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ON THE RESTRICTED VERMA MODULES

AT THE CRITICAL LEVEL

TOMOYUKI ARAKAWA AND PETER FIEBIG

Abstract. We study the restricted Verma modules of an affine Kac–Moody
algebra at the critical level with a special emphasis on their Jordan–Hölder
multiplicities. Feigin and Frenkel conjectured a formula for these multiplici-
ties that involves the periodic Kazhdan–Lusztig polynomials. We prove this
conjecture for all subgeneric blocks and for the case of anti-dominant simple
subquotients.

1. Introduction

The representation theory of affine Kac–Moody algebras at the critical level is
one of the essential ingredients in the approach towards the geometric Langlands
conjectures proposed by Beilinson and Drinfeld (cf. [BD96]). In particular, the
correspondence between the center of the (completed) universal enveloping algebra
of an affine Kac–Moody algebra at the critical level and the geometry of the space
of operators associated with the Langlands dual datum (cf. [FF92]) is one of the
main tools used in the construction of a part of the Langlands correspondence in
[BD96].

1.1. The local geometric Langlands conjectures. In [FG06] Frenkel and Gaits-
gory formulated the local geometric Langlands conjectures, which relate the critical
level representation theory of an affine Kac–Moody algebra to the geometry of an
affine flag manifold. In a series of subsequent papers, the authors proved parts of
these conjectures. In particular, in the paper [FG07] a derived equivalence between
a certain category of D-modules on the affine flag variety and a derived version of
the affine category O at the critical level was constructed using a localization func-
tor of Beilinson–Bernstein type. It seems, however, hard to control the action of
this equivalence on the respective hearts of the triangulated categories, and hence
it is not yet possible to deduce information on the simple critical characters of the
category O from the Frenkel–Gaitsgory result.

1.2. The Andersen–Jantzen–Soergel approach. In this paper we study the
critical representation theory by a very different method that was inspired by results
of Jantzen (cf. [Jan79]) and Soergel (cf. [Soe90]) in the case of finite-dimensional
complex Lie algebras and of Andersen, Jantzen and Soergel in the case of modular
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4684 TOMOYUKI ARAKAWA AND PETER FIEBIG

Lie algebras and quantum groups (cf. [AJS94]). The analogous results for the
non-critical blocks of O for a symmetrizable Kac–Moody algebra can be found in
[Fie06].

The main idea of this approach is to first describe the generic and subgeneric
blocks of the respective representation theory in as much detail as possible, and
then to deform an arbitrary block in such a way that it can be viewed as an
intersection of generic and subgeneric blocks. This intersection procedure should
then be described using only some underlying combinatorial datum (such as, for
example, the associated integral Weyl group).

As a result we hope to be able to construct equivalences between various cat-
egories or links to categories defined in topological terms in the framework of the
geometric Langlands program, and to deduce information on the respective simple
characters. More specifically, we hope to find a correspondence between certain in-
tersection cohomology sheaves on the Langlands dual affine flag variety and critical
representations.

This paper provides the first steps in the approach described above. Its main
result is the calculation of the simple characters in the subgeneric critical blocks. In
order to explain our result, let us consider the respective categories in more detail.

1.3. Critical representations of affine Kac–Moody algebras. Let us denote

by ĝ an affine Kac–Moody algebra and by ĥ ⊂ ĝ its Cartan subalgebra (for the
specialists it should be noted here that we consider the central extension of a loop
algebra together with the grading operator). The one-dimensional center of ĝ acts
semi-simply on each module in the category O. Accordingly, each block of the
category O, i.e. each of its indecomposable direct summands, determines a cen-
tral character. There is one such character, called the critical character, which is
distinguished in more than one respect.

In this paper we focus on the following feature of the critical blocks. Let ĥ� be

the dual space of the Cartan subalgebra and denote by δ ∈ ĥ� the smallest positive
imaginary root. Then the corresponding simple highest weight module L(δ) is of
dimension one, and the tensor product ·⊗CL(δ) defines a shift functor T on O that
is an equivalence. Now the critical blocks are exactly those that are preserved by
the functor T . This allows us to consider, for each critical block, the corresponding
graded center A (see Section 4.3).

The graded center is huge and intimately related to the center of the (completed)
universal enveloping algebra at the critical level, which was determined in the fun-
damental work of Feigin and Frenkel (cf. [FF92]) (conjecturally, A is a quotient of
the latter center). We use the results of Feigin–Frenkel to describe the action of A
on the Verma modules contained in the critical blocks.

1.4. The restricted Verma modules. Let Δ(λ) be the Verma module with high-

est weight λ ∈ ĥ�. We define the restricted Verma module Δ(λ) with highest weight
λ as the quotient of Δ(λ) by the ideal of A generated by the homogeneous con-
stituents An with n �= 0. For our approach, the restricted Verma modules, not the
ordinary ones, should be considered as the “standard objects” in the critical blocks.

We denote the irreducible quotient of Δ(λ) by L(λ). Results of Frenkel and
Feigin–Frenkel yield the characters of the restricted Verma modules, and the knowl-
edge of the character of L(λ) for all λ is equivalent to the knowledge of the Jordan–
Hölder multiplicities [Δ(λ) : L(μ)] for all pairs λ, μ of critical weights.
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ON RESTRICTED VERMA MODULES 4685

1.5. The Feigin–Frenkel conjecture. Let us choose a critical indecomposable
block OΛ of O and let us identify the index Λ with the subset of highest weights
of the simple modules in OΛ. Since Λ is critical we have λ + δ ∈ Λ if and only if
λ ∈ Λ.

Let Ŵ be the affine Weyl group associated with our data, and let W ⊂ Ŵ be the

finite Weyl group. The integral Weyl group Ŵ(Λ) corresponding to Λ is generated
by the reflections with respect to those real roots that satisfy a certain integrality

condition with respect to Λ. In the critical case, Ŵ(Λ) is the affinization of the
corresponding finite integral Weyl group W(Λ) ⊂ W .

We define λ ∈ Λ to be dominant, resp. anti-dominant, if it is dominant, resp. anti-
dominant, with respect to the action of W(Λ), i.e. if it is the highest, resp. smallest,
element in its W(Λ)-orbit. We say that λ is regular if it is regular with respect to
W(Λ) (note that here we only refer to the finite integral Weyl group).

As mentioned before, Ŵ(Λ) is the affinization of W(Λ). In [Lus80] Lusztig

associated with a pair w, x ∈ Ŵ(Λ) the periodic polynomial px,w ∈ Z[v] (in Lusztig’s
paper these polynomials were indexed not by affine Weyl group elements, but by
alcoves; see Section 4.5 for more details). The Feigin–Frenkel conjecture is the
following.

Conjecture 1.1. Let Λ be a critical equivalence class.

(1) The restricted linkage principle: For λ, μ ∈ Λ we have [Δ(λ) : L(μ)] = 0

unless λ and μ are contained in the same Ŵ(Λ)-orbit.
(2) The restricted Verma multiplicities: Suppose that λ ∈ Λ is regular and

dominant. Under some further regularity conditions on Λ (cf. Conjecture
4.8), we have

[Δ(w.λ) : L(x.λ)] = pw,x(1)

for all w, x ∈ Ŵ(Λ).

The Feigin–Frenkel conjecture fits very well into a broader picture that was
anticipated by Lusztig in his ICM address in 1990 in Kyoto (cf. [Lus91]). There,
Lusztig conjecturally linked the representation theory of modular Lie algebras, of
quantum groups and of critical level representations of an affine Kac–Moody algebra
to the topology of semi-infinite flag manifolds.

In [AF09] we use the results of the present article in order to prove part (1) of
the Feigin-Frenkel conjecture, the restricted linkage principle.

1.6. Our main result. Let h ⊂ ĥ be the finite part of the Cartan subalgebra and

let us denote by λ �→ λ the corresponding restriction map from ĥ� to h�. We call
a critical class Λ subgeneric if its image Λ in h� contains precisely two elements.
Then we can define, following [AJS94], a bijection α ↑ · : Λ → Λ. Here, α denotes
the unique positive finite root with Λ = {λ, sα.λ}. Here is our result:

Theorem 1.2. (1) If ν ∈ Λ is anti-dominant, then we have for all γ ∈ Λ

[Δ(γ) : L(ν)] =

{
1 if γ ∈ W(Λ).ν,

0 otherwise.

(2) If Λ is subgeneric, then we have for all γ, ν ∈ Λ

[Δ(γ) : L(ν)] =

{
1 if γ ∈ {ν, α ↑ ν},
0 otherwise.
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4686 TOMOYUKI ARAKAWA AND PETER FIEBIG

The above theorem confirms the Feigin–Frenkel conjecture in the respective
cases. In [AF09] we use it in order to describe the structure of the restricted
category OΛ completely for subgeneric Λ. As for generic Λ the structure of OΛ is
easy to determine using the results of Feigin and Frenkel (see also [Hay88, Ku89,
Mal90, Mat96], we completed the first part of the Andersen-Jantzen-Soergel ap-
proach towards the description of the category O at the critical level.

2. Affine Kac–Moody algebras

In this section we recall the fundamentals of the theory of affine Kac–Moody
algebras. The main references are the textbooks [Kac90] and [MP95]. Our basic
data is a finite-dimensional simple complex Lie algebra g. We denote by k : g×g →
C its Killing form.

2.1. The construction of ĝ. From g we construct the (untwisted) affine Kac–
Moody algebra ĝ as follows. We first consider the loop algebra g ⊗C C[t, t−1] for
which the commutator is the C[t, t−1]-linear extension of the commutator of g. That
means that we have [x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n for x, y ∈ g and m,n ∈ Z. The
loop algebra has an up to isomorphism unique non-split central extension g̃ of rank
one. As a vector space we have g̃ = g ⊗C C[t, t−1] ⊕ CK, and the Lie bracket is
given by

[K, g̃] = 0,

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n + nδm,−nk(x, y)K

for x, y ∈ g, n,m ∈ Z (here δa,b denotes the Kronecker delta). In the last step of

the construction we add the outer derivation operator [D, ·] = t ∂
∂t and get the affine

Kac–Moody algebra ĝ := g̃⊕ CD with the Lie bracket

[K, ĝ] = 0,

[D, x⊗ tn] = nx⊗ tn,

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n + nδm,−nk(x, y)K

for x, y ∈ g, n,m ∈ Z.
Let us fix a Borel subalgebra b ⊂ g and a Cartan subalgebra h ⊂ b. Then the

corresponding Borel subalgebra b̂ of ĝ is given by

b̂ := (g⊗C tC[t] + b⊗C C[t])⊕ CK ⊕ CD

and the Cartan subalgebra ĥ ⊂ b̂ is given by

ĥ := h⊕ CK ⊕ CD.

2.2. Affine roots. We denote by V � the dual of a vector space V and we write
〈·, ·〉 : V � × V → C for the canonical pairing. Let R ⊂ h� be the set of roots of g

with respect to h. The projection ĥ → h along the decomposition ĥ = h⊕CK⊕CD

allows us to embed h� inside ĥ�. In particular, we can view any α ∈ R as an element
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ON RESTRICTED VERMA MODULES 4687

in ĥ�. Let us define δ,Λ0 ∈ ĥ� by

〈δ, h⊕ CK〉 = {0},
〈δ,D〉 = 1,

〈Λ0, h⊕ CD〉 = {0},
〈Λ0,K〉 = 1.

Then we have ĥ� = h� ⊕ CΛ0 ⊕ Cδ. The set R̂ ⊂ ĥ� of roots of ĝ with respect to ĥ

is

R̂ = {α+ nδ | α ∈ R, n ∈ Z} ∪ {nδ | n ∈ Z, n �= 0}.
For α ∈ R let us denote by gα ⊂ g the corresponding root space. The root spaces

of ĝ with respect to ĥ are

ĝα+nδ = gα ⊗ tn for α ∈ R, n ∈ Z,

ĝnδ = h⊗ tn for n ∈ Z, n �= 0.

The subsets

R̂re := {α+ nδ | α ∈ R, n ∈ Z},
R̂im := {nδ | n ∈ Z, n �= 0}

are called the sets of real roots and of imaginary roots, respectively.

Let R+ ⊂ R be the set of roots of b with respect to h. Then the set R̂+ of roots

of b̂ with respect to ĥ is

R̂+ = {α+ nδ | α ∈ R, n ≥ 1} ∪R+ ∪ {nδ | n ≥ 1}.
Let Π ⊂ R+ be the set of simple roots and denote by γ ∈ R+ the highest root.
Then the set of simple affine roots is

Π̂ = Π ∪ {−γ + δ} ⊂ R̂+.

For each real root α ∈ R̂re the corresponding root space ĝα is one-dimensional,

and so is the commutator [ĝα, ĝ−α] ⊂ ĥ. The (affine) coroot α∨ associated with α
is the unique element in [ĝα, ĝ−α] on which α takes the value 2. Note that α∨ is
contained in h⊕ CK, so we have 〈δ, α∨〉 = 0.

2.3. The Weyl groups. For α ∈ R̂re we define the reflection sα : ĥ
� → ĥ� by

sα(λ) := λ − 〈λ, α∨〉α. We denote by Ŵ ⊂ GL(ĥ�) the affine Weyl group, i.e. the

subgroup generated by the reflections sα for α ∈ R̂+. The subgroup W ⊂ Ŵ
generated by the reflections sα with α ∈ R leaves the subset h� ⊂ ĥ� stable and
can be identified with the Weyl group of g.

Let ρ ∈ ĥ� be an element with the property 〈ρ, α∨〉 = 1 for each simple affine
root α. Note that ρ is only defined up to the addition of a multiple of δ (the span
of the affine coroots is h⊕ CK, and the simple coroots form a basis in this space).
Yet all constructions in the following that use ρ do not depend on this choice. So
let us fix such an element ρ once and for all.

The dot-action Ŵ × ĥ� → ĥ�, (w, λ) �→ w.λ, of the affine Weyl group on ĥ� is
obtained by shifting the linear action in such a way that −ρ becomes a fixed point,
i.e. it is given by

w.λ := w(λ+ ρ)− ρ
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for w ∈ Ŵ and λ ∈ ĥ�. Note that since 〈δ, α∨〉 = 0 we have sα(δ) = δ for all

α ∈ R̂re. Hence w(δ) = δ for all w ∈ Ŵ (so the dot-action is independent of the
choice of ρ, as we claimed above).

2.4. The invariant bilinear form. Denote by (·, ·) : ĝ× ĝ → C the form given by

(x⊗ tn, y ⊗ tm) = δn,−mk(x, y),

(K, g⊗C C[t, t−1]⊕ CK) = {0},
(D, g⊗C C[t, t−1]⊕ CD) = {0},

(K,D) = 1

for x, y ∈ g, m,n ∈ Z. It is non-degenerate, symmetric and invariant, i.e. it satisfies
([x, y], z) = (x, [y, z]) for all x, y, z ∈ ĝ. Moreover, it induces a non-degenerate

bilinear form on the Cartan subalgebra ĥ and hence yields an isomorphism ĥ
∼→ ĥ�,

which is the direct sum of the isomorphism h → h� given by the Killing form k and
the isomorphism CK ⊕ CD → CΛ0 ⊕ Cδ that maps K to δ and D to Λ0. We get

an induced symmetric non-degenerate form on the dual ĥ� that is given explicitly
by

(α, β) = k(α, β),

(Λ0, h
� ⊕ CΛ0) = {0},

(δ, h� ⊕ Cδ) = {0},
(Λ0, δ) = 1

for α, β ∈ h� (here we also denote by k the form on h� that is induced by the Killing
form). It is invariant under the linear action of the affine Weyl group, i.e. we have

(w(λ), w(μ)) = (λ, μ)

for w ∈ Ŵ, λ, μ ∈ ĥ�.

3. The category O for an affine Kac–Moody algebra

Having recalled the fundamental structural results for an affine Kac–Moody al-
gebra we now turn to its representation theory. We restrict ourselves to represen-
tations in the affine category O.

3.1. The category O. Let M be a ĝ-module. Its weight space corresponding to

λ ∈ ĥ� is

Mλ := {m ∈ M | h.m = 〈λ, h〉m for all h ∈ ĥ}.

Any non-zero element m ∈ Mλ is said to be of weight λ. We say that M is a weight

module if M =
⊕

λ∈̂h� Mλ. We say that M is locally b̂-finite if all finitely generated

b̂-submodules of M are finite-dimensional. The affine category O is defined as the

full subcategory of the category of ĝ-modules that consists of all locally b̂-finite
weight modules.
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ON RESTRICTED VERMA MODULES 4689

3.2. Highest weight modules. Our choice of positive roots defines a partial order

on ĥ�: we set ν � ν′ if and only if ν′ − ν ∈ Z≥0R̂
+. A highest weight module of

highest weight λ ∈ ĥ� is a ĝ-module M that contains a generator v �= 0 of weight

λ such that ĝαv = 0 for all α ∈ R̂+. Then λ is indeed the highest weight of M ,
i.e. Mμ �= 0 implies μ � λ. Each highest weight module is contained in O.

For λ ∈ ĥ� denote by Cλ the one-dimensional ĥ-module corresponding to λ. We

extend the ĥ-action to a b̂-action using the homomorphism b̂ → ĥ of Lie algebras

that is left inverse to the inclusion ĥ ⊂ b̂. That means that ĝα acts trivially on Cλ

for all α ∈ R̂+. The induced module

Δ(λ) := U(ĝ)⊗U(̂b) Cλ

is called the Verma module corresponding to λ. It contains a unique simple quotient
L(λ), and both Δ(λ) and L(λ) are highest weight modules of highest weight λ.

Moreover, the modules L(λ) for λ ∈ ĥ� form a full set of representatives of the
simple isomorphism classes of O, i.e. each simple object in O is isomorphic to L(λ)

for a unique λ ∈ ĥ�.

3.3. Characters. Let Z[ĥ�] =
⊕

λ∈̂h� Ze
λ be the group algebra of the additive

group ĥ�. Let
̂
Z[ĥ�] ⊂

∏
λ∈̂h� Ze

λ be the subgroup of elements (cλ) that have the

property that there exists a finite set {μ1, . . . , μn} ⊂ ĥ� such that cλ �= 0 implies
λ ≤ μi for at least one i.

LetOf ⊂ O be the full subcategory of modulesM that have the property that the

weight spaces Mλ are finite-dimensional and such that there exist μ1, . . . , μn ∈ ĥ�

such that Mλ �= 0 implies λ ≤ μi for at least one i. For each object M of Of we
can then define its character as

chM :=
∑
λ∈̂h�

(dimC Mλ)e
λ ∈ ̂

Z[ĥ�].

The character of a Verma module is easy to calculate. For each λ ∈ ĥ� we have

chΔ(λ) = eλ
∏

α∈ ̂R+

(1 + e−α + e−2α + · · · )dim gα .

(The above product is well-defined in
̂
Z[ĥ�].) If λ ∈ ĥ� is non-critical (cf. Section

4), the character of L(λ) is known (cf. [KT00, Fie06]). The principal aim of our
research project is to calculate chL(λ) for the critical highest weights λ.

3.4. Multiplicities. Suppose again that M is an object in Of . Then there are
well-defined numbers aν ∈ N such that

chM =
∑
ν∈̂h�

aν chL(ν)

(cf. [DGK82]). Note that the sum on the right hand side is, in general, an infinite
sum. We define the multiplicity of L(ν) in M as

[M : L(ν)] := aν .
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The matrix [Δ(λ) : L(μ)] is invertible, so the problem of calculating chL(μ) for

all μ ∈ ĥ� is equivalent to the calculation of the multiplicities [Δ(λ) : L(μ)] for all

λ, μ ∈ ĥ�.

3.5. Block decomposition. Denote by “∼” the equivalence relation on ĥ� that

is generated by λ ∼ μ if [Δ(λ) : L(μ)] �= 0. For an equivalence class Λ ∈ ĥ�/∼
we define the full subcategory OΛ of O that consists of all objects M whose irre-
ducible subquotients are isomorphic to L(λ) for some λ ∈ Λ. We have the following
decomposition result.

Theorem 3.1 ([DGK82, RCW82]). The functor∏
Λ∈̂h�/∼

OΛ → O,

(MΛ) �→
⊕

Λ∈̂h�/∼

MΛ

is an equivalence of categories.

3.6. The Kac–Kazhdan theorem. The following theorem gives an explicit de-

scription of the equivalence relation “∼” on ĥ�. Let us denote by “�” the partial

order on ĥ� generated by ν � λ if there exist n ∈ N and β ∈ R̂+ such that
2(λ+ ρ, β) = n(β, β) and ν = λ− nβ. In particular, ν � λ implies ν � λ, but the
converse is not true.

Theorem 3.2 ([KK79]). We have [Δ(λ) : L(ν)] �= 0 if and only if ν � λ.

In particular, the equivalence relation “∼” is generated by the partial order

relation “�”. For Λ ∈ ĥ�/∼ set

R̂(Λ) := {α ∈ R̂ | 2(λ+ ρ, α) ∈ Z(α, α) for some λ ∈ Λ}
= {α ∈ R̂ | 2(λ+ ρ, α) ∈ Z(α, α) for all λ ∈ Λ},

Ŵ(Λ) := 〈sα | α ∈ R̂(Λ) ∩ R̂re〉 ⊂ Ŵ .

If Λ is non-critical, i.e. if R̂(Λ) ⊂ R̂re, then Λ = Ŵ(Λ).λ for each λ ∈ Λ. In
this case, the structure of the block OΛ can be completely described in terms of

the group Ŵ(Λ) (which turns out to be a Coxeter group) and the singularity of its
orbit Λ; cf. [Fie06].

3.7. A duality on Of . We will later need the following duality functor. For
convenience we only define it on the full subcategory Of of O that we defined
earlier. All the modules that we encounter in this article belong to Of .

For M ∈ Of we set M� :=
⊕

λ∈̂h� HomC(Mλ,C). We endow M� with the action

of ĝ given by

(x.φ)(m) = φ(−ω(x).m),

for x ∈ ĝ, φ ∈ M� and m ∈ M , where ω : ĝ → ĝ is the Chevalley-involution, i.e. the

involution induced on ĝ by the root system automorphism that sends α ∈ R̂ to

−α ∈ R̂ (cf. [Kac90, Section 1.3]). Then M� ∈ Of and we indeed get a duality
functor on Of . It is exact and maps irreducible modules to irreducible modules. A
quick look at characters shows the following.
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ON RESTRICTED VERMA MODULES 4691

Lemma 3.3. For each λ ∈ ĥ� we have L(λ)� = L(λ).

For each λ ∈ ĥ� we denote by

∇(λ) := Δ(λ)�

the dual of the Verma module with highest weight λ. By the above lemma and the
exactness of the duality, ∇(λ) and Δ(λ) have the same Jordan-Hölder multiplicities,
and ∇(λ) has a simple socle which is isomorphic to L(λ).

4. The critical hyperplane

In this section we recall the notion of a critical weight for the affine Kac–Moody
algebra ĝ. We introduce a shift functor T on each of the critical blocks and study

the corresponding graded center A =
⊕

n∈Z
An. For a critical weight λ ∈ ĥ� we

define the restricted Verma module Δ(λ) as the quotient of Δ(λ) by the ideal of A
generated by

⊕
n�=0 An. We state some fundamental properties of these modules in

Theorem 4.7. The proof of this theorem is due to Feigin and Frenkel. Then we re-
call the Feigin–Frenkel conjecture on the Jordan-Hölder multiplicities for restricted
Verma modules and, finally, state the main result of this article in Theorem 4.9.

4.1. A shift functor. The defining relations of ĝ show that the derived Lie algebra
of ĝ coincides with the central extension g̃ of the loop algebra, i.e.

[ĝ, ĝ] = g⊗ C[t, t−1]⊕ CK.

Hence [ĝ, ĝ] is of codimension one in ĝ, so the quotient ĝ/[ĝ, ĝ] is a one-dimensional
Lie algebra. Each character of ĝ/[ĝ, ĝ] gives rise to a one-dimensional module of ĝ.
In this way we get the simple modules L(ζδ) for ζ ∈ C. We have L(ζδ)⊗ L(ξδ) ∼=
L((ζ + ξ)δ) for ζ, ξ ∈ C.

Let us define the shift functor

T : ĝ-mod → ĝ-mod,

M �→ M ⊗C L(δ).

The action of ĝ on the tensor product is the usual one: X.(m⊗l) = X.m⊗l+m⊗X.l
for X ∈ ĝ, m ∈ M and l ∈ L(δ). The functor T is exact and preserves the categories
Of and O. Clearly, it is an equivalence on these categories with inverse T−1 : M �→
M ⊗C L(−δ). For n ∈ Z we denote by Tn : O → O the |n|-fold composition of T or
of T−1. It is given by the tensor product with the one-dimensional module L(nδ).

The following lemma is easy to prove (for part (3) use the fact that L(δ)� ∼= L(δ)
and (M ⊗C N)� = M� ⊗C N�).

Lemma 4.1. For each λ ∈ ĥ� we have

(1) TΔ(λ) ∼= Δ(λ+ δ),
(2) TL(λ) ∼= L(λ+ δ),
(3) on Of the functor T commutes with the duality, i.e. there is a natural

equivalence T ◦ (·)� ∼= (·)� ◦ T of functors.

Let us denote by λ �→ λ the linear map ĥ� → h� that is dual to the inclusion

h ⊂ ĥ. For a subset Λ of ĥ� we denote by Λ its image in h�. Now we come to the
definition of critical equivalence classes, critical weights and critical blocks.
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Lemma 4.2. For an equivalence class Λ ∈ ĥ�/∼ the following are equivalent:

(1) The functor T maps OΛ into itself.
(2) We have λ+ δ ∼ λ for all λ ∈ Λ.

(3) We have Zδ \ {0} = R̂im ⊂ R̂(Λ).

(4) For all λ ∈ Λ, the restriction of λ to the central line CK ⊂ ĥ coincides with
the restriction of −ρ, i.e. we have 〈λ,K〉 = 〈−ρ,K〉.

(5) The induced dot-action of the affine Weyl group Ŵ on Λ factors over an
action of the finite Weyl group.

Remark 4.3. Note that w.(λ+ ξδ) = w.λ+ ξw(δ) = w.λ+ ξδ, so w.λ ≡ w.(λ+ ξδ)

mod δ for all λ, so the dot-action indeed induces an action of Ŵ on the quotient

ĥ�/Cδ and the statement (5) above makes sense.

If the above conditions on Λ are satisfied, we say that Λ is a critical equivalence
class. In this case we call each element λ of Λ a critical weight, or of critical

level. We let ĥ�crit be the set of weights of critical level, i.e. the union of the critical

equivalence classes. Condition (4) above shows that ĥ�crit is an affine hyperplane in

ĥ�. It is called the critical hyperplane.

Proof. From the definition of the blocks, the exactness of T and Lemma 4.1 we
deduce the equivalence of (1) and (2).

Note that (α+ nδ)∨ = α∨ + nK ′, where K ′ is a non-zero multiple of K. Hence,

λ ∈ ĥ� has the property that sα+nδ.λ ≡ sα+mδ.λ mod δ for all m,n ∈ Z if and
only if 〈λ+ ρ,K〉 = 0. Hence (4) and (5) are equivalent.

As (δ, δ) = 0 we have Zδ \ {0} ⊂ R̂(Λ) if and only if (λ + ρ, δ) = 0 for all
λ ∈ Λ. The latter equation is equivalent to 〈λ + ρ,K〉 = 0. Hence (3) and (4) are
equivalent.

Clearly, (3) implies (2). On the other hand, suppose that (2) holds, but (3) does

not hold. Then R̂im ∩ R̂(Λ) = ∅, and Λ is an orbit of Ŵ(Λ) under the dot-action.

So λ, λ + δ ∈ Λ implies that λ + δ and λ are contained in the same Ŵ-orbit. The
invariance of the bilinear form then yields (λ + δ + ρ, λ + δ + ρ) = (λ + ρ, λ + ρ)
which implies, as (δ, δ) = 0, that (λ + ρ, δ) = 0, hence 〈λ + ρ,K〉 = 0, hence (4),
which is equivalent to (3). Hence we have a contradiction. So (2) implies (3). �

4.2. The action of Ŵ in the critical hyperplane. Let us fix a critical equiva-

lence class Λ ⊂ ĥ�crit. Then we have δ ∈ R̂(Λ), so (λ+ ρ, δ) ∈ Z(δ, δ) = 0 for some

(all) λ ∈ Λ. Hence, if α ∈ R̂(Λ), then either α = −δ or α + δ ∈ R̂(Λ). If we set

R(Λ) := R ∩ R̂(Λ), then

R̂(Λ) = {α+ nδ | α ∈ R(Λ), n ∈ Z} ∪ {nδ | n ∈ Z, n �= 0}.

Moreover, we have sα+nδ ∈ Ŵ(Λ) if and only if sα ∈ Ŵ(Λ). We set W(Λ) =

Ŵ(Λ) ∩W . Then Ŵ(Λ) is the affinization of W(Λ).
Let α ∈ R(Λ). We now define a bijection α ↑ · : Λ → Λ, following [AJS94]. For

λ ∈ Λ let α ↑ λ be the minimal element in {sα,n.λ | n ∈ Z, sα,n.λ ≥ λ}. Note that
α ↑ λ = λ if λ is contained in the reflection hyperplane corresponding to some sα,n.
We denote by α ↓ · : Λ → Λ the inverse map.
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Definition 4.4. We say that

(1) Λ is generic if Λ contains only one element,
(2) Λ is subgeneric if Λ contains exactly two elements,
(3) Λ is regular if for some (all) ν in Λ we have that w.ν = ν implies w = e for

all w ∈ W .

Note that part (3) of the above definition refers only to the action of the finite
Weyl group. If Λ is subgeneric, then there is a unique finite positive root α such
that Λ = {λ, sα.λ}. Set R(Λ)+ := R(Λ) ∩R+.

Definition 4.5. Let ν ∈ Λ. We say that

(1) ν is dominant if 〈ν + ρ, α∨〉 ≥ 0 for all α ∈ R(Λ)+.
(2) ν is anti-dominant if 〈ν + ρ, α∨〉 ≤ 0 for all α ∈ R(Λ)+.

4.3. The graded center of a critical block. Since Λ is supposed to be critical,
we can consider the functor T as an auto-equivalence on the block OΛ.

Let n ∈ Z and let z be a natural transformation from the functor Tn on OΛ

to the identity functor id on OΛ. Note that z associates with any M ∈ OΛ a
homomorphism zM : TnM → M in such a way that for any homomorphism f : M →
N in OΛ the diagram

TnM
Tnf ��

zM

��

TnN

zN

��
M

f �� N
commutes.

Denote by An = An(Λ) the complex vector space of all natural transformations

z as above such that zT
lM = T lzM : Tn+lM → T lM for all M ∈ OΛ and l ∈ Z.

There is a bilinear map

An ×Am → Am+n,

(z1, z2) �→ (M �→ zM1 ◦ (TnzM2 ))

that makes A = A(Λ) :=
⊕

n∈Z
An into a graded C-algebra. It is associative,

commutative and unital.

4.4. Restricted Verma modules. Let λ ∈ Λ and n ∈ Z. Each z ∈ An defines a
homomorphism

zΔ(λ) : TnΔ(λ) ∼= Δ(λ+ nδ) → Δ(λ).

Each such homomorphism is zero if n > 0. Define Δ(λ)− ⊂ Δ(λ) as the submodule
generated by the images of all the homomorphisms zΔ(λ) for z ∈ An and n < 0.

Definition 4.6. The quotient

Δ(λ) := Δ(λ)/Δ(λ)−

is called the restricted Verma module of highest weight λ.

Consider the formal power series∏
j≥1

(1− qj)−rank g =
∏
j≥1

(1 + qj + q2j + · · · )rank g,

and let us define for n ∈ Z the number p(n) ∈ N as the coefficient of qn in the
above series.
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We denote by n̂+ :=
⊕

α∈ ̂R+ ĝα the subalgebra of ĝ corresponding to the positive

affine roots. For a ĝ-module M we denote by M n̂+ the set of n̂+-invariant vectors.

It is an ĥ-submodule of M , hence we can also define its weight spaces M
n̂+
ν for

ν ∈ ĥ�.
The following theorem lists the most important properties of the restricted Verma

modules. The proofs of the following statements (2), (3) and (4), as well as the
main step in the proof of (1), are due to Feigin and Frenkel. We recall the main
arguments in Section 5.

Theorem 4.7. Let λ ∈ ĥ�crit.

(1) The map An → Hom(TnΔ(λ),Δ(λ)) is surjective for all n ∈ Z.
(2) We have dimHom(TnΔ(λ),Δ(λ)) = p(−n) for all n ∈ Z.
(3) We have

chΔ(λ) = eλ
∏

α∈ ̂R+∩ ̂Rre

(1 + e−α + e−2α + . . . ).

(4) We have Δ(λ)
n̂+

λ−nδ = {0} for n �= 0.

4.5. A conjecture. The character of L(λ) for a critical highest weight λ is not
yet known in general. But we have a formula for the characters of the restricted
Verma modules and the simple characters can be calculated once the Jordan–Hölder
multiplicities [Δ(λ) : L(μ)] for critical weights λ and μ are determined. In the
following we state a conjecture that gives a formula for these multiplicities in terms
of periodic Kazhdan–Lusztig polynomials. It is due to Feigin and Frenkel.

Let Λ be a critical equivalence class. Then Ŵ(Λ) is the affinization of the finite

Weyl group W(Λ). So we can think of Ŵ(Λ) as a group of affine transformations
on a vector space. The connected complements of the affine reflection hyperplanes
are called alcoves, and the set of alcoves is a principal homogeneous set for the

action of Ŵ(Λ). Let Ae be the unique alcove in the dominant Weyl chamber that
contains the origin in its closure. Then the map w �→ Aw := w(Ae) gives a bijection

between Ŵ(Λ) and the set of alcoves. In [Lus80] Lusztig defined for alcoves A and
B a periodic polynomial pA,B ∈ Z[v] (we use the normalization and notation of
Soergel; cf. [Soe97] and [Fie07]). Denote by wΛ ∈ W(Λ) the longest element.

Conjecture 4.8. Let Λ be a critical equivalence class.

(1) The restricted linkage principle: For λ, μ ∈ Λ we have that [Δ(λ) : L(μ)] �=
0 implies μ ∈ Ŵ(Λ).λ.

(2) The restricted Verma multiplicities: Let λ ∈ Λ be regular and dominant

and w ∈ Ŵ(Λ). Suppose that for all x, x′ ∈ Ŵ(Λ) with pAwΛx,AwΛw
(1) �= 0

and pAwΛx′ ,AwΛw
(1) �= 0 and x �= x′ we have x.λ �= x′.λ. Then

[Δ(w.λ) : L(x.λ)] = pAwΛw,AwΛx
(1)

for all x ∈ Ŵ(Λ).

This conjecture is closely related to an anticipated relation between representa-
tions of a small quantum group, the topology of semi-infinite flag manifolds and the
restricted critical level representations of an affine Kac–Moody algebra; cf. [Lus91].
We prove part (1) of the above conjecture in [AF09].
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4.6. The main result. In the following theorem we summarize the main results
of this article.

Theorem 4.9. Suppose that Λ ⊂ ĥ� is a critical equivalence class.

(1) If ν ∈ Λ is anti-dominant, then for all w ∈ W(Λ) and n ≥ 0 we have

[Δ(w.ν) : L(ν − nδ)] = p(n).

(2) If Λ is subgeneric and ν ∈ Λ is dominant, then we have for all n ≥ 0

[Δ(ν) : L(ν − nδ)] = [Δ(α ↑ ν) : L(ν − nδ)] = p(n),

where α is the unique positive finite root with Λ = {λ, sα.λ}.

Let us restate the above results in terms of restricted Verma modules.

Corollary 4.10. Let Λ ⊂ ĥ� be a critical equivalence class.

(1) Suppose that ν ∈ Λ is anti-dominant. Then for any γ ∈ Λ we have

[Δ(γ) : L(ν)] =

{
1 if γ ∈ W(Λ).ν,

0 else.

In particular, Conjecture 4.8 holds for the anti-dominant multiplicities.
(2) If Λ is subgeneric, then we have for all γ, ν ∈ Λ

[Δ(γ) : L(ν)] =

{
1 if ν ∈ {γ, α ↓ γ},
0 else,

where α ∈ R+ is such that Λ = {λ, sα.λ}. In particular, Conjecture 4.8
holds in the subgeneric cases.

In the following section we recall the results of Feigin and Frenkel on the center
at the critical level and deduce Theorem 4.7. In Section 6 we study the structure of
projective objects in a critical block OΛ. In particular, we provide some results on
the action of the graded center A on a projective object. In Section 7 we introduce
the BRST-cohomology functor and recall the main Theorem of [Ara07]. In Section
8 we use the results of Sections 5, 6 and 7 to give a proof of Theorem 4.9.

5. The Feigin–Frenkel center

In this section we recall the fundamental results on the Feigin-Frenkel center
[FF92] at the critical level. The main references are the textbooks [FBZ04] and
[Fre07].

5.1. The universal affine vertex algebra at the critical level. Set

V crit(g) := U(ĝ)⊗U(g⊗CC[t]⊕CK⊕CD) Ccrit,

where Ccrit is the one-dimensional representation of g⊗CC[t]⊕CK⊕CD on which
g ⊗C C[t] ⊕ CD acts trivially and K acts as multiplication by the critical value
〈−ρ,K〉. The space V crit(g) has a natural structure of a vertex algebra and is called
the universal affine vertex algebra associated with g at the critical level (see e.g.,
[Kac98, §4.9]). Let

Y (?, z) : V crit(g) → EndCV
crit(g)[[z, z−1]],

a �→ a(z) =
∑
n∈Z

a(n)z
−n−1
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be the state-field correspondence. The map Y (?, z) is uniquely determined by the
condition

Y ((x⊗ t−1)1, z) =
∑
n∈Z

(x⊗ tn)z−n−1 for x ∈ g,

where 1 is the vacuum vector 1⊗ 1.
The vertex algebra V crit(g) is graded by the Hamiltonian −D. If a ∈ V crit(g) is

an eigenvector of −D, its eigenvalue is called the conformal weight and is denoted
by Δa. We denote by ∂ the translation operator. It satisfies

Y (∂a, z) = [∂, Y (a, z)] =
d

dz
Y (a, z).

5.2. The Feigin-Frenkel center. Let z(ĝ) be the center of the vertex algebra
V crit(g):

z(ĝ) = {a ∈ V crit(g) | [a(m), v(n)] = 0 for all v ∈ V crit(g), m,n ∈ Z}.
One has

z(ĝ) = {a ∈ V crit(g) | v(n)a = 0 for all v ∈ V crit(g), n ≥ 0}
= V crit(g)G[[t]],

where G is the adjoint group of g and G[[t]] is the C[[t]]-points of G.
Let {Up(g⊗CC[t

−1]t−1)} be the standard filtration of U(g⊗CC[t
−1]t−1) and set

FpV
crit(g) := Up(g⊗C C[t−1]t−1) · 1 ⊂ V crit(g).

This defines a filtration of a vertex algebra. Let grV crit(g) be the associated graded
vertex algebra: grV crit(g) =

⊕
p FpV

crit(g)/Fp−1V
crit(g). It is a commutative

vertex algebra and one has

grV crit(g) ∼= S(g[t−1]t−1) ∼= C[g∞]

as differential rings1 and G[[t]]-modules, where g∞ is the infinite jet scheme of g (cf.
[EF01]) and g is identified with g�. Below we shall identify grV crit(g) with C[g∞].
The natural projection g∞ → g gives the embedding C[g] ↪→ C[g∞].

Let {Fpz(ĝ)} be the induced filtration of z(ĝ), and let gr z(ĝ) be the associated
graded vertex algebra. Certainly, the image of the natural embedding gr z(ĝ) ↪→
grV crit(g) = C[g∞] is contained in C[g∞]G[[t]].

Let p̄(1), . . . , p̄(�), where � = rank g, be homogeneous generators of the ring

C[g]G ⊂ C[g∞]G[[t]]. The elements p̄
(i)
(−j−1) := (∂)j p̄(i)/j! are also G[[t]]-invariant

for all j ≥ 0.
According to [BD96] (see also [EF01]), one has

C[g∞]G[[t]] = C[p̄
(1)
(−j−1), . . . , p̄

(�)
(−j−1)]j≥0.

Theorem 5.1 ([FF92]; see also [Fre07]). The embedding

gr z(ĝ) → C[g∞]G[[t]]

is an isomorphism.

1A commutative vertex algebra V is naturally a commutative ring with a derivation by the
multiplication (a, b) �→ a(−1)b and the derivation ∂a(−n) = na(−n−1).
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By Theorem 5.1 there exist homogeneous generators p(1), . . . , p(�) of z(ĝ) whose
symbols are p̄(1), . . . , p̄(�). Let di = deg p̄(i)−1, so that d1, . . . , d� are the exponents
of g. The conformal weight of p(i) is by definition di + 1. We write

Y (p(i), z) = p(i)(z) =
∑
n∈Z

p
(i)
(n)z

−n−1 =
∑
n∈Z

p(i)n z−n−di−1,

so that

[D, p(i)n ] = np(i)n .

One has

[x, p
(i)
(n)] = 0 for all x ∈ g̃.

5.3. The action of the Feigin–Frenkel center on objects with critical level.
For k ∈ C we denote by Ok the category O at level k, i.e. the direct summand of
the category O on which K acts as multiplication with k. In particular, we denote
by Ocrit the category O at critical level. Let M be an object of Ocrit. Then M is
naturally a graded module over the vertex algebra V crit(g), and hence it is a graded
module over its center z(ĝ). Thus M can be viewed as a graded module over the
polynomial ring

Z = C[p(i)s ; i = 1, 2, . . . , �, s ∈ Z] =
⊕
n∈Z

Zn

in an obvious manner. Here Zn is the subspace of Z spanned by elements p
(i1)
n1 · · · p(ir)nr

with n1 + · · ·+ nr = n. Set

Z− = C[p(i)n ; i = 1, . . . , �, n < 0] =
⊕
n≤0

Z−
n ⊂ Z,

where Z−
n = Z− ∩ Zn.

Theorem 5.2 ([FG06]; see also [Fre07, Theorem 9.5.3]). For any λ ∈ ĥ�crit, Δ(λ)
is free over Z−. Moreover, the natural map Z−

n → Hom(Δ(λ + nδ),Δ(λ)) is a
bijection for all n ≤ 0.

We now construct a natural map

Zn → An.

Recall that L(δ) is one-dimensional. So we can choose a generator l of L(δ). This
gives us, for any ĝ-module M , a map M ⊗C L(δ) → M , m ⊗ l �→ m. Since L(δ)
is trivial as a g̃-module, this map is a g̃-module homomorphism. By iteration
we get g̃-module homomorphisms TnM = M ⊗C L(δ)⊗n → M for all n ≥ 0.
Using the element l′ ∈ L(−δ) that is dual to l with respect to an isomorphism
L(δ)⊗CL(−δ) → L(0) ∼= C, we analogously get g̃-module homomorphisms T−nM =
M ⊗C L(−δ)⊗n → M .

Now suppose that M is contained in a critical block of O. Let n ∈ Z and z ∈ Zn.
Then the composition of the map TnM → M constructed above and the action
map z : M → M now yields a ĝ-module homomorphism TnM → M , as it now also
commutes with the action of D. This gives us a natural transformation Tn → id
and we get an element in An that we associate with z. Hence we constructed a
map Zn → An.
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Proof of Theorem 4.7. The action of Zn on Δ(λ) factors over the action of An.
Hence Theorem 5.2 implies parts (1) and (2) of Theorem 4.7. It also implies that

Δ(λ)− is spanned by p
(i)
−nm with i = 1, . . . , �, n > 0 and m ∈ Δ(λ). From the

freeness assertion in Theorem 5.2 we deduce part (3) of Theorem 4.7. Finally,
its part (4) is another Theorem of Feigin and Frenkel [FF90] which, for instance,
follows from [Fre07, Proposition 9.5.1] and Theorem 5.2. �

6. Projective objects

For a general equivalence class Λ ∈ ĥ�/∼ the block OΛ does not contain enough
projective objects (this includes, for example, all critical equivalence classes). How-
ever, there is a way to overcome this problem by restricting the set of possible
weights for the modules under consideration. This means that we have to consider
the truncated subcategories of O.

6.1. The truncated categories. Let us fix a (not necessarily critical) equivalence

class Λ ∈ ĥ�/∼. We use the following notation: We write {≤ ν} for the set
{ν′ ∈ Λ | ν′ ≤ ν} and use the similar notation {< ν}, {≥ ν}, etc. for the analogously
defined sets. We consider the topology on Λ that is generated by the basic open
sets {≤ ν} for ν ∈ Λ. Hence a subset J of Λ is open in this topology if and only if
for all ν, ν′ ∈ Λ with ν′ ≤ ν, ν ∈ J implies ν′ ∈ J .

Definition 6.1. For an open subset J ⊂ Λ we denote by OJ
Λ ⊂ OΛ the full sub-

category of objects M with the property that each of its subquotients is isomorphic
to L(λ) for some λ ∈ J .

Note that OJ
Λ is an abelian category and that Δ(λ) and L(λ) are contained in

OJ
Λ if and only if λ ∈ J . We write O�ν

Λ instead of O{�ν}
Λ .

6.2. Submodules, quotients and subquotients. Let Λ ⊂ ĥ� be an equivalence
class and J an open subset of Λ. In this section we construct a left adjoint functor
M �→ MJ to the inclusion functor OJ

Λ → OΛ. Let us denote by I = Λ \ J the
closed complement of J .

Definition 6.2. Let M be an object in OΛ.

(1) We define MI ⊂ M as the submodule generated by the weight spaces Mν

with ν ∈ I.
(2) We define MJ as the quotient of M by the submodule MI .

Obviously, the map M �→ MJ defines a functor from OΛ → OJ
Λ that is left

adjoint to the inclusion. We write M≤ν instead of M{≤ν} and M<ν instead of
M{<ν}, etc. If I ′ ⊂ I ⊂ Λ are closed subsets, then there is a natural inclusion
MI′ ⊂ MI . If J ′ ⊂ J ⊂ Λ are open subsets, then there is a canonical surjective
map MJ → MJ ′

.
In addition to the submodules and quotient modules defined above we will also

need the following subquotient modules that are associated with locally closed
subsets. For any subset K of Λ define

K− :=
⋃
λ∈K

{≤ λ} and K+ :=
⋃
λ∈K

{≥ λ}.

Note that K+ is closed and K− is open, and K is locally closed if K = K− ∩ K+.
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Definition 6.3. Suppose that K is locally closed. We define M[K] as the image of

the canonical decomposition MK+
↪→M→→MK− .

If K = {λ, . . . , μ}, we write M[λ,...,μ] instead of M[{λ,...,μ}].

6.3. Modules admitting a Verma flag.

Definition 6.4. We say that M ∈ OΛ admits a Verma flag if there is a finite
filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for all i = 1, . . . , n the quotientMi/Mi−1 is isomorphic to a Verma module

Δ(μi) for some μi ∈ ĥ�.

For each μ ∈ ĥ� the multiplicity

[M : Δ(μ)] := #{i | μ = μi}

is independent of the chosen filtration. It is a well-known fact that Ext1(Δ(μ),Δ(λ))
�= 0 implies that λ > μ. Hence we can find a filtration for M as in the definition
such that μi > μj implies i < j. From this one easily gets the following lemma.

Lemma 6.5. Suppose that M admits a Verma flag and suppose that J ⊂ ĥ� is

open, I ⊂ ĥ� is closed and K ⊂ ĥ� is locally closed. Then MJ , MI and M[K] admit
a Verma flag and for the multiplicities we have

[MJ : Δ(μ)] =

{
[M : Δ(μ)] if μ ∈ J
0 else,

[MI : Δ(μ)] =

{
[M : Δ(μ)] if μ ∈ I
0 else,

[M[K] : Δ(μ)] =

{
[M : Δ(μ)] if μ ∈ K
0 else

for all μ ∈ ĥ�.

6.4. Projective objects. We say that J ⊂ Λ is bounded if for any λ ∈ J the set
of μ ∈ J with μ ≥ λ is finite.

Theorem 6.6 ([Fie03]; cf. also [AF09]). Suppose that J ⊂ Λ is open and bounded
and let λ ∈ J .

(1) There exists an (up to isomorphism unique) projective cover PJ (λ) of L(λ)
in OJ

Λ .
(2) If J ′ ⊂ J is an open subset and λ ∈ J ′, then we have an isomorphism

(PJ (λ))J
′ ∼= PJ ′

(λ).
(3) The object PJ (λ) admits a Verma flag and for each γ ∈ Λ we have the

BGG-reciprocity formula

(
PJ (λ) : Δ(γ)

)
=

{
0 if γ �∈ J ,

[∇(γ) : L(λ)] if γ ∈ J .
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By Lemma 6.5 and the theorem above, if ν, λ ∈ Λ are such that ν ≥ λ, then the
module PJ (λ)[ν] does not depend on the open set J as long as ν ∈ J . We denote
this object by P (λ)[ν].

Let J ⊂ Λ be open and bounded and λ ∈ J . Suppose that ν ∈ J is a maximal
element. Then we can consider P (λ)[ν] as a subspace in PJ (λ). We will need the
following result later.

Lemma 6.7. Under the above assumptions, the restriction map

Hom(PJ (λ),∇(ν)) → Hom(P (λ)[ν],∇(ν))

is a bijection.

Proof. As a first step we show that the map is injective. Suppose that f ∈
Hom(PJ (λ),∇(ν)) is contained in the kernel. Then P (λ)[ν] is contained in the

kernel of f , hence f factors over the map PJ (λ) → (PJ (λ))J\{ν} ∼= PJ\{ν}(λ).
But then it cannot contain the simple socle L(ν) ⊂ ∇(ν) in its image, so f = 0.

Now we have

dimHom(PJ (λ),∇(ν)) = [∇(ν) : L(λ)]

= (PJ (λ) : Δ(ν))

= (P (λ)[ν] : Δ(ν))

= dimHom(P (λ)[ν],∇(ν)).

The last equation holds since P (λ)[ν] is isomorphic to a direct sum of copies of Δ(ν)
and dimHom(Δ(ν),∇(ν)) = 1. Since the map referred to in the lemma is injective
and since the dimensions of its source and its image coincide, it is bijective. �
6.5. The Casimir operator. We call a ĝ-module M smooth if for all m ∈ M

we have ĝα.m = 0 for all but a finite number of positive affine roots α ∈ R̂.

In particular, each locally b̂-finite ĝ-module is smooth. Recall that on the full
subcategory ĝ-modsm of smooth representations there is an endomorphism of the
identity functor, the Casimir operator C : id → id (its construction can be found,
for example, in [Kac90, Section 2.5]). We will only need the following property of
C.

Proposition 6.8. Let λ ∈ ĥ�. Then C acts on Δ(λ) as multiplication with the
scalar cλ := (λ+ ρ, λ+ ρ)− (ρ, ρ) ∈ C.

The construction of C depends on (·, ·), hence there is no ambiguity in the
statement of the proposition.

Let Λ ⊂ ĥ� be a (not necessarily critical) equivalence class. For λ, μ ∈ Λ we have
cλ = cμ, so Λ defines a unique scalar cΛ ∈ C such that C acts by multiplication
with cΛ on each Verma module in OΛ.

Now suppose that λ, μ ∈ Λ are such that they form an atom in the partially
ordered set Λ, i.e. suppose that λ < μ and that there is no ν ∈ Λ with λ < ν < μ.
Moreover, assume that λ �= μ. Then the object P�μ(λ) is an extension of the Verma
modules Δ(λ) and Δ(μ), each occurring once (this is, by the BGG-reciprocity,
equivalent to [Δ(λ) : L(λ)] = [Δ(μ) : L(λ)] = 1, which can be deduced easily from
the analog of Jantzen’s sum formula in the Kac-Moody case; cf. [KK79]). Hence
we have a short exact sequence

0 → Δ(μ) → P�μ(λ) → Δ(λ) → 0.
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Lemma 6.9. The endomorphism C − cΛid : P
�μ(λ) → P�μ(λ) is non-zero.

Proof. For the proof we use deformation theory; cf. [Fie03] and [AF09]. Denote by
A = C[[t]] the completed polynomial ring in one variable and by Q = QuotA its

quotient field. Let us fix γ ∈ ĥ� with the property that (γ + ρ, λ) �= (γ + ρ, μ). Let

S = S(ĥ) be the symmetric algebra over ĥ and consider the algebra map τ : S → A

that is determined by τ (h) = γ(h)t for all h ∈ ĥ. This makes A, and hence Q, into
a local S-algebra.

In [Fie03] we constructed the deformed categories OA and OQ as full subcat-
egories of ĝ ⊗C A-mod and ĝ ⊗C Q-mod. We showed that the functors ⊗AC and
⊗AQ induce functors OA → O and OA → OQ. The categories OA and OQ contain
deformed Verma modules ΔA(ν) and ΔQ(ν), respectively. On their highest weight

spaces the Cartan algebra ĥ acts by the character ν + τ , which is considered as a

linear map from ĥ to A and Q, respectively. In particular, the Casimir operator C
acts on ΔQ(ν) as multiplication with cν+γt = (ν + γt+ ρ, ν + γt+ ρ)− (ρ, ρ).

The analogous definition as in the non-deformed case gives truncated categories

O�μ
A and O�ν

Q for all ν ∈ ĥ�. For any ν, ν′ ∈ ĥ� there is a projective object P�ν
A (ν′)

in O�ν
A such that P�ν

A (ν′)⊗A C ∼= P�ν(ν′). Moreover, we have

Hom(P�ν
A (ν′1), P

�ν
A (ν′2))⊗A C = Hom(P�ν(ν′1), P

�ν(ν′2)).

The category OQ is semi-simple, i.e. each object is isomorphic to a direct sum

of Verma modules ΔQ(λ). Now each P�ν
A (ν′) ⊗A Q admits a Q-deformed Verma

flag, hence it splits into a direct sum of Q-deformed Verma modules. The Verma

multiplicities of P�ν
A (ν′), of P�ν(ν′) and of P�ν

A (ν′)⊗A Q coincide.
Now let λ, μ ∈ Λ be as in the statement of the lemma. Note that cλ+γt ≡ cμ+γt

mod t, but our choice of γ implies cλ+γt �= cμ+γt. Let us suppose that the action
of C − cΛid on P�μ(λ) was zero. From the above, our assumptions on λ and μ and
the Jantzen sum formula we get an inclusion

P�μ
A (λ) ⊂ P�μ

A (λ)⊗A Q ∼= ΔQ(λ)⊕ΔQ(μ).

On each of the modules above the Casimir operator acts. Our assumptions imply
that the image of the action of C − cΛid on the module on the left is contained

in tP�μ
A (λ), hence t−1(C − cΛid) is a well-defined operator on P�μ

A (λ). On the
module on the right this operator acts diagonally with eigenvalues in C[[t]] which

are distinct modulo t. Hence P�μ
A (λ) decomposes according to the inclusion above,

which clearly cannot be the case. �

Lemma 6.10. Suppose that λ, μ ∈ Λ are as above and that

0 → Δ(μ) → M → X → 0

is a short exact sequence, where X is a module of highest weight λ. If C acts on
M as a scalar, then there is a submodule Y of M with highest weight λ that maps
surjectively onto X.
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Proof. Since X is a module of highest weight λ and since the weights of M are
smaller then or equal to μ, there is a map f : P�μ(λ) → M such that the com-
position P�μ(λ) → M → X is surjective. There is a commutative diagram

0 �� Δ(μ) ��

f ′

��

P�μ(λ) ��

f

��

Δ(λ) ��

����

0

0 �� Δ(μ) �� M �� X �� 0

with exact rows. In order to prove the lemma it is enough to show that Δ(μ) ⊂
P�μ(λ) is in the kernel of f , i.e. that the left vertical map f ′ is zero. Since any
endomorphism of a Verma module is either zero or injective, it suffices to show that
f ′ is not injective.

By assumption, the Casimir element C acts on M by a scalar, which has to be
cΛ. So C − cΛid acts on M by zero, so (C − cΛid)P

�μ(λ) is in the kernel of f .
Since C− cΛid acts by zero on Δ(λ), we have (C− cΛid)P

�μ(λ) ⊂ Δ(μ) ⊂ P�μ(λ).
By the previous lemma, (C − cΛid)P

�μ(λ) is non-zero, so the kernel of f ′ is not
trivial. Hence f ′ is not injective, hence it must be zero, which is what we wanted
to show. �

6.6. The action of A on projective objects. Let us now fix a critical equivalence

class Λ ⊂ ĥ�. Let λ ∈ Λ and n ≥ 0. In this section we study the action of An on
P�λ(λ− nδ), i.e. we want to study the map

An → Hom(TnP�λ(λ− nδ), P�λ(λ− nδ)).

For the ease of notation let us fix an identification TnP�λ(λ−nδ) ∼= P�λ+nδ(λ).
Each map f : P�λ+nδ(λ) → P�λ(λ − nδ) factors over the map P�λ+nδ(λ) →
P�λ(λ). The latter module is isomorphic to Δ(λ), hence the image of the map
f must be contained in P (λ − nδ)[λ] ⊂ P�λ(λ − nδ). So the map f induces a

unique map f ′ : P�λ(λ) → P (λ−nδ)[λ] such that the following diagram commutes:

TnP�λ(λ− nδ)

��

f �� P�λ(λ− nδ)

P�λ(λ)
f ′

�� P (λ− nδ)[λ].

��

The next proposition is one of the principal technical ingredients in the proof of
our main theorem.

Proposition 6.11. Suppose that n ≥ 0 is such that [Δ(λ) : L(λ − nδ)] = p(n).
Then the action map

An → Hom(TnP�λ(λ− nδ), P�λ(λ− nδ))

∼= Hom(P�λ(λ), P (λ− nδ)[λ])

is surjective.

Proof. Note that P (λ)�λ ∼= Δ(λ) and that P (λ − nδ)[λ] is isomorphic to a direct
sum of (P (λ − nδ)[λ] : Δ(λ))-copies of Δ(λ). By our assumption and the BGG-
reciprocity, this number is p(n). Hence the spaces on the right hand side of our
map are of dimension p(n).
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Now the following Lemma 6.13 shows that the image of the action map An →
Hom(TnP�λ(λ−nδ), P�λ(λ−nδ)) is of dimension p(n). From this we deduce our
claim. �

6.7. A duality on A. Let Λ ⊂ ĥ� again be a critical equivalence class. In this
section we define an algebra involution

D : A → A

which maps An into A−n.

Fix n ∈ Z and choose z ∈ An. We define Dz ∈ A−n as follows. Let M ∈ Of
Λ :=

Of ∩OΛ and let M� ∈ OΛ be its restricted dual. Then z defines a homomorphism

zM
�

: TnM� → M�. The dual of this map is a homomorphism
(
zM

�)�
: M →

TnM .

Definition 6.12. For z ∈ An and M ∈ Of
Λ define the map

(Dz)M := T−n
(
zM

�
)�

: T−nM → M.

One immediately checks that we get a natural transformation Dz : T−n|Of
Λ
→

idOf
Λ
. As OΛ is filtered by the truncated categories, and as each indecomposable

projective object in a truncated category is also contained in Of
Λ, this induces a

natural transformation Dz : Tn → id between the functors on the whole block OΛ,
hence an element in A−n.

Now we prove the statement that remained open in the proof of Proposition
6.11. Fix λ ∈ Λ and n ≥ 0.

Lemma 6.13. For z ∈ An the following holds:

(Dz)Δ(λ) �= 0 if and only if zP
�λ(λ−nδ) �= 0.

In particular, the image of the map An → Hom(TnP�λ(λ − nδ), P�λ(λ − nδ)) is
of dimension p(n).

Proof. By the definition of the duality we have

(Dz)Δ(λ) �= 0 if and only if z∇(λ) �= 0.

For each homomorphism g : P�λ(λ−nδ) → ∇(λ) there is a commutative diagram

TnP�λ(λ− nδ)

Tng

��

zP�λ(λ−nδ)
�� P�λ(λ− nδ)

g

��
Tn∇(λ)

z∇(λ)
�� ∇(λ).

The strategy of the proof is the following. Suppose that zP
�λ(λ−nδ) �= 0. We

show that there is a map g such that the top right composition in the diagram
above is non-zero. From this we deduce that z∇(λ) �= 0. We show that z∇(λ) �= 0

implies zP
�λ(λ−nδ) �= 0 in a similar way.
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So suppose that zP
�λ(λ−nδ) �= 0. We have already seen that there is a unique

map b : P�λ(λ) → P (λ− nδ)[λ] such that the following diagram commutes:

TnP�λ(λ− nδ)

��

zP�λ(λ−nδ)
�� P�λ(λ− nδ)

P�λ(λ)
b �� P (λ− nδ)[λ].

��

Now P�λ(λ) is isomorphic to Δ(λ) and P (λ − nδ)[λ] is a direct sum of various
copies of Δ(λ). Hence we can find a map g′ : P (λ − nδ)[λ] → ∇(λ) such that the

composition P�λ(λ)
b→ P (λ− nδ)[λ]

g′

→ ∇(λ) is non-zero. By Lemma 6.7, the map

g′ admits a lift g : P�λ(λ−nδ) → ∇(λ). Diagrammatically, the situation now looks
as follows:

TnP�λ(λ− nδ)

��

zP�λ(λ−nδ)
�� P�λ(λ− nδ)

g

����
���

���
���

P�λ(λ)
b �� P (λ− nδ)[λ]

��

g′
�� ∇(λ).

If we plug in the map g that we just obtained in the first diagram above, then
the top right composition is non-zero, hence so is the bottom left composition. In
particular, z∇(λ) �= 0. This is the first part of the proof.

Now suppose that z∇(λ) �= 0. Then the image of z∇(λ) contains the unique simple
submodule L(λ) of∇(λ). Since TnP�λ(λ−nδ) ∼= P�λ+nδ(λ) is a projective cover of
L(λ) in O�λ+nδ, and since Tn∇(λ) ∼= ∇(λ+nδ) is contained in the latter category,
we can find a map g′ : TnP�λ(λ− nδ) → Tn∇(λ) such that z∇(λ) ◦ g′ is non-zero.
For g := T−ng′, the bottom left composition in the first diagram in this proof is

non-zero, hence so is the top right composition. In particular, zP
�λ(λ−nδ) �= 0.

The last statement of the lemma follows from the previous result and Theorem
4.7. �

6.8. A variant for the subgeneric cases. We will also need the following variant
of Proposition 6.11 in the case that Λ is critical and subgeneric. Suppose that α is
the positive finite root with Λ = {λ, sα.λ}. Fix λ ∈ Λ and n ≥ 0. We study the
action of An on the projective cover P�α↑λ(λ− nδ), i.e. we now consider the map

An → Hom(TnP�α↑λ(λ− nδ), P�α↑λ(λ− nδ)).

Again, let us fix an isomorphism TnP�α↑λ(λ−nδ) ∼= P�α↑λ+nδ(λ). As before we see
that each map f : P�α↑λ+nδ(λ) → P�α↑λ(λ− nδ) induces a map f ′ : P�α↑λ(λ) →
P (λ− nδ)[λ,α↑λ] such that the following diagram commutes:

P�α↑λ+nδ(λ)

��

f �� P�α↑λ(λ− nδ)

P�α↑λ(λ)
f ′

�� P (λ− nδ)[λ,α↑λ].

��

Note that P�α↑λ(λ) is a non-split extension of the Verma modules Δ(λ) and
Δ(α ↑ λ), as {λ, α ↑ λ} ⊂ Λ is an atom. The module P (λ − nδ)[λ,α↑λ] is an
extension of [Δ(λ) : L(λ − nδ)] many copies of Δ(λ) and [Δ(α ↑ λ) : L(λ − nδ)]
many copies of Δ(α ↑ λ).
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Let us assume that [Δ(α ↑ λ) : L(λ − nδ)] = [Δ(λ) : L(λ − nδ)] = p(n). Then
P (λ− nδ)[λ,α↑λ] is a direct sum of p(n) non-split extensions of the Verma modules
Δ(λ) and Δ(α ↑ λ) (the extensions are non-split by projectivity).

Let us consider the composition

An → Hom(TnP�α↑λ(λ− nδ), P�α↑λ(λ− nδ))

→ Hom(P (λ)[α↑λ], P (λ− nδ)[α↑λ]),

where the last map is induced by the functor (·)[α↑λ].

Proposition 6.14. Suppose that [Δ(α ↑ λ) : L(λ − nδ)] = [Δ(λ) : L(λ − nδ)] =
p(n). Then the composition An → Hom(P (λ)[α↑λ], P (λ − nδ)[α↑λ]) constructed
above is surjective.

Proof. Consider the homomorphisms

Hom(P (λ)[α↑λ], P (λ− nδ)[α↑λ])

An
�� Hom(P (λ)[λ,α↑λ], P (λ− nδ)[λ,α↑λ])

��

��
Hom(P (λ)[λ], P (λ− nδ)[λ]).

By Proposition 6.11, the lower composition is surjective. But the kernel of
the upper composition is contained in the kernel of the lower composition, as
P (λ − nδ)[α↑λ,λ] is a direct sum of non-split extensions of Δ(α ↑ λ) and Δ(λ).
Since the spaces on the top and the bottom share the same dimension, the upper
composition is also surjective. �

7. The BRST cohomology

To prove Theorem 4.9 we need a result from [Ara07], which we explain below.

7.1. The BRST cohomology associated with the quantized Drinfeld-
Sokolov reduction. Denote by n− :=

⊕
α∈R+ g−α the nilpotent subalgebra of

g corresponding to the set of negative roots. Let Ψ be a non-degenerate character
of n− in the sense of Kostant [Kos78], i.e.

Ψ(x) = k(x, eprin)

for some principal nilpotent element eprin of g in n+ :=
⊕

α∈R+ gα. We extend Ψ

to the character Ψ̂ of n−[t, t
−1] := n− ⊗ C[t, t−1] ⊂ ĝ by setting

Ψ̂(u⊗ tn) = Ψ(u)δn,0

for u ∈ n−, n ∈ Z. Let C
̂Ψ be the corresponding one-dimensional representation of

n−[t, t
−1].

Set

Hi(M) := H
∞
2 +i(n−[t, t

−1],M ⊗ C
̂Ψ)

for M ∈ Ocrit and i ∈ Z. Here, M ⊗ C
̂Ψ is considered as an n−[t, t

−1]-module

by the tensor product action, and H
∞
2 +•(n−[t, t

−1],M ⊗ C
̂Ψ) is the semi-infinite

n−[t, t
−1]-cohomology [Fĕı84] with coefficients in M⊗C

̂Ψ. The cohomology H•(M)
is defined by the semi-infinite analogue of the Chevalley-Eilenberg complex: Let Cl

Licensed to Kyoto University. Prepared on Tue Jul  3 01:53:45 EDT 2012 for download from IP 130.54.110.73.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4706 TOMOYUKI ARAKAWA AND PETER FIEBIG

be the unital superalgebra generated by odd elements ψα(n) for α ∈ R, n ∈ Z, with
the relations

ψα(m)ψβ(n) + ψβ(n)ψα(m) = δm+n,0δα+β,0.

Let
∧∞

2 +•
be the irreducible representation of Cl generated by the vector 1 such

that

ψα(n)1 = 0 if α+ nδ ∈ R̂+.

The space
∧∞

2 +•
is graded by charge:

∧∞
2 +•

=
⊕

i∈Z

∧∞
2 +i

, where the charges
of 1, ψα(n) and ψ−α(n) for α ∈ R+, n ∈ Z, are 0, 1, and −1, respectively. Also,

we view
∧∞

2 +• as an ĥ-module on which h ∈ ĥ acts as h1 = 0 and [h, ψα(n)] =
〈α+ nδ, h〉ψα(n).

Let M be an object of O. Set

C•(M) := M ⊗
∧∞

2 +•
=

⊕
i∈Z

Ci(M), Ci(M) = M ⊗
∧∞

2 +i
.

Define an odd operator Q of charge 1 on C•(M) by

Q :=
∑

α∈R−
n∈Z

(xα ⊗ t−n + Ψ̂(xα ⊗ t−n))⊗ ψα(n)

− 1

2

∑
α,β,γ∈R−

k,l∈Z

cγα,β idM ⊗ ψ−α(−k)ψ−β(−l)ψγ(k + l),

where xα is a (fixed) root vector in gα for any α ∈ R− and [xα, xβ ] =
∑

γ c
γ
α,βxγ .

The operator Q is well-defined because M ∈ O. One has

Q2 = 0.

Therefore, (C•(M), Q) is a cochain complex. The space H•(M) is by definition the
cohomology of the complex (C•(M), Q).

Set C•(M)d := {c ∈ C•(M) | (D ⊗ 1 + 1 ⊗ D)c = dc}. One has C•(M) =⊕
d∈C

C•(M)d. Because the operatorQ obviously preserves each subspace C•(M)d,
H•(M) is also graded by the diagonal action of D:

H•(M) =
⊕
d∈C

H•(M)d.

7.2. The functor F . Let p be an element of z(ĝ). For each n ∈ Z, the operator
p(n) ⊗ 1 commutes with the action of Q on C•(M). Therefore, for each i ∈ Z,

Hi(M) is naturally a graded module over the commutative vertex algebra z(ĝ), and
thus can be considered as a graded Z-module. Denote by F the functor

Ocrit → Z -Mod, M �→ H0(M),

where Z -Mod is the category of graded Z-modules.
Set

chq F (M) :=
∑
d∈C

q−d dimC F (M)d

for a finitely generated object M of Ocrit, where F (M)d = H0(M)d.
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Theorem 7.1 ([Ara07]).

(1) One has Hi(M) = 0 for all i �= 0 and M ∈ Ocrit. In particular, the functor
F is exact.

(2) Let λ ∈ ĥ�crit. One has the following:

chq F (Δ(λ)) = q−〈λ,D〉
∏
j≥1

(1− qj)−rank g,

chq F (L(λ)) =

{
q−〈λ,D〉 if λ is anti-dominant,

0 otherwise.

Remark 7.2. In general, the correspondence M �→ H0(M) defines a functor from
Ok to the category of graded modules over the W -algebra W k(g) associated with
g at level k, which coincides [FF92] with z(ĝ) if the level k is critical. In [Ara07], it
was proved that the functor H0(?) is exact and H0(L(λ)) is zero or irreducible for
any λ at any level k.

8. The proof of the main theorem

We have collected all the ingredients for the proof of our main theorem, Theorem
4.9. We start with claim (1). Let us state it again:

Theorem 8.1. Let Λ ⊂ ĥ� be a critical equivalence class and suppose that ν ∈ Λ
is anti-dominant. Then for all w ∈ W(Λ) and n ≥ 0 we have

[Δ(w.ν) : L(ν − nδ)] = p(n).

Proof. By Theorem 7.1, (1), the functor F is exact. Hence we have

chq F (Δ(w.ν)) =
∑
γ∈Λ

[Δ(w.ν) : L(γ)] chq F (L(γ))

=
∑
γ∈Λ

γ anti-dominant

[Δ(w.ν) : L(γ)] chq F (L(γ)).

Note that γ ∈ Λ is anti-dominant if and only if γ = ν + rδ for some r ∈ Z. Since
〈w.ν,D〉 = 〈ν,D〉 for all w ∈ W (as 〈α,D〉 = 0 for all finite roots α), the claim now
follows directly from Theorem 7.1, (2). �

It remains to prove part (2) of Theorem 4.9. Let us recall the statement:

Theorem 8.2. Let Λ be a subgeneric critical equivalence class and let λ ∈ Λ be
dominant. Denote by α the positive finite root with {λ, sα.λ}. Then we have, for
all n ≥ 0,

[Δ(λ) : L(λ− nδ)] = [Δ(α ↑ λ) : L(λ− nδ)] = p(n).

For the proof of the above statement we need the following result.

Lemma 8.3. Suppose that λ, Λ and α are as in Theorem 8.2. For any n ≥ 0 we
then have

dimΔ(λ)
n̂+

λ−nδ = dimΔ(α ↑ λ)
n̂+

λ−nδ = p(n).

Proof. Note that dimΔ(λ)
n̂+

λ−nδ = dimHom(Δ(λ − nδ),Δ(λ)), so Theorem 4.7

yields dimΔ(λ)
n̂+

λ−nδ = p(n).
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Let γ ∈ Λ be arbitrary. The Jantzen sum formula yields [Δ(γ) : L(α ↓ γ)] = 1
(note that α ↓ γ is maximal in the set {α ↓ γ + nδ | [Δ(γ) : L(α ↓ γ + nδ)] �=
0}). Hence dimHom(Δ(α ↓ γ),Δ(γ)) = 1. Since any non-trivial homomorphism
between Verma modules is injective, we can view Δ(α ↓ γ) as a uniquely defined
submodule in Δ(γ). In particular, we have a chain of inclusions

Δ(λ) ⊂ Δ(α ↑ λ) ⊂ Δ(α ↑2 λ) ⊂ Δ(α ↑3 λ).

From now on we view each of these modules as a submodule of all the modules
appearing on its right (note that dimHom(Δ(λ),Δ(α ↑2 λ)) > 1 in general). By
Theorem 5.2, there is an element z ∈ Z−, uniquely defined up to multiplication
with a scalar in C×, such that Δ(λ) = zΔ(α ↑2 λ). It is easy to see that this implies
Δ(α ↑ λ) = zΔ(α ↑3 λ).

We fix non-zero vectors vα↑2λ and vα↑3λ of highest weight in Δ(α ↑2 λ) and
Δ(α ↑3 λ), respectively. We consider both as elements in the free Z−-module
Δ(α ↑3 λ). As Z− is a graded polynomial ring (in infinitely many variables), as
Z−

0
∼= C and as vα↑3λ and vα↑2λ are not contained in

(⊕
n<0 Z−

n

)
Δ(α ↑3 λ), we

can extend the set {vα↑2λ, vα↑3λ} to a Z−-basis of Δ(α ↑3 λ). In particular, if
v ∈ Δ(α ↑ λ) = zΔ(α ↑3 λ) is of the form z̃vα↑2λ for some z̃ ∈ Z−, then z̃ is
divisible by z in Z−.

Now let v ∈ Δ(α ↑ λ)
n̂+

λ−nδ. Then, again by Theorem 5.2, v = z̃vα↑2λ for some

z̃ ∈ Z−. As we have observed above, z̃ is divisible by z in Z−, hence v is contained
in Δ(λ). Hence

Δ(α ↑ λ)
n̂+

λ−nδ = Δ(λ)
n̂+

λ−nδ,

and we conclude dimΔ(α ↑ λ)
n̂+

λ−nδ = p(n) from what we have shown earlier. �

Proof of Theorem 8.2. Note first that the claimed identities are equivalent to the
identities

[Δ(λ) : L(λ− nδ)] = dimΔ(λ)
n̂+

λ−nδ,

[Δ(α ↑ λ) : L(λ− nδ)] = dimΔ(α ↑ λ)
n̂+

λ−nδ

as the right hand sides both equal p(n) by Lemma 8.3. Hence we want to prove that
each simple subquotient with highest weight λ−nδ of Δ(λ) or Δ(α ↑ λ) corresponds
to a primitive vector. As Δ(α ↑ λ) can be considered as a submodule of Δ(α ↑2 λ)
and as α ↑2 λ is dominant again, it is enough to prove the above claim for the
simple subquotients of Δ(λ), i.e. it is enough to prove that [Δ(λ) : L(λ − nδ)] =

dimΔ(λ)
n̂+

λ−nδ.
We prove this by induction on the number n. The case n = 0 is easy to settle:

we certainly have [Δ(λ) : L(λ)] = 1 = dimΔ(λ)n̂
+

λ . So let us assume that n > 0
and that

[Δ(λ) : L(λ− lδ)] = dimΔ(λ)n̂
+

λ−lδ

holds for all l < n. Let

V (λ) := Δ(λ)/Δ(α ↓ λ)

be theWeyl module with highest weight λ (again we consider Δ(α ↓ λ) as a uniquely
define submodule in Δ(λ)). Now we prove the following statement:

(1) We have [V (λ) : L(λ− nδ)] = dimV (λ)
n̂+

λ−nδ.
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Suppose that X is a submodule of V (λ) such that there exists a surjection f : X →
L(λ − nδ). In order to prove claim (1) it is enough to show that there is a map
g : Δ(λ− nδ) → X such that the composition f ◦ g : Δ(λ− nδ) → X → L(λ− nδ)
is surjective.

Now L(λ − nδ) is not a quotient of V (λ) (since n > 0), hence X is a proper
submodule of V (λ). So its weights are strictly smaller than λ, i.e. X is an object in
O<λ

Λ . Since P<λ(λ− nδ) is a projective cover of L(λ− nδ) in O<λ
Λ , there is a map

h : P<λ(λ − nδ) → X such that the composition P<λ(λ − nδ)
h→ X

f→ L(λ − nδ)
is surjective. We are going to show that the map h factors over the quotient map
P<λ(λ − nδ) → P�λ−nδ(λ − nδ) ∼= Δ(λ − nδ) so that we get an induced map
Δ(λ− nδ) → X, which we can take as the map g that we wanted to construct.

By Lemma 6.5, the module P<λ(λ − nδ) is an extension of its subquotients
P (λ− nδ)[ν]. Now X is a submodule of V (λ), which is a module of highest weight

λ. So for each r > 0 and z ∈ Ar we have zV (λ) = 0, hence zX = 0. Using
the Propositions 6.11 and 6.14 and the assumption on the multiplicities, we can
inductively show that each Verma subquotient of P<λ(λ− nδ) lies in the kernel of
h except possibly P (λ − nδ)[α↑λ−nδ] and P (λ − nδ)[λ−nδ]. But since [X : L(α ↑
λ− nδ)] = 0 by part (1) of our main theorem, P (λ− nδ)[α↑λ−nδ] is also contained
in the kernel, so we get an induced map

P (λ− nδ)�λ−nδ ∼= Δ(λ− nδ) → X,

which is what we wanted to show. Hence we proved claim (1).
Secondly, we claim

(2) The map Δ(λ)
n̂+

λ−nδ → V (λ)n̂
+

λ−nδ that is induced by the canonical map
π : Δ(λ) → V (λ) is surjective.

So let v ∈ V (λ)n̂
+

λ−nδ, v �= 0, and denote by X the submodule of V (λ) which is
generated by v. Then X is a highest weight module with highest weight λ−nδ and
there is a short exact sequence

0 → Δ(α ↓ λ) → π−1(X) → X → 0.

Now the Casimir element C acts on π−1(X) as a scalar, since π−1(X) is a submodule
of a Verma module. Hence we can apply Lemma 6.10 and we deduce that there is
a submodule Y of π−1(X) of highest weight λ − nδ that maps surjectively to X.

In particular, there is a preimage of v in π−1(X)n̂
+

λ−nδ ⊂ Δ(λ)
n̂+

λ−nδ. So we proved
part (2).

Our next step is to prove

(3) We have [Δ(α ↓ λ) : L(λ− nδ)] = dimΔ(α ↓ λ)
n̂+

λ−nδ.

Suppose that the claim is wrong, i.e. suppose that [Δ(α ↓ λ) : L(λ − nδ)] >

dimΔ(α ↓ λ)
n̂+

λ−nδ. Let f : Δ(α ↓ λ) → Δ(λ) be a non-zero map and let us con-

sider the composition g : Δ(α ↓ λ)
f→ Δ(λ) → Δ(λ). Let K be the kernel and X

the image of g. Then X is a highest weight module of highest weight α ↓ λ, so
[X : L(α ↓ λ)] = 1. As g factors over the map Δ(α ↓ λ) → Δ(α ↓ λ), part (1) of
our main theorem implies [X : L(α ↓ λ − lδ)] = 0 for all l > 0. Our induction as-
sumption implies [Δ(λ) : L(λ− lδ)] = 0 for all 0 < l < n, hence [X : L(λ− lδ)] = 0
for all l < n.
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Now the weights of K are strictly smaller than α ↓ λ. By the induction assump-
tion and part (1) of the main theorem, each subquotient of K of type L(λ − nδ)
hence corresponds to a singular vector of weight λ − nδ. Together with the as-

sumption [Δ(α ↓ λ) : L(λ − nδ)] > dimΔ(α ↓ λ)
n̂+

λ−nδ, this allows us to deduce
[X : L(λ − nδ)] > 0. So λ − nδ occurs as a maximal weight in the maxi-
mal submodule of X. Hence there is a primitive vector in X, hence in Δ(λ),
of weight λ − nδ. But this contradicts Theorem 4.7. Hence our assumption

[Δ(α ↓ λ) : L(λ − nδ)] > dimΔ(α ↓ λ)
n̂+

λ−nδ leads to a contradiction, so we proved
claim (3).

Now we can finish the proof of the theorem. Recall that we have to show that

[Δ(λ) : L(λ−nδ)] = dimΔ(λ)
n̂+

λ−nδ under the assumption that [Δ(λ) : L(λ− lδ)] =

dimΔ(λ)
n̂+

λ−lδ for any l < n. We have

dimΔ(λ)
n̂+

λ−nδ = dimΔ(α ↓ λ)
n̂+

λ−nδ + dimV (λ)
n̂+

λ−nδ (by (2))

= [Δ(α ↓ λ) : L(λ− nδ)] + [V (λ) : L(λ− nδ)] (by (1) and (3))

= [Δ(λ) : L(λ− nδ)],

which is what we wanted to prove. �
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