
GPU-accelerated indirect boundary element method for voxel model analyses with
fast multipole method

Shoji Hamada

Department of Electrical Engineering, Kyoto University, Kyoto-daigaku-katsura, Kyoto 615-8510, Japan

Abstract

An indirect boundary element method (BEM) that uses the fast multipole method (FMM) was accelerated using graphics
processing units (GPUs) to reduce the time required to calculate a three-dimensional electrostatic field. The BEM is
designed to handle cubic voxel models and is specialized to consider square voxel walls as boundary surface elements. The
FMM handles the interactions among the surface charge elements and directly outputs surface integrals of the fields over
each individual element. The CPU code was originally developed for field analysis in human voxel models derived from
anatomical images. FMM processes are programmed using the NVIDIA Compute Unified Device Architecture (CUDA)
with double-precision floating-point arithmetic on the basis of a shared pseudocode template. The electric field induced
by DC-current application between two electrodes is calculated for two models with 499,629 (model 1) and 1,458,813
(model 2) surface elements. The calculation times were measured with a four-GPU configuration (two NVIDIA GTX295
cards) with four CPU cores (an Intel Core i7-975 processor). The times required by a linear system solver are 31 s and
186 s for models 1 and 2, respectively. The speed-up ratios of the FMM range from 5.9 to 8.2 for model 1 and from
5.0 to 5.6 for model 2. The calculation speed for element-interaction in this BEM analysis was comparable to that of
particle-interaction using FMM on a GPU.

Keywords: Boundary element method, Fast multipole method, Graphics processing unit, Voxel model, Laplace
equation

1. Introduction

Graphics processing units (GPUs) are increasingly be-
ing applied to scientific computations because they offer
a high performance–cost ratio and a low barrier to en-
try. NVIDIA is one of the most influential promoters
of general-purpose computing on GPUs with its comput-
ing architecture called Compute Unified Device Architec-
ture (CUDA)[1]. Useful results have been obtained using
GPUs for N -body problems [2, 3] both with and without
fast algorithms such as the fast multipole method (FMM)
[4, 5] and the tree method. The speed-up ratio when using
GPUs instead of CPUs with single-precision floating-point
arithmetic occasionally exceeds one hundred [3]. GPUs
have also been demonstrated to significantly accelerate the
computation of boundary element methods (BEMs) [6, 7],
although they have not yet been applied to fast algorithms.

In a previous study, the author developed an indi-
rect BEM accelerated by the FMM; this approach was
designed to handle cubic voxel models and was special-
ized to consider square voxel walls as boundary surface
elements [8, 9]. Note that the indirect BEM is also re-
ferred to as the equivalent source method [10], surface
charge simulation method [11], and method of moments

Email address: shamada@kuee.kyoto-u.ac.jp (Shoji Hamada)

(MoM) [12]. In this approach, the Laplace kernel FMM
handled the interactions among surface charge elements
instead of point charges, and it directly provided the sur-
face integrals of the fields over each individual element.
Using the BEM, three-dimensional electric fields were an-
alyzed in human voxel models derived from anatomical im-
ages. The quality of calculated fields was similar to that
produced by the scalar-potential finite-difference method,
impedance method, and quasi-static finite-difference time-
domain method [13], indicating practical applicability and
usefulness. This method has the following features: (1)
the calculated fields macroscopically satisfy Gauss’s law,
and (2) the FMM embedded in an iterative solver only
performs multiply-and-accumulate operations.

In the current study, the author programmed the in-
direct FMM-BEM on GPUs using CUDA with double-
precision floating-point arithmetic [14]. The FMM uti-
lizes rotation-coaxial translation-rotation (RCR) decom-
position [5, 15] of the multipole to local translation (M2L)
operator. The processes of the FMM are coded on the
basis of a pseudocode template by adopting a strategy of
one CUDA block per FMM box. This code was used to
calculate the DC conductive current and electric field in
two human head models in which a current was applied
through two contact electrodes. This type of field analy-
sis is required in studies of electric current dosimetry and

Preprint submitted to Computer Physics Communications July 3, 2012

x
y

z

x
y

z

x
y

z

=1 =2 =3

Figure 1: Voxel surfaces indicated by index ℓ.

i

j c=5

: voxels

: leaf boxes

: neighbor boxes of

,

,

Figure 2: Voxels, leaf boxes, and neighboring boxes.

in electroencephalogram signal analyses. The calculation
times with four GPUs and four CPU cores were measured
on a personal computer (PC). To the best of the author’s
knowledge, this is the first GPU version of the indirect
FMM-BEM for voxel model analysis.

2. Indirect BEM for voxel model analysis

2.1. Overview [8]

Consider a rectangular region composed ofNx×Ny×Nz

cubic voxels, where the voxel side length is L. A set
of integer indices defined as (i, j, k)=(0:Nx−1, 0:Ny−1,
0:Nz−1) indicates voxel positions in (x, y, z) coordinates,
where “a:b” means that the index ranges from a to b. It
is assumed that each voxel at (i, j, k) has homogeneous
conductivity σ(i, j, k), which defines a conductive volume
model. Another integer index ℓ=1:3 is defined to indicate a
square surface on a voxel (see Fig. 1), then a set of indices
(i, j, k, ℓ) identifies a voxel surface in the region. When
a voxel surface resides between two voxels having differ-
ent conductivities, the surface is considered as a square
boundary element. This procedure produces a unique sur-
face model. It is assumed that each element has unknown
homogeneous charge density q generating electric field E
and potential ϕ. All unknown q are determined by solving
a linear system composed of boundary equations. Then
the field is determined at each voxel center.

On the basis of the MoM approach, boundary equa-
tions are represented with

∫
E± ·ndS ≡ F± and

∫
ϕdS ≡

V , where
∫
dS gives the surface integral on an element,

n is a unit normal vector of the element (i.e., n=i, j, or
k), and the subscript ± indicates that E is defined on the
plus or minus side of the element in the x-, y-, and z-
coordinates (see Appendix A). The q, F±, and V are also
uniquely identified by the indices (i, j, k, ℓ).

To efficiently calculate all F± and V , the FMM is ap-
plied. A cubic box covering the entire model region is

+5
+9

9
5

9
5

+5
+9

+9 +5 +9 +5

5 9 5 9i

j

(9=2*5 1=2*c 1,

max(+j)=9

max(−j)=9

m
ax

(+
i)=

9

m
ax

(
 −

i
)=

9

9+1+9=19=4*5 1=4*c 1, when c=5)

: source voxels
: target voxels in four corners of a box

Figure 3: Arrangement of source and target voxels in direct field
calculation.

first defined at a root level. This box is repeatedly par-
titioned into eight smaller cubic boxes defined at a finer
level, which generates a hierarchical oct-tree box struc-
ture. The finest-level boxes are called the leaf boxes, and
these are naturally defined as clusters of c3 voxels in cubic
voxel models. In this paper, c ranges from 5 to 7. Fig.
2 shows a two-dimensional diagram of leaf boxes for c=5.
The F and V are calculated using two complementary ap-
proaches. One approach is the direct field calculation that
considers nearby elements in neighboring boxes, which are
denoted by F direct and V direct. The set of neighboring
boxes is defined for each box, and the box itself is in-
cluded in the set. Fig. 2 also shows a two-dimensional
diagram of neighboring boxes. The other approach is a
non-straightforward field calculation with multipole and
local expansion coefficients representing the contributions
of far elements, which are denoted by F far and V far.

2.2. Direct field calculation for voxel model analysis

Symbols “s” and “t” are defined to indicate the role of a
surface as source or target, respectively. For example, (is,
js, ks, ℓs) identifies a source element. Further, the relative
arrangement of a target element observed from a source
element is defined as (it−is, jt−js, kt−ks, ℓt, ℓs). In
the calculation of F direct and V direct, the possible relative
arrangement is restricted to (−2c+1:2c−1, −2c+1:2c−1,
−2c+1:2c−1, 1:3, 1:3). Fig. 3 shows a two-dimensional
diagram of possible arrangements for two voxels, one con-
taining a source and the other a target, indicating that
there are −2c+1:2c−1 relative arrangements per dimen-
sion. Therefore, the number of independent interaction
coefficients is 3×3×(4c−1)3, which can be preliminarily
calculated as unit source responses fdirect and vdirect. Both
fdirect
+ and fdirect

− have the same value except when the
target and source are identical. Conversely, when they are

2

identical, the following relationship is satisfied:

fdirect
± (0, 0, 0, ℓt, ℓs) = ± S

2ε0
(ℓt = ℓs = 1 : 3), (1)

where S=L2, and ε0 is the permittivity of free space. The
consolidated F direct and V direct are calculated using the
following multiply-and-accumulate operations:

F direct(it, jt, kt, ℓt) =
∑
s

q(is, js, ks, ℓs)

×fdirect(it−is, jt−js, kt−ks, ℓt, ℓs) (2)

V direct(it, jt, kt, ℓt) =
∑
s

q(is, js, ks, ℓs)

×vdirect(it−is, jt−js, kt−ks, ℓt, ℓs), (3)

where
∑

s denotes the summation of the contributions
from all related sources.

2.3. Far field calculation for voxel model analysis
Multipole expansion coefficients Mm

n defined on a leaf
box consist of independent real and pure imaginary num-
bers Mic, where ic = 0 to (p+1)2−1, when the expansion
is truncated to p. The formula for calculating Mm

n pro-
duced by a point charge in a leaf box is well known [5].
Given a source surface element with unit charge density in
a leaf box, Mic can be calculated by numerical integration
with this formula, and these unit responses are stored as
mic. The number of possible source element positions is
3×c3. Thus, preliminary calculations of mic generated by
these sources provide a full set of unit responses. The con-
solidated Mic on a leaf box is calculated by the following
multiply-and-accumulate operation (Q2M):

Mic =
∑
s

q(is′, js′, ks′, ℓs)×mic(is
′, js′, ks′, ℓs), (4)

where (is′, js′, ks′, ℓs)=(0:c−1, 0:c−1, 0:c−1, 1:3) indicates
the local element positions in a leaf box. Local expansion
coefficients Lm

n and Lic are defined on a leaf box. The for-
mulae for calculating E and ϕ at a point in the leaf box
produced by Lm

n are well known [5]. Given a unit Lic as
a source, F far and V far on a target element can be cal-
culated by numerical integration with these formulae, and
these unit responses are stored as f far

ic and vfaric , respec-
tively. Preliminary calculations of f far

ic and vfaric at 3 × c3

target positions provide full sets of unit responses. The
consolidated F far and V far are calculated by the following
multiply-and-accumulate operations (L2F and L2V):

F far(it′, jt′, kt′, ℓt) =

(p+1)2−1∑
ic=0

Lic×f far
ic (it′, jt′, kt′, ℓt), (5)

V far(it′, jt′, kt′, ℓt) =

(p+1)2−1∑
ic=0

Lic×vfaric (it′, jt′, kt′, ℓt). (6)

The other FMM processes in the far field calculation are
identical to those in the FMM adopting RCR decompo-
sition of translation operators [5], which are the following
translations: multipole-to-multipole (M2M), multipole-to-
local (M2L), and local-to-local (L2L).

Table 1: Pseudocode template for GPU kernels of FMM.

01: For Loop 1: handle P sub-processes {
02: Store fixed constants in shared memory, if possible
03: Process FMM boxes via 30 CUDA blocks {
04: Store fixed source data in shared memory, if possible
05: Process targets via T CUDA threads {
06: For Loop 2: handle sources related to each target{
07: Multiply-and-accumulate related

source contributions
08: }// end For

09: }// Multiple threads jointly handle a target, if possible.

10: Do reduction when multiple threads
jointly handle a target above

11: }// CUDA blocks always handle the same boxes.

12: }// end For

3. CUDA kernel template

The FMM processes were programmed for GPUs us-
ing CUDA with double-precision floating-point arithmetic.
The CUDA kernels, which are functions that a GPU exe-
cutes, are coded on the basis of a pseudocode template.
The use of a shared template for all FMM procedures
makes the coding easier.

The specifications of the PC used, which constitute
the fixed hardware parameters, are summarized as fol-
lows: The operating system, CPU, and GPUs were 64-
bit Microsoft Windows Vista, Intel Core i7-975 (four CPU
cores, 3.33 GHz), and two NVIDIA GTX295 cards (four
GPUs), respectively. Note that a GTX295 card has two
GPUs; this card is capable of double-precision floating-
point arithmetic and has 940 MB of GDDR3 global mem-
ory per GPU, 30 multiprocessors per GPU, and 16 kB
shared memory per multiprocessor. To store fdirect, vdirect,
mic, f

far
ic , and vfaric in double-precision arrays, a memory ca-

pacity greater than 16 kB is required. The memory size of
fdirect is 493 kB (c=5), 876 kB (c=6), or 1417 kB (c=7),
and that of vdirect is the same. In this paper, p is fixed to
10 [3]; therefore, ic ranges from 0 to 120, and the memory
size ofmic is 363 kB (c=5), 627 kB (c=6), or 996 kB (c=7).
Those of f far

ic and vfaric are the same. On the other hand,
when p is 10, the memory size requirement of the rotation
operator is 14,168 bytes, that of the coaxial-translation
operator in M2M and L2L is 2288 bytes, and that in M2L
is 4048 bytes.

Table 1 shows the pseudocode template for the CUDA
kernels. In the template, the CUDA block can be re-
garded as a multiprocessor on a GPU in the context of
this study; thus, the number of CUDA blocks is set to 30
(line 03 in Table 1). The template adopts a strategy of
one CUDA block per box (line 03). Each CUDA block
has its shared memory, and T CUDA threads per CUDA
block execute multithreading multiply-and-accumulate op-
erations (lines 05-09) by sharing data in the shared mem-
ory. The CUDA blocks and CUDA threads are used in one-

3

Table 2: Parameters of GPU kernels of FMM.

P T Sequential Boxes Sources Targets
Process sub-parts (blocks) (threads)

Direct field Fdirect evaluation Fdirect

243 256 Leaves q
(c=5, 6) V direct evaluation V direct

Direct field Fdirect evaluation Fdirect

972 256 Leaves q
(c=7) V direct evaluation V direct

Q2M 1 256 Leaves q Mic

forward-rotation
M2M 8 256 coaxial-translation Parents Mic Mic

backward-rotation

forward-rotation
M2L 316 128 coaxial-translation All Mic Lic

backward-rotation

forward-rotation
L2L 8 256 coaxial-translation Parents Lic Lic

backward-rotation

L2F F far evaluation F far

1 256 Leaves Lic
L2V V far evaluation V far

dimensional forms, as done by Gumerov and Duraiswami
[2] and Yokota et al. [3]. Because efficient use of shared
memory is one of the keys to high-performance GPU com-
putation, some FMM processes are divided into P sub-
processes (line 01), thus dividing unit responses into sub-
sets smaller than the shared memory capacity (line 02).
In particular, the direct field calculation process and M2L
process, which are the most time-consuming, are divided
into several hundreds of sub-processes. Table 2 summa-
rizes P and the other parameters in the template, as well
as the sequential sub-parts involved in each process.

4. CUDA kernel

4.1. Direct field calculation kernel

Direct field calculation based on Eqs. (2) and (3) is per-
formed as follows: Surface elements are accessed via leaf
boxes. When a leaf box is handled as a target box, the
contained elements are regarded as target elements, and
F direct and V direct on these targets are to be calculated.
Elements in neighboring boxes to the target box are re-
garded as source elements. In the GPU environment, this
process is divided into P sub-processes to divide fdirect and
vdirect into subsets that are loadable into shared memory.

For c=5 or 6, a leaf box is treated as a set of three sub-
leaf boxes. Elements are sorted into them according to the
value of ℓ. Target elements (ℓt=1, 2, and 3) have to gather
the contributions of the source elements (ℓs=1, 2, and 3)
contained in 3×3×3 neighbor boxes. By dividing this gath-
ering process into 3×3×(3×3×3)=243 sub-processes, the
number of entries in the divided fdirect or vdirect is reduced
to (2c−1)3. Fig. 4 shows a two-dimensional diagram of
possible arrangements of source and target voxels, which
indicates that there are 2c−1 relative arrangements per
dimension. The corresponding memory size is 5832 bytes
(c=5) or 10,648 bytes (c=6).

i

j

(9=2*5 1=2*c 1,

: source voxels
: target voxels

+5 +9+5 +9

+1 +5

+
1

 +

5

+
5

 +

9
+

5

 +
9

in four corners
of a box

 when c=5)

Figure 4: Arrangement of source and target voxels in a case of divided
direct field calculation.

For c=7, much more size reduction is required. A local
index k′′=0:6 is defined in a leaf box, which is an alias of
k. Lower and upper sub-boxes are defined to cover k′′=0:3
and 3:6, respectively, with an overlap at k′′=3. These two
sub-boxes and ℓ define six new sub-leaf boxes. Elements
are sorted into them according to ℓ and k′′. Auxiliary rules
for sorting elements at k′′=3 are designed by considering
calculation efficiency. By dividing the gathering process
into 6×6×(3×3×3)=972 sub-processes, the number of en-
tries and memory size are reduced to (2c−1)2(2c′−1) and
9464 bytes, respectively, where c′=4.

Steps (I-1)–(I-7) below are performed two times, once
each for the evaluation of F direct and V direct.

(I-1) For Loop 1 in Table 1 handles P sub-processes.

(I-2) When a sub-process is fixed, the corresponding di-
vided vdirect or fdirect is loaded into shared memory.

(I-3) Thirty CUDA blocks handle all sub-leaf boxes in
parallel. To avoid race conditions, a CUDA block
always handles the same sub-leaf boxes through all
sub-processes. Elements in the handled sub-leaf box
act as targets. Elements in the paired sub-leaf box
specified by current sub-process act as sources. If ei-
ther box of the pair has no elements or is undefined,
the subsequent steps are skipped.

(I-4) The local position and charge density of the sources
are loaded into shared memory.

(I-5) Both the number of targets (nt) and the number of
sources (ns) are at most 5×5×5=125 (c=5), 6×6×6=216
(c=6), or 7×7×4=196 (c=7). The number of CUDA
threads T is set to 256 (>nt). A target is jointly
handled by multiple CUDA threads. The number of
these threads is automatically set as 1, 2, 4, 8, or 16
on the basis of both nt and ns.

(I-6) Each thread gathers related source contributions into
shared memory via For Loop 2 in Table 1.

(I-7) After reduction of values in shared memory, they are
stored in global memory as F direct or V direct.

4.2. Far field calculation kernel

All processes of the far field calculation are coded using
the template in Table 1. The details of the CUDA kernels
for Q2M, L2F, and L2V based on Eqs. (4), (5), and (6),

4

respectively, are described below. Those of M2M, M2L,
and L2L are omitted. In the present codes, unit responses
mic, f

far
ic , and vfaric are not loaded into shared memory.

4.2.1. Q2M

(II-1) For Loop 1 handles a single sub-process.

(II-2) No operation.

(II-3) Thirty CUDA blocks handle all leaf boxes in parallel.
Mic of a leaf box act as targets. Elements in the leaf
box act as sources, ns is at most 3c3: 375 (c=5), 648
(c=6), or 1029 (c=7).

(II-4) The local position and charge density of the sources
are loaded into shared memory.

(II-5) nt=121 because ic=0–120. T is set to 256 (>2nt).
Two threads jointly handle a target, and they share
the related sources as evenly as possible.

(II-6) Each thread gathers related source contributions into
shared memory via For Loop 2.

(II-7) Mic are stored in global memory after the reduction
of the two values gathered in shared memory.

4.2.2. L2F and L2V

Steps (III-1)–(III-7) below are performed two times,
once each for the evaluation of F far and V far.

(III-1) For Loop 1 handles a single sub-process.

(III-2) Auxiliary integer arrays for array address calculation
are loaded into shared memory.

(III-3) Thirty CUDA blocks handle all leaf boxes in parallel.
Lic act as sources (ns=121); elements in each leaf box
act as targets.

(III-4) Sources Lic are loaded into shared memory.

(III-5) nt is at most 3×c3: 375 (c=5), 648 (c=6), or 1029
(c=7). T is set to 256, and one thread handles a
target. When nt is greater than 256, the CUDA
threads sequentially handle multiple targets.

(III-6) Each thread gathers 121 source contributions for a
target via For Loop 2.

(III-7) Calculated F far or V far are stored in global memory.

4.3. Multiple GPU execution

The number of GPUs, Ng, is at most four in this study.
Ng CPU threads are created by Open Multi-Processing
(OpenMP) to control Ng GPUs in parallel. Fig. 5 shows
a block diagram of multiple GPU execution for Ng=4. Di-
rect field calculation and M2L are performed using Ng

GPUs. The other processes are performed by one GPU
with a GPU-id (i.e., identification number in the range 0
to Ng−1) of 0. The allocation and content of the global
memory on each GPU are set identical to those in single-
GPU execution. Thus, no memory saving is considered.
P sub-processes are divided into Ng subsets as evenly as
possible. Ng GPUs share the subsets one by one as “for
(int i=GPU-id; i<P ; i=i+Ng)”, where i is a unique sub-
process number. This approach is expected to achieve
good load balancing and reduced calculation time. Data

GPU0
Direct field

GPU1
Direct field

GPU2
Direct field

GPU3
Direct field

GPU0
M2L

GPU1 GPU2 GPU3

GPU0
Q2M, M2M

GPU0
L2L, L2F, L2V

M2L M2L M2L

CPU (OpenMP 8 threads)
Direct field + Far field

CPU (OpenMP 4 threads)

CPU (OpenMP 4 threads)

F
ar

 fi
el

d

Figure 5: Block diagram of FMM on four GPUs.

0 0.1 0.2

0

0.1

0.2
0 0.1 0.2

0

0.1

0.2

x/m

y/m

z/
m

y/
m Voxel size: 2 mm

Voxel region: 104 x 108 x 120
Slice: i=51, j=53, k=59
Filled marks: Electrodes
Voxels except air: 583,109
Surface elements: 499,629
Electrode 1: 32 elements
Electrode 2: 33 elements
External source: DC current

Model: Head part of NICT TARO

Figure 6: Voxel head model 1 and electrode arrangement.

transfer before and after M2L is performed as follows: af-
ter Mic is calculated in M2M on a GPU (GPU-id=0), it
is transferred from the GPU to the CPU, and then from
the CPU to other GPUs. After calculation of Ng segments
of Lic in M2L on Ng GPUs, they are transferred from the
GPUs to the CPU, consolidated on the CPU, and then
transferred to the GPU (GPU-id=0).

5. Voxel models and solver

The developed code was used to calculate the DC con-
ductive current and electric field in two anatomical hu-
man head voxel models in which electric current is applied
through two contact electrodes.

Model 1, shown in Fig. 6, is part of a Japanese adult
male model called TARO, developed by the National In-
stitute of Information and Communications Technology
(NICT) [16]. The length L is 2 mm, and (Nx, Ny, Nz)=(104,
108, 120). Model 1 contains 583,109 non-air voxels, 499,629

5

Figure 7: Distribution of |E| in model 2.

Table 3: Calculation time and number of iterations of the CPU ver-
sion with model 1.

c 5 6 7
Time for direct field 0.916 s 1.396 s 2.215 s

Time for M2L 1.481 s 0.902 s 0.581 s
Time for far field 1.551 s 0.962 s 0.644 s
Half-step time 2.478 s 2.369 s 2.870 s

Iterations 53 52 48
Total time 263.2 s 246.9 s 276.3 s

surface elements, and 22 types of isotropically conductive
tissues. Model 2 is an original head model derived from
magnetic resonance images of a Japanese adult male. The
length L is 1 mm, and (Nx, Ny, Nz)=(184, 232, 241).
This model contains 4,625,755 non-air voxels, 1,458,813
surface elements, and 9 types of tissues. The conductivity
values used for the tissues are those used by Hirata et al.
[13]. Two circular plate electrodes are attached to the skin
surface; such electrodes are composed of surface elements
identical to the attached skin elements. The radius of the
electrodes is set to 5 mm. In Fig. 6, the electrodes are
drawn as filled areas projected onto the slice planes.

A biconjugate gradient method called the BiCGSafe
method [17] is utilized to iteratively solve the linear system
for 499,629 or 1,458,813 unknown charge densities. To
regularize the linear system, the total charge is fixed at
zero. Convergence is judged when the relative residual
norm of the solution becomes less than 10−6. Fig. 7 shows
an example of the obtained |E| distribution in model 2 on
three slices and on the skin surface. The color gradation
ranges from log10

(
10−4 |Emax|

)
to log10 (|Emax|).

6. Results

6.1. Analysis of field in model 1

The electric field in model 1 was analyzed by changing
the leaf box size c3 from 53 to 73. The leaf level is 5 in all
cases when the root level is counted as 0.

Table 4: Calculation time, number of iterations, and speed-up of the
four-GPU version with model 1.

c 5 6 7
Time for 0.110 s 0.106 s 0.200 s
direct field (8.36×C) (13.2×C) (11.1×C)
Time for 0.228 s 0.135 s 0.086 s
M2L (6.51×C) (6.69×C) (6.78×C)

Time for 0.291 s 0.186 s 0.133 s
far field (5.32×C) (5.17×C) (4.83×C)
Half-step 0.417 s 0.309 s 0.350 s

time (5.94×C) (7.68×C) (8.21×C)
Iterations 49 50 50
Total time 41.6 s 31.3 s 35.5 s

A CPU-version code was executed to provide reference
values with eight OpenMP threads. Table 3 shows the
calculation times and number of iterations. The time re-
quired for M2L is a part of that for the far field, and the
half-step time is nearly equal to the sum of the times re-
quired for the direct field and the far field. Thus, the half-
step time is nearly equal to the FMM calculation time.
The fastest half-step time was obtained for c=6. The to-
tal time is nearly equal to the product of the number of
iterations required for convergence and twice the half-step
time, because the solver, BiCGSafe, performs two FMM
calculations per iteration step. The total times range from
247 s to 276 s.

Table 4 shows the calculation times, number of iter-
ations, and speed-up ratios observed with the four-GPU
version. The speed-up ratios are noted in parentheses with
“×C” to emphasize that these results are relative to those
obtained with the CPU version. The speed-up ratios of
the direct field, far field, and half-step time range from 8.4
to 13.2×C, from 4.8 to 5.3×C, and from 5.9 to 8.2×C, re-
spectively. Those of M2L range from 6.5 to 6.8×C, which
are better than those of the far field. This implies that
the single-GPU parts in the far field process reduce the
speed-up ratio by 20%–30%. The fastest half-step time,
0.309 s, was also obtained for c=6, and the best speed-up
ratio of the half-step time, 8.21×C, was obtained for c=7.
The total times range from 31 s to 42 s.

Table 5 lists the calculation times and number of it-
erations observed in the execution of the 1-, 2-, 3-, and
4-GPU versions. The speed-up ratios are noted in paren-
theses against those of the single-GPU version; these ratios
are indicated by “×S.” Increasing the number of GPUs re-
sults in an increase in the speed-up ratio. Speed-up ratios
of direct field and M2L are 3.7×S and 3.6×S with four
GPUs, respectively; however, those of far field and half-
step time are 2.9×S and 3.1×S, respectively, indicating
that the single-GPU parts in the far field process reduce
the speed-up ratio by approximately 20%. Note that the
value 3.1×S for the half-step time indicates that it still at-
tains approximately 77% of the ideal speed-up ratio with
four GPUs.

6

Table 5: Calculation time, number of iterations, and speed-up in
relation to the number of GPUs with model 1 (c=6).

GPUs 1 2 3 4
Time for 0.392 s 0.200 s 0.139 s 0.106 s
direct field (1.96×S) (2.81×S) (3.70×S)
Time for 0.490 s 0.246 s 0.167 s 0.135 s
M2L (1.99×S) (2.93×S) (3.63×S)

Time for 0.538 s 0.297 s 0.217 s 0.186 s
far field (1.81×S) (2.48×S) (2.89×S)
Half-step 0.943 s 0.511 s 0.372 s 0.309 s

time (1.84×S) (2.54×S) (3.06×S)
Iterations 49 52 53 50
Total time 92.7 s 53.5 s 39.8 s 31.3 s

Table 6: Calculation time and number of iterations of the CPU ver-
sion with model 2.

c 5 6 7
Time for direct field 1.637 s 2.195 s 3.811 s

Time for M2L 8.287 s 5.340 s 3.556 s
Time for far field 8.611 s 5.593 s 3.761 s
Half-step time 10.28 s 7.821 s 7.605 s

Iterations 61 60 70
Total time 1254.8 s 939.1 s 1065.3 s

6.2. Analysis of field in model 2

The electric field in model 2 was also analyzed in the
same manner as that for model 1. The leaf level is 6 in all
cases. Table 6 lists the calculation times and number of
iterations observed in the CPU version executed with eight
OpenMP threads. The fastest half-step time was obtained
for c=7. The total times range from 939 s to 1255 s.

Table 7 lists the calculation times, number of iterations,
and speed-up ratios observed in the execution of the four-
GPU version. The speed-up ratios of the direct field, far
field, and half-step time range from 3.8 to 6.6×C, from 5.3
to 5.5×C, and from 5.0 to 5.6×C, respectively. Those of

Table 7: Calculation time, number of iterations, and speed-up of the
four-GPU version with model 2.

c 5 6 7
Time for 0.426 s 0.331 s 0.725 s
direct field (3.84×C) (6.64×C) (5.26×C)
Time for 1.317 s 0.824 s 0.553 s
M2L (6.29×C) (6.48×C) (6.44×C)

Time for 1.591 s 1.025 s 0.717 s
far field (5.41×C) (5.46×C) (5.25×C)
Half-step 2.069 s 1.407 s 1.494 s

time (4.97×C) (5.56×C) (5.09×C)
Iterations 61 66 66
Total time 253.2 s 186.4 s 198.0 s

Table 8: Calculation time, number of iterations, and speed-up in
relation to the number of GPUs with model 2 (c=7).

GPUs 1 2 3 4
Time for 2.817 s 1.417 s 0.957 s 0.725 s
direct field (1.99×S) (2.94×S) (3.89×S)
Time for 2.028 s 1.024 s 0.690 s 0.553 s
M2L (1.98×S) (2.94×S) (3.67×S)

Time for 2.179 s 1.178 s 0.849 s 0.717 s
far field (1.85×S) (2.56×S) (3.04×S)
Half-step 5.035 s 2.639 s 1.854 s 1.494 s

time (1.91×S) (2.72×S) (3.37×S)
Iterations 65 63 69 66
Total time 655.0 s 333.0 s 256.5 s 198.0 s

Table 9: Comparison of calculation times of FMM by a single GPU.

Reference [2] Reference [3] Present

GPU(GeForce) 8800GTX 8800GT GTX295

Core clock 575 MHz 600 MHz 576 MHz

Multiprocessors 16 14 30/GPU

Precision Single Single Double

Bodies Particles Particles Surfaces

Distribution Random Random Model surface

N/106 ∼ 1.0 ∼ 1.0 ∼ 0.5 ∼ 1.5

p 7 11 10 10 10

Time ∼0.9 s ∼1.4 s ∼8.0 s 0.94 s 5.04 s

M2L range from 6.3 to 6.5×C, indicating that the single-
GPU parts in the far field process reduce the speed-up
ratio by approximately 15%–20%. The fastest half-step
time, 1.407 s, was obtained for c=6, and the best speed-
up ratio of the half-step time, 5.56×C, was also obtained
for c=6. The total times range from 186 s to 253 s.

Table 8 lists the calculation times, number of iterations,
and speed-up ratios observed in the execution of the 1-, 2-,
3-, and 4-GPU versions. The speed-up ratios of direct field
and M2L are 3.9×S and 3.7×S with four GPUs, respec-
tively; however, those of far field and half-step time are
3.0×S and 3.4×S, indicating that the single-GPU parts
in the far field process reduce the speed-up ratio by ap-
proximately 20%. The value 3.4×S in the half-step time
indicates that it still achieves approximately 84% of the
ideal speed-up ratio with four GPUs.

Although the multiple-GPU procedures described in
section 4.3 were adopted in this study, various alterna-
tive procedures can also be adopted. Partitioning of FMM
boxes intoNg subsets makes it possible to execute all FMM
processes with Ng GPUs [3]. This method will be suited to
reducing both memory and time, including data-transfer
time. Note that this technique can be embedded into the
pseudocode template in Table 1.

7

6.3. Comparison of FMM calculation times

The speed-up ratios obtained with the FMM on GPUs
compared with CPU cores presented in previous sections
range from 5.0 to 8.2×C, which might not be noteworthy
when compared with those attained in preceding studies
[2, 3]. To investigate these results from another perspec-
tive, the calculation times for a single FMM execution by
a single GPU are summarized in Table 9, which shows
values of approximately the same order. It is not the au-
thor’s intention to portray an exact comparison of these
times, because both the specifications of the utilized GPU
and the handled problems are not the same. Nevertheless,
in general, the calculation speed is almost proportional
to the core clock speed and the number of multiproces-
sors. The double-precision floating-point operations take
significantly longer time than single-precision operations.
Further, the truncation number p increases the far field
calculation time in proportion to (p+1)3 [5] under the def-
inition adopted in this study. In Table 9, the values of p
are adjusted to conform to this definition. In addition, the
FMM in this study handles the interactions among surface
elements and outputs surface integrals over individual el-
ements, which is considerably different from the approach
in the other studies. From Table 9, it is concluded that this
study achieved BEM analyses on the basis of calculation
of the interactions among surface elements by the FMM
on GPUs, and the calculation speed achieved is compara-
ble to those in the preceding random particle-interaction
studies.

7. Summary

An indirect boundary element method (BEM) with the
fast multipole method (FMM) was accelerated by imple-
mentation on graphics processing units (GPUs) to reduce
the calculation time of three-dimensional electrostatic fields.
The BEM code is designed to handle cubic voxel models
and specialized to consider voxel walls as square bound-
ary elements. The FMM handles the interaction among
the surface charge elements and directly outputs the sur-
face integrals of the fields over individual elements. The
processes of the FMM were programmed using NVIDIA
CUDA with double-precision (DP) floating-point arith-
metic on the basis of a pseudocode template. Two anatom-
ical head models were utilized to calculate the fields in-
duced by DC current application between two attached
electrodes. The models had 499,629 (model 1) and 1,458,813
(model 2) surface elements. Calculations were performed
on a PC with four GPUs (two NVIDIA GTX295 cards;
75G or 112G peak DP flops per GPU) and four CPU cores
(one Intel Core i7-975; 55G peak DP flops). In the analy-
sis of model 1 with four GPUs, the time required for one
FMM execution, its speed-up ratio relative to four CPU
cores, and the calculation time required by a solver are 0.31
s, 5.9–8.2 times, and 31 s, respectively. In the analysis of
model 2 with four GPUs, these respective values are 1.4

s, 5.0–5.6 times, and 186 s, respectively. In the analysis of
models 1 and 2 using a single GPU, the time required for
one FMM execution for element-interaction calculation is
0.94 s and 5.0 s, respectively. These times are comparable
to those obtained in preceding particle-interaction studies
using the FMM on a GPU. The latest NVIDIA GPU ar-
chitecture can achieve eight times the DP performance of
the previous generation on which GTX295 is based. Thus,
the code developed in this study could possibly run, un-
changed, that much faster on the latest hardware.

Acknowledgements

This study was partially supported by the Japan So-
ciety for the Promotion of Science (JSPS). The author sin-
cerely thanks T. Yamamoto, T. Sasayama, and T. Kobayashi
for their contributions to this study.

Appendix A. Discretized boundary equations

On a boundary element that is not used as an electrode
element, the following boundary equation is imposed: σ−F−
= σ+F+. The subscripts ± indicate that E and σ are de-
fined on the plus or minus side of the element surface,
respectively.

The elements of the electrodes are classified into four
subsets: (i) a designated element of electrode 1, (ii) the
other elements of electrode 1, (iii) a designated element
of electrode 2, and (iv) the other elements of electrode
2. On these elements, the following boundary equations
are imposed: V(i) = V(ii); V(iii) = V(iv);

∑
(i)(ii) σinFin =

1;
∑

(i)(ii)(iii)(iv) σinFin = 0. The symbols (i)–(iv) indicate

that they are related to the elements of the subsets (i)–(iv),
and Fin is defined as

∫
Ein ·nindS. The symbol “in” spec-

ifies the tissue side of the electrode element. The direction
of nin is also defined as toward the tissue.

References

[1] http://www.nvidia.com/page/home.html
[2] N. A. Gumerov, R. Duraiswami, Journal of Computational

Physics 227 (2008) 8290
[3] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, K.

Yasuoka, Computer Physics Communications 180 (2009) 2066
[4] L. Greengard, V. Rokhlin, Acta Numerica 6 (1997) 229
[5] N. A. Gumerov, R. Duraiswami, Fast Multipole Methods for

the Helmholtz Equation in Three Dimensions (Elsevier, 2004)
[6] T. Takahashi, T. Hamada, International Journal for Numerical

Methods in Engineering 80 (2009) 1295
[7] T. Takahashi, Journal of the Japan Society for Simulation Tech-

nology 28 (3) (2009) 125 (in Japanese)
[8] S. Hamada, T. Kobayashi, IEEJ Trans. FM 126 (5) (2006) 355

(in Japanese) (translation: Electrical Engineering in Japan, 165
(4) (2008) 1)

[9] S. Hamada, M. Kitano, T. Kobayashi, IEEJ Trans. FM 128 (4)
(2008) 223 (in Japanese).

[10] R. F. Harrington, K. Pontoppidan, P. Abrahamsen, N. C. Al-
bertsen, Proc. IEEE 116 (10) (1969) 1715

[11] S. Sato, W. S. Zaengl, Proc. IEEE 133 (2) (1986) 77
[12] R. F. Harrington, Proc. IEEE 55 (2) (1967) 136

8

[13] A. Hirata, K. Yamazaki, S. Hamada, Y. Kamimura, H. Tarao,
K. Wake, Y. Suzuki, N. Hayashi, O. Fujiwara, Radiation Pro-
tection Dosimetry 138 (3) (2010) 237

[14] S. Hamada, GPU accelerated lead field calculation by indirect
boundary element method for voxel models, Brain Topography
and Multimodal Imaging (Proceedings of ISBET 2009), Kyoto
University Press ISBN: 9784876987993 , (Oct. 2009) 187

[15] C. H. Choi, J. Ivanic, M. S. Gordon, K. Ruedenberg, Journal of
Chemical Physics 11 (19) (1999) 8825

[16] T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watan-
abe, M. Taki, Y. Yamanaka, Physics in Medicine and Biology
49 (2004) 1

[17] S. Fujino, M. Fujiwara, M. Yoshida, Transactions of the Japan
Society for Computational Engineering and Science 8 (2006) 145
(in Japanese)

9

