1 sorbitol (pH 7.4 ); ( G ) SA-lipo~onw~ in 10 mi\[ 

Tri /150 ml\1 NaCl (pH 7.4 J. 
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Conclusion 

The author synthesized amino-glycolipid, PGlcN as basic lipid. This newly syn-

thesized PGlcN distributed in EPC/Chol bilayers stably, gave positive charge to lipo

somes, and showed low toxicity compared with stearylamine. The author demon

strated that liposomes containing basic lipids entrapped a large amount of negatively 

charged substances (SODs) by hydration and dehydration-rehydration methods with

out loss of activity. The entrapment efficiency increased with increase of basic lipid 

concentration in liposomal membrane. These methods based on the electrostatic in

teraction can effectively and simply entrap anionic compounds that cannot be en

trapped by reverse phase or pH-gradient methods. 
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Chapter 2 

Disposition kinetics of cationic liposomes in rats 

It is desirable to achieve a reasonable concentration of the drugs at the target site 

and low concentration at other sites to prevent side effects. Liposomes have attracted 

large attention due to their various advantages as drug carriers, being biodegradable, 

having low toxicity and being able to encapsulate hydrophilic, lipophilic and an1phiphilic 

drugs. However, there are inevitable drawbacks in the use in vivo. The utilization of 

liposomes as drug carriers is hampered by rapid clearance by the reticuloendothelial 

system (RES). Their rapid removal fron1 the circulation following intravenous adn1in

istration is primarily due to phagocytosis by the Kupffer cells and macrophages of the 

spleen [4, 5]. The reason for the efficient uptake of injected liposomes by RES in not 

currently well understood, but is thought to be related to the opsonin of liposon1es by 

plasma proteins [51-56]. Native liposomes are especially suitable for targeting dis

eases of RES such as leishmaniasis and fungal infections [6, 7] but are undesirable for 

delivering drugs to other organs. 

Numerous attempts have been made to prolong liposome lifetime in the circula

tion, using such methods as incorporation of cholesterol (Chol) [9], RES blockade by 

presaturation with 'empty' liposomes [57, 58], and coating with ganglioside Gf\1 1 llO] 

or polyethylene glycol (PEG) [11-14]. Cationic stearylamine(SA)-liposomes also re

main in the blood longer than neutral or anionic liposomes (containing 

phosphatidylserine or phosphatidic acid) [15]. Cationic liposomes have been also stud

ied as tools for the delivery of plasmid DNA and RNA into cells [16-18]. However, SA 

is difficult to apply therapeutically because of its toxicity [19, 21]. 

In this chapter, the author synthesized several biodegradable monoesters of fatty 

acid with amino sugars or neutral sugars and prepared liposomes modified \vith these 

glycolipids. The effects of the positive charge, sugar structure, and the charge density 

on the disposition property of liposomes in rat were investigated. 
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2-1 Materials and Methods 

Materials 

Egg yolk L-a-phosphatidylcholine (EPC), stearylamine (SA) and calcein were ob-

tained as described in 1-1. Lactosylceramide (LacCer) was purchased from Sig1na 

Chemical Co. (St. Louis, MO, U.S.A.). [1,2(n)-3H]-cholesteryl hexadecyl ether, ;3H

CHE was purchased from Daiichi Pure Chemical Co. Ltd. (Tokyo, Japan). Soluene-

350® was purchased from Packard Instrument Co. Inc. (U.S.A.). Clear-sol I was ob

tained from Nacalai Tesque Inc. (Kyoto, Japan). All other chemicals from Wako Pure 

Chemical Ind. Ltd. (Osaka, Japan) were of special grade. Water was glass distilled 

twice. 

Synthesis of methyl-2-amino 6-palmitoyl-D-glucoside 

Methyl-2-amino-2-

deoxy-6-0-palmitoyl-D-glu

coside (PGlcN), methyl-2-

amino-2-deoxy-6-0-

palmi toy 1- D-galactoside 

(PGalN), methyl-2-amino-

2-deoxy-6-0-palmi toy 1-D-

mannoside (PManN), me-

thy 1-6-0 -palmi toy 1- D

glucopyranoside (PGlc), 

methyl-6-0-palmi toyl-D

galactopyranoside (PGal), 

and methyl-6-0-palmitoyl-

D-mannopyranoside 

CPMan) (Fig. 2-1) were syn-

thesized in the manner de-

scribed in Chapter 1. 
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H~CO 0 O 
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H 3CO~O 
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HO 0 

H2N 

H 3cof--o~0 

HO~OH 
HO 0 

H~3 0 0 O 
HO 

HO 0 

HO 

H 3CO~O 
OH 

HO 0 

HO 

Fig. 2-1 

tructure of methyl-2-amino-2-deoxy-6-0-palmitoyl-D-gluco ide ( PG!c l. 

methyl-2-amino-2-deoxy-6-0-palmitoyl-D-galactoside (PGalN l, methyl-2-

amino-2-deoxy-6-0-palmitoyl-D-mannoside (P Ian), methyl-6-0-palmitoyl

D-glucopyranoside (PGlc), methyl-6-0-palmitoyl-D-galactopyrano id t PGal l. 

and methyl-6-0-palmitoyl-D-mannopyrano ide (P Ian ). 
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Preparation of liposomes 

Multilamellar vesicles CMLVs) were prepared by extrusion [40]. Lipo 0111 . \ V r 

composed of egg phosphatidylcholine, cholesterol and glycolipid in the de ir d n1olar 

ratios. To prepare lipid labeled liposon1es 3H-CHE as a non- xchangeable and non-

degradable marker [59] was added to the lipid n1ixture. The thin lipid filn1 wa dri d 

overnight in vacuum, then hydrated with phosphat buffered alin (8.11nM Na:zHPO .. / 

1.47 mM KH2POJ137.91nM NaCl/2.7 mM KCl, PBS, pH 7.4). Th usp n 1ons w r e 

successively extruded through polycarbonate filters ofvariou pore izes (0.6 and 0 .2 

).lm 5 times, VET2oo: vesicles with a diameter of 200 nm prepared by an extru ion 

technique). The sizes of the liposomes were measured by dynamic light scatterin on 

a Photallaser particle analyzer (LPA-3100, Otsuka Electronics Co. Ltd., Japan) con-

nected to a photon correlater (LPA-3000). Zeta potential ofliposomes with a di 1net r 

of about 200 nm was calculated by Smoluchowski's equation [42] from th ir el ctro

phoretic mobilities in PBS (pH 7.4) at 25 °C. The mobilities were obtained from l c-

trophoretic light scattering measurements (Zetasizer 4, Malvern Instruments , U.K.). 

Stability of liposomes in serum 

The thin lipid films were hydrated with 11nM calcein/10 mM Tris/150 mM N aCl 

buffer (pH 7 .4). The suspensions were vortexed and extruded through polycarbon t 

filters as described above. Untrapped calcein was removed by gel-filtration (Bio-G 1 

A-1.5m, 10 mM Tris/150 mM NaCl buffer (pH 7.4) as an elute). One milliliter ofth 

liposomal suspension was mixed with 4 ml of prewarmed rat serum and the mixture 

was incubated at 37 °C. The retention of calcein in liposomes was detern1in d 

fluorometrically (excitation at 490 nm and emission at 520 nn1) CRF-5000, Shin1adzu 

Co., Japan). The percentage of retention was calculated from Eqn 1 described in 1-1. 

Studies in vivo 

Liposomes labeled with 3H-CHE (15 ).lmol of total lipid per kg) were inject d into 

the femoral vein of three Nembutal-anesthetized male Wistar rats, weighing from 180 
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to 200 g. At regular intervals, blood samples were collected from the jugular vein with 

a heparinized syringe and centrifuged at 2000 x g for 2 minutes to obtain the plaSina. 

To determine the accumulated amounts of the liposomes in each organ at 8 hours 

after injection, the liver was perfused via the portal vein with isotonic saline to re

move the blood. Thereafter the liver, spleen, kidney, heart, lung, intestine, muscle 

and lymph were collected and washed with saline. Around 50 mg of tissue was 'dis

solved in Soluene-350, neutralized with HCl, then Clear-sol I was added. The radio

activity of samples was counted on a scintillation counter (LS5000TA, Beckman, U.S.A.). 

The tissue samples were examined in triplicate. 

The plasma liposome concentrations over time data after the intravenous injec

tion showed a hi-exponential decay profile. The time course of the concentration of 

lipid in plasma was therefore numerically fitted to a two-compartment model using 

the fitting program MULTI [60]. A simple analysis variance test method (t-test) was 

employed to assess the significance of the observed differences in the pharmacokinet

ics following intravenous injection of liposomes. 

Lectin-induced aggregation 

Momordica charantia lectin was added rapidly to a liposomal suspension, in 10 

mM Tris/150 mM N aCl (pH 7 .4) buffer, the aggregation was followed by the turbidity 

increase with time at 540 nm on a spectrophotometer (UV-265FW, Shimadzu Co., 

Japan) at 25 oc [61]. The incubation mixtures contained liposomes at a total lipid 

concentration of0.5 mM and 50 jlg oflectin in a total volume of2.1 ml. 

Quantification of the amount of total protein associated with liposomes 

Liposomes were retrieved from liposome-plasma mixture using a spin colu1nn 

according to the procedure described by Chonn et al. [62]. Briefly, Bio-Gel A-15nL 

200-400 mesh (Bio-Rad, Richmond, CA, USA) was equilibrated with 10 mM HEPES/ 

150 mM NaCl (pH 7.4) buffer and packed in 1.0 ml Tuberculin syringes with glass 

wool plugs. Liposomes labeled with 1,1'-dioctadecyl-3,3,3',3'-
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tetramethylindocarbocyanine perchlorate (Dil; Fl uoreszenztechnologie, Graz, Austria l 

was prepared by extrusion in 10 mM HEPES/150 mM NaCl (pH 7.4) buffer. Lipo

somes labeled with Dil (100 11mol of total lipid per kg) were injected into the fen1oral 

vein of three Nembutal-anesthetized male Wistar rats. After 5 minutes, blood sample 

were collected from the jugular vein with a heparinized syringe and centrifuged at 

2000 x g for 2 minutes to obtain the plasn1a. Aliquots of the liposome-plasn1a mixtures 

(75 jll) were then applied to spin columns and immediately centrifuged (1000 rpn1 x 1 

min). Column fractions were collected in glass culture tubes by applying 7 5 111 of 10 

mM HEPES/150 mM NaCl (pH 7.4) buffer to the spin columns and centrifuging ( 1000 

rpm x 1 min). The elute from each centrifugation step was considered to be one frac

tion. Liposomes eluted in fraction 4-6 were pooled for subsequent experiments. Coi11-

plete separation of liposomes from free plasma proteins was confirmed by separate 

elution of liposomes and rat plasma. 

Liposome-associated proteins were extracted and delipidated according to the 

procedure described by Wessel and Flugge [63]. Protein was quantified using the 

Micro BCA Protein Assay Reagent Kit (Pierce Chemical, Rockford, IL, USA) . Briefly, 

150 Jll 0.2% SDS-0.02 N NaOH protein solution was added to 150 111 of protein assay 

working reagent, and then incubated at 37 oc for 3 hours. Absorbance of sample was 

compared to a bovine serum albumin standard curve at 562 nm [64]. The a1nount of 

bound protein (g protein/ mol total lipid) was calculated on the basis of the lipid con

centrations of the recovered liposomes determined by measurement of fluorescence 

intensity of Dil. 

SDS-polyacrylamide gel electrophoretic analysis 

Protein separation was performed by SDS-PAGE using AE-6400 Rapidas n1ini 

slab electrophoretic apparatus (ATTO, Tokyo, Japan) on precast 5-20 o/c gradient PAGEL 

gels (ATTO) under non-reducing conditions. The gels were stained with Coomassie 

Blue to visualize the proteins. 
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2-2 Results 

Properties of liposomes 

Table 2-1 shows the average diameter and zeta potential of the liposomes modi

fied with glycolipids studied in this chapter. Based on dynamic light scattering, the 

mean diameters of liposomes were about 200 nm with homogeneous distribution , in

dicating that glycolipid did not influence the size of liposomes. Electron micrographs 

revealed that the liposomes were multilamellar. The zeta potentials of control and 

neutral sugar coated-liposomes were about -4 m V Zeta potential values of liposomes 

containing aminoglycolipids were positive. 

About 90 o/o of calcein was retained in liposomes modified with glycolipids after 

an 8 hour incubation with rat serum as shown in Table 2-1. Incorporation of glycolip-

ids into the egg PC/cholesterol bilayer did not cause leakage of the dye out of lipo-

somes in rat serum. 

Effect of glycolipid on the clearance of liposomes 

As shown in Fig. 2-2, the radioactivity of cationic PGlcN-, PGalN- or PManN-L 

was larger than that of controlliposomes in the plasma at every point determined. 

The estimatedAUC and MRT values ofPGlcN-, PGalN- or PManN-L were twice those 

of controlliposomes. The uptake of PGlcN-, PGalN- or PManN-L by the liver at 8 

hours after i.v. administration decreased compared with that ofControl-L as shown in 

Fig. 2-3. However, the 

PGalN- or PManN-L 

in the spleen at 8 

hours after i.v. admin-

istration was compa-

rable to that of Con-

trol-L. There is no sig-

nificant difference in 

Liposome 

Con trol-L 

PGlcN-L 

PGalN-L 

PManN-L 

PGlc-L 

PGal-L 

PMan-L 

Lipid Composition 

(in molar ratio) 

EPC:Chol=6:2 

EPC:Chol:PGlcN =6:2:2 

EPC:Chol:PGalN=6:2:2 

EPC:Chol:PManN =6:2:2 

EPC:Chol:PGlc=6:2:2 

EPC:Chol:PGal=6:2:2 

EPC:Chol:PMan=6:2:2 

Diameter Zeta potentia l Retentionl 1 

(nm ) (mV) (Sn 

236.8 ± 33 -4 .3 ± 0.6 90.2 

225.8 ± 25 

237.6 ± 44 

243.8 ± 49 

197.5 ± 21 

217.1±21 

238.7 ± 24 

15.9 ± 0.3 

18.8 ± 0.6 

13.0 ± 0.7 

-3.9 ± 0.6 

-4.7 ± 1.2 

-3 .7 ± 0.6 

90.7 

89.1 

89.3 

88. 1 

87.0 

87.4 

1) The calcein retention in liposomes was determined fluorometrically after in

cubation with rat serum for 8 hours at 37 oc 
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Fig. 2-2 

Blood clearance of cationic liposomes modified 

with aminoglycolipids in the rat after an intra

venous injection. The liposomes labeled with 3H

CHE were prepared by extrusion (VET2oo) and 

injected into the femoral vein of rats at a dose of 

15 )lmol oftotallipidlkg. Each value is expressed 

as a percentage± S.D. of the administered 3H

CHE radioactivity per ml ofplasma. n = 3. 

(O), EPC:Chol (8: 2 in molar ratio ); 

(e ), EPC:Chol:PGlcN (6:2:2 in molar ratio ); 

C• ), EPC:Chol:PGalN (6:2:2 in molar ratio ); 

(.A ), EPC:Chol:PManN (6:2:2 in molar ratio). 
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Fig. 2-3 

Liver Spleen 

Tissue distribution of cationic lipo ome:c; modified 

with aminoglycolipids in the rat 8 hr after an in

travenous injection. The liposomes label d with 

3H-CHE were prepared by extrusion (VET200 l and 

inj ected into the femoral vein of rats at a dose of 

15 )lmol oftotallipid/kg. Each value is express d 

as a percentage± S.D. ofthe adminis tered .'lH-CHE 

radioactivity per total organ. n = 3. 

(c:=J), EPC:Chol (8:2 in molar ratio)· 

(c::::::J), EPC:Chol:PGlcN (6:2:2 in molar ratio ); 

(111111111111111), EPC :Chol:PGa lN (6:2:2 in molar ratio ); 

(- ), EPC:Chol:PManN (6:2:2 in molar ratio ). 

in vivo behavior among the three cationic liposomes modified with aminoglycolipids. 

In contrast to the cationic liposomes, the disposition characteristics of the neu

tral sugar-modified PGlc-, PGal- or PMan-L were almost the san1e as that of Control-

Las shown in Fig. 2-4. The uptake in the liver and spleen of PGlc-, PGal- or PMan-L 

was not different from that of Con trol-L 8 hours after i.v. injection (data not shown). 

Lectin-induced aggregation 

The increase of turbidity was observed by the addition of Momordica charantia 

lectin to a suspension ofLacCer-liposomes (incorporation of20 mol% lactosylceramide), 

while no aggregation was observed by the same treatment to PGalN- and PGal-lipo-

somes as shown in Fig. 2-5. 
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Fig 2-4 
Blood clearance ofliposomes modified with neu

iral-glycolipids in the rat after an intravenous 

injection. The liposomes labeled with 3H-CHE 

were prepared by extrusion CVET2oo) and injected 

into the femoral vein of rats at a dose of 15 ~mol 

of total lipid/kg. Each value is expressed as a 

percentage ±S.D. of the administered 3H-CHE 

radioactivity per ml of plasma. n = 3. 

(0), EPC:Chol (8:2 in molar ratio); 

( e ), EPC:Chol:PGlc (6:2:2 in molar ratio); 

C• ), EPC:Chol:PGal (6:2:2 in molar ratio); 

( A ), EPC:Chol:PMan (6:2 :2 in molar ratio). 
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Fig. 2-5 
Lectin induced aggregation followed by turbidity. 

(0 ), EPC:Chol (8:2 in molar ratio); 

(e ), EPC:Chol:PGalN (6:2:2 in molar ratio); 

(D), EPC:Chol:PGal (6:2:2 in molar ratio); 

(e ), EPC:Chol:LacCer (6:2:2 in molar ratio) 

Effect of positive charge density on the liposomal surface on the clearance of liposomes 

Next, the effect of the positive charge density on the liposomal surface on the 

disposition kinetics in rat was investigated. Table 2-2 shows the diameter and zeta 

potential of liposomes. The radioactivity of PGlcN-liposomes in rat plasma after in-

travenous injection is shown 

in Fig. 2-6 The radioactiv-
Table 2-2 The physico-chemical properties of liposomes. 

Liposome Lipid Composition Diameter Zeta potential 

(in molar ratio) (nm) (mV) 

Con trol-L EPC:Chol (8:2) 236 .8 ± 33 -4.3 ± 0 .6 ity of the liposomes contain-

ing 10 mol% of PGlcN 
PGlcN10-L EPC:Chol:PGlcN (7:2:1) 212.6 ± 32 6.6 ± 0.7 

PGlcN20-L EPC:Chol:PGlcN (6:2:2) 225.8 ± 25 15.9 ± o.:3 
PGlcN30-L EPC:Chol:PGlcN (5:2:3) 232.3 ± 24 23.3 ± 1.4 

(PGlcN lO-L) was slightly 

larger than that of the con- PGlcN40-L EPC:Chol:PGlcN (4:2:4) 219.1 ± 18 28.4 ± 1.1 

trois. The hepatic uptake of SA5-L EPC:Chol:SA (7.5:2:0.5) 214.5 ± 35 8.0 ± 0.7 

SAlO-L EPC:Chol:SA (7:2: 1) 236.8 ± 45 15.5 ± 1.0 
PGlcNlO-L at 8 hours after SA15-L EPC:Chol:SA (6.5:2: 1.5) 236.5 ± 25 26.7 ± 0.8 

SA20-L EPC:Chol:SA (6:2:2) 202.6 ± 44 32.1 ± 0.5 
the intravenous injection 
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was not significantly different from that of Con trol-L as shown in Fig. 2-7 ( p>O.Of5 L 

The radioactivity of the liposon1es containing 20 (PGlcN20-L) or 30 (PGlcN30-L) 1noVlr 

of PGlcN in the plasma was higher than that of Control-L at every point determined 

(Fig. 2-6). The uptakes of PGlcN20-L and PGlcN30-L in the liver were decreased 

compared with that of the controls (Fig. 2-7). The radioactivity of the liposon1es con-

taining 40 mol% ofPGlcN (PGlcN40-L) was rapidly eliminated fro111 the plas1na within 

1 hour after the injection, and thereafter decreased slowly in the plasn1a. The uptake 

of PGlcN40-L by the liver was slightly higher than that of Con trol-L. 

In the case of stearylamine, the radioactivity of the liposo1nes containing 5 n1olr ( 

of SA (SA5-L) in the plasma was slightly higher than that of Con trol-L as shoV\rn in 

Fig. 2-8. The radioactivity of the liposomes containing 10 molo/o of SA (SAlO-L) in the 

plasma was appreciably higher than that ofControl-L, and the hepatic uptake ofSAlO-

L decreased as shown in Fig. 2-9. However, the radioactivity of the liposo1nes contain-

ing 15 (SA15-L) or 20 (SA20-L) mol% of stearylamine in the plasma after the injection 

was less than that of Control-L, and the h epatic uptakes of SA15-L and SA20-L were 
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Fig. 2-6 

Blood clearance of PGlcN-liposomes in the rat after 

an intravenous injection. The liposomes labeled 

with 3H-CHE were prepared by extrusion (VET2oo) 

and injected into the femoral vein of rats at a dose 

of 15 ~mol of total lipid/kg. Each value is expressed 

as a percentage± S.D. of the administered 3H-CHE 

radioactivity per ml of plasma. n = 3. 

(0 ), Control-L; ( T ), PGlcN10-L; (e ), PGlcN20-L; 

C• ), PGlcN30-L; (A ), PGlcN40-L 
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Fig. 2-7 

Tissue distribution of PGlcN-liposomes in the rat 

8 hr after an intravenous injection. The liposomc;-; 

labeled with 3H-CHE were prepared by extrusion 

CVET2oo) and injected into the femoral vein of rat;-; 

at a dose of 15 ~mol of total lipid/kg. Each \'a lut> is 

expressed as a percentage± S.D . of the adminis

tered 3H-CHE radioactivity per total organ. n = :3 . 
(c::::J), Control-L; (c::::J), PGlcN10-L; 

(tf ·#\M), PGlcN20-L; (- ), PGlcN30-L: 

(- ), PGlcN40-L 
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Fig. 2-8 
Blood clearance of SA-liposomes in the rat after 

an intravenous injection. The liposomes labeled 

with 3H-CHE were prepared by extrusion 

(VET2oo) and injected into the femoral vein of rats 

at a dose of 15 j..tmol of total lipid/kg. Each value 

is expressed as a percentage± S.D. ofthe admin

istered 3H-CHE radioactivity per ml of plasma. 

n = 3. 

(0), Control-L; (T), SA5-L; (e),SAlO-L; 

C•),SA15-L; (.A),SA20-L 

almost the same as that of Control-L. 
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Fig. 2~9 
Ti sue distribution of SA-liposomes in the rat 8 hr 

after an intravenous injection. The liposomes la

beled with 3H-CHE were prepared by extrusion 

(VET2oo) and injected into the femoral vein of rats 

at a dose of 15 f.1mol of total lipid/kg. Each value is 

expressed as a percentage± S.D. of the administered 

3H-CHE radioactivity per total organ. n = 3. 

(c:::::J), Control-L; (c::::J), SA5-L; 

(tdh0<?¥~1), SAlO-L; (-), SA15-L; 

(-), SA20-L 

Fig. 2-10 shows the zeta potentials ofliposomes versus the area under the curve 
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Fig. 2-10 
Pharmacokinetic parameter as a function of zeta potential of liposome . The values were obtained from the 

fitting program MULTI and are expre sed as means± S.D .. n=3. 
(a) PGlcN-lipo omes; (b) SA-liposomes; (circle), area under the curve, AUC; (square), mean re idence time, l\IRT 
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(AUC) and mean residence time (MRT) obtained fron1 a fitting progran1 (1\IULTI ). 

The estimated AUCs and MRTs ofPGlcNlO-L and SA5-L were not significantly differ

ent from those ofControl-L (p>0.05). TheAUCs and MRT ofPGlcN20-L, PGlcN30-L 

and SAlO-L were about twice as large as those ofControl-L. The AUCs ofPGlcN40-L, 

SA15-L and SA20-L were comparable to that of Con trol-L, although their MRTs w re 

larger than that of Con trol-L. The maximum points in AUC and MRT were obtained 

at about 15 m V regardless of lipid (PGlcN or SA). Thus, the AUC and MRT of cationic 

liposomes with zeta potentials of about+ 15 n1 V were largest, and the uptak of these 

liposomes in the liver were the most strongly suppressed. 

Plasma protein associated with liposomes 

The amount of rat plasma proteins associated with liposomes was almost the 

same among the liposomes studied here as shown in Fig. 2-11. SDS-PAGE analy is 

revealed no obvious difference of protein pro-

files for different compositions of liposomes as 

shown in Fig. 2-12. 

Controi-L 

PGicN10-L 

PGicN20-L 

PGicN30-

SA 1 0-L 

SA20-L 

0 50 100 150 200 

Protein binding values (g/mol of total lipid) 

Fig. 2-11 

The amount of plasma protein associated with liposomes. 

Liposomes labeled with Dil were injected into rats and 

liposome -plasma mixture were obtained. Liposome 

were retrieved from the liposome-plasma mixtures using 

a spin column and protein was quantified using the Micro 

BCA Protein Assay. 
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Fig. 2-12 

SDS-profile ofthe protein as::;ociated with lipo

somes . The protein· associated with liposomt.·:,; 

recovered liposomc-serum mixture using spin col

umn were separated on a 5-20 C( SDS-PAGE g·el 

under non-reducing condition ... 

Lane 1, Control-L; Lane 2, PGlc ·10-L: 

Lane 3, PGlcN20-L; Lane 4, PGcl1 30-L: 

Lane 5, SAlO-L; Lane 6. SA20-L 



2-3 Discussion 

Effect of glycolipid on the clearance of liposomes 

Cationic liposomes containing 20 molo/o of aminoglycolipids had a longer half-life 

in the bloodstream than controlliposomes and were less accumulated in the liver 

after an intravenous injection. It is predicted that the suppression of the hepatic 

uptake of these liposomes prolonged the circulation time. On the other hand, the 

uptake in the spleen of cationic liposomes modified with amino sugar was not differ

ent from that of the control liposomes. The spillover phenomenon may lead to no 

decrease of the cationic liposomal uptake by the spleen [58]. The clearance rate and 

the tissue distribution of neutral sugar-modified liposomes were almost the san1e as 

that of control liposomes. Allen et al. showed that glucosylceran1ide, 

monoglucosyldiacylglycerol and galactosylceramide were also incapable of decreasing 

the uptake of the liposomes by RES [65]. These findings suggest that the positive 

charge but not sugar structure on aminoglycolipids is an important factor in avoiding 

RES. 

The disposition kinetics of liposomes depend on the size of liposomes. Small 

liposomes of diameters less than 100 nm can pass through the fenestration in the 

sinusoids or through the region of increased capillary permeability and gain access to 

liver parenchymal cells [66]. Multilamellar vesicles with a diameter of 200 nn1 are 

mainly taken up by the Kupffer cells in the liver. 

The parenchymal cells have a galactose specific receptor and the non parenchymal 

cells (Kupffer cells) have a mannose one [67]. Consequently, liposomes containing 

lactosylceramide were reported to accumulate in the liver using a galactose receptor 

[68, 69]. PGalN and PManN, however, decreased the hepatic uptake of liposo1nes 

whereas PGal and PMan did not affect the uptake. The author considered that sugar 

residue of synthesized glycolipid was not exposed on the liposomal surface. The au

thor examined the lectin-induced aggregation of liposomes. An increase of turbidity 

was observed on the addition oflectin to a suspension ofLacCer-liposomes, while that 

of PGalN- and PGal-liposomes was not observed, which indicates that the galactose 
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residue in PGalN or PGal is not positioned above the phospholipid choline groups and 

lectin is inaccessible to this residue. Namely, the sugar residue in aminoglycolipids or 

neutral-glycolipids synthesized here is not exposed on the liposomal surface, and the 

liver cells cannot recognize it, thus the clearance of liposomes is not affected in rats. 

Disaccharides, polysaccharides or glycolipids with appropriate spacers between sugar 

moiety and the hydrophobic group seem to be a necessary for effective delivery of 

liposomes to the liver [70]. 

Effect of positive surface charge density on the clearance of liposomes 

The clearance and the tissue distribution of intravenously injected cationic lipo

somes were affected by zeta potential of liposomes. The in vivo behavior of the cat

ionic liposomes with a zeta potential below +10m V was comparable to that of neutral 

Con trol-L, while the cationic liposomes with a zeta potential of about + 15 m V re

mained in the blood longer and accumulated in the liver less than the Control-L. The 

liposomes with zeta potential above +20m V were cleared from blood circulation simi

larly as the Control-L. Some investigators have shown that the in vivo behavior of 

cationic liposomes was the same as that of neutralliposomes [71, 72]. Their cationic 

liposomes contained only 5 mol% of charged lipid and the zeta potential of their lipo

somes would be little different from that of neutralliposomes. Cationic liposomes 

containing 10 mol% of stearylamine were reported to remain in the blood longer than 

neutralliposomes [15, 73]. These results agree with those obtained here. Cationic 

liposomes containing around 50% of basic lipid (such as lipofectin TM) were reported to 

accumulate in the liver rapidly after intravenous injection [7 4]. The experiment also 

showed that cationic liposomes with a zeta potential of 25m V or above accumulated 

in the liver. 

Liposomes with an optimum positive charge showed RES-avoiding ability and 

further increase of the charge on the surface resulted in recovery of the hepatic up

take . The optimum value of zeta potential to prolong the circulation tin1e of liposon1es 

was +15 mV. In contrast, the uptake ofliposomes by RES also decreased with PEG 
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coating and reached a plateau at a certain content of PE G-lipid [75]. 

Plasma protein associated with liposon2es 

Serum protein binding t o liposomes is an important factor in the liposon1al up

take by the liver or spleen [52 , 54, 55, 76-81]. Liposomes associating with large an1ounts 

of protein were rapidly eliminated from the blood circulation. The author investi

gated the protein a ssociation with cationic liposomes using a spin column procedure . 

The amount and sort of protein associated with cationic liposomes was little different 

from that ofControl-L. Accordingly, blood circulation time did not correlate with amount 

of proteins associated with cationic liposomes. Consequently, RES-uptake of cationic 

liposomes is controlled by a factor other than serum opsonin association. Nicholas et 

al. indicated that erythrocytes are involved in the suppression of hepatic uptake of 

dipalmitoylphosphatidylcholine-based liposomes containing stearylamine [82]. 

Conclusion 

In conclusion, aminoglycolipids but not neutral-glycolipids decrease the uptake 

of liposomes by the liver and prolong the time spent in the blood circulation. The 

liposomal surface charge density is an important factor determining the fate of lipo

somes in blood circulation. It was found that a zeta potential of about + 15 m V was 

optimal in prolonging the blood circulation of liposomes. Enhanced delivery of drugs 

to the liver is also possible with cationic liposomes of large basic lipid content. In this 

way, cationic liposomes can be used as RES-avoiding and RES-targeting carriers by 

control of the positive charge on the liposomal surface. 
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Chapter 3 

The mechanism of the hepatic uptake of cationic liposomes 

In the preceding chapter, t h e author showed that the cationic liposon1es can be used 

as both RES-avoiding and RES-targeting drug carriers. The reticuloendoth elial sys

tem (RES), especially the liver, is largely responsible for t he clearance of injected lipo

somes from the blood circulation. Many r esearcher s have reported th at the interac

tions between liposomes and blood components, especially serum con1ponents, play a 

mediating role in liposomal uptake by RES [54-56 , 77 , 80, 83 , 84]. Liposomes bound 

to large quantities of blood proteins were found to be rapidly cleared fron1 th e circul a

tion [80]. It is important to understand the mechanism of plasma clear ance of adn1in

istered liposomes so that the fate of liposome-entrapped drugs can be controlled for 

effective therapy. Information on the uptake mechanism of cationic liposomes is r ather 

sparse. 

The author showed that serum proteins bound to liposomes did not much change 

with the content of basic lipid. In this chapter, rat liver perfusion experiments wer e 

carried out to elucidate the mechanisms of the uptake of cationic liposomes . This 

method enables one to evaluate the effects of each blood component under the sam e 

conditions of blood flow, cell polarity and spatial architecture of h epa tocyt es and cap

illary bed. 

3-1 Materials and Methods 

Materials 

[1-14C]-Palmitic acid were purchased from Daiichi Pure Chemica l Co. Ltd . (To

kyo, Japan) . 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide , hydrochloride (WSC) 

\vas obtained from Dojindo Laboratories (Kumamoto, Japa n ). All other chen1ica ls 

were obtained as described in 1-1 and 1-2. Water was glass distilled twice. 
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Synthesis of radiolabeled methyl-2-amino 6-palmitoyl glucoside 

Radiolabeled PGlcN was synthesized in the manner described in 1-1 with some 

modification. A mixture of methyl-2-(N-benzyloxycarbonyl)amino-2-deoxyl-D-gluco

side (2 mmol), [1-14C]-palmitic acid (2 mmol) and WSC (3 mmol) in pyridine was stirred 

overnight. After addition of water (10 ml), the reaction mixture was filtered and puri

fied by column chromatography over silica gel with chloroform-ethyl acetate (1:1). 

The purified compound was reduced as described in 1-1. 

Preparation of liposomes 

Liposomes were prepared as described in 2-1. Multilamellar vesicles (MLVs) 

were prepared by extrusion [40]. Liposomes were composed of egg phosphatidylcho

line, cholesterol and test lipid (PGlc, PGlcN or SA) in the desired molar ratios. The 

lipid mixtures in chloroform were evaporated to form thin lipid films. To prepare 

lipid-labeled liposomes, 3H-CHE, a non-exchangeable, non-degradable marker, was 

added to the lipid mixture. The thin lipid film was dried overnight in vacuo, then 

hydrated with phosphate-buffered saline (PBS, pH .7 .4). The suspensions were suc

cessively extruded through polycarbonate filters of various pore sizes (0.6 and 0.2 ~rn 

pore size 5 times; vesicles with a diameter of 200 nm; VET200 were prepared by extru

sion technique). The size of the liposomes was measured by dynamic light scattering 

on a Photallaser particle analyzer (LPA-3100; Otsuka Electronics Co. Ltd., Japan) 

connected to a photon correlator (LPA-3000). According to the dynamic light scatter

ing method, the mean diameter of the liposomes was approximately 200 nm, with 

homogeneous distribution as described in chapter 2 (Table 2-2). The zeta potential of 

liposomes with a diameter of approximately 200 nm was calculated based on 

Smoluchowski's equation [42] from their electrophoretic mobility in PBS (pH 7 .4) at 

25 oc obtained by an electrophoretic light scattering spectrophotometer (Zetasizer 4; 

Malvern Instruments, U. K.). 
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Perfusion of rat liver 

The livers of male Wistar rats, weighing fron1 180 to 200 g, were perfused by the 

method of Mortimore et al. [85] with some n1odification. Th rats were anesthetized 

by an intraperitoneal injection of Nembutal. The abdomen was opened wide, the con1-

mon bile duct was cannulated with a polyethylene tube (PE-10) and the hepatic portal 

vein was cannulated with a polyethylene tube (PE-160). The chest was opened and 

the inferior vena cava was cannulated through the right atriurn with a polyethylene 

tube (Orion AWG-12). The inferior vena cava immediately above th renal vein v:as 

then ligated to prevent leakage of the perfusate. Liposome uptak was n1e3sur d by 

recirculating (i) and continuous flow methods (ii) 

(i) The liver was perfused at a rate of 25 mlJmin. in the physiological dir ction, 

using a peristaltic pump (ATTO SJ-1215) with a combined bubble trap-depu1ser lo

cated between the pump and the portal cannula. The reservoir was 80 n1l of lipo 0111 al 

suspension containing 5 ~mol of total lipid in 10 mM HEPES/Hanks buffer (pH 7.4). 

This was stirred gently, maintained at 37 °C, and continuously bubbled with 95r1c 

oxygen/5%-carbon dioxide. To prepare perfusate containing erythrocytes, the c lL 

were separated from blood and packed erythrocytes were added to the perfu 'ate. The 

liver was initially flushed with 200 ml of buffer before being perfused with ve icle 

suspension in a closed loop. The perfusion was continued for 1 hour, during which 200 

~l aliquots of liposomal suspension were taken from the reservoir at 5 rninute int r

vals. When the perfusate contained blood or erythrocytes, the samples were decolored 

by 100 ~1 of 30 % H202. The liposome concentration in the perfusate was detennined 

by using 3H-CHE as the lipid marker. Finally, the liver was flushed with 150 r111 of 

buffer and collected. To determine the amounts of the liposomes in liver, about 50 rng 

of tissue was dissolved in Soluene-350 and neutralized with HCl, then Clear-sol I \Va: 

added. The tissue samples were examined in triplicate. The radioactivity levels in 

the samples were determined on a scintillation counter (LS5000TA; Beckman U.S.A.). 

(ii) The liver was perfused at a rate of 25 ml/min. The perfusate was a vesicle 

suspension of 50 ~tM total lipid in 10 mM HEPES/Hanks buffer \pH 7.4), 111aintained 
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at 37 oc, and continuously bubbled with 95%:-oxygen/5%-carbon dioxide. The liver 

was initially flushed with 150 ml of the buffer before being perfused. San1ples of the 

outflow passed through the liver were ta.·en at regular intervals. The extract ratio 

(E) was calculated from Eqn 2, 
C -C 

E(o/o) = 111 ou/ ( 2) 
ell, 

where, Cin and Cout are the lipid concentrations of the inflow and the outflow, respec-

tively. The author confirmed that the liposomes did not bind to the polyethylene tube. 

The viability of the liver was checked by measurement of its bile flow (>4 ~1/min ) . 

Zeta potential of rat erythrocytes, hepatocytes and Kupffer cells 

Rat erythrocytes were washed three times with 10 mM HEPES/Hanks buffer 

(pH 7 .4) and dispersed in the same buffer. Suspensions of rat liver cells were pre-

pared by perfusion of the liver with collagenase [86, 87]. The liver perfusion proce

dure was described above. The liver was perfused first with preperfusion buffer (Ca2+ 

and Mg2+-free HEPES-buffered saline containing 0.5 mM EGTA, pH 7 .2) for 10 min

utes and then with HEPES-buffered saline containing 5 mM CaCl2 and 0.05 % (w/v) 

collagenase (type I) (pH 7.5) for 10-20 minutes. The perfusion rate was maintained at 

20 mllminute. After the perfusion, the liver was excised and the capsule membranes 

were removed. The cells were dispersed in ice-cold 10 mM HEPES/Hanks buffer (pH 

7 .4). The dispersed cells were filtered through cotton mesh sieves, then centrifuged at 

50 g x 1 minute . The pellets containing hepatocytes were washed twice with Hanks 

buffer by centrifugation at 50 g x 1 minute. The supernatant containing 

nonparenchymal cells was similarly centrifuged two more times. The resulting su-

pernatant was then centrifuged twice at 200 g for 2 minutes. Kupffer cells were sub-

sequently purified from the non parenchymal cells by counterflow centrifugal elutriation 

(SRR6Y rotor with the himac CR21, Hitachi Co. , Tokyo, Japan) [88]. The zeta poten-

tial of cells was calculated as described above. 
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Binding of liposomes to erythrocytes 

Rat erythrocytes were washed three tirnes with 10 n1l\1 HEPES/Hanks buffer 

(pH 7 .4) and dispersed in the sarne buffer. Erythrocyt u .. p nsion were vvarn1 d at 

37 oc, then n1ixed with the suspension ofliposon1e labeled with :3H-CHE (hen1atocrit. 

1 %) . After a 5-minute incubation at 37 oc, the suspension wa centrifug d (300 g x 1 

minute) and the radioactivity level in the supernatants was determined in the Beckn1an 

LS5000TA scintillation counter. Erythrocyte suspensions with a hen1atocrit of 1 r1r 

contained 1 x 108 erythrocytes/mi. 

3-2 Results 

Perfusion of rat liver 

The time courses of liposomes in the per-

fusate during recirculating liver perfusion are 

shown in Fig. 3-1. The radioactivities of neu-

tral Control-Land PGlc-liposomes in the per

fusate decreased negligibly. On the other hand, 

that of cationic PGlcN- and SA-liposomes rap-

idly decreased over 10-20 minutes, then gradu

ally increased. This is discussed later. Fig. 3-

2 shows the hepatic uptake of liposomes after 
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1 hour recirculating perfusion as a function of Fig. 3-l 

the zeta potential of liposomes. Neutrallipo

somes were slightly taken up by the liver, and 

higher positively charged liposomes presented 

Time cour e ofthe lipid concentration of'tlw p('J'

fu ate in 10 ml\1 HEPES/Hanks buffer during Lilt' 

recirculating perfusion of the rat liv 'r with lipo

somes. The liposomes labeled with :3 H-C HE '''t'rt' 

prepared by extrusion (VE'I':wol. Th, initial lipid 
concentrations were 62.5 ~tl\1 and nch value i~ 

a larger uptake by the liver in the buffer. Cat- expres ed as a percentage± S.D. of the initwl 
3H-CHE radioactivity. n=:3. 

ionic PGlcN20-L were more accumulated than Liposomes: ( O ), EPC:ChoH8:2J; 

( T ), EPC:Chol:PGld6:2:2); 
Control-Lin the liver. These results are in con-

(e ), EPC:Chol:PGlcN(6:2:2l. 

flict with those found in vivo as shown in chap- (• ),EPC:Chol:SA(6:2:2). 
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ter 2 (Figs . 2-6 - 2-10), suggesting that interactions between liposomes and blood 

components play a role in liposomal uptake. Therefore, the effects of blood on the 

hepatic uptake were investigated. In the presence of rat blood in the perfusate, the 

hepatic uptake of neutral Con trol-L was enhanced, while that of cationic PGlcN20-L 

was suppressed as shown in Fig. 3-3. To examine the effect of the blood on the hepatic 

uptake ofPGlcN20-L in more detail, rat serum and erythrocytes were separately added 

to the perfusate. Rat serum of 1.25 o/ov/v (the same volume as that used in the above 

experiment) in the perfusate led to a slight decrease of hepatic uptake of PGlcN20-L. 

Rat erythrocytes (hematocrit, 1 %) suppressed the hepatic uptake significantly as 

shown in Fig. 3-3. 

The results of the continuous flow method are shown in Fig. 3-4. The results of 

the continuous flow method and recirculating methods were similar. The uptake of 

Control-Land PGlcN20-L in buffer reached a steady state within about 60 and 200 
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beled with 3H-CHE were prepared by extrusion 

(VET200 ) . The liver wa perfused for 1 hour at a 

dose of 5 f.!mol of total lipid and each value is 

expressed as a percentage of± S.D. ofthe admin

istered :3H-CHE radioactivity. n=3. 
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Effects of rat whole blood , serum, and erythrocytes on 

the hepatic uptake ofliposomes after 1 hour recirculat

ing perfusion in rat. The liposomes labeled with 1H-CHE 

were prepared by extrusion (VET
200

). The liver was per

fused at a dose of 5 !Jmol of total lipid and each value is 

expressed as a percentage of± S.D. of the administered 
3H-CHE radioactivity. n=3. 

(r:::=J), 10 mM HEPES/Hanks buffer. In the same 

buffer containing: (c::::J), 2.5 v/vCJc rat whole blood: 

(~), 1.25 v/vo/r rat serum; (- ),rat erythrocytes 

(hematocrit, 1 9() 

40 

seconds, respectively. In the steady 

state, extract ratios (E) of control and 

PGlcN-liposomes in buffer were 2.5 ± 

0.4 % and 17.1 ± 0.1 %, respectively. 

In perfusate containing blood, the ex-

tract ratio (E) of Con trol-L was 5.0 ± 

0.9 %. Thus, the uptake ofControl-L 

was enhanced by addition of the rat 

blood. In buffer containing blood or 

erythrocytes, the uptake of PGlcN-li-

posomes reached a steady state within 

about 60 seconds and the extract ra-

tios (E) were 1.6 ± 0.1 o/o and 2 .2 ± 

0.3%, respectively. 

The time courses of cationic li-

posomal concentration in the perfu-
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Fig. 3-4 

Initial uptake ofliposomes by constant flow perfusion of rat 

liver. The liposomes labeled with :3H-CHE were prepared by 

extrusion (VET200
). The liver was perfused with liposomal 

solution at 50 f,.lM as a total lipid concentration and the lipid 

concentration in the outflow was measured . Each \""lluc i~ 

expressed as a percentage ± S.D. of the :1H-CHE raclioacti,·

ity of the inflow. n=3. 

(0), EPC:Chol(8:2)-liposomes in 10 mM HEPES/Hanks 

buffer; (e ), EPC:Chol:PGlcN(6:2:2 )-liposomes in the ~anw 

buffer; C• ), EPC:Chol:PGlcN(6:2:2)-liposome~ in the same~ 

buffer containing rat erythrocytes (hematocrit= 1 r;.) 

sate containing rat erythrocytes (Ht = 1 %) are shown in Fig. 3-5. The radioactivity of 

PGlcN10-L, PGlcN20-L and SAlO-L in the perfusate decreased gradually. Those of 

SA15-L and SA-20-L decreased immediately at first, and then gradually. Fig. 3-6 

shows the hepatic uptake of cationic liposomes in the presence of rat erythrocyte 

after 1 hour recirculating liver perfusion. The hepatic uptakes of cationic liposon1es 

decreased in the presence of rat erythrocytes. The suppression effect of erythrocytes 

on the hepatic uptake ofliposomes changed with surface charge density (zeta poten

tial). The maximum suppression was obtained at the zeta potential of about 15 n1 V. 

Thereafter, the suppression effect decreased with increasing zeta potential. 

Lipid transfer 

Rebound phenomenon for the lipid concentration of cationic liposomes in the 

perfusate was observed as shown in Fig. 3-1. It is possible that PGlcN and SA, which 
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Time course of the lipid concentration of the per

fusate in 10 mM HEPES/Hanks buffer contain

ing rat erythrocytes (hematocrit = 1 %) during 

the recirculating perfusion of the rat liver with 

liposomes . The liposomes labeled with 3H-CHE 

were prepared by extrusion (VET
200

). The initial 

lipid concentrations were 62.5 ).lM and each value 

is expressed as a percentage± S.D. of the initial 
3H-CHE radioactivity. n=3. 
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(• ), EPC:Chol:SA(6:2:2) 
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The hepatic uptake ofliposomes after 1 hour re

circulating perfusion in rat in the presence of rat 

erythrocytes (hematocrit= 1 o/c) . The liposomes 

labeled with 3H-CHE were prepared by extrusion 

CVET
200

). The liver was perfused for 1 hour at a 

dose of 5 ).lmol of total lipid and each value is 

expressed as a percentage of± S.D. ofthe admin

istered 3H-CHE radioactivity. n=3. 

(e ), PGlcN-liposomes; (• ),SA-liposomes; dash 

line denotes the hepatic uptake of liposomes in 

Hanks buffer. 

are single-chain acyl compound like fatty acid, leaves the liposomal membrane [89-

91], the electrostatic interaction between cationic liposomes and cell surface decreases, 

and the liposomes then dissociate from the cell surface. The dissociation ofbasic lipid 

PGlcN was examined during the rat liver perfusion using liposomes labeled with 3H-

CHE and 14C-PGlcN. 

The time courses of the PGlcN concentration in the liposomal membrane in the 

perfusate are shown in Fig. 3-7. The concentration determined by the ratio of 14C/3H 

decreased to 50 % of initialliposome amount within 10 minutes, then gradually de

creased in buffer, indicating that PGlcN is eliminated from the liposomal membrane 

and is distributed over liver cells. The ratio of 14C/3H was also determined in the 

perfusate containing rat erythrocytes before and after centrifugal separation of eryth

rocytes. The ratio of 14Cf3H in the perfusate before centrifugation continuously de-
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creased. In the erythrocyte-free supernatant 

of perfusate, the concentration of PGlcN in li-

posomal membrane was 70 % at 0 minutes as 

shown in Fig. 3-7, indicating that PGlcN is rap-

idly distributed over erythrocytes. The con-

centration of PGlcN in liposomal membrane 

decreased to about 40 % in the initial 5 min-

utes. The difference in the ratio of 14Cf3H be-

tween the whole perfusate and supernatant 

showed that PGlcN is distributed over erythro-

cytes and the liver cells. However, about 40 % 

of PGlcN remained associated with the liposo-

n1al membrane even after 1 hour of liver perfu-

sion and the liposomes retained a positive 

charge. 

Zeta potential of cells 

The zeta potential of rat erythrocytes 
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Fig. 3-7 

Time course of the ra tio of 1'1CPH during recir u

lating perfusion of the rat liver. The liposomes 

labeled with 3H-CHE and 11 C-PGlcN were pre

pared by extrusion (VET
200

). Th initial lipid con

centrations were 62 .5 11M and the liver was per

fused for 1 hour. Each value is expressed a · n 

percentage ± S .D. of the initia l PG1cN concen t ra

tion in the membrane determined by the ra ti o of 
14Cf3 H. n=3 . 

(0), EPC:Chol:PGlcN(6:2:2)-liposomes in 10 ml\f 

HEPES/Hanks buff e r ; ( • l, 

EPC:Chol:PGlcN(6:2:2 )-liposomes in the sa me 

buffer containing rat erythrocytes (hematocrit = 

1 %), (e ), EPC:Chol:PGlcN(6 :2:2 )-liposo mefi in 

the supernatant separated by centrifugution in 

the same buffer containing ra t erythrocyt s (he

matocrit = 1 Cff) 

(-20.5 ± 2.6 mV) was lower than that of the liver cells, hepatocytes (-1.7 ± 0.6 n1V) and 

Kupffer cells ( -4.3 ± 2.2 m V). 

Binding of liposomes to erythrocytes 

The binding isotherms of the neutral and the cationic liposomes to the cells are 

shown in Fig 3-8. Cationic, but not neutralliposomes bound to the erythrocytes . The 

binding isotherms of the cationic liposomes are assumed to display a sigmoidal curve. 

This is because the cationic lipid PGlcN was distributed throughout the erythrocytes, 

and the liposomal surface charge decreased largely at low lipid concentration. When 

the cells and liposomes were dispersed in a medium with low ion strength using glu-

cose, the binding increased substantially as all cationic liposomes bound to the eryth-
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Fig. 3-9 
Effect of ionic strength on the binding of cationic 

liposomes (PGlcN20-L) to the erythrocytes. The 

liposomes labeled with ·1H-CHE were incubated 

in a buffer with rat erythrocytes at 37 C. After 

a 5-minute incubation at 37 °C, the suspension 

was centrifuged and the radioactivity level in the 

supernatants was determined. Each value is 

expressed as a percentage± S.D. oflipid of bound 

liposomes to total lipid of liposomes. 

rocytes as shown in Fig. 3-9. This finding shows tha.t the electrostatic interaction is 

responsible for the binding. 

3-3 Discussion 

The liver perfusion experiments demonstrated that the hepatic uptake of lipo-

somes in buffer increased with surface positive charge of liposomes. In general, cell 

surfaces bear a net negative charge, and the zeta potential of Kupffer cells was -4 m V. 

These results suggest that the electrostatic attraction between cationic liposomes and 

Kupffer cells plays an important role in the hepatic uptake in the buffer [92-94]. How-

ever, this explanation contradicted the results obtained in in vivo experiments. 

The effects of blood components on the hepatic uptake were examined. In the 

presence of rat whole blood or serum in the perfusate, an enhancement of hepatic 

uptake of neutral Control-L was observed. The author assume that this is due to the 
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action of opsonins [52-56]. By contrast, addition of the blood to the perfusate led to a 

marked decrease in hepatic uptake of the cationic PGlcN20-L. Nicholas et al. [82] also 

reported that hepatic uptake of dipalmitoylphosphatidylcholine-based liposon1es con-

taining stearylamine was suppressed in the presence of blood in rat liv r perfu ion. 

In the presence of rat serum, a slight decrease in the hepatic uptake of cationic PGlcN-

liposomes was observed. Serum components can bind to the urface of the cationic 

liposomes and decrease the charge density on the liposomes, ther by cau ing a de-

crease of uptake by the liver [76]. However, these serum components are not det rn1i-

nant factors in the avoidance of RES by cationic liposomes, sine the uptak of cat-

ionic PGlcN20-L was still higher than that of Control-Lin the presence of serun1. 

Furthermore the species and amounts of plasma protein bound to cationic liposon1 s 

were similar to Control-Las seen in the preceding chapter. Thus, the effect of run1 

components on the uptake was presumed to be similar between neutral and cationic 

liposomes. 

The addition of erythrocytes influenced the uptake of cationic liposom s 11111-

larly as the addition of blood. These results show that erythrocytes play an in1portant 

role in the uptake of cationic liposomes by the liver. The erythrocyte n1embran has a 

negative charge arising mainly from sialic acid, and the zeta potential of the cells was 

about-20m V in phosphate buffer [95], much lower than that of the Kupf£ r c lL. 

Therefore, cationic liposomes preferentially interact with erythrocytes. Thus th au-

thor inferred a mechanism for avoidance of the uptake by the liver: The Kupffer cells 

could not recognize cationic liposomes bound to the erythrocytes as foreign substances, 

and cationic liposomes could escape from the uptake by Kupffer cells. 

Why does the suppressive effect of erythrocytes on the hepatic uptake d crea e 

with increase in the surface positive charge ofliposomes? If cationic liposon1es bind to 

the erythrocytes through electrostatic attraction, liposomes of more positive charge 

should bind to erythrocytes more strongly and less liposomes should be accun1ulated 

in the liver. Given that the macrophages recognize and phagocytose the erythrocytes 

associating with cationic liposomes as foreign substances, decrease of erythrocyte 111 
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the perfusate should be observed. However, 

decrease of erythrocytes in the perfusate was 100 

~ 0 -
'- 80 not detected in the liver perfusion experin1cnt 
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that cationic liposomes did not bind to the Fig. 3-10 
Time course of the erythrocyte concentration in 

erythrocytes completely and free cationic li- the perfusate during recirculating perfusion of 

posomes existed. Free cationic liposomes in-

teract with macrophages electrostatically and 

the rat liver. The liver was perfused with liposo

mal suspensions in the presence of rat erythro

cytes (Ht =1 %). The erythrocyte concentration 

in the reservoir was determined by optical den-

sity measurement at 540 nm. 
are taken up by the cells. As seen in Fig. 3-11- (e) EPC:Chol:PGlcN(6:2:2); 

a, liposomes with low positive charge interact (• ), EPC:Chol:SA(6:2:2) 

weakly with the erythrocytes and are taken 

(a) (b) 

erythrocyte 
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Fig. 3-11 

(c) 

Schematic diagrams for the proposed model of the interaction of cationic liposomes with er ythrocytes and 

macro phages. 

(a) cationic liposomes with zeta potentials under+ 10m V, 

(b ) cationic liposomes with zeta potentials of about + 15 m V, and 

(c) cationic liposomes with zeta potentials of above +20m V. 
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up by macrophages as neutralliposomes. At optin1un1 positive charge (Fig. 3-11-b), 

liposon1es interact with erythrocytes and the fraction of free liposon1es decreases, es-

caping from uptake by macrophages. In the case ofliposomes with high positive charge 

(Fig. 3-11-c), while the frac t ion of free liposomes decreases further, free lipo o1nes 

interact with macrophages strongly, and are rapidly taken up by the cells. The rapid 

decrease of free cationic liposomes in medium results in the dissociation of liposon1es 

from erythrocytes, which are again quickly taken up by n1acrophages. This n1odel is 

thus based on the balance of electrostatic interaction of li posomes with erythrocytes 

and macrophages. While the number of free liposomes decreases with increase of 

positive charge, the interaction with macrophages increases; this leads to the opti-

mum positive charge to escape from uptake by RES. 

In the presence of erythrocytes, the fraction of cationic liposomes vvith high posi-

tive charge, i. e., SA20-L, disappeared immediately in the perfusate, and then de-

creased gradually as shown in Fig. 3-5. In the first stage, free cationic liposon1e 

interacted with liver cells electrostatically and were cleared from the perfusate , then 

cationic liposomes dissociated from erythrocytes were taken up by the liver gradu-

ally. 

In chapter 2, the author showed that PGlcN40-L was rapidly eliminated fron1 

the plas1na within 1 hour after the intravenous injection. This is explicable based on 

the lipid transfer from liposomes to cells: Right after injection, PGlcN40-liposon1es 

with a large positive charge are cleared from blood circulation, the surface positive 

charge and zeta potential of the liposomes decrease gradually due to PGlcN lipid trans-

fer and approach the optimum value to escape the uptake by the liver. In a prelimi-

nary experiment, cationic liposomes containing 2-3 molo/o ofDPTMP (1,2-dipalmitoyl-

3-trimethylammonium propane), which has two long acyl chains, remained in blood 

circulation a relatively long time. The zeta potential of the DPTMP-liposon1es was 

about+ 5 m V. The clearance and tissue distribution of DPTMP-liposomes with zeta 

potential of+ 15 m V were similar to those of Control-L. Therefore, lipid transfer leads 

to decrease in surface charge density of cationic PGlcN- or SA-liposomes avoiding 
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uptake by RES. 

Conclusion 

In conclusion, the liver perfusion experiments showed that cationic liposomes 

are taken up by the liver according to their positive charge and that this uptake is 

suppressed in the presence of erythrocytes. Cationic liposomes interact with erythro

cytes or other blood cells electrostatically and escape from phagocytosis by macroph

ages, thus remaining in circulation longer with optimum zeta potential. Increase in 

positive charge of cationic liposomes lead to augmentation of the electrostatic interac

tion with macro phages. 
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Conclusion 

The author synthesized amino-glycolipid, PGlcN as a new basic lipid. This newly 

synthesized PGlcN distributed in EPC/Chol bilayers stably and gave positive charge 

to liposomes. Cationic liposomes containing PGlcN showed low toxicity con1pared 

with stearylamine-liposomes. Further investigations of the toxicity are needed, how

ever, PGlcN is a good candidate to give positive charge to liposomes as drug carriers. 

The author successfully entrapped large amounts of negatively charged substances 

SODs in liposomes by means of electrostatic interaction. This n1ethod did not result 

in loss of activity. The entrapment efficiency increased with increase of basic lipid 

concentration in liposomal membrane and cationic liposo1nes containing a high 1nol (lr 

of basic lipid achieved high entrapment efficiency. This method, based on the electro

static interaction, will be useful for effective entrapment of the anionic proteins and 

polymers which cannot be entrapped by reverse phase and pH-gradient methods. 

The author synthesized several aminoglycolipids. These aminoglycolipids de

crease the uptake of liposomes by the liver and prolong time spent in the blood circu

lation. In contrast, the synthesized neutral-glycolipids had no such ability. The au

thor demonstrated that the surface charge density ofliposomes is an important factor 

determining the in vivo fate of administered liposomes. The author found that a posi

tive charge density on the liposomal surface of around +15m Vas a zeta potential is 

optimal to prolong the presence of cationic liposomes in the blood circulation. En

hanced delivery of drugs to the liver using cationic liposomes containing a large an1ount 

of basic lipid is also possible. In this way, cationic liposomes can be used as RES

avoiding and RES-targeting carriers by the control of positive charge on the liposomal 

surface. 

The liver perfusion experiments showed that cationic liposomes are taken up by 

the liver and that this uptake is suppressed in the presence of erythrocytes. Cationic 

liposomes can interact with erythrocytes electrostatically. The author proposed a model 

for the biphasic hepatic uptake of cationic liposomes: Cationic liposomes bind to eryth-
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rocytes and escape from phagocytosis by macrophages, thus prolonging the circula

tion time at optimum zeta potential. Increase in positive charge of liposomes lead to 

augmentation of the electrostatic interaction with macrophages. 

The present work provides important information for the successful a pplication 

of cation ic liposomes to drug delivery systems. 
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