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Abstract 

The use of a gas-liquid slug flow in a microreactor has several advantages such as a 

large surface area for contacting gas and liquid phases and circulation flow inside slugs. These 

advantages accelerate the mass transfer between the two phases, resulting in a high 

concentration of dissolved gas. The enhanced mass transfer is useful in carrying out liquid 

phase oxidation that uses oxygen gas as the oxidizing agent. The gas-liquid slug flow in a 

microreactor system is applied to the oxidation of ethyl lactate using an oxy-vanadium species 

for producing ethyl pyruvate. The reactor system includes two T-shaped micromixers: one for 

mixing the substrate with a catalyst solution and the other for generating slug flow by the 

addition of oxygen. The oxidation reaction proceeds right after the slug flow is generated in 

the second mixer, because the substrate and the catalyst mix rapidly in the first micromixer. 

Moreover, a high concentration of dissolved oxygen due to improved mass transfer in slug 

flow increases the oxidation reaction rate. Therefore, compared to a batch reaction, the 

synthesis using slug flow provides high yields of ethyl pyruvate per unit time and achieves 

satisfactory productivity at the reaction temperature of 323 K, which is lower than that 

employed in conventional syntheses. The proposed system enables the production of ethyl 

pyruvate using a simple reactor setup with reduced energy consumption.  

 

Keywords: Slug flow; Mass transfer; Liquid phase oxidation; Pyruvate; Vanadium catalyst  
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1. Introduction 

 

Pyruvic acid and its derivatives such as ethyl pyruvate are used as intermediates for 

perfumes, food additives, and electronic materials [1]. They are also attractive as raw 

materials for various bioactive substances such as antivirus and anticancer drugs [2]. The 

production of pyruvic acid is still based on the conventional reaction scheme through 

dehydrative decarboxylation of tartaric acid. The scheme provides pyruvic acid in good yield 

but has a serious disadvantage of requiring an excess amount of KHSO4 (decarboxylation 

agent) per batch [3,4]. Therefore, a new process with a high atom efficiency for the 

production of pyruvic acid should be developed. Pyruvic acid can also be synthesized by 

using two methods in which lactic acid is used as the raw material. The first method is a gas 

phase process with a solid catalyst. The substrate is vaporized in this process. This process has 

been improved with the development of various catalysts, for example, binary oxides 

containing molybdenum such as Fe2O3-MoO3 and TeO2-MoO3 [5], vanadium oxide species 

[6], and iron phosphate [7–9]. Although this process can be used to obtain high productivity 

of pyruvate from lactate, the process requires a reaction temperature of 473–573 K to vaporize 

lactate as a starting material, leading to a large running cost. The second method is a liquid 

phase reaction with a solid catalyst. Unlike in a gas phase process, a substrate reacts in a 

liquid phase process. The reaction catalyzed by Pd-Metal alloys supported on activated carbon 
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has been performed in a milder condition such as reaction temperature less than 363 K [10,11]. 

However, because catalysts for the liquid phase reaction are expensive, there is a need to 

develop an inexpensive catalyst.  

On the basis of this discussion, a process using an inexpensive catalyst that requires a 

reaction temperature of less than 373 K is necessary, for improving the productivity of 

pyruvic acid. Oxidation of ethyl lactate using an inexpensive vanadium species as a catalyst 

can serve this purpose. Because the yield of the product, ethyl pyruvate, depends on the 

concentration of dissolved oxygen, the efficient transfer of oxygen into the liquid phase 

containing the substrate is essential to achieve high productivity. Gas-liquid slug flow in a 

microreactor accelerates mass transfer between the two phases owing to the large surface area 

for contacting gas and liquid phases and circulation flow inside slugs. Near the interface of 

the two phases, the internal circulation flow renews the fluid and solute concentration. The 

flow preserves the difference between the interface and equilibrium concentrations, namely 

the driving force for the mass transfer, resulting in an enhanced transfer [12]. Therefore, 

efficient production of pyruvic acid is possible by combining the oxidation using vanadium 

catalyst and the slug flow in microchannels. 

In this study, we propose a microreactor system based on gas-liquid slug flow for the 

efficient production of pyruvate from the lactate derivative. The reaction scheme is shown in 

Fig. 1. We examine the validity of this system for the reaction system of lactate to pyruvate 
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under moderate temperature conditions and extract the rate constant of this reaction. 

 

2. Experimental 

 

2.1. Batch reaction 

 

The oxidation of ethyl lactate (2 mmol, Wako Pure Chemical) was carried out in a 

flask containing vanadium oxychloride (VOCl3, 0.13 mmol, Wako Pure Chemical), molecular 

sieve-3A (1.0 g, Wako Pure Chemical), and dry acetonitrile (10 mL, KANTO CHEMICAL) 

as a solvent at room temperature (298 K). The oxidizing gas was filled in the flask with an 

aspirator and a balloon filled with the agent. The interfacial area between the gas and the 

liquid phases was 18–20 cm
2
. Oxygen in air or pure oxygen gas was used as an oxidizing 

agent. The time for reaction under air was 20 min (entry 1), and that for reaction under 

oxygen was 13 min (entry 2) and 20 min (entry 3). The liquid in the flask was stirred at 450 

rpm. After quenching the reaction by adding distilled water (10 mL), the ethyl lactate and 

pyruvate were extracted using ethyl acetate (10 mL). The conversion of ethyl lactate and the 

yield of ethyl pyruvate were determined using a gas chromatograph (GC-2014, Shimadzu). 

 

2.2. Flow reaction 
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Fig. 2 illustrates a schematic of the experimental setup for a microreactor system 

based on gas-liquid slug flow. The proposed system is easy to construct because the tubing 

and joints are commercially available. All solutions have been fed with high performance 

liquid chromatography (HPLC) pumps, and the flow rate of the oxidizing agent is controlled 

using a flow meter. The system consists of two mixing zones. In the first mixing zone, ethyl 

lactate in acetonitrile (0.2 mol·L
−1

) and VOCl3 in acetonitrile (0.02 mol·L
−1

) are mixed. The 

flow rate of each solution is 1 mL·min
−1

. This zone consists of a 1/16  union tee (inner 

diameter: 1.3 mm, Swagelok) and a 1/16”-outer-diameter PTFE tube. The tube length is 300 

mm. The inner diameter (i.d.) of the tube is 1.0 mm or 0.5 mm. We call the system with the 

tube of i.d. 1.0 mm “Flow reaction 1” and that with the tube of i.d. 0.5 mm “Flow reaction 2”. 

In the second mixing zone, oxygen gas (2 mL·min
−1

) and the liquid mixture are mixed, and 

gas-liquid slug flow is formed in the reaction zone. The initial gas to liquid volume ratio is 1. 

This zone consists of a 1/16 inch union tee (inner diameter: 1.3 mm, Swagelok) and a 

1/16”-outer-diameter PTFE tube. The tube length is 5–20 m; its inner diameter is 1.0 mm. The 

initial slug length of both, the gas and the liquid was 5.0–6.0 mm. The mean residence time in 

the second mixing zone (reaction time) ranged from 1 min to 3.75 min by changing the length 

of the channel. The molar ratio of ethyl lactate and oxygen atom (FO/FLactate) is 0.89. This 

value is less than the stoichiometric ratio, that is, 1. Therefore, in this study, all experiments 
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were carried out under the condition that O2 was not exhausted. The maximum range of ethyl 

lactate conversion was 60%. Both mixing zones were kept at room temperature (298 K). The 

reactor outlet was under atmospheric pressure. 

The effects of reaction temperature were also examined. The reaction temperatures 

were 293 (Flow reaction 3), 308 (Flow reaction 4), or 323 K (Flow reaction 5). For the 

temperature dependency investigation, the inner diameter of the first mixing zone was 0.5 mm, 

and the catalyst flow rate was 1.0 mL·min
−1

 (0.01 mmol·min
−1

).  

For all experiments of the flow reaction, the reaction liquid was sampled in a vial 

containing distilled water. The ethyl lactate and pyruvate were extracted using ethyl acetate 

and were quantified using a gas chromatograph (GC-2014, Shimadzu).  

The reaction mixture of this oxidation catalyzed vanadium species with an oxidizing 

agent were analyzed using a gas chromatograph-mass spectrometer (GC-1700, Shimadzu). 

From this analysis, ethyl pyruvate, acetic acid and unreacted ethyl lactate were detected. 

However, in all experimental conditions of our studies, the amount of acetic acid was less 

than 1% of the total amount of ethyl lactate and ethyl pyruvate. In this analysis, byproducts 

via hydrolysis of ethyl ester, such as lactic acid, pyruvic acid, and ethanol, were not detected. 

Thus, the ethyl lactate conversion was approximately equal to the pyruvate yield.  
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3. Results and discussion 

 

3.1. Superiority of flow reaction compared with batch reaction 

 

The result of batch reaction using air or oxygen gas as the oxidizing agent is 

summarized in Table 1. The yield of ethyl pyruvate using pure oxygen was higher than that 

using air. This tendency indicates that the dissolved oxygen concentration in the solution 

affects the productivity of ethyl pyruvate. This tendency is justified using the reaction 

mechanism. Fig. 3 shows a plausible mechanism for ethyl pyruvate formation using vanadium 

catalyst [13]. On the basis of this mechanism, first a vanadium species reacts with both 

alcohol (ethyl lactate) and oxygen to form VO2X species. X are anionic ligands such as Cl
–
 

and OH
–
. The initial species of vanadium is VOCl3, and after this species reacts with ethyl 

lactate and O2, VO2Cl is formed. However, VO2OH via ligand exchange with H2O is also 

possible. The species further reacts with other alcohols (ethyl lactate) to form a vanadium 

alcolate. The product carbonyl compound (ethyl pyruvate) and dihydroxyvanadium species is 

then formed via ß-hydrogen elimination from vanadium alcolate. The subsequent dehydration 

of the dihydroxyvanadium species due to oxidation with oxygen reproduces VO2X species. 

Thus, oxygen affects several steps of the mechanism, and the suggested reaction mechanism 

supports this tendency.  
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Fig. 4 shows the result of Flow reaction 1. The ethyl pyruvate yield of Flow reaction 

1 was higher than that of the batch reaction in spite of the fact that the reaction time of flow 

reaction is shorter. This result suggests that the observed reaction rate of the flow reaction 

increases in comparison with that of the batch reaction. The accelerated rate is attributed to 

the high dissolved oxygen concentration. Such high concentration is achieved because of the 

feature of gas-liquid slug flow in a micro reactor, that is, rapid mass transfer between two 

phases through internal circulation flow and large interfacial surface area between gas and 

liquid. 

 

3.2. Effect of changing diameter of first mixing zone 

 

The results of Flow reactions 1 and 2 are shown in Fig. 5. When the residence time is 

less than 33 s for Flow reaction 1, no pyruvate is produced. Thus, there is an induction period 

before the formation of pyruvate starts. Incomplete mixing of ethyl lactate and VOCl3 

solutions induces the induction period. For Flow reaction 2, because the slope of the ethyl 

pyruvate yield against the reaction time is comparable, the reaction rate after the induction 

period is also equivalent. However, the induction period of Flow reaction 2 is shorter than that 

of Flow reaction 1. This is because the inner diameter of the first mixing zone of Flow 

reaction 1 is smaller than that of Flow reaction 2, resulting in an accelerated mixing of ethyl 
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lactate and VOCl3 solutions.  

 

3.3. Temperature dependency of flow reaction 

 

  Fig. 6 shows the relation between the yield of ethyl pyruvate and the reaction time 

for various reaction temperatures. The yield increases with a rise in temperature. The ethyl 

pyruvate yield using slug flow at 323 K per unit time was 12 times higher than the batch 

reaction yield per unit time. The improved reaction rate shows that the mass transfer of 

oxygen to liquid phase is fast for the reactions at 308 K and 323 K. 

Using the results in this section, we then analyze the kinetics of this reaction system. 

We have assumed that the overall reaction rate r (production rate of ethyl pyruvate) is 

expressed by the rate constant for reaction k, the concentration of ethyl lactate (CEL), and the 

concentration of dissolved oxygen (CO2). 

r = kCELCO2  (1) 

In eq. (1), k and CO2 are variables depending on temperature. We have also assumed that 

because the mass transfer of oxygen is sufficiently rapid, the dissolved oxygen concentration 

is equal to the equilibrium value. With this assumption, CO2 is determined in accordance with 

its solubility and kept constant at a fixed temperature. In this assumption, the overall reaction 

rate in eq. (1) is first-order reaction with respect to ethyl lactate, and the dissolved oxygen 
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concentration is determined by temperature. Thus, eq. (1) can be rewritten by the following 

expression: 

r = KTCEL (2) 

where KT is variable depending on temperature T [K]. As a result, the reaction rate depends on 

CEL and the temperature dependence parameter KT. Next, for comparing the values of K293, 

K308, and K323, ln(CE.L) was plotted against reaction time (Fig. 7). The plots of each 

temperature lie in straight lines. This confirms that this reaction is of the first order in terms of 

ethyl lactate. The ratio of absolute value of each slope shown in Fig. 7 is 

K293 : K308 : K323 = 1.00 : 1.55 : 2.84  (4) 

Form these slopes, the values of KT were determined. An Arrhenius plot using KT gives a 

straight line (Fig. 8). Therefore, the overall activation energy is calculated from the slope. The 

overall activation energy was 33.4 kJ·mol
−1

. 

 

4. Conclusion 

 

For developing an efficient process of pyruvate production, we have proposed a 

microreactor system based on gas-liquid slug flow and examined its effectiveness. The reactor 

system includes two T-shape micromixers: one for mixing the substrate with the catalyst 

solution and the other for generating slug flow by the addition of oxygen. The proposed 
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system is easy to construct because the tubing and joints are commercially available. The 

results show that the oxidation of ethyl lactate using oxygen gas in the microreactor system 

proceeds efficiently in a moderate reaction temperature less than and equal to 323 K, which is 

lower than that applied in conventional syntheses. The reaction is accelerated by enhanced 

mass transfer of slug flow. Moreover, the rapid mixing provided by the micromixer and the 

rise in reaction temperature improves the productivity of ethyl pyruvate by 12 times compared 

with the productivity achieved in a batch reaction. The enhanced reaction rate lowers the 

reaction temperature and the energy used compared with a batch reaction giving an equivalent 

productivity. From these results, we conclude that the proposed microreactor system enables 

efficient production of ethyl pyruvate under moderate temperature using an inexpensive 

catalyst and is suitable for the catalytic oxidation of ethyl lactate. 

 

 

 

 

 

 

 

 



 13 

 

 



 14 

 

References 

 

[1] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into 

chemicals, Chem. Rev. 107 (2007) 2411–2502. 

[2] T. Iida, Y. Ohira, 7-fluoro-2,3-didehydrosialic acid and intermediate for synthesis thereof, 

WO1995032955 (1995). 

[3] E. Erlenmeyer, Verhalten der Glycerinsäure und der Weinsäure gegen wasserentziehende 

Substanzen, Ber Dtsch Chem. Ges, Vol.14 (1881) 320–323. 

[4] F. Howard, PYRUVIC ACID, Org. Syn. Coll. Vol.1 (1941) 475–476. 

[5] S. Sugiyama, N. Shigemoto, N. Masaoka, S. Sugetoh, H. Kawami, K. Miyaura, H. 

Hayashi, Vapor-phase oxidation of ethyl lactate to pyruvate over various oxide catalysts, 

Bull. Chem. Soc. Jpn. 66 (1993) 1542–1547. 

[6] B. V Sovorov, S. R. Rafikov, A. D. Kagarlitskii, The oxidative ammonolysis of organic 

compounds, Russ. Chem. Rev. 34 (1965) 657–668. 

[7] M. Ai, K. Ohdan, Effects of differences in the structures of iron phosphates on the 

catalytic action in the oxidative dehydrogenation of lactic acid to pyruvic acid, Appl. 

Catal. A 165 (1997) 461–465. 

[8] M. Ai, K. Ohdan, Oxidation by iron phosphate catalyst, J. Mol. Catal. A 159 (2000) 



 15 

19–24. 

[9] M. Ai, Catalytic activity of iron phosphate doped with a small amount of molybdenum 

in the oxidative dehydrogenation of lactic acid to pyruvic acid, Appl. Catal. A 234 

(2002) 235–243.  

[10] T. Tsujino, S. Ohigashi, S. Sugiyama, K. Kawashiro, H. Hayashi, Oxidation of propylene 

glycol and lactic acid to pyruvic acid in aqueous phase catalyzed by lead-modified 

palladium-on-carbon and related systems, J. Mol. Catal. 71 (1992) 25–35. 

[11] S. Sugiyama, T. Kikumoto, H. Tanaka, K. Nakagawa, K. Sotowa, K. Maehara, Y. 

Himeno, W. Ninomiya, Enhancement of catalytic activity on Pd/C and Te–Pd/C during 

the oxidative dehydrogenation of sodium lactate to pyruvate in an aqueous phase under 

pressurized oxygen, Catal. Lett. 131 (2009) 129–134 

[12] Y. Okubo, T. Maki, N. Aoki, T.H. Khoo, Y. Ohmukai, K. Mae, Liquid-liquid extraction 

for efficient synthesis and separation by utilizing micro spaces, Chem. Eng. Sci. 63 

(2008) 4070–4077. 

[13] Y. Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura, T. Kawamura, S. Uemura, 

Oxovanadium complex-catalyzed aerobic oxidation of propargylic alcohols, J. Org. 

Chem. 67 (2002) 6718–6724. 



 16 

Table and Figure Captions 

Fig. 1. Liquid-phase oxidation of lactate derivative to pyruvate under oxygen. 

Fig. 2. Experimental setup for flow reaction. 

Fig. 3. Reaction mechanism related to oxygen conversion. 

Fig. 4. Comparison of flow and batch reactions at room temperature. ● Flow reaction 1. ♦ 

Batch reaction using pure oxygen as oxidizing agent. 

Fig. 5. Effects of inner diameter of the first mixing zone. ● Flow reaction 1, inner diameter of 

the first mixing zone: 1 mm. ▲ Flow reaction 2, inner diameter of the first mixing zone: 0.5 

mm. 

Fig. 6. Temperature dependency of ethyl pyruvate yield (▲ Flow reaction 3 at 298 K. ■ Flow 

reaction 4 at 308 K. ● Flow reaction 5 at 323 K). 

Fig. 7. Plots for determining rate constants. 

Fig. 8. Arrhenius plot. 

Table 1. Batch reaction at room temperature under air or oxygen 
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Fig. 1. Liquid-phase oxidation of lactate derivative to pyruvate under oxygen. 
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Fig. 2. Experimental setup for flow reaction. 
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Fig. 3. Reaction mechanism related to oxygen conversion. 

 

 

 

 

VO2X

V

O

O
HO

X
R'

R

V(OH)2X
H

R R'

OH

R R'

O

1/2O2

H2O

VOXn

R-OH

O2

+



 20 

 

0

10

20

30

40

50

0 5 10 15 20 25

Reaction time (min)

E
th

y
l 
p
y
ru

v
a
te

 y
ie

ld
 (

%
)

Flow reaction 1

Batch reaction

 

 

 

Fig. 4. Comparison of flow and batch reactions at room temperature. ● Flow reaction 1. ♦ 

Batch reaction using pure oxygen as oxidizing agent. 
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Fig. 5. Effects of inner diameter of the first mixing zone. ● Flow reaction 1, inner diameter of 

the first mixing zone: 1 mm. ▲ Flow reaction 2, inner diameter of the first mixing zone: 0.5 

mm. 
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Fig. 6. Temperature dependency of ethyl pyruvate yield (▲ Flow reaction 3 at 298 K. ■ Flow 

reaction 4 at 308 K. ● Flow reaction 5 at 323 K). 
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Fig. 7. Plots for determining rate constants. 
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Fig. 8. Arrhenius plot. 
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Table 1 

Batch reaction at room temperature under air or oxygen 

 

Entry 

Oxidizing        

agent 

Time                    

[min] 

Ethyl lactate     

Conv. [%] 

Ethyl pyruvate     

Yield [%] 

1 Air 20 23.6 21.6 

2 O2 13 25.7 24.8 

3 O2 20 31.5 30.8 

 

 

 

 


