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Abstract: The equilibrium problem with equilibrium constraints (EPEC) can be looked on
as a generalization of Nash equilibrium problem (NEP) and the mathematical program with
equilibrium constraints (MPEC) whose constraints contain a parametric variational inequality
or complementarity system. In this paper, we particularly consider a special class of EPECs
where a common parametric P-matrix linear complementarity system is contained in all play-
ers’ strategy sets. After reformulating the EPEC as an equivalent nonsmooth NEP, we use a
smoothing method to construct a sequence of smoothed NEPs that approximate the original
problem. We consider two solution concepts, global Nash equilibrium and stationary Nash
equilibrium, and establish some results about the convergence of approximate Nash equilibria.
Moreover we show some illustrative numerical examples.

keywords: Equilibrium problem with equilibrium constraints, Nash equilibrium problem, P-
matrix linear complementarity problem, smoothing approximation, global Nash equilibrium,
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1 Introduction

In the classical Nash equilibrium problem (NEP) [17, 18], all players choose their own

strategies simultaneously under their respective constraints and try to minimize their own ob-
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jective functions noncooperatively. In the Stackelberg (single-leader-follower) game [16, 22],
there exists a distinctive player (called the leader) who can anticipate the responses of the other
players (called the followers) and select his optimal strategy. At the same time, given the
leader’s strategy, all the followers complete with each other in the Nash noncooperative way.

To deal with the Stackelberg game, one can formulate it as a bilevel optimization problem,
which may further be reformulated as a mathematical program with equilibrium constraints
(MPEC) [16], where the lower level problem is parametrized by the upper level strategy. As a
generalization of the MPEC, the equilibrium problem with equilibrium constraints (EPEC) can
be formulated as a problem that consists of several MPECs, for which one seeks an equilibrium
point that is achieved when all MPECs are optimized simultaneously. The EPEC can be looked
on as a formulation of a noncooperative multi-leader-follower game [20]. Several researchers
have presented some practical applications of the EPEC, such as electricity markets [10, 11,
20]. However, only a few attempts have been made so far to develop numerical methods to
solve EPECs, even for a special class of problems.

In the study on optimization, one of important subjects is the approximation of optimization
problems. In particular, the notion of epiconvergence of functions plays a fundamental role
[13, 21]. Recently, @rkan and Pang [9] introduced a new notion of epiconvergence, which is
called multi-epiconvergence, to study the approximation of Nash equilibrium problems. It is
an extension of the notion of epiconvergence to a sequence of families of functions. By means
of the new notion, the authors of [9] presented a sufficient condition to ensure the convergence
of approximate global Nash equilibria.

In view of the difficulty in computing global Nash equilibria of EPECs that lack convexity,
it is reasonable to consider the stationarity in the players’ optimization problems. For example,
Hu and Ralph [11] propose two solution concepts called local Nash equilibrium and Nash
stationary equilibrium, which are based on local optimality and stationarity, respectively, in
each leader’'s MPEC.

Inspired by their idea and the recent work of Chen and Fukushima [1], in this paper, we
consider a special class of EPECs with shared equilibrium constraints formulated as a linear
complementarity system. Under some particular assumptions on the linear complementarity
system, we show that the EPEC can be reformulated as an nonsmooth NEP. By means of
a smoothing technique, we further construct a sequence of smoothed NEPs to approximate
this NEP. We consider two solution concepts, global Nash equilibrium and stationary Nash
equilibrium, and establish some results about the convergence of approximate Nash equilibria.

Moreover, we present some numerical examples for this special class of EPECs.



The organization of the paper is as follows. In the next section, we collect some basic defi-
nitions and present some preliminary results that will be used later. In Section 3, we introduce
the particular EPEC considered in the paper, and reformulate it as a NEP. We also introduce
a sequence of NEPs by means of a smoothing technique to approximate this NEP. In Section
4, we show some conditions that ensure the convergence of approximate global Nash equi-
libria. We further consider the approximation of stationary Nash equilibria and show some
corresponding results about convergence in Section 5. Next, in Section 6, we present some
numerical examples. Finally, we conclude our paper in Section 7.

Notations: The gradier¥ f(x) of a differentiable functiory : R" — R is regarded as a
column vector. Furthermore, we denote the m (transposed) Jacobian matrix of a differen-
tiable functionF' : R — R™ at a given point: by VF(z). For a real-valued functiofi(z, y)
with variablesr € R™ andy € R™, the partial gradients with respecti@ndy are denoted by
V.f(z,y) € R andV, f(z,y) € R™, respectively. A vector is regarded as a column vector.
However, if a vector: is composed of several subvectats- - - , 2", it is denoted, for simplic-
ity of notation, agz!, - - - ,2") instead of (z!)7, - - - , (z™)T)7, whereT denotes transposition.

We also us&N to denote the set of natural numbers.

2 Preliminaries

2.1 EPECs with Shared Equilibrium Constraints

In this subsection, we describe a class of EPECs with shared equilibrium constraints and
define global and stationary Nash equilibria of the EPECs.

First, we start with the definitions of solution concepts for NEPs. In a NEP, denoted by
NEP(é,,,X”)]szl, there areV players labelled by integets= 1,--- , N. Playerv’s strategy
is denoted by vectar” € R™ and his cost functioﬁy(x) depends on all players’ strategies,

which are collectively denoted by the vector= R™ consisting of subvectors” € R™, v =

1,---,N,andn = n; +---+ny. Player’'s strategy seX” C R™ is independent of the other
players’ strategies which are denoted collectivelyras = (x!,--- 2=t vt ... 2N €
N

Rt For every fixed but arbitrary™ € X =[[,_, ,, X v playerv solves the follow-

ing optimization problem for his own variabie

~

minimize 6,(z",x™")
" (1)

subjectto z" € XV,

where we writed, (z) = 6,(z*,2") to emphasize the role aof in this problem. A tuple



of strategies:™ = (z**))_, € X = [[._, X is called aglobal Nash Equilibriurif for all
v=1,---,N,

~

0, (", x57") < 0,(z", 257") Vi’ e XV,

On the other hand, a tuple of strategi€ss called astationary Nash Equilibriunif for all
v=1,---,N,z* is a stationary point for the optimization problem (1) with” = z*~",
where a stationary point means that it satisfies a first-order optimality condition for the problem.
Assuming the differentiability of the cost functiofisand the convexity of the strategy se&fs,

a stationary Nash equilibrium is characterized as a tuple (z**)"_, € X that satisfies the
following conditions forally = 1,--- | N:

~

Vb, (x5 ) (27 — ™) >0 Va¥ € XV,

If, in addition, §, are convex with respect te for all v, then a stationary Nash equilibrium
reduces to a global Nash equilibrium. Whenis nondifferentiable, we need to introduce a
more general notion of stationarity, as will be done in Section 5.
Recall that a typical MPEC can be defined as the following optimization problem with two
sets of variables, the upper level variabtes R" and the lower level variablase R™:
minimize 6(z,y)

_ 2)
subjectto = € X,y € S(z),

whered : R"*™ — R, X C R", and for eachr € X, S(z) is the solution set of an equilibrium
problem with parameter, which may be represented as a variational inequality problem (VIP)
or a complementarity problem (CP).

As a generalization of the MPEC, the EPEC can be formulated as a problem where sev-
eral players try to solve their own MPECs simultaneously. In particular, we consider an EPEC
where N players share the same equilibrium constraints as follows. Forweaeh,--- | N,
let X¥ C R™ denote the feasible set of upper level variables of playavhich is indepen-
dent of the other rival players’ variables. We also denote plaigobjective function by
0,(x",x~",y), which is dependent of his own upper level variableand the other rival play-
ers’ upper level variables™ € X7 = Hiv,:w# X" as well as the common lower level
variables denoted by € R™. We assume that the shared equilibrium constraints are rep-

resented as the solution set of a parametric equilibrium problem. Specifically, eachiplayer



solves the following optimization problem:

minimize 6, (", 27", y)

v,y
subjectto " € X", 3
y € S, x7"),
whered, : R*™™ — R, X¥ C R™, andS(z”,2~") is the solution set of an equilibrium

problem with parameter, which may be represented as a VIP or a CP.

2.2 Epiconvergence

In this subsection, we present some basic definitions and properties about epiconvergence

and multi-epiconvergence of functions. First, we begin with the following definitions.

Definition 2.1. [21] For a functionf : R™ — R, the epigraph off is the set

epif = {(r,a) € B"" |a > f(x)}.

Definition 2.2. [12] A sequence of sefs’} }ren, WhereCy, € R™ for all k € N, is said to
converge, in the Painlé&sKuratowski sensR1] , to a setC’' C R", denoted by’ — C, if
(@) any cluster point of a sequenée”},cn, Wherez* € C;, for all k € N, belongs ta”;
(b) foreachz € C, one can find a sequenée” },cy such thatz* € C), for everyk € N and

[Ek—>$.

The theory of set convergence provides a convenient tool to study the approximation is-
sues in optimization. In particular, we can define the concept of epiconvergence through the

convergence of epigraphs.

Definition 2.3. [21] A sequence of functionsf; }reny 0N X C R", wheref, : R* — R for

eachk, is said to epiconverge to a functigh: R — R on X, when epif;, — epi f ask — oo.
For checking the epiconvergence, the following proposition is useful.

Proposition 2.4.[21] Let{ f; }ren be any sequence of functions Bi. Then,f; epiconverges
to f on X C R"™if and only if at each point € X one has

Iilrcn inf f.(z") > f(x) forevery sequencgr®} such that” — z,

(4)
lim sup fi(2*) < f(z) for some sequende:*} such thats* — .

k—o0

It is easy to see from (4) that we have actugllyz*) — f(z) for at least one sequence
{x*}1en such thatr® — . If this property holds for any such sequengce’}, we say the

sequence of functionff} }ren converges continuously to functigh

5



Definition 2.5. [21] A sequence of functionsf; }rcn iS said to converge continuously to a
functionf : R* — Ratapointr € X C R"if f,(«*) — f(z) for any sequencér*}.cny € X

converging tar, and to converge continuously o C R™ if this is true at every: € X.
The next proposition gives a sufficient condition for a sequence of functions to epiconverge.

Proposition 2.6. [21] If a sequence of functiorsfy } ey converges continuously tb: R —

RonX C R", then it epiconverges tp on X.

The concept of epiconvergence plays an essential role in studying approximation issues
for optimization problems. To study approximation issues for NEPs, which contain multiple
objective functions associated with all players’ optimization problenigk& and Pang [9]
introduced the concept of multi-epiconvergence for a sequence of families of functions, as a

generalization of epiconvergence.

Definition 2.7. [9] A sequence of families of functiofi§f, » }_, }ren, Wheref, , : R* — R
for eachv and k, is said to multi-epiconverge to the family of functiop }),, where
f, + R* — R for eachv, on the setX = [["_, X¥ C R, if the following two conditions
hold for everyy = 1,--- | N and everyr = (x!,---  2V) € X:

(@) Foreverysequencer""*}.eny C X7 converging tac—, there exists a sequenge”* } e

C X" converging tar” such that

lim Supfl,,k(x”’k,:c’”’k) < fo(z¥,x7").

k—o0

(b) For every sequencgr®},cn C X converging tar,
Iilzn inf f,x(z") > f,(2).

The following proposition establishes the strong relation between multi-epiconvergence and

epiconvergence.

Proposition 2.8. [9] A sequence of families of functiofisf, . })"_; } ren multi-epiconverges to
the family of functiong f, }¥_, on the set\ = H]VV:1 X”ifand onlyif forevery =1,--- N
and every sequencer"*},cy C X ¥ converging to some > € X, the sequence of

functions{v, \ } ren, Where each), , : R — R is defined by
wu,k(xu) — f,,’k(l'y,l'iy’k), e XV,
epiconverges to the functian, ., : ™ — R defined by
Uy oo(2”) = fi (2, 270°), ¥ € XV

on the sefX".



Under the assumption of multi-epiconvergence, the following proposition shows a sufficient

condition for the convergence of approximate Nash equilibria.

Proposition 2.9.[9, Theorem 1Buppose that the sequence of families of funcéris, } ) ; }ren
multi-epiconverges to the family of functiof, }."_, on the sef\{ = Hle X". If the sequence
{2*}ren, where eache* = (%) is a global Nash equilibrium of NEF, ., X*)Y_,, con-

v=1"

verges tar™ = (z>°)Y_,, thenz* is a global Nash equilibrium of NER,, X*)X_,.

v=1?

2.3 P-Matrix Linear Complementarity Problem
The complementarity problem (CP) is to find a vectas R" such that
F(z) >0, 2>0, F(x)z >0,

where ' : R" — R™is a continuous function. In particular, whénis an affine function
represented by’ (z) = Mz + ¢, whereM € R™™ andg € R", the CP becomes the linear
complementarity problem (LCP), which is to find a vectoe R" such that

Mz+G>0, x>0, 2" (Mz+q) >0.

We denote this problem as LCH, §).
Matrix M € R™" is said to be a P-matrix, if its all principal minors are positive, or equiv-
alently,
max z;(Mz); >0 forall z(# 0) € R".

1<i<n

The following proposition is well known.

Proposition 2.10.[3] A matrix M € R™*" is a P-matrix if and only if LCIPM, §) has a unique

solution for any vectof € R".

3 Equilibrium Problem with Shared P-matrix Linear Complementarity

Constraints

In this paper, we consider the particular class of EPECs, where each player’s optimization

problem contains a P-matrix linear complementarity constraint that is common to all players.

Specifically, forv = 1,--- | N, given the other players’ strategies”, playerv solves the



following problem:

minimize 6, (2", 27", y)

vy

subjectto ¢”(z”) <0, h”(z") =0,

N

S Kuat + My+q>0,y>0, )
pn=1

N
O Kzt + My +q)"y =0,

p=1

where functiong, : R"*™ — R are continuously differentiable ai"*™, ¢* : R"™* — R*” are
continuously differentiable and convex functions, &fd R™ — R’ are affine functions. In
the following, we letX” denoteX” = {z¥ € R™ | g"(z") < 0, h”(z") = 0}, which is convex

under the given assumptions ghandh”. The shared linear complementarity constraints
N N
Y K"+ My+q>0,y>0 () Ka"'+My+q) y=0 (6)

v=1 v=1

are denoted by LCH<y,--- , Ky, M, q), whereK,, € R"™*™ v =1,--- N, M € R™"™,
andq € R™. In particular, we assume thaf is a P-matrix.

Now we define the concept of global Nash equilibria for EPE®)}.Y_, .

Definition 3.1. A tuple of strategiegz*, y*) = (z*!,--- ,2%" y*) is called a global Nash
equilibrium of EPEC{(5)}""_,, if for eachv, the pair of strategieéz*", y*) is a global optimal
solution for MPEC(5) with = = z*7",

By Proposition 2.10, for any fixed = (2¥)Y_,, LCP(K,---, Ky, M,q) has a unique
solutiony, which is denoted(x) or y(z*,27"), i.e.,S(z) = {y(x)}. Itis well known that the
solution functiony(-) : R — R™ of the shared P-matrix linear complementarity problem (6)
is piecewise linear with respect to the paramet§l6]. Since every piecewise linear function

is globally Lipschitz, we have the following proposition.
Proposition 3.2. [1] There is a positive numbersuch that
ly(x) = y(@)| < 7lle — 2’| forall z,2" € R".
We define the function®, : R — R by

O, 27")=0,(z", 7", y(z",2™")), v=1,--- ,N.

Y

Further, we can reformulate EPE(5)})_, as the NEP, denoted by NEP,, X*)"_,, where

v=11
each playevr solves the following problem:
minimize ©,(z",z7")
’ (7)
subjectto ¢”(z”) < 0,h"(z") = 0.



Sincey(-) is not differentiable, problem (7) is a nonsmooth optimization problem for each
Recall that NEPO,,, X*)¥_ is equivalent to EPEG(5)}/_, thanks to the property of P-

matrix. This is made precisely in the following proposition.

Proposition 3.3. If z* is a global Nash equilibrium of NE®,, X*)Y_,, then(z*, y(z*)) is
a global Nash equilibrium of EPEG(5)})_,. Conversely, if(z*,y(z*)) is a global Nash
equilibrium of EPEC{(5)}/_,, thenz* is a global Nash equilibrium of NE®,,, X*)"_,.

v=1"1

Proof. To prove the first half, suppose to the contrary thet y(z*)) is not a global Nash
equilibrium of EPEC{(5)})"_,. Then there exist an indexas well as vector$” andy such
that

eu(iy7 fﬂ*’il/, Zj) < 61/(:[;*’1/7 x*77V7 y(x*7V7 x*7il’))7
andz” € X%, g € S(z¥,2%77). Since the solution sef(z", z*~") is a singleton, we have

g =y(x”, %), and hence
0,(2", 27V, y(&¥, 257")) < 0, (x5 y(a™, 2 7Y)),
that is,
O,(2",x"7") < O, (x™, x"7").

This contradicts the assumption thatis global Nash equilibrium of NE®,, X*)Y_,. Thus
the first half is proved.

The second half can be proved in a similar manner, and hence the proof is omitted.]

It is well known that the complementarity problem (6) can be reformulated as the following

system of nonsmooth equations:

Sy, (Xo-; Kva” + My + q)1)

S(Ym, Xy Ko’ + My + q)m)

where¢ : R? — R is a function called an NCP function or a complementarity function [5] that

satisfies the condition
#(a,b) =0 <= a>0,b>0, ab=0.

There are many NCP functions. In this paper, we use the Fischer-Burmeister (FB) function [6]
defined by

¢(a,b) =a+b—va®+ b



Smoothing is an effective technique for solving optimization problems and complementarity
problems [4, 7, 8, 19]. Here, we use a sequence of continuously differentiable funiiphs
involving a scalar parameter > 0 to approximate the nonsmooth functién. R"*™ — R™,

where®, : R"*" — R™ is defined by

bulyr, (Ei\;l K,2" + My + q)1)
(I)#<£C”y) = )
(Y (0=y Ko + My + q)n)

and¢, : R* — R is the smoothing Fischer-Burmeister function [14] defined by

du(a,b) =a+b—+/a? + b> + 2.

It is easy to see that
¢u(a,b) =0 < a>0,b>0, ab= pu*.

By virtue of the P-matrix property ai/, for any fixedz, the nonlinear equation
(I)u (Qf, y) - 0

has a unique solutiop, see [1], which we denotg,(x). Compared with the solution function

y(-) of the original LCP, the functiop,(-) has some desirable properties.

Proposition 3.4. [1] There is a positive constartsuch that for anyy € R™ andp > ¢/ > 0,
we have
19 (2) =y ()| < 8 — 1)

Particularly, wheny' = 0, we have

lyu(z) —y(2)|| < Kp.

Proposition 3.5. [1] For any 1 > 0, the functiony,(-) is continuously differentiable oR",
and there exists a bounded setC R"*™, which is independent ¢f, such thatVy,(z) € Q
for all z € R". Moreover, for any sequende”} C D, converging taz, whereD,, denotes the
set of points at which(-) is differentiable, there is a positive sequergé} tending to0 such

that
{Jim V() } € { lim vy(az)} C oy(a). ®)

€Dy
wheredy(z) is the Clarke generalized Jacobiang(f) at z.
In view of this result, we assume that, for amand any sequence:*} C D, converging

to z,
{ M Vo g, (:&)} C 9y(3), 9)

k—o0
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whered,.y(z) denotes the Clarke generalized partial Jacobian with respettdby(-) atz.
For anyu > 0, we consider a family of function§, }2\_,, where the function®,(-; 1) :
R™ — R are defined by

@u(l’”, {Kﬂ/; ,U) = QV(:L’V’ {[*V’yu<x'/’ Z‘fy)), v = 1’ C. ’N'

By Proposition 3.5, the functioréy(-; w) are continuously differentiable for any > 0. Let
{1*}ren C R be an arbitrary positive sequence such jifat— 0. Then we define a sequence

of families of functions{{©, . })"_, }xen by
O,z 27") = (:)y(x”,x_”;uk), v=1,--- N. (10)

As an approximation to the NEB,, X*)V_,, we may consider the sequence of NEPs, denoted
by {NEP(O, 1, X"))'_, }ren, Where each player solves the following smooth optimization
problem:
minimize O, (2", 27")
v (11)
subjectto ¢”(z) < 0,h"(z") = 0.

4 Convergence of Approximate Global Nash Equilibria

In this section, we focus on the convergence of global Nash equilibria for the sequence
{NEP(O, 1, X")Y_, }ren, where function®, , are defined by (10) for a positive sequergé}
such tha” — 0. We start with the property of the sequence of functiéns (-)}.

Lemma 4.1. The sequence of functiofig,« () } ren cOnverges continuously to functigfy) on
X.

Proof. By the definition of continuous convergence, we need to showthét"”) — y(z) for

any sequencézr*} oy C X converging tor € X. By Propositions 3.2 and 3.4,

[y (%) = y(@) | < [lye (") = y(@®) + [y (") = y(@)]| < mp® +7]a* = 2],
and hence we havg, (2*) — y(z) ask — oc. O

Next we show that the sequence of families of functiof®, ;. } 7, }ren multi-epiconverges
to {6,})_, on X. Tothis end, let: € X be an arbitrary point and Iét:*} C X be an arbitrary
sequence converging ta Then, for each/, we define the function¥,, : R — R and
v, : R — R as follows:

U, s(r) = Op(-,27") (12)

11



and
\Iju() = @IJ('VriV)' (13)

Then we have the following lemmas about functidns, and¥,,.
Lemma 4.2. For eachr andk, the functionsl,, and ¥, ;. are continuous orX .

Proof. SinceV, ;(-) = ©,,(,27") = HV(-,x_”’k,yuk(-,x_“k)) andV¥,(-) = 0,(,27") =
0,(-, 7", y(-,x~")), the continuity of these functions follows from the continuity of functions
0,(), yur (+) @andy(-). [

Lemma 4.3. For eachv, the sequence of functiof¥, ; } ,en cOnverges continuously to func-
tion ¥, on X",

Proof. By the definition of continuous convergence, we need to show that fofrany X"
and any sequencgi”*} ey € X” such thatz”* — ¥, we haveV, . (7"%) — ¥, (3"), i.e.,
0, (2%, x=F y (@8, a7F)) — 0, (2, x7", y(&",z7)). Sincez % — 2= andp” — 0, it
follows from Lemma 4.1 thag,» (2%, z7*) — y(2,27"), and henc@, (2", x =" y x (Z"*,

7)) — 0,(3, 27, y(i, 7)) by the continuity of, . u

By Proposition 2.6, Lemma 4.3 means that the sequence of funcfibns}.cn epicon-

verges to the functio®,. Thus we have the following lemma.

Lemma 4.4. The sequence of families of functiof®,, .}, } ey multi-epiconverges to the

family of functiong©,}7’ ;.

Proof. By Proposition 2.8, it is sufficient to show that for evary= 1,--- . N and every
sequencegz"*}ren C€ XY converging to some~ € X, the sequence of functions
{U, 1 }ken defined by (12) epiconverges to the functibp defined by (13). It is true as men-
tioned just after Lemma 4.3. O

Based on this result, we establish convergence of the approximate global Nash equilibria.

Theorem 4.5. Let a sequencéz”},cn be such that each” is a global Nash equilibrium of

NEP(O, x, X*))_,. If {z*};cn converges tac*, thenz* is a global Nash equilibrium of the

v=1"

NEPR©O,, X")N_,.

Proof. Follows immediately from Lemma 4.4 and Proposition 2.9. ]

12



5 Convergence of Approximate Stationary Nash Equilibria

In this section, we further investigate the behavior of a sequence of stationary Nash equi-
libria for {NEP(O, 4, X")_, }xen. This is important from the numerical point of view, since
in practice we may only expect to compute a stationary point of each player’'s optimization
problem.

To this end, we need to introduce some stationary concepts which are associated with the
NEP(O,, X*)Y_,. First, we notice that the function(-) is directionally differentiable every-
where [3, Theorem 7.4.2]. Then the directional derivativeyofz~") at ¥ € R™ in the

directiond” € R™, denoted by, (z”,z~";d") € R™, is defined as follows:

ol %) =l y(z” +td”, x‘;) —y(@’,27")
Based on the concepts of B-stationary point and C-stationary point for a nonsmooth opti-
mization problem, we introduce the corresponding concepts for a nonsmooth NEP as follows.
We callz € X aBouligand stationaryB-stationary Nash equilibriuni1] of NEP(©,,, X*)_,

if foreachy =1, --- , N,

/
91/,1”

a2’ x7dY) = Vb, (¥ a7 y(z”, 7)) d”

( ) ( ( ) (14)
+ V0, (2", 27 y(a”, 7)) Ty (2, 2775 d7) 2 0,

for all @V € T(2"; X"). HereT (z”; X*) denotes the tangent cone [5] &f at z”, which

consists of all vectorg” € R™, called tangent vectors t&§” at x¥, satisfying the condition

that there exist a sequence of vectprs®} C X* and a sequence of positive scalérs} such

that

v,k v

lim 2% = ¥, lim 77 = 0, lim ~——— = d".

k—oo k—oo k—oo T]Z

Associated with the players’ optimization problems, we introduce the following Mangasarian-
Fromovitz constraint qualification (MFCQ): Foreaehk-=1,--- , N, {Vhi(z") |j =1, ,5,}

is a linearly independent set and there exists a vettar R~ such that
Vgl (a")Td” < 0,i € I(z"), VRY(a")Td" =0,j =1, ,s,,

whereZ(z") = {i | g7 (") = 0}.

Under the MFCQ, the tangent cofiéz”; X*) can be represented precisely as follows:
T (2" XYy ={d" | Vg!(2")"d" <0,i € Z(z¥), VR (z")"d" =0,j=1,---,s,}.

Then,x = (z¥)"_, € R" is called aClarke stationary(C-stationary Nash equilibriumfor

v=1

NEP(©,, X)), if for eachv, 2¥ € R™ together with some Lagrange multipligi¥’, ") €
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R* x R' satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

0O, (2", 27") + Vg"(x" )N + VR (z")n" 3 0,
g" (=) <0,A” 2 0,(\)"g"(z") =0, (15)
B (2") = 0,
whered,. 0, (", z7") is the Clarke generalized gradient®f (-, z~") atz".

Since functiony,(-) is continuously differentiable oR™ for any; > 0, the B-stationarity
condition for the NEPO,, ., X*)X'_, can be written as follows:

VO, u(x” =) d” =Vl (x”, 277, Y, (2, z) T d” (16)
+ Vil (@, 27y (2, 27) Vg (27, 277)Td” > 0,
foralld” € T (z; XV).
Moreover, for eactk, we sayr = (z*))_; € R™ is a KKT point of NERO, ;, X")),, if

for eachv, ¥ € R"™ together with somé\”, ") € R* x R' satisfies the following system:
VO p(a”, z7") 4+ V" (x")\ + VR (2")n” =0,
g’ (z") <0,X >0, \)Tg"(z") =0, (17)
h"(z") = 0.
Note that under the MFCQ, conditions (16) and (17) are equivalent.

Now we establish the following result about the convergence of a sequence of KKT points of
smoothed problem&NEPR(O,, 1., X*)’_, }1cn to a C-stationary Nash equilibrium of NE®,, X*)2_,.

Theorem 5.1. Suppose that the feasible s€t= {z = (), € R"|g"(z¥) < 0,h"(2") =

0,v =1,---,N} of NERO,, X*)Y_, is bounded and the MFCQ holds at anyc X. Let
{z*}1en be a sequence of B-stationary Nash equilibria of the family of smoothed problems
{NEP(©, 1, X")_, }ren. Moreover, we assume thd) holds. Then every accumulation point

7 of the sequencér”},cy is a C-stationary Nash equilibrium of NE®,,, X¥)7_,.

Proof. Since under the MFCQ), a B-stationary Nash equilibrium and a KKT point are equivalent
for NEP(©, ;, X¥)?_,. Therefore, for eack andv, along with some corresponding Lagrange
multipliers pair(A\**, *), we have from (17)
Vzuy#k (xzz,k, xfu,k)vyey(xu,kj x*l/,k’ y#k<xu,k7 xfu,k))
+qu(9y($u,k7 x—u,k7 Yyt (mmk’ x—u,k)) + Vgl/(xu,k:))\u,k + th(l,u,k:)nu,k -0, 8)
g (z"%) < 0, A% > 0, (AR T g” (z%) = 0,

h (z"%) = 0.
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Note that the sequende”} is bounded since the feasible set is bounded zltet an accumula-
tion pointof{z*}. Foreach, = 1, --- | N, by the continuity of function¥ .6, V,60,, Vg*, Vh”

andy(-) along with Proposition 3.3, we have

im V.60, (a7, 27",y u (@, 7F)) = Vo, (27, 277, y(2,77)),

k—o0

lim V,0,(z"*, 27,y 0 (2F, 270) = V,0,(z7, 277, y(2,277)),

k—oo

lim Vg" (2"*) = Vg"(z"),

k—oo

lim VA" (z"%) = VR (z").

k—oo
By (9), for eachv there exist a matri¥’” € 9,.y(z) and a subsequence Hf*}, still denoted

by {z*} for simplicity, such that:* — z and
Nim Vg (278, 070%) = V2 € Duy(a”,27),

Since the MFCQ holds at, it is not difficult to show that the sequendé\*, i)} ey is
bounded. Without loss of generality, we assume th&t\*, %) — (z, \, fi).
Then, foreachv =1,--- | N, it follows from (18) that
VN0, (z", 27", y(z",27")) + Vb, (27, 27", y(2",27"))
+Vg" (V)N + VR* (") =0,
(_ ) ) (z") 19)
gzx(a—;u> S O, 2\ 2 0’ ()\V)Tgu(j,y) — O,
h"(z") = 0.
By the continuous differentiability of functioy, for eachr, the Jacobian chain rule [2, Theo-

rem 2.6.6] yields
Va0, (2%, 277, y(x",27")) + Opy(z”,27")V,0,(2", 27", y(z",27")) = 0,,0,(z",2").

This along with (19) means that (15) holds for all= 1,--- , N with (z, \, ) = (Z, \, fi).

Therefore is a C-stationary Nash equilibrium of NE®,,, X*)V_ . O
Now we consider some properties about the B-stationary points.

Lemma 5.2. Letz € X be an accumulation point of the sequereé}, where eachr” is a
B-stationary Nash equilibrium of NEB, ., X*))'_,. Assume thaf9) holds and so does the
MFCQ atz. Then foreachv = 1,--- | N, there exists a matriX” € 0,.y(z",z~") such that

Vb, (27,277 y(@, 2 ")) d” +V,0,(7, 27, y@,z ") (V) Td >0,
forall @ € T (z¥; X").

15



Proof. Since each* is a B-stationary Nash equilibrium of NE®, , X*)Y_,, we have

v=11
me@y7k(xu,k7 x—u,k)TdV,k :vxuey(xy,k’ l,—l/,/c7 yuk (I’V’k, l,—mk))Tdu,k;
4 Vyey ($U’k, xfz/,k:7 yuk (Iu,k’ Jﬂ'il/’k»Tvzvy‘uk (xz/,k’ x*l/,k)Tdu,k
>0
for all d"* € T (a¥*; X¥).
For eachv = 1,--- N, sincez is an accumulation point ofz*}, by (9), there exist a

matrix V' € d,.y(z",z~") and a subsequence pf**}, still denoted by{z**} for simplicity,

which converges t@”, such that

im Voy (2, 7% = V¥ € 0py(2¥,277).

k—o0

Further, for any” € 7 (z¥; X), by the MFCQ, there exists a sequeddé&*} such that/”* —

d” ask — oo. Then, by passing to the limit — oo in (16), we can deduce that
Vb, (27,277 y(@", 27 d” + V,0,(2", 277, y(@,z7") (V) Td” > 0.
Since this holds for all” € 7 (z¥; X), the desired result follows. O

In the light of Lemma 5.2, we show a convergence result about B-stationary Nash equilibria.

To this end, we introduce the following concept.

Definition 5.3. [2] For eachv = 1,--- | N, function®, : R — R is said to be regular if, for
all z¥v € R, =" € R*™ andd” € R™, the directional derivativ®’ . (xz",z~";d") exists

v,x¥

and satisfies

. v tdu’ —v\ __ . 1/7 —v
(:c”,x”’;d”)zlimsup@ (2" + v =62 )

2V —aV t
t]0

@/
Theorem 5.4. Suppose that the feasible s€t= {z = (), € R"|¢"(z") < 0,h"(2") =

0,v=1,---,N} of NEFO,, X)), is bounded, the MFCQ holds at anye X, and each
objective functior®,, is regular with respect to its own variable', v = 1,--- | N. Let{z"} be
a sequence of B-stationary Nash equilibria of NBR;,, X¥)"_,, and assume thg®) holds.

Then every accumulation point pf*} is a B-stationary Nash equilibrium of NE®,,, X*)_,.

Proof. The sequencéz*} is bounded sinc« is bounded. Let be an arbitrary accumulation
point of {z*}. Then, by Lemma 5.2, for each = 1,--- , N, there exists a matri¥’” €
Ovy(Z¥,2~") such that

Vb, (2,277 y(@, 2" ) d + V0,2, 277, y@, 2 ") (V) Td” >0 (20)
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forall d” € 7(z"; X"). Moreover, by the Jacobian chain rule [2, Theorem 2.6.6], we have
Vb, (27,277, y(@",277)) + V'V, 0,(2", 27", y(z",27")) € 0,0,(x",27"). (21)
Further, by the regularity &, and [2, Proposition 2.1.2 (b)], we also have

/
O v

(7,277 d") = max{(&)Td" : & € 0,0,(z",77")}

foralld” € T(z"; X").

Therefore, in view of (20) and (21), we can deduce that

/
O, 4w

(¥, 27" d") >V, (2", 277, y(@,z7")) d"
+ V0,7, 7", y@,z") (V) d” > 0
for all & € T (z”; X"). Since this holds for al = 1,--- | N, z is a B-stationary Nash

equilibrium of NERO,,, X*)\_,.
]

6 Numerical Experiments

In this section, we show some numerical results for the class of EPECs described in Section
3. Specifically, we consider the following EPEC with two players, which contains a shared
P-matrix linear complementarity constraint parameterized by the upper level variabtes
(2!, 2") € R™

Player I's problem:

o 1
minimize §(x')TH|x' + ()T G + ()Ty
x 7y
subjectto Az' <,
My—l—N|:c' + Ny 2" +q>0,y>0,
y"(My + Niz' + Nya" + q) = 0.

Player II's problem:

e 1
mlnlllmlze E(Z’II)THHZ’” + (Z'II)TGHQTI + (c”)Ty
m 7y
subjectto A,z" < b,
My + Niz' + Nya"' +¢ >0, y >0,

yT(My—l— ]\ﬁ.l’I + ]\[”.%II -+ Q) =0.
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We assume thal/ € R™ ™ is a P-matrix,H, € R"™ " are symmetric positive definite
matrices, and-, € R™*"v g€ R™, ¢ € R, A, € R®»*™ b’ € R*, N, € R™*"™, where
v=1I.

In light of the analysis about the P-matrix LCP in the previous sections, after substituting
y(z) = y(z', 2") for y in the objective functions of two players, we can further reformulate this
EPEC as the following nonsmooth NEP:

Player I's problem:

minimize %(x')THm' + (@Y Ga" + (M y(x)

subjectto A;z' <b'.

Player II's problem:

minimize %(%”)TH”%” + (%II)TG”%I + (c”)Ty(a:)

subjectto A, z" <"

Remark 6.1. Since we replace by y(x) in the objective functions of two players, the two
vector variablegz”, y) of playerv in the above EPEC reduce to one vector variafjlén the
nonsmooth NEP.

Moreover, we have the following sequence of smoothed approximations to the above NEP:

Player I's problem:

S 1
minimize §($I)TH|[EI + () Gia" + () ye ()

subjectto A;z' <b'.

Player II's problem:

minimize %(m”)TH“a:” (@) G + () oy (2)

subjectto A, z" < b

By concatenating their KKT conditions, we have the following mixed CP for éach

Hiz'+ Gia" + Vayu(z)d + AT\ =0,

Hyz" 4+ Gz + Vi Yy (z)c" + ATN" =0,
A 0 >0, M >0 (A2 )N =0,
—Aya" + 0" > 0,A" >0, (= Ayz" +0")"A" =0,

where\” € R v =11l
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It is well-known that a mixed CP is equivalent to a box constrained variational inequality

problem (BVIP) [5]. Consequently, to deal with the above mixed CP, we consider the following
BVIP: Find a vector: = (x, \) € B such that

Eu(2)'(z'—2)>0 forallz’ = (2/,X) € B, (22)

whereB = {z € Rutmtsitsu|l < 2z < w,l; = —o00,i = 1, ,m +ny3l; = 0,0 =

mA+ny+ 1, 4+ + s+ siu; =400,0 =1, n +ny + s+ s}, and
Hiz' + Giz" + Vaye(z)d + AT N
H||I“ + G||SC| + quy#k (x)c” + Aﬁ)\”
—A|.T| +b|
S [y A1

The Jacobian matrix of functiof,,x (z) can be written as

H; e v, AT (x)c:l | Al 0 )
G H, qu \T)C 0 —A
VEa = | N b ) "
| 0
0 Ay

To solve the BVIP, Kanzow and Fukushima [15] present a Newton-type method applied
to the nonsmooth equation involving the natural residual of the BVIP. The algorithm uses the
D-gap function to ensure global convergence of the Newton-type method. To solve the BVIP
(22), we use Algorithm 3.2 in [15] with the following parameter setting:

a=09, =11, §=06, p=10"",

c=10"° p=21, n=009, e=10""

Example 6.2. The problem data are given as follows:

3.6 —1.2 7.5 =26 1.1 -1.3

Hl = 7H|| = aGl = )
—15 28 —2.6 5.7 —24 1.6
—-1.2 23 3.6 —1.2 21 -—-1.3

GII = 7M = 7N| = )
1.4 =25 —-1.2 28 34 23
54 16 12\, [ -23\ , [ -25

-ZVII - , 4 = ,C = ,C = )
—6.2 2.1 1.6 —3.2 —2.4

A = ( 33 —2.4 ) Ay = ( 25 21 ),b' — 28" = 75
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Table 1. Computational Results for Example 6.1

u” 0.01 0.001 0.0001 0.00001
—0.26175308 —0.261753277 —0.261752853 —0.261753229
L 0.806760257 0.806760076 0.806760137 0.806760144
xr
2.694216811 2.694217254 2.694217618 2.694217171
—0.364020746 —0.364019171 —0.36401958 —0.364018987
f 7.153482977 7.153476511 7.153477701 7.153476063
Y
8.519043099 8.519035193 8.519037369 8.519034592
D-gap 3.43e-11 4.25e-11 3.34e-11 4.58e-11
Table 2. Computational Results for Example 6.2
pk 0.01 0.001 0.0001 0.00001
—0.692667223 —0.692694868 —0.692701651 —0.692831978
1.016579205 1.016540797 1.016545116 1.016420082
) —0.108166204 —0.108194512 —0.108193163 —0.108237243
T
—0.464648787 —0.455051037 —0.455051025 —0.450723891
0.034905477 0.033601554 0.033580781 0.032985916
0.619646979 0.631711506 0.631712791 0.637152985
0.361580945 0.385396590 0.385401922 0.469066735
y" 1.098110671 1.252027604 1.252031927 1.642687333
0.348600029 0.341167025 0.341160304 0.259482587
D-gap 1.52e-10 9.78e-11 9.34e-11 8.82e-11
Table 3. Computational Results for Example 6.3
u* 0.01 0.001 0.0001 0.00001
—0.716520923 —0.71659095 —0.716591707 —0.716591204
0.994069232 0.994004031 0.994003398 0.994002798
f —0.115604893 —0.115627191 —0.115627574 —0.115626892
T
—0.583389678 —0.583377728 —0.583377443 —0.583378032
0.051365820 0.051365611 0.051364984 0.051366123
0.470423193 0.470437974 0.470437871 0.470438807
0.063229798 0.063221059 0.063221067 0.063221092
y" 0.066149112 0.06612975 0.066129587 0.066129569
0.781141113 0.781112525 0.781112180 0.781112210
D-gap 2.52e-10 2.46e-10 2.60e-10 2.19e-10
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The computed solutiong® = («}", z5", 2", 25" andy* = (y, 1 (2*), y, 2(2¥))T of the

sequence of smoothed NEPs wjth = 107%~!,k = 1,2, 3,4 along with the corresponding
values of the D-gap functions are shown in Table 1.

We confirm that these approximate stationary Nash equilibria of smoothed NEPs converge
to a B-stationary Nash equilibrium of the original NEP dstends to0. In fact, sincey(z)
is differentiable at:* with % = 0.00001, we can check the KKT conditions for each player’s

problem directly atr = z* as follows.

For Player I.
| ' | — 4.56e-006 , |
Hza' 4+ Ga" + Vay(z)e + AN = ,with \' = 0.597171017,
—8.14e-007
Air' — b = —1.00e4005.
For Player 1.
1] | 1] T 5.07e-006 ; 1l
Hyz" + Gz + quy(x)c + A” A= ,Wlth A= 30774959097
—3.25e-006

Ay ="' = 1.72e005.

This indicates that we can look arf as an approximate B-stationary Nash equilibrium of the

original NEP.

Next, we solve two EPECs where both the upper level variables and the lower level variable

are three dimensional.

Example 6.3. The problem data are given as follows:

100 36 2.7 120 —12 3.1 12 00 —16
H=| 36 120 —19 | . Hi=| =12 100 25 |.Gi=] 13 —-21 00 |.
2.7 —19 15.0 31 25 80 ~12 15 03
12 00 —15 56 —12 15 ~11 00 -12
Gi=| 15 14 00 |[.M=]| 32 72 —24 |, N=| 15 —-10 —03 |,
12 1.1 —14 —18 25 64 —14 00 1.3
~13 09 —06 —3.2 —3.6 3.2
Ne=1| =14 12 00 |.gq=]| —25 |.d=| 27 |.!"=]| —24 [,
15 —07 14 48 48 —45
16 —13 —1.2 13 —15 —1.2 | —23 ’ 1.4
A|: 7A||: 7b = 7b =
12 —1.7 1.3 18 12 —1.3 2.7 1.6
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Example 6.4. The problem data are the same as those in Example 6.3 excegt, ifaandq

are given as follows:

~3.6 3.2 —32
d=1 27 |./"=] =24 |.,q=| 25
48 45 —48

The computed solutiong’ = (o), 25", 24", oP", 25" 2T andy® = (y,e1 (2F), i 2 (2),

Y+ 3(2*))" of the sequence of smoothed NEPs with= 10",k = 1,2, 3, 4 along with the
values of D-gap functions are shown in Table 2 and Table 3.

For these two examples, we may observe the similar properties to those of Example 6.2. As
1* tends ta), we confirm that these approximate stationary Nash equilibria of smoothed NEPs
also converge to a B-stationary Nash equilibrium of the original NEP. In fact, in Example 6.3,
sincey(r) is differentiable at:* with x* = 0.00001, we can check the KKT conditions for

each player’s problem directly at= z* as follows.

For Player I.
H 7064000 0.316295946
Hiz'+ Gz + Vay(z)d + AFN = | —1.49e006 | ,with X' = [
5.198888467
—1.49e007
PO 7.42e4006
r — 0o =
2.09e-005
For Player 1.
2056000 3.355974139
Hyz" + Gya' + Vay(z)d' + AfA" = | —1.68e008 | ,with\" = [
0.829159978
—1.51e4006
dgal —3.51e4006
—1.88e005

This indicates that we can look arf as an approximate B-stationary Nash equilibrium of the

original NEP.

7 Conclusions

In this paper, we have proposed an approach to deal with a special class of EPECs, where

the players share a parametric P-matrix linear complementarity constraint. Exploiting the good
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properties of a P-matrix, we have reformulated the EPEC as an equivalent NEP with nonsmooth
objective functions. We have further employed a smoothing method to construct a sequence of
smoothed NEPs to approximate the original NEP. We have established some convergence re-
sults about the approximate global Nash equilibria and approximate stationary Nash equilibria.

We have confirmed the validity of the proposed approach through numerical experiments.
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