Pennisetum japonicum Trin．；Alopeculus aequalis Sobol．
Anoecia corni Fab．：Oryza sativa L．，Hor－ deù̀ vulgare L．，Triticum spp．，Panicum Crisgalli L．，Miscanthus＇sinensis Anderss．， Imperata cylindrica Beaw．var．Koenigii Dur． et Schinz．，Agropyrum semicostatum Ness．， Digitaria ciliaris Pers：
＂Brysocrypta ulmi L．＇：Oryza sativa L．， Hordeum vulgare L．，Triticum spp：，Panicum

Crusgalli L．，Agropyrum semicostatum Ness．， Setaria viridis Beauv．；S．lutescens Hubbard， Digittaria ciliaris Pers．，Eleusine indica Gaertn．， Pennisetum japonicum Trin．，Imperata cylindrica Beauv．，Zoysia japonica Steud．，Alopeculu＇s japonicus Steud．，Phleum pratense L．，Agrostis Matsumurae Hack．，Eragrostis ferruginea Beauv．， E．Niwahokori Honda．

Forda harukawai Tanaka：Oryza sativa L．， Hordeum vulgare L．

Abstract

On the Increment of Size of Faecal Pellets following the Growth in Larva of the Gypsy Moth，Lymantria dispar L．Problems on the Breeding of Insects for Biological Assay of Insecticides．XVI＊，Sumio Nagasawa（Takèi Laboratory，Institute for Chemical Research， Kyoto University，Takatsuki，Ohsaka）．Received Nov．23，1956．Botyu－Kagaku，22，176－182， 1957.

28．マイマイカ幼虫の成長にともなう离形の増大について，殺虫剤の生物式験用昆虫の飼育に かんする諸問題 第 16 報 長沢純夫（京都大学 化学研究所 武居研究室）31．11． 23 受理

春前先生は，この学問の道に生涯をゆたねようととしたわたくしを，最初 の旦から今日にいたるまでの長い年月，つねに正しいしるべをあたえて
\therefore あたたかくお導き下さつた。このたび古稀の賀を迎えられるに゙あたり，
この小文をささげて心からなるお祝いと感謝を申上げる次第である。

测定値の対数値の日問の绚大様相はひとつの曲線関係をしめしたが，令期間における増大過程は頑幅のそれと相対的に全くひとしい 2 分された直線関係をしめした。少くとち 1 日間に排泄された粦 の大きさの平均値をもつてするならば，その業の属する令期の決定は可能である。
：So－called＂Koprometrie＂which aims at the estimation＇of the rate of development of noxious insects or that of the damage by utilizing various figures obtained from the faecal pellets such as weight，size，shape，colour or number per time and area has been especially developed in the field of forest entomology where direct observation of the development of noxious insects or the damages due to them are relatively difficult to perform．
In order to furnish fundamental knowledges on the problems of breeding of insects for biological assay of insecticides，the writer ${ }^{11-15)}$ carried out the measurements of width，of head capsule of some Lepidopterous insects，and tried in a previous paper to represent the relation of

[^0]log－width of head capsule to instar numbers by the linear equation of Dyar ${ }^{2}$ or the quadratic equation of Gaines，and Campbell ${ }^{44}$ ．In the present paper，the writer wishes to describe the result of an experiment which was conducted to study whether the relation found in the growth of the sclerotized head capsule is also observable in the increment of width of faecal pellets and to discuss on the possibility of determination of instar by the size of faecal pellets．Here，the writer wishes to express his sincere thanks to Prof．S． Takei and Prof．M．Ohno for their helpful encouragement．He is＇also indebted to Prof．C． Harukawa for the revision of this manuscript．

Material and Method

The material used in this experiment was the faecal pellets of a male larva of the gypsy moth

防 由 科 学 笷 22 巻—I

hatched out on May 5 from an egg collected at Sapporo in the early spring of 1956．Under the constant environmental condition of 25° and 89% relative humidity the larva was reared on leaves of the zelkova－tree，Zelkova serrata Makino，in a pair of petri dishes measuring 1.5 cm high 6.0 cm in diameter．This larva moulted five times in its larval period of 34 days；namely，it had six larval instars．When the food leaves were renewed at every 9 o＇clock of morning，the faecal pellets were collected into a parchment envelope from the petri dishes and preserved in a desiccator containing amorphous calcium chloride．Later， the width of faecal pellets，i．e．，the maximum
diameter which meets the longitudinal axis at right angle，was measured by the scale on the glass plate of the projector．

Result and Discussion

The result of measurement is shown in Table 1 together with the mean width of faecal pellets excreted daily．No faecal pellets were obtained on the $4,8,13,18$ ，and 24 th days after hatching on which the larva moulted．
1．Increment of width of faecal pellets on successive days：In the first place，the writer wishes to discuss on the increment of mean width of faecal pellets which were collected every 24

Table 1．Mean width of faecal pellets excreted daily by a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Days after hatching	Number of faecal pellets	Mean	Standard ．i deviation	Variation coefficient
1	42	0.180 ± 0.003	${ }_{0.019}^{\mathrm{mm}}$	1.05%
2	93	0.221 ± 0.002	0.016	7.31
3	127	0.247 ± 0.002	0.017	6.71
5	85	0.336 ± 0.003	0.031	9.18
6	113	0.387 ± 0.003	0.028	7.21
7	118	0.462 ± 0.005	0.050	10.81
9	70	0.683 ± 0.008	0.069	10.14
10	90	0.694 ± 0.006	0.061	8.71
11	90	0.692 ± 0.007	0.065	－ 9.32
12	63	0.662 ± 0.007	0.053	7.98
14	69	0.928 ± 0.008	0.065	6.98
15	100	1.007 ± 0.006	0.063	6.26
16	106	1.005 ± 0.005	0.050	5.01
17	105	1.027 ± 0.005	－ 0.054	5.26
19	53	1.311 ± 0.014	0.103	7.85
20	94	1.206 ± 0.011	0.104	8.62
21	103	1.588 ± 0.013	0.130	8.16
22	93	1.213 ± 0.008	0.087	5.32
23	65	1.643 ± 0.014	0.112	6． 82
25	19	1.967 ± 0.025	0.110	5.61
26	58	1.864 ± 0.017	0.127	6.81
27.	64	2.151 ± 0.027	0.218	10.11
28	57	2． 135 ± 0.013	0.094	4.40
29	74	2．071 ± 0.010	0.088	4.23
－ 30	67	2.089 ± 0.012	0.094	4.49
31	76	＇2．185 ± 0.010	0.088	4.01
－ 32	73	2.271 ± 0.013	0.107	4.69
33	74	2.465 ± 0.016	0.139 ，	5.62
34	29	2.561 ± 0.030	0.162	6.32

hours．Heretofore，the growth of various parts of insect larvae such as width or length of head capsule，diameter of spiracle，length of mandible， etc．，has been studied in relation to the instar numbers using the logarithms of measurements， and the relation has been expressed either by Dyar＇s linear equation or by the quadratic equa－ tion of Gaines and Campbell in almost all cases． In the present study，the writer also adopted the figures of measurement of width in logarithms （ mm ）plus $1, y f$ ，for the ordinate and the number of days after hatching，X^{\prime} ，for the abscissa，and plotted the relation of these two variables on a graph．Unity has been added to the logarithm of measurement for the sake of convenience in computation by avoiding the negative values of logarithmic values．The subscript letter f of y means the faecal pellet．As is seen Fig．1，a curvilinear relation has been found between these two vari－ ables．It is clear that Gaines and Campbell＇s quadratic equation should be adopted to express

Fig．1．Relation of mean log－widths of faecal pellets excreted daily，$y_{f}=1+\log$（mm），to number of days after hatching，X^{\prime} ，of a male larva of the gypsy moth，＇Lymantria dispar L．，which moulted five times．
the relation between the rate of increment of the mean log－width of faecal pellets on successive days and the number of days after hatching．The equation computed based on the figures of Table 1 is

$$
y_{f}=0.234-0.0637 X^{\prime}-0.000886 X^{\prime 2}
$$

The figures shown in Table 2 are result of test of significance for the departure from linear regression
between the mean log－width of faecal pellets excreted daily and the days after hatching．The mean square for the quadratic term is highly significant as is seen from the figure of the last row of Table 2.

Table 2．Test of significance of departure from linear regression between mean log－ widths of faecal＇pellets excreted daily and days after hatching of a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Source of variation	Degrees of freedom	Sum of squares	Mean square
Deviation from linear regression Deviation from curved regression	27	0.1066	\therefore
Curvilinearity of regression	1	0.0333	0.0013
F	0.0733	0.0733	
F			

2．Increment of width of faecal pellets in suc－ cessive instars ：In the preceding paragraph，it has been proved that the gradual increment of mean log－width of faccal pellets excreted daily proceeds curvilinearly and it can be roughly expressed by the quadratic equation of Gaines and Campbell which is widely applied for the expression of relation between the mean log－values of various body dimensions and the number of larval instars． As is seen in Fig．1．，however，there are some points which are far apart from the curve； besides，all the durations of instars are not equal． Accordingly，the writer wishes to examine the increment of mean log－width of faecal pellets in successive instars．Mean values of widths of faecal pellets grouped by each instar are shown in Table 3．It is at once evident that the increment ratioes in the last column of Table 3 can be divided into two different groups，that is，／ the one comprising the values for the 1 st ~ 3 rd instars and the other，the values for the 3rd～6th instars．They are approximately the same within a group，but they are quite different between the two groups．This fact suggests that the application of a linear equation for expressing the relation

防 虫 科 学 第 22 卷一I

Table 3．Mean width of faecal pellets grouped by each instar of a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Instar	Number of faecal pellets	Mean	Standard deviation	Variation coefficien	Increment ratio
I	262	0.227 ± 0.002	0.029	12.90	$\%$
I	316	0.402 ± 0.004	0.064	9.18	-
I	313	0.685 ± 0.004	0.064	9.39	1.77
IV	380	0.998 ± 0.004	0.068	6.83	1.70
V	408	1.482 ± 0.011	0.213	14.34	1.46
I	591	2.177 ± 0.009	0.227	10.14	1.47

between the mean \log－width of faecal pellets， $y_{f}=1+\log$（mm），and the instar numbers，X ，is possible within each group，but the relation does not hold good when all the instars are taken into consideration．According to this conception，the equations were calculated using the figures of Table 3．The result is shown in＇Table 4．And the relation between these two variables is shown in Fig． 2.

Table 4．Equation for the increment of mean \log－widths of faecal pellets，$y_{f}=1+\log (\mathrm{mm})$ ， in succesive instars，X ，of a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Instar	$y_{f}=a+b X$	$\log ^{-1} b$
I－I	$y_{f}=0.1187+0.2400 X$	1.74
II－IV	$y_{f}=0.3309+0.1678 \mathrm{X}$	1.47

Up to date，there have been considerable papers ${ }^{1,3,6,8,9)}$ in which the increment of weight of faecal pellets in successive instars has been dealt with；but the papers reporting on the increment of size of faccal pellets are rather scanty．Yamanouchi ${ }^{(9)}$ reported that the increment of length of faecal ．pellets of six Orthopterous insects in successive instars could be roughly expressed by an exponential curve．And，in some cases，he got the values of increment ratio of
－approximately 1．26．The figure $1.26=\sqrt[3]{\mathbf{2}}$ is Przibram and Megusar＇s constant ${ }^{16}$ ）which was found in the growth in various dimensioms of －．the preying mantis，Sphodromantis bioculata Burm．As is seen in the last column of Table 4， however，the two increment ratioes calculated from writer＇s data are somewhat apart from the figure 1． 26.

Fig．2．Relation of＇mean log－widths of faecal pellets grouped by each instar，$y=1+\log$ （ mm ），to instar numbers，X ，of a male larva of the gypsy moth，Lymantria dispar L．， which moulted five times．

3．Growth of width of head capsule in successive instars：In order to know whether the rate of increment of width of faecal pellets in successive instars is similar to the growth of head capsule，the writer conducted the measu－ rement of width of the exuviae of head cepsule simultaneously．The result of measurement is shown in Table 5．The figures of growth ratio shown in the last column of Table 5 can also be classified into two different groups，within each of the growth ratioes are almost the same．It is obvious that a linear equation can be applied respectively to each of these two groups of figures representing the relations between log－width of exuviae of head capsule，$y_{n}=1+\log (\mathrm{mm})$ ，and

防 虫 科 学 第 22 巻一I

Table 5．Width of exuviac of head capsule of a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Instar	Width	Growth ratio
I	0.62	-
I	1.10	1.77
II	1.78	1.62
IV	2.50	1.40
V	3.45	$\therefore 1.38$
II	4.80	1.39

Table 6．Equation for the growth of \log－ width of exuviae of head capsule，$\dot{y}_{n}=1+\log$ （mm），in successive instars，X ，of a male larva of the gypsy moth，Lymantria dispar L．，which moulted five times．

Instar	$y_{h}=a+b X$	$\log ^{-1} b$
$\mathrm{I}-\mathrm{I}$	$y_{h}=0.5697+0.2290 \mathrm{X}$	1.69
I－II	$y_{h}=0.8219+0.1433 \mathrm{X}$	1.39

instar numbers；X ．Herc，the subscript letter h of y means head capsule．The result of calcula－ tion is shown in Table 6．It will be scen that antilogarithms of b ，viz．，Dyar＇s constant，in Table 6 may be considered nearly the same as those given in Table 4．This agreement means that we can safely estimate the rate of growth of head capsule in successive instars by that of increment in the mean width of faecal pellets grouped by each instar．The relation between these two variables is shown in Fig． 3.

4．Determination of instar by width of fazcal pellets ：As has been already pointed out by Goldschmidt ${ }^{5}$ ，the number of instars of the larvae of the gypsy moth varies according to the localities where they grow，and sexes and also even within the same sex．Consequently it is beyond doubt that it is impossible to determine the instar by simply measuring the head capsules of larvae captured in the field．This has been already pointed out by Mitamura ${ }^{10}$ ）in regard to the rice－ plant skipper，Paranara gutata Bremer et Grey．

Now，let us suppose for the＇moment that all the larvae of the gypsy moth have the same number of moultings and also the same growth ratio under a constant environmental condition just as it is the case with the common cabbage butter－

Fig．3．Relation of log－width of exuviae of head capsule，$y_{h}=1+\log$（ mm ），to instar number，X ，of a male larva of the gypsy moth， Lymantria dispar L．，which moulted five times．
fly ${ }^{11,12,13,18)}$ ，Pieris rapae curucivora Boisduval， and the cabbage moth ${ }^{-}, 14,15,17$ ，Barathra brassicae L．Then，would it be possible to determine the instar by measuring the width of faecal pellets？

Since it can be expected that the growth of the hind intestine proceeds stepwise with each moul－ ting just as the grow＇th of the sclerotized head capsule does，it seems to be impossible to group the measurements of widths of faecal pellets definitely so as the grouping corresponds to the instar to which they belong．．Still，a clue to determination of instar might be found，if there exist definite gaps in the frequency distribution of size of faecal pellets．As a matter of fact；the histograms as shown in Fig． 4 are obtained when the frequency＇distribution of the results of measurements are graphically shown．As is seen in Fig．4．，there are considerable overlapping areas between instars．Therefore，even if it be assumed that all larvae of the gypsy moth have the same number of instars and the same rate of growth under the constant environmental condi－ tion，it must be concluded that we shall fail in determining the instar number if we happen to measure the faecal pellets which are found in these overlapping areas．The fact that there are

Fig. 4. Histogram representing frequency distribution of width of faecal pellets of a male larva of the gypsy moth, Lymantria dispar L., which moulted five times.
overlapping areas between successive instars in the frequency distribution of different sizes of faecal pellets means that the growth of the hind intestine proceeds gradually, and not stepwise, being different from the growth of the head capsule. This gradual growth of intestine is also apparent from the increment of width of daily faecal pellets shown in Fig. 1. Sometimes contradiction in the orders of the mean width of faecal pellets excreted daily may appear within an instar, but no contradictory orders have been observed between instars. It means that if we collect and measure all the faecal pellets excreted by a larva on a day and conclude the mean width we can determine correctly the instar to which the larva belongs by the mean width.

Summary

1) Under the constant environmental condition of 25° and 89% relative humidity, a male larva of the gypsy' moth, Lymantria dispar L., was reared on the leaves of the zelkova tree, Zelkova serrata Makino. The width of faecal pellets, i. e., the maximum diameter that meets the longitudinal axis at right angle; was measured.
2) A curvilinear relation was obtained between the mean \log-widths of daily faecal pellets and
days after hatching, and this relation could be expressed by a quadratic equation.
3) The relation between mean log-widths of faecal pellets grouped by each instar and number of instars was found to be represented by two intersecting straight lines.
4) The relation of log-width of exuviae of head capsule to instar number agrecd quite well with that of mean log-width of faecal pellets grouped by each instar to the number of instars. Therefore, we may estimate the rate of growth of head capsule in successive instars from the rate of increment in mean width of faecal pellets grouped by instar.
5) The width of faecal pellets does not increase stepwise as the width of head capsule does. However, if we collect and measure all the faccal pellets excreted by a larva on a day, we shall be able to determine correctly the instar to which the larva belongs by the mean width of the faecal pellets.

References

1) Berwing, W. : Z. angew. Entomol. 17, 563 (1931).
2) Dyar, H. G. : Psyche 5, 420 (1890).'
3) Friederichs, K. u. P. Steiner: Z. angew.

防虫枓学節22卷一I

Entomol．16， 189 （1930）．
4）Gaines，J．C．and F．L．Campbel ：Ann． Entomol．Suc．Am．28， 445 （1935）．
，5）Goldschmidt，R．：Wilhelm Roux＇Arch． Entwicklungsmech．Organ． 116,136 （1929）．
6）．Gösswald，K．：Z．angew．Entomol．21， 183（1934）．
7）Hirata，S．：Oyô－Kontyu 11， 63 （1955）．
8）Hosoya，T．：Oyô－Dôbutsugaku Zasshi 11， 236 （1940）．
9）Lebedav，A．G．：Z．angew．Entomol．19， 85 （1932）．
10）Mitamura，K．：Oyô－Kontyụ 12，70（1956）．
11）Nagasawa，S．：Bôtyu－Kagaku 18， 44 （1953）．

12）Nagasawa，S．：Bôtyu－Kagaku 20， 70 （1955）．
13）Nagasawa，S．：Oyô－Kontyu 11， 163 （1955）．
14）Nagasawa，S．：Bôtyu－Kagaku 20， 133 （1955）．
15）Nagasawa，S．：Bull．Inst．Chem．Research． Kyoto Univ．34， 20 （1956）．．
16）Przibram，H．u．F．Megusar ：Arch． Entwicklungsmech．Organ．34， 630 （1912）．
17）Santa，H．：Oyô－Kontyu 11， 59 （1955）．
18）Ueno，H．：Oyô－Kontyu 8， 59 （1952）．
19）Yamanouchi，T．：Biol．Generalis 12， 143 （1936）．

Effects of the Larval Density of the Azuki Bean Weevil on Some Adult Characters． Ryoichi Ishikawa，Yuzo Mryamoto and Hiroshi Matsuzaina（Laboratory of Applied Entomo－ logy，Dept．of Agriculture，Kagawa University，Miki－cho，Kagawa Pref．）．Received Dec．1， 1956，Botyu－Kagaku，22，182－185，1957，（with English résumé，185）．

29．アズキン゙ウムシの小产粒内嗆入密度が，発育，生存率，炣化成虫の大きさおよび生存日
数におよぽす影箱＊石川良—•宮本裕三•松沢筧（香川大学 贯学部 応用昆虫学研究室）31．12．1受理
謹んで春川忠吉博士の古稀を祝賀し奉る。
アズキゾゥムシを実験村料として，幼虫期の棲息密度が発育，生存率，羽化成出の性比，体の大き き，生存期間，㢃姐力などに及ぼす掲響について調べた。

昆虫の喥息密度効楽については多数の研究者によう て実験的な研究が進められて来ているが，これらは供試尼虫の生活空間を一定にして供試虫数をいるいろして かえ，あるいは生活空間の大きさをいろいろにかえる ととにより，その模息密度をかえて爾後の誮現象を観祭しようと試みたものである。ある研究者は産卵面積 の公狭を考虑に入れたり，真の利用空問を全喖息空間 と区別して研究を進め，棲息密宓なるものをより餀密 に規定しようと試みてもいる。しかしながらわれわれ が㑌息密度あるいほ密度効果なるものを考える場合に， たとえば アズキゾウムシ Callosobruchus chinensis の場合で考えられる如く，はじめ成虫の密度をいろい ろしかえて実験を行うとその影響は直接には成虫の産眀の過程にのみ現われて，爾後の射化幻虫や羽化する成出等には直接には及ぼされない，直接の影響は薢密 にはそれぞれのアズキ粒に座下された蛊の数きたは胉化检入したアズキ 1 粒中の梳息幼虫数などによつても たらされると考えられる。

[^1]密度が発育，生存举，羽化成虫の性比，休の大きさ，生存期間，崀卵力に及ぼす影響を調查した。ことに概要を述べて大方の参考に供し度い。

本文に入るに先だつて常に協力をねがつた本学応用昆虫学研究室諸彦，ならびに供試アズキゾウムシの提供をたまわつた京都大学農学部民虫学研究空に対して厚く謝意を表する。

実験材料及び方法

本実験に攸用したアズキゾウムシは京都大学農学部昆出学研究空に於いて長年累代鉰育された系統である。 30° に調整した雨気定温器内で直径 12 cm ，深さ 3 cm のシャーレにアズキ 300 柆を重ならぬ様に並べ，とれ に 10，30，50 対ずつの親虫を放つて8時間産明せし めた。同時に志た直径 9 cm ，深さ 2 cm のシャーレ学使用して同様に親虫の数を $10,20,30,90,100$ ， 120 対として 12 時問産卵を行わしめた。使用アズキの合水㱏は 15% で，粒の大きさをなるべく均一ならし める如くした。産想の行われたアズキは1粒当りの旁贁数きたは检入虫数铻に 1～6 の密度区に分け，さら にそれらはガラス管，（ $1 \times 4 \mathrm{~cm}$ ）に1粒拕収めて爾後

[^0]: ＊Supported（in part）by a Grant in Aid for －Fundamental Scientific－Research from the Ministry of Education（56－61217）．

[^1]:

