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Abstract: The equilibrium problem with equilibrium constraints (EPEC) can be looked on

as a generalization of Nash equilibrium problem (NEP) and the mathematical program with

equilibrium constraints (MPEC) whose constraints contain a parametric variational inequality

or complementarity system. In this paper, we particularly consider a special class of EPECs

where a common parametric P-matrix linear complementarity system is contained in all play-

ers’ strategy sets. After reformulating the EPEC as an equivalent nonsmooth NEP, we use a

smoothing method to construct a sequence of smoothed NEPs that approximate the original

problem. We consider two solution concepts, global Nash equilibrium and stationary Nash

equilibrium, and establish some results about the convergence of approximate Nash equilibria.

Moreover we show some illustrative numerical examples.
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jective functions noncooperatively. In the Stackelberg (single-leader-follower) game [16, 22],

there exists a distinctive player (called the leader) who can anticipate the responses of the other

players (called the followers) and select his optimal strategy. At the same time, given the

leader’s strategy, all the followers complete with each other in the Nash noncooperative way.

To deal with the Stackelberg game, one can formulate it as a bilevel optimization problem,

which may further be reformulated as a mathematical program with equilibrium constraints

(MPEC) [16], where the lower level problem is parametrized by the upper level strategy. As a

generalization of the MPEC, the equilibrium problem with equilibrium constraints (EPEC) can

be formulated as a problem that consists of several MPECs, for which one seeks an equilibrium

point that is achieved when all MPECs are optimized simultaneously. The EPEC can be looked

on as a formulation of a noncooperative multi-leader-follower game [20]. Several researchers

have presented some practical applications of the EPEC, such as electricity markets [10, 11,

20]. However, only a few attempts have been made so far to develop numerical methods to

solve EPECs, even for a special class of problems.

In the study on optimization, one of important subjects is the approximation of optimization

problems. In particular, the notion of epiconvergence of functions plays a fundamental role

[13, 21]. Recently, G̈urkan and Pang [9] introduced a new notion of epiconvergence, which is

called multi-epiconvergence, to study the approximation of Nash equilibrium problems. It is

an extension of the notion of epiconvergence to a sequence of families of functions. By means

of the new notion, the authors of [9] presented a sufficient condition to ensure the convergence

of approximate global Nash equilibria.

In view of the difficulty in computing global Nash equilibria of EPECs that lack convexity,

it is reasonable to consider the stationarity in the players’ optimization problems. For example,

Hu and Ralph [11] propose two solution concepts called local Nash equilibrium and Nash

stationary equilibrium, which are based on local optimality and stationarity, respectively, in

each leader’s MPEC.

Inspired by their idea and the recent work of Chen and Fukushima [1], in this paper, we

consider a special class of EPECs with shared equilibrium constraints formulated as a linear

complementarity system. Under some particular assumptions on the linear complementarity

system, we show that the EPEC can be reformulated as an nonsmooth NEP. By means of

a smoothing technique, we further construct a sequence of smoothed NEPs to approximate

this NEP. We consider two solution concepts, global Nash equilibrium and stationary Nash

equilibrium, and establish some results about the convergence of approximate Nash equilibria.

Moreover, we present some numerical examples for this special class of EPECs.
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The organization of the paper is as follows. In the next section, we collect some basic defi-

nitions and present some preliminary results that will be used later. In Section 3, we introduce

the particular EPEC considered in the paper, and reformulate it as a NEP. We also introduce

a sequence of NEPs by means of a smoothing technique to approximate this NEP. In Section

4, we show some conditions that ensure the convergence of approximate global Nash equi-

libria. We further consider the approximation of stationary Nash equilibria and show some

corresponding results about convergence in Section 5. Next, in Section 6, we present some

numerical examples. Finally, we conclude our paper in Section 7.

Notations: The gradient∇f(x) of a differentiable functionf : Rn → R is regarded as a

column vector. Furthermore, we denote then×m (transposed) Jacobian matrix of a differen-

tiable functionF : Rn → Rm at a given pointx by∇F (x). For a real-valued functionf(x, y)

with variablesx ∈ Rn andy ∈ Rm, the partial gradients with respect tox andy are denoted by

∇xf(x, y) ∈ Rn and∇yf(x, y) ∈ Rm, respectively. A vector is regarded as a column vector.

However, if a vectorx is composed of several subvectorsx1, · · · , xn, it is denoted, for simplic-

ity of notation, as(x1, · · · , xn) instead of((x1)T , · · · , (xn)T )T , whereT denotes transposition.

We also useN to denote the set of natural numbers.

2 Preliminaries

2.1 EPECs with Shared Equilibrium Constraints

In this subsection, we describe a class of EPECs with shared equilibrium constraints and

define global and stationary Nash equilibria of the EPECs.

First, we start with the definitions of solution concepts for NEPs. In a NEP, denoted by

NEP(θ̂ν , X
ν)N

ν=1, there areN players labelled by integersν = 1, · · · , N . Playerν’s strategy

is denoted by vectorxν ∈ Rnν and his cost function̂θν(x) depends on all players’ strategies,

which are collectively denoted by the vectorx ∈ Rn consisting of subvectorsxν ∈ Rnν , ν =

1, · · · , N , andn = n1 + · · ·+nN . Playerν’s strategy setXν ⊆ Rnν is independent of the other

players’ strategies which are denoted collectively asx−ν = (x1, · · · , xν−1, xν+1, · · · , xN) ∈
Rn−nν . For every fixed but arbitraryx−ν ∈ X−ν ≡ ∏N

ν′=1,ν′ 6=ν Xν′ , playerν solves the follow-

ing optimization problem for his own variablexν :

minimize
xν

θ̂ν(x
ν , x−ν)

subject to xν ∈ Xν ,
(1)

where we writeθ̂ν(x) = θ̂ν(x
ν , x−ν) to emphasize the role ofxν in this problem. A tuple

3



of strategiesx∗ = (x∗,ν)N
ν=1 ∈ X ≡ ∏N

ν=1 Xν is called aglobal Nash Equilibriumif for all

ν = 1, · · · , N ,

θ̂ν(x
∗,ν , x∗,−ν) ≤ θ̂ν(x

ν , x∗,−ν) ∀xν ∈ Xν .

On the other hand, a tuple of strategiesx∗ is called astationary Nash Equilibriumif for all

ν = 1, · · · , N , x∗,ν is a stationary point for the optimization problem (1) withx−ν = x∗,−ν ,

where a stationary point means that it satisfies a first-order optimality condition for the problem.

Assuming the differentiability of the cost functionsθ̂ν and the convexity of the strategy setsXν ,

a stationary Nash equilibrium is characterized as a tuplex∗ = (x∗,ν)N
ν=1 ∈ X that satisfies the

following conditions for allν = 1, · · · , N :

∇xν θ̂ν(x
∗,ν , x∗,−ν)T (xν − x∗,ν) ≥ 0 ∀xν ∈ Xν .

If, in addition, θ̂ν are convex with respect toxν for all ν, then a stationary Nash equilibrium

reduces to a global Nash equilibrium. Whenθ̂ν is nondifferentiable, we need to introduce a

more general notion of stationarity, as will be done in Section 5.

Recall that a typical MPEC can be defined as the following optimization problem with two

sets of variables, the upper level variablesx ∈ Rn and the lower level variablesy ∈ Rm:

minimize θ(x, y)

subject to x ∈ X, y ∈ S(x),
(2)

whereθ : Rn+m → R, X ⊆ Rn, and for eachx ∈ X, S(x) is the solution set of an equilibrium

problem with parameterx, which may be represented as a variational inequality problem (VIP)

or a complementarity problem (CP).

As a generalization of the MPEC, the EPEC can be formulated as a problem where sev-

eral players try to solve their own MPECs simultaneously. In particular, we consider an EPEC

whereN players share the same equilibrium constraints as follows. For eachν = 1, · · · , N ,

let Xν ⊆ Rnν denote the feasible set of upper level variables of playerν, which is indepen-

dent of the other rival players’ variables. We also denote playerν’s objective function by

θν(x
ν , x−ν , y), which is dependent of his own upper level variablexν and the other rival play-

ers’ upper level variablesx−ν ∈ X−ν =
∏N

ν′=1,ν′ 6=ν Xν′ as well as the common lower level

variables denoted byy ∈ Rm. We assume that the shared equilibrium constraints are rep-

resented as the solution set of a parametric equilibrium problem. Specifically, each playerν
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solves the following optimization problem:

minimize
xν ,y

θν(x
ν , x−ν , y)

subject to xν ∈ Xν ,

y ∈ S(xν , x−ν),

(3)

whereθν : Rn+m → R, Xν ⊆ Rnν , andS(xν , x−ν) is the solution set of an equilibrium

problem with parameterx, which may be represented as a VIP or a CP.

2.2 Epiconvergence

In this subsection, we present some basic definitions and properties about epiconvergence

and multi-epiconvergence of functions. First, we begin with the following definitions.

Definition 2.1. [21] For a functionf : Rn → R, the epigraph off is the set

epif = {(x, α) ∈ Rn+1 | α ≥ f(x)}.

Definition 2.2. [12] A sequence of sets{Ck}k∈N, whereCk ⊂ Rn for all k ∈ N, is said to

converge, in the Painlevé-Kuratowski sense[21] , to a setC ⊂ Rn, denoted byCk → C, if

(a) any cluster point of a sequence{xk}k∈N, wherexk ∈ Ck for all k ∈ N, belongs toC;

(b) for eachx ∈ C, one can find a sequence{xk}k∈N such thatxk ∈ Ck for everyk ∈ N and

xk → x.

The theory of set convergence provides a convenient tool to study the approximation is-

sues in optimization. In particular, we can define the concept of epiconvergence through the

convergence of epigraphs.

Definition 2.3. [21] A sequence of functions{fk}k∈N on X ⊂ Rn, wherefk : Rn → R for

eachk, is said to epiconverge to a functionf : Rn → R onX, when epifk → epif ask →∞.

For checking the epiconvergence, the following proposition is useful.

Proposition 2.4. [21] Let{fk}k∈N be any sequence of functions onRn. Then,fk epiconverges

to f onX ⊂ Rn if and only if at each pointx ∈ X one has




lim inf
k→∞

fk(x
k) ≥ f(x) for every sequence{xk} such thatxk → x,

lim sup
k→∞

fk(x
k) ≤ f(x) for some sequence{xk} such thatxk → x.

(4)

It is easy to see from (4) that we have actuallyfk(x
k) → f(x) for at least one sequence

{xk}k∈N such thatxk → x. If this property holds for any such sequence{xk}, we say the

sequence of functions{fk}k∈N converges continuously to functionf .
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Definition 2.5. [21] A sequence of functions{fk}k∈N is said to converge continuously to a

functionf : Rn → R at a pointx ∈ X ⊂ Rn if fk(x
k) → f(x) for any sequence{xk}k∈N ⊂ X

converging tox, and to converge continuously onX ⊂ Rn if this is true at everyx ∈ X.

The next proposition gives a sufficient condition for a sequence of functions to epiconverge.

Proposition 2.6. [21] If a sequence of functions{fk}k∈N converges continuously tof : Rn →
R onX ⊂ Rn, then it epiconverges tof onX.

The concept of epiconvergence plays an essential role in studying approximation issues

for optimization problems. To study approximation issues for NEPs, which contain multiple

objective functions associated with all players’ optimization problems, Gürkan and Pang [9]

introduced the concept of multi-epiconvergence for a sequence of families of functions, as a

generalization of epiconvergence.

Definition 2.7. [9] A sequence of families of functions{{fν,k}N
ν=1}k∈N, wherefν,k : Rn → R

for each ν and k, is said to multi-epiconverge to the family of functions{fν}N
ν=1, where

fν : Rn → R for eachν, on the setX =
∏N

ν=1 Xν ⊂ Rn, if the following two conditions

hold for everyν = 1, · · · , N and everyx = (x1, · · · , xN) ∈ X:

(a) For every sequence{x−ν,k}k∈N ⊂ X−ν converging tox−ν , there exists a sequence{xν,k}k∈N

⊂ Xν converging toxν such that

lim sup
k→∞

fν,k(x
ν,k, x−ν,k) ≤ fν(x

ν , x−ν).

(b) For every sequence{xk}k∈N ⊂ X converging tox,

lim inf
k→∞

fν,k(x
k) ≥ fν(x).

The following proposition establishes the strong relation between multi-epiconvergence and

epiconvergence.

Proposition 2.8. [9] A sequence of families of functions{{fν,k}N
ν=1}k∈N multi-epiconverges to

the family of functions{fν}N
ν=1 on the setX =

∏N
ν=1 Xν if and only if for everyν = 1, · · · , N

and every sequence{x−ν,k}k∈N ⊂ X−ν converging to somex−ν,∞ ∈ X−ν , the sequence of

functions{ψν,k}k∈N, where eachψν,k : Rnν → R is defined by

ψν,k(x
ν) = fν,k(x

ν , x−ν,k), xν ∈ Xν ,

epiconverges to the functionψν,∞ : Rnν → R defined by

ψν,∞(xν) = fν(x
ν , x−ν,∞), xν ∈ Xν

on the setXν .
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Under the assumption of multi-epiconvergence, the following proposition shows a sufficient

condition for the convergence of approximate Nash equilibria.

Proposition 2.9. [9, Theorem 1]Suppose that the sequence of families of functions{{fν,k}N
ν=1}k∈N

multi-epiconverges to the family of functions{fν}N
ν=1 on the setX =

∏N
ν=1 Xν . If the sequence

{xk}k∈N, where eachxk = (xν,k)N
ν=1 is a global Nash equilibrium of NEP(fν,k, X

ν)N
ν=1, con-

verges tox∞ = (xν,∞)N
ν=1, thenx∞ is a global Nash equilibrium of NEP(fν , X

ν)N
ν=1.

2.3 P-Matrix Linear Complementarity Problem

The complementarity problem (CP) is to find a vectorx ∈ Rn such that

F (x) ≥ 0, x ≥ 0, F (x)T x ≥ 0,

whereF : Rn → Rn is a continuous function. In particular, whenF is an affine function

represented byF (x) = M̃x + q̃, whereM̃ ∈ Rn×n and q̃ ∈ Rn, the CP becomes the linear

complementarity problem (LCP), which is to find a vectorx ∈ Rn such that

M̃x + q̃ ≥ 0, x ≥ 0, xT (M̃x + q̃) ≥ 0.

We denote this problem as LCP(M̃, q̃).

Matrix M̃ ∈ Rn×n is said to be a P-matrix, if its all principal minors are positive, or equiv-

alently,

max
1≤i≤n

xi(M̃x)i > 0 for all x(6= 0) ∈ Rn.

The following proposition is well known.

Proposition 2.10. [3] A matrixM̃ ∈ Rn×n is a P-matrix if and only if LCP(M̃, q̃) has a unique

solution for any vector̃q ∈ Rn.

3 Equilibrium Problem with Shared P-matrix Linear Complementarity

Constraints

In this paper, we consider the particular class of EPECs, where each player’s optimization

problem contains a P-matrix linear complementarity constraint that is common to all players.

Specifically, forν = 1, · · · , N , given the other players’ strategiesx−ν , playerν solves the
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following problem:

minimize
xν ,y

θν(x
ν , x−ν , y)

subject to gν(xν) ≤ 0, hν(xν) = 0,

N∑
µ=1

Kµx
µ + My + q ≥ 0, y ≥ 0,

(
N∑

µ=1

Kµx
µ + My + q)T y = 0,

(5)

where functionsθν : Rn+m → R are continuously differentiable onRn+m, gν : Rnν → Rsν are

continuously differentiable and convex functions, andhν : Rnν → Rtν are affine functions. In

the following, we letXν denoteXν = {xν ∈ Rnν | gν(xν) ≤ 0, hν(xν) = 0}, which is convex

under the given assumptions ongν andhν . The shared linear complementarity constraints
N∑

ν=1

Kνx
ν + My + q ≥ 0, y ≥ 0, (

N∑
ν=1

Kνx
ν + My + q)T y = 0 (6)

are denoted by LCP(K1, · · · , KN ,M, q), whereKν ∈ Rm×nν , ν = 1, · · · , N , M ∈ Rm×m,

andq ∈ Rm. In particular, we assume thatM is a P-matrix.

Now we define the concept of global Nash equilibria for EPEC{(5)}N
ν=1.

Definition 3.1. A tuple of strategies(x∗, y∗) = (x∗,1, · · · , x∗,N , y∗) is called a global Nash

equilibrium of EPEC{(5)}N
ν=1, if for eachν, the pair of strategies(x∗,ν , y∗) is a global optimal

solution for MPEC(5) with x−ν = x∗,−ν .

By Proposition 2.10, for any fixedx = (xν)N
ν=1, LCP(K1, · · · , KN ,M, q) has a unique

solutiony, which is denotedy(x) or y(xν , x−ν), i.e.,S(x) = {y(x)}. It is well known that the

solution functiony(·) : Rn → Rm of the shared P-matrix linear complementarity problem (6)

is piecewise linear with respect to the parameterx [16]. Since every piecewise linear function

is globally Lipschitz, we have the following proposition.

Proposition 3.2. [1] There is a positive numberγ such that

‖y(x)− y(x′)‖ ≤ γ‖x− x′‖ for all x, x′ ∈ Rn.

We define the functionsΘν : Rn → R by

Θν(x
ν , x−ν) = θν(x

ν , x−ν , y(xν , x−ν)), ν = 1, · · · , N.

Further, we can reformulate EPEC{(5)}N
ν=1 as the NEP, denoted by NEP(Θν , X

ν)N
ν=1, where

each playerν solves the following problem:

minimize
xν

Θν(x
ν , x−ν)

subject to gν(xν) ≤ 0, hν(xν) = 0.
(7)
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Sincey(·) is not differentiable, problem (7) is a nonsmooth optimization problem for eachν.

Recall that NEP(Θν , X
ν)N

ν=1 is equivalent to EPEC{(5)}N
ν=1 thanks to the property of P-

matrix. This is made precisely in the following proposition.

Proposition 3.3. If x∗ is a global Nash equilibrium of NEP(Θν , X
ν)N

ν=1, then(x∗, y(x∗)) is

a global Nash equilibrium of EPEC{(5)}N
ν=1. Conversely, if(x∗, y(x∗)) is a global Nash

equilibrium of EPEC{(5)}N
ν=1, thenx∗ is a global Nash equilibrium of NEP(Θν , X

ν)N
ν=1.

Proof. To prove the first half, suppose to the contrary that(x∗, y(x∗)) is not a global Nash

equilibrium of EPEC{(5)}N
ν=1. Then there exist an indexν as well as vectors̃xν and ỹ such

that

θν(x̃
ν , x∗,−ν , ỹ) < θν(x

∗,ν , x∗,−ν , y(x∗,ν , x∗,−ν)),

and x̃ν ∈ Xν , ỹ ∈ S(x̃ν , x∗,−ν). Since the solution setS(x̃ν , x∗,−ν) is a singleton, we have

ỹ = y(x̃ν , x∗,−ν), and hence

θν(x̃
ν , x∗,−ν , y(x̃ν , x∗,−ν)) < θν(x

∗,ν , x∗,−ν , y(x∗,ν , x∗,−ν)),

that is,

Θν(x̃
ν , x∗,−ν) < Θν(x

∗,ν , x∗,−ν).

This contradicts the assumption thatx∗ is global Nash equilibrium of NEP(Θν , X
ν)N

ν=1. Thus

the first half is proved.

The second half can be proved in a similar manner, and hence the proof is omitted.

It is well known that the complementarity problem (6) can be reformulated as the following

system of nonsmooth equations:

Φ(x, y) ≡




φ(y1, (
∑N

ν=1 Kνx
ν + My + q)1)

...

φ(ym, (
∑N

ν=1 Kνx
ν + My + q)m)


 = 0,

whereφ : R2 → R is a function called an NCP function or a complementarity function [5] that

satisfies the condition

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

There are many NCP functions. In this paper, we use the Fischer-Burmeister (FB) function [6]

defined by

φ(a, b) = a + b−
√

a2 + b2.
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Smoothing is an effective technique for solving optimization problems and complementarity

problems [4, 7, 8, 19]. Here, we use a sequence of continuously differentiable functions{Φµ}
involving a scalar parameterµ > 0 to approximate the nonsmooth functionΦ : Rn+m → Rm,

whereΦµ : Rn+m → Rm is defined by

Φµ(x, y) ≡




φµ(y1, (
∑N

ν=1 Kνx
ν + My + q)1)

...

φµ(ym, (
∑N

ν=1 Kνx
ν + My + q)m)


 ,

andφµ : R2 → R is the smoothing Fischer-Burmeister function [14] defined by

φµ(a, b) = a + b−
√

a2 + b2 + 2µ2.

It is easy to see that

φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.

By virtue of the P-matrix property ofM , for any fixedx, the nonlinear equation

Φµ(x, y) = 0

has a unique solutiony, see [1], which we denoteyµ(x). Compared with the solution function

y(·) of the original LCP, the functionyµ(·) has some desirable properties.

Proposition 3.4. [1] There is a positive constantκ such that for anyx ∈ Rn andµ > µ′ ≥ 0,

we have

‖yµ(x)− yµ′(x)‖ ≤ κ(µ− µ′).

Particularly, whenµ′ = 0, we have

‖yµ(x)− y(x)‖ ≤ κµ.

Proposition 3.5. [1] For anyµ > 0, the functionyµ(·) is continuously differentiable onRn,

and there exists a bounded setΩ ⊂ Rn×m, which is independent ofµ, such that∇yµ(x) ∈ Ω

for all x ∈ Rn. Moreover, for any sequence{xk} ⊆ Dy converging tōx, whereDy denotes the

set of points at whichy(·) is differentiable, there is a positive sequence{µk} tending to0 such

that {
lim

k→∞
∇yµk(xk)

}
⊆

{
lim
x→x̄
x∈Dy

∇y(x)

}
⊆ ∂y(x̄), (8)

where∂y(x̄) is the Clarke generalized Jacobian ofy(·) at x̄.

In view of this result, we assume that, for anyν and any sequence{xk} ⊆ Dy converging

to x̄, {
lim

k→∞
∇xνyµk(xk)

}
⊆ ∂xνy(x̄), (9)
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where∂xνy(x̄) denotes the Clarke generalized partial Jacobian with respect toxν of y(·) at x̄.

For anyµ > 0, we consider a family of functions{Θ̂ν}N
ν=1, where the functionŝΘν(·; µ) :

Rn → R are defined by

Θ̂ν(x
ν , x−ν ; µ) = θν(x

ν , x−ν , yµ(xν , x−ν)), ν = 1, · · · , N.

By Proposition 3.5, the functionŝΘν(·; µ) are continuously differentiable for anyµ > 0. Let

{µk}k∈N ⊂ R be an arbitrary positive sequence such thatµk → 0. Then we define a sequence

of families of functions{{Θν,k}N
ν=1}k∈N by

Θν,k(x
ν , x−ν) = Θ̂ν(x

ν , x−ν ; µk), ν = 1, · · · , N. (10)

As an approximation to the NEP(Θν , X
ν)N

ν=1, we may consider the sequence of NEPs, denoted

by {NEP(Θν,k, X
ν)N

ν=1}k∈N, where each playerν solves the following smooth optimization

problem:

minimize
xν

Θν,k(x
ν , x−ν)

subject to gν(xν) ≤ 0, hν(xν) = 0.
(11)

4 Convergence of Approximate Global Nash Equilibria

In this section, we focus on the convergence of global Nash equilibria for the sequence

{NEP(Θν,k, X
ν)N

ν=1}k∈N, where functionsΘν,k are defined by (10) for a positive sequence{µk}
such thatµk → 0. We start with the property of the sequence of functions{yµk(·)}.

Lemma 4.1. The sequence of functions{yµk(·)}k∈N converges continuously to functiony(·) on

X.

Proof. By the definition of continuous convergence, we need to show thatyµk(xk) → y(x) for

any sequence{xk}k∈N ⊂ X converging tox ∈ X. By Propositions 3.2 and 3.4,

‖yµk(xk)− y(x)‖ ≤ ‖yµk(xk)− y(xk)‖+ ‖y(xk)− y(x)‖ ≤ κµk + γ‖xk − x‖,

and hence we haveyµk(xk) → y(x) ask →∞.

Next we show that the sequence of families of functions{{Θν,k}N
ν=1}k∈N multi-epiconverges

to {Θν}N
ν=1 onX. To this end, letx ∈ X be an arbitrary point and let{xk} ⊂ X be an arbitrary

sequence converging tox. Then, for eachν, we define the functionsΨν,k : Rnν → R and

Ψν : Rnν → R as follows:

Ψν,k(·) = Θν,k(·, x−ν,k) (12)

11



and

Ψν(·) = Θν(·, x−ν). (13)

Then we have the following lemmas about functionsΨν,k andΨν .

Lemma 4.2. For eachν andk, the functionsΨν andΨν,k are continuous onX.

Proof. SinceΨν,k(·) = Θν,k(·, x−ν,k) = θν(·, x−ν,k, yµk(·, x−ν,k)) andΨν(·) = Θν(·, x−ν) =

θν(·, x−ν , y(·, x−ν)), the continuity of these functions follows from the continuity of functions

θν(·), yµk(·) andy(·).

Lemma 4.3. For eachν, the sequence of functions{Ψν,k}k∈N converges continuously to func-

tion Ψν onXν .

Proof. By the definition of continuous convergence, we need to show that for anyx̃ν ∈ Xν

and any sequence{x̃ν,k}k∈N ∈ Xν such that̃xν,k → x̃ν , we haveΨν,k(x̃
ν,k) → Ψν(x̃

ν), i.e.,

θν(x̃
ν,k, x−ν,k, yµk(x̃ν,k, x−ν,k)) → θν(x̃

ν , x−ν , y(x̃ν , x−ν)). Sincex−ν,k → x−ν andµk → 0, it

follows from Lemma 4.1 thatyµk(x̃ν,k, x−ν,k) → y(x̃ν , x−ν), and henceθν(x̃
ν,k, x−ν,k, yµk(x̃ν,k,

x−ν,k)) → θν(x̃
ν , x−ν , y(x̃ν , x−ν)) by the continuity ofθν .

By Proposition 2.6, Lemma 4.3 means that the sequence of functions{Ψν,k}k∈N epicon-

verges to the functionΨν . Thus we have the following lemma.

Lemma 4.4. The sequence of families of functions{{Θν,k}N
ν=1}k∈N multi-epiconverges to the

family of functions{Θν}N
ν=1.

Proof. By Proposition 2.8, it is sufficient to show that for everyν = 1, · · · , N and every

sequence{x−ν,k}k∈N ⊂ X−ν converging to somex−ν ∈ X−ν , the sequence of functions

{Ψν,k}k∈N defined by (12) epiconverges to the functionΨν defined by (13). It is true as men-

tioned just after Lemma 4.3.

Based on this result, we establish convergence of the approximate global Nash equilibria.

Theorem 4.5. Let a sequence{xk}k∈N be such that eachxk is a global Nash equilibrium of

NEP(Θν,k, X
ν)N

ν=1. If {xk}k∈N converges tox∗, thenx∗ is a global Nash equilibrium of the

NEP(Θν , X
ν)N

ν=1.

Proof. Follows immediately from Lemma 4.4 and Proposition 2.9.
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5 Convergence of Approximate Stationary Nash Equilibria

In this section, we further investigate the behavior of a sequence of stationary Nash equi-

libria for {NEP(Θν,k, X
ν)N

ν=1}k∈N. This is important from the numerical point of view, since

in practice we may only expect to compute a stationary point of each player’s optimization

problem.

To this end, we need to introduce some stationary concepts which are associated with the

NEP(Θν , X
ν)N

ν=1. First, we notice that the functiony(·) is directionally differentiable every-

where [3, Theorem 7.4.2]. Then the directional derivative ofy(·, x−ν) at xν ∈ Rnν in the

directiondν ∈ Rnν , denoted byy′xν (xν , x−ν ; dν) ∈ Rm, is defined as follows:

y′xν (xν , x−ν ; dν) = lim
t↓0

y(xν + tdν , x−ν)− y(xν , x−ν)

t
.

Based on the concepts of B-stationary point and C-stationary point for a nonsmooth opti-

mization problem, we introduce the corresponding concepts for a nonsmooth NEP as follows.

We callx ∈ X aBouligand stationary(B-stationary) Nash equilibrium[1] of NEP(Θν , X
ν)N

ν=1

if for eachν = 1, · · · , N ,

Θ′
ν,xν (xν , x−ν ; dν) = ∇xνθν(x

ν , x−ν , y(xν , x−ν))T dν

+∇yθν(x
ν , x−ν , y(xν , x−ν))T y′xν (xν , x−ν ; dν) ≥ 0,

(14)

for all dν ∈ T (xν ; Xν). HereT (xν ; Xν) denotes the tangent cone [5] ofXν at xν , which

consists of all vectorsdν ∈ Rnν , called tangent vectors toXν at xν , satisfying the condition

that there exist a sequence of vectors{xν,k} ⊆ Xν and a sequence of positive scalars{τ ν
k } such

that

lim
k→∞

xν,k = xν , lim
k→∞

τ ν
k = 0, lim

k→∞
xν,k − xν

τ ν
k

= dν .

Associated with the players’ optimization problems, we introduce the following Mangasarian-

Fromovitz constraint qualification (MFCQ): For eachν = 1, · · · , N , {∇hν
j (x

ν) | j = 1, · · · , sν}
is a linearly independent set and there exists a vectordν ∈ Rnν such that

∇gν
i (xν)T dν < 0, i ∈ I(xν), ∇hν

j (x
ν)T dν = 0, j = 1, · · · , sν ,

whereI(xν) = {i | gν
i (xν) = 0}.

Under the MFCQ, the tangent coneT (xν ; Xν) can be represented precisely as follows:

T (xν ; Xν) = {dν | ∇gν
i (xν)T dν ≤ 0, i ∈ I(xν), ∇hν

j (x
ν)T dν = 0, j = 1, · · · , sν}.

Then,x = (xν)N
ν=1 ∈ Rn is called aClarke stationary(C-stationary) Nash equilibriumfor

NEP(Θν , X
ν)N

ν=1 if for eachν, xν ∈ Rnν together with some Lagrange multipliers(λν , ην) ∈

13



Rsν ×Rtν satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

∂xνΘν(x
ν , x−ν) +∇gν(xν)λν +∇hν(xν)ην 3 0,

gν(xν) ≤ 0, λν ≥ 0, (λν)T gν(xν) = 0,

hν(xν) = 0,

(15)

where∂xνΘν(x
ν , x−ν) is the Clarke generalized gradient ofΘν(·, x−ν) atxν .

Since functionyµ(·) is continuously differentiable onRn for anyµ > 0, the B-stationarity

condition for the NEP(Θν,k, X
ν)N

ν=1 can be written as follows:

∇xνΘν,k(x
ν , x−ν)T dν =∇xνθν,k(x

ν , x−ν , yµk(xν , x−ν))T dν

+∇yθν,k(x
ν , x−ν , yµk(xν , x−ν))T∇xνyµk(xν , x−ν)T dν ≥ 0,

(16)

for all dν ∈ T (xν ; Xν).

Moreover, for eachk, we sayx = (xν)N
ν=1 ∈ Rn is a KKT point of NEP(Θν,k, X

ν)N
ν=1, if

for eachν, xν ∈ Rnν together with some(λν , ην) ∈ Rsν ×Rtν satisfies the following system:

∇xνΘν,k(x
ν , x−ν) +∇gν(xν)λν +∇hν(xν)ην = 0,

gν(xν) ≤ 0, λν ≥ 0, (λν)T gν(xν) = 0,

hν(xν) = 0.

(17)

Note that under the MFCQ, conditions (16) and (17) are equivalent.

Now we establish the following result about the convergence of a sequence of KKT points of

smoothed problems{NEP(Θν,k, X
ν)N

ν=1}k∈N to a C-stationary Nash equilibrium of NEP(Θν , X
ν)N

ν=1.

Theorem 5.1. Suppose that the feasible setX = {x = (xν)N
ν=1 ∈ Rn|gν(xν) ≤ 0, hν(xν) =

0, ν = 1, · · · , N} of NEP(Θν , X
ν)N

ν=1 is bounded and the MFCQ holds at anyx ∈ X. Let

{xk}k∈N be a sequence of B-stationary Nash equilibria of the family of smoothed problems

{NEP(Θν,k, X
ν)N

ν=1}k∈N. Moreover, we assume that(9) holds. Then every accumulation point

x̄ of the sequence{xk}k∈N is a C-stationary Nash equilibrium of NEP(Θν , X
ν)N

ν=1.

Proof. Since under the MFCQ, a B-stationary Nash equilibrium and a KKT point are equivalent

for NEP(Θν,k, X
ν)N

ν=1. Therefore, for eachk andν, along with some corresponding Lagrange

multipliers pair(λν,k, ην,k), we have from (17)

∇xνyµk(xν,k, x−ν,k)∇yθν(x
ν,k, x−ν,k, yµk(xν,k, x−ν,k))

+∇xνθν(x
ν,k, x−ν,k, yµk(xν,k, x−ν,k)) +∇gν(xν,k)λν,k +∇hν(xν,k)ην,k = 0,

gν(xν,k) ≤ 0, λν,k ≥ 0, (λν,k)T gν(xν,k) = 0,

hν(xν,k) = 0.

(18)
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Note that the sequence{xk} is bounded since the feasible set is bounded. Letx̄ be an accumula-

tion point of{xk}. For eachν = 1, · · · , N , by the continuity of functions∇xνθν ,∇yθν ,∇gν ,∇hν

andy(·) along with Proposition 3.3, we have

lim
k→∞

∇xνθν(x
ν,k, x−ν,k, yµk(xν,k, x−ν,k)) = ∇xνθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν)),

lim
k→∞

∇yθν(x
ν,k, x−ν,k, yµk(xν,k, x−ν,k)) = ∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν)),

lim
k→∞

∇gν(xν,k) = ∇gν(x̄ν),

lim
k→∞

∇hν(xν,k) = ∇hν(x̄ν).

By (9), for eachν there exist a matrixV ν ∈ ∂xνy(x̄) and a subsequence of{xk}, still denoted

by {xk} for simplicity, such thatxk → x̄ and

lim
k→∞

∇xνyµk(xν,k, x−ν,k) = V ν ∈ ∂xνy(x̄ν , x̄−ν).

Since the MFCQ holds at̄x, it is not difficult to show that the sequence{(λk, µk)}k∈N is

bounded. Without loss of generality, we assume that(xk, λk, µk) → (x̄, λ̄, µ̄).

Then, for eachν = 1, · · · , N , it follows from (18) that

V ν∇yθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν)) +∇xνθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν))

+∇gν(x̄ν)λ̄ν +∇hν(x̄ν)η̄ν = 0,

gν(x̄ν) ≤ 0, λ̄ν ≥ 0, (λ̄ν)T gν(x̄ν) = 0,

hν(x̄ν) = 0.

(19)

By the continuous differentiability of functionθν for eachν, the Jacobian chain rule [2, Theo-

rem 2.6.6] yields

∇xνθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν)) + ∂xνy(x̄ν , x̄−ν)∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν)) = ∂xνΘν(x̄
ν , x̄−ν).

This along with (19) means that (15) holds for allν = 1, · · · , N with (x, λ, µ) = (x̄, λ̄, µ̄).

Therefore,̄x is a C-stationary Nash equilibrium of NEP(Θν , X
ν)N

ν=1.

Now we consider some properties about the B-stationary points.

Lemma 5.2. Let x̄ ∈ X be an accumulation point of the sequence{xk}, where eachxk is a

B-stationary Nash equilibrium of NEP(Θν,k, X
ν)N

ν=1. Assume that(9) holds and so does the

MFCQ at x̄. Then for eachν = 1, · · · , N , there exists a matrixV ν ∈ ∂xνy(x̄ν , x̄−ν) such that

∇xνθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν))T dν +∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν))T (V ν)T dν ≥ 0,

for all dν ∈ T (x̄ν ; Xν).
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Proof. Since eachxk is a B-stationary Nash equilibrium of NEP(Θν,k, X
ν)N

ν=1, we have

∇xνΘν,k(x
ν,k, x−ν,k)T dν,k =∇xνθν(x

ν,k, x−ν,k, yµk(xν,k, x−ν,k))T dν,k

+∇yθν(x
ν,k, x−ν,k, yµk(xν,k, x−ν,k))T∇xνyµk(xν,k, x−ν,k)T dν,k

≥ 0

for all dν,k ∈ T (xν,k; Xν).

For eachν = 1, · · · , N , sincex̄ is an accumulation point of{xk}, by (9), there exist a

matrixV ν ∈ ∂xνy(x̄ν , x̄−ν) and a subsequence of{xν,k}, still denoted by{xν,k} for simplicity,

which converges tōxν , such that

lim
k→∞

∇xνyµk(xν,k, x−ν,k) = V ν ∈ ∂xνy(x̄ν , x̄−ν).

Further, for anydν ∈ T (x̄ν ; X), by the MFCQ, there exists a sequence{dν,k} such thatdν,k →
dν ask →∞. Then, by passing to the limitk →∞ in (16), we can deduce that

∇xνθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν))T dν +∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν))T (V ν)T dν ≥ 0.

Since this holds for alldν ∈ T (x̄ν ; X), the desired result follows.

In the light of Lemma 5.2, we show a convergence result about B-stationary Nash equilibria.

To this end, we introduce the following concept.

Definition 5.3. [2] For eachν = 1, · · · , N , functionΘν : Rn → R is said to be regular if, for

all xν ∈ Rnν , x−ν ∈ Rn−nν anddν ∈ Rnν , the directional derivativeΘ′
ν,xν (xν , x−ν ; dν) exists

and satisfies

Θ′
ν,xν (xν , x−ν ; dν) = lim sup

zν→xν

t↓0

Θν(z
ν + tdν , x−ν)−Θν(z

ν , x−ν)

t
.

Theorem 5.4. Suppose that the feasible setX = {x = (xν)N
ν=1 ∈ Rn|gν(xν) ≤ 0, hν(xν) =

0, ν = 1, · · · , N} of NEP(Θν , X
ν)N

ν=1 is bounded, the MFCQ holds at anyx ∈ X, and each

objective functionΘν is regular with respect to its own variablexν , ν = 1, · · · , N . Let{xk} be

a sequence of B-stationary Nash equilibria of NEP(Θν,k, X
ν)N

ν=1, and assume that(9) holds.

Then every accumulation point of{xk} is a B-stationary Nash equilibrium of NEP(Θν , X
ν)N

ν=1.

Proof. The sequence{xk} is bounded sinceX is bounded. Let̄x be an arbitrary accumulation

point of {xk}. Then, by Lemma 5.2, for eachν = 1, · · · , N , there exists a matrixV ν ∈
∂xνy(x̄ν , x̄−ν) such that

∇xνθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν))T dν +∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν))T (V ν)T dν ≥ 0 (20)
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for all dν ∈ T (x̄ν ; Xν). Moreover, by the Jacobian chain rule [2, Theorem 2.6.6], we have

∇xνθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν)) + V ν∇yθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν)) ∈ ∂xνΘν(x̄
ν , x̄−ν). (21)

Further, by the regularity ofΘν and [2, Proposition 2.1.2 (b)], we also have

Θ′
ν,xν (x̄ν , x̄−ν ; dν) = max{(ξν)T dν : ξν ∈ ∂xνΘν(x̄

ν , x̄−ν)}

for all dν ∈ T (x̄ν ; Xν).

Therefore, in view of (20) and (21), we can deduce that

Θ′
ν,xν (x̄ν , x̄−ν ; dν) ≥∇xνθν(x̄

ν , x̄−ν , y(x̄ν , x̄−ν))T dν

+∇yθν(x̄
ν , x̄−ν , y(x̄ν , x̄−ν))T (V ν)T dν ≥ 0

for all dν ∈ T (x̄ν ; Xν). Since this holds for allν = 1, · · · , N , x̄ is a B-stationary Nash

equilibrium of NEP(Θν , X
ν)N

ν=1.

6 Numerical Experiments

In this section, we show some numerical results for the class of EPECs described in Section

3. Specifically, we consider the following EPEC with two players, which contains a shared

P-matrix linear complementarity constraint parameterized by the upper level variablesx =

(xI, xII ) ∈ Rn:

Player I’s problem:

minimize
xI ,y

1

2
(xI)T HIx

I + (xI)T GIx
II + (cI)T y

subject to AIx
I ≤ bI,

My + NIx
I + NIIx

II + q ≥ 0, y ≥ 0,

yT (My + NIx
I + NIIx

II + q) = 0.

Player II’s problem:

minimize
xII ,y

1

2
(xII )T HIIx

II + (xII )T GIIx
I + (cII )T y

subject to AIIx
II ≤ bII ,

My + NIx
I + NIIx

II + q ≥ 0, y ≥ 0,

yT (My + NIx
I + NIIx

II + q) = 0.
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We assume thatM ∈ Rm×m is a P-matrix,Hν ∈ Rm×nν are symmetric positive definite

matrices, andGν ∈ Rnν×n−ν , q ∈ Rm, cν ∈ Rm, Aν ∈ Rsν×nν , bν ∈ Rsν , Nν ∈ Rm×nν , where

ν = I, II.

In light of the analysis about the P-matrix LCP in the previous sections, after substituting

y(x) = y(xI, xII ) for y in the objective functions of two players, we can further reformulate this

EPEC as the following nonsmooth NEP:

Player I’s problem:

minimize
xI

1

2
(xI)T HIx

I + (xI)T GIx
II + (cI)T y(x)

subject to AIx
I ≤ bI.

Player II’s problem:

minimize
xII

1

2
(xII )T HIIx

II + (xII )T GIIx
I + (cII )T y(x)

subject to AIIx
II ≤ bII .

Remark 6.1. Since we replacey by y(x) in the objective functions of two players, the two

vector variables(xν , y) of playerν in the above EPEC reduce to one vector variablexν in the

nonsmooth NEP.

Moreover, we have the following sequence of smoothed approximations to the above NEP:

Player I’s problem:

minimize
xI

1

2
(xI)T HIx

I + (xI)T GIx
II + (cI)T yµk(x)

subject to AIx
I ≤ bI.

Player II’s problem:

minimize
xII

1

2
(xII )T HIIx

II + (xII )T GIIx
I + (cII )T yµk(x)

subject to AIIx
II ≤ bII .

By concatenating their KKT conditions, we have the following mixed CP for eachk:

HIx
I + GIx

II +∇xIyµk(x)cI + AT
I λI = 0,

HIIx
II + GIIx

I +∇xII yµk(x)cII + AT
II λ

II = 0,

−AIx
I + bI ≥ 0, λI ≥ 0, (−AIx

I + bI)T λI = 0,

−AIIx
II + bII ≥ 0, λII ≥ 0, (−AIIx

II + bII )T λII = 0,

whereλν ∈ Rsν , ν = I, II.
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It is well-known that a mixed CP is equivalent to a box constrained variational inequality

problem (BVIP) [5]. Consequently, to deal with the above mixed CP, we consider the following

BVIP: Find a vectorz = (x, λ) ∈ B such that

Fµk(z)T (z′ − z) ≥ 0 for all z′ = (x′, λ′) ∈ B, (22)

whereB = {z ∈ RnI+nII +sI+sII |li ≤ zi ≤ ui, li = −∞, i = 1, · · · , nI + nII ; li = 0, i =

nI + nII + 1, · · · , nI + nII + sI + sII ; ui = +∞, i = 1, · · · , nI + nII + sI + sII}, and

Fµk(z) =




HIx
I + GIx

II +∇xIyµk(x)cI + AT
I λI

HIIx
II + GIIx

I +∇xII yµk(x)cII + AT
II λ

II

−AIx
I + bI

−AIIx
II + bII




.

The Jacobian matrix of functionFµk(z) can be written as

∇Fµk(z) =





 HI GT

II

GT
I HII


 +∇x


 ∇xIyµk(x)cI

∇xII yµk(x)cII


 ,


 −AT

I 0

0 −AT
II





 AI 0

0 AII


 , 0




.

To solve the BVIP, Kanzow and Fukushima [15] present a Newton-type method applied

to the nonsmooth equation involving the natural residual of the BVIP. The algorithm uses the

D-gap function to ensure global convergence of the Newton-type method. To solve the BVIP

(22), we use Algorithm 3.2 in [15] with the following parameter setting:

α = 0.9, β = 1.1, δ = 0.6, ρ = 10−7,

σ = 10−5, p = 2.1, η = 0.9, ε = 10−6.

Example 6.2.The problem data are given as follows:

HI =


 3.6 −1.2

−1.5 2.8


 , HII =


 7.5 −2.6

−2.6 5.7


 , GI =


 1.1 −1.3

−2.4 1.6


 ,

GII =


 −1.2 2.3

1.4 −2.5


 ,M =


 3.6 −1.2

−1.2 2.8


 , NI =


 2.1 −1.3

−3.4 2.3


 ,

NII =


 −5.4 1.6

−6.2 2.1


 , q =


 1.2

1.6


 , cI =


 −2.3

−3.2


 , cII =


 −2.5

−2.4


 ,

AI =
(

3.3 −2.4
)

, AII =
(
−2.5 2.1

)
, bI = −2.8, bII = −7.5.
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Table 1. Computational Results for Example 6.1

µk 0.01 0.001 0.0001 0.00001

xk




−0.26175308

0.806760257

2.694216811

−0.364020746







−0.261753277

0.806760076

2.694217254

−0.364019171







−0.261752853

0.806760137

2.694217618

−0.36401958







−0.261753229

0.806760144

2.694217171

−0.364018987




yk


 7.153482977

8.519043099





 7.153476511

8.519035193





 7.153477701

8.519037369





 7.153476063

8.519034592




D-gap 3.43e-11 4.25e-11 3.34e-11 4.58e-11

Table 2. Computational Results for Example 6.2

µk 0.01 0.001 0.0001 0.00001

xk




−0.692667223

1.016579205

−0.108166204

−0.464648787

0.034905477

0.619646979







−0.692694868

1.016540797

−0.108194512

−0.455051037

0.033601554

0.631711506







−0.692701651

1.016545116

−0.108193163

−0.455051025

0.033580781

0.631712791







−0.692831978

1.016420082

−0.108237243

−0.450723891

0.032985916

0.637152985




yk




0.361580945

1.098110671

0.348600029







0.385396590

1.252027604

0.341167025







0.385401922

1.252031927

0.341160304







0.469066735

1.642687333

0.259482587




D-gap 1.52e-10 9.78e-11 9.34e-11 8.82e-11

Table 3. Computational Results for Example 6.3

µk 0.01 0.001 0.0001 0.00001

xk




−0.716520923

0.994069232

−0.115604893

−0.583389678

0.051365820

0.470423193







−0.71659095

0.994004031

−0.115627191

−0.583377728

0.051365611

0.470437974







−0.716591707

0.994003398

−0.115627574

−0.583377443

0.051364984

0.470437871







−0.716591204

0.994002798

−0.115626892

−0.583378032

0.051366123

0.470438807




yk




0.063229798

0.066149112

0.781141113







0.063221059

0.06612975

0.781112525







0.063221067

0.066129587

0.781112180







0.063221092

0.066129569

0.781112210




D-gap 2.52e-10 2.46e-10 2.60e-10 2.19e-10

20



The computed solutionsxk = (xk,I
1 , xk,I

2 , xk,II
1 , xk,II

2 )T andyk = (yµk,1(x
k), yµk,2(x

k))T of the

sequence of smoothed NEPs withµk = 10−k−1, k = 1, 2, 3, 4 along with the corresponding

values of the D-gap functions are shown in Table 1.

We confirm that these approximate stationary Nash equilibria of smoothed NEPs converge

to a B-stationary Nash equilibrium of the original NEP asµk tends to0. In fact, sincey(x)

is differentiable atxk with µk = 0.00001, we can check the KKT conditions for each player’s

problem directly atx = xk as follows.

For Player I.

HIx
I + GIx

II +∇xIy(x)cI + AT
I λI =


 4.56e-006

−8.14e-007


 , with λI = 0.597171017,

AIx
I − bI = −1.00e-005.

For Player II.

HIIx
II + GIIx

I +∇xII y(x)cII + AT
II λ

II =


 5.07e-006

−3.25e-006


 , with λII = 3.077495909,

AIIx
II − bII = 1.72e-005.

This indicates that we can look onxk as an approximate B-stationary Nash equilibrium of the

original NEP.

Next, we solve two EPECs where both the upper level variables and the lower level variable

are three dimensional.

Example 6.3.The problem data are given as follows:

HI =




10.0 3.6 2.7

3.6 12.0 −1.9

2.7 −1.9 15.0


 , HII =




12.0 −1.2 3.1

−1.2 10.0 2.5

3.1 2.5 8.0


 , GI =




1.2 0.0 −1.6

1.3 −2.1 0.0

−1.2 1.5 0.3


 ,

GII =




1.2 0.0 −1.5

1.5 1.4 0.0

−1.2 1.1 −1.4


 ,M =




5.6 −1.2 1.5

3.2 7.2 −2.4

−1.8 2.5 6.4


 , NI =




−1.1 0.0 −1.2

1.5 −1.0 −0.3

−1.4 0.0 1.3


 ,

NII =




−1.3 0.9 −0.6

−1.4 1.2 0.0

1.5 −0.7 1.4


 , q =




−3.2

−2.5

−4.8


 , cI =




−3.6

−2.7

−4.8


 , cII =




−3.2

−2.4

−4.5


 ,

AI =


 1.6 −1.3 −1.2

1.2 −1.7 1.3


 , AII =


 1.3 −1.5 −1.2

1.8 1.2 −1.3


 , bI =


 −2.3

−2.7


 , bII =


 −1.4

−1.6


 .
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Example 6.4. The problem data are the same as those in Example 6.3 except thatcI, cII andq

are given as follows:

cI =




−3.6

2.7

−4.8


 , cII =




3.2

−2.4

4.5


 , q =




−3.2

2.5

−4.8


 .

The computed solutionsxk = (xk,I
1 , xk,I

2 , xk,I
3 , xk,II

1 , xk,II
2 , xk,II

3 )T andyk = (yµk,1(x
k), yµk,2(x

k),

yµk,3(x
k))T of the sequence of smoothed NEPs withµk = 10−k−1, k = 1, 2, 3, 4 along with the

values of D-gap functions are shown in Table 2 and Table 3.

For these two examples, we may observe the similar properties to those of Example 6.2. As

µk tends to0, we confirm that these approximate stationary Nash equilibria of smoothed NEPs

also converge to a B-stationary Nash equilibrium of the original NEP. In fact, in Example 6.3,

sincey(x) is differentiable atxk with µk = 0.00001, we can check the KKT conditions for

each player’s problem directly atx = xk as follows.

For Player I.

HIx
I + GIx

II +∇xIy(x)cI + AT
I λI =




1.76e-006

−1.49e-006

−1.49e-007


 , with λI =


 0.316295946

5.198888467


 ,

AIx
I − bI =


 7.42e-006

2.09e-005


 .

For Player II.

HIIx
II + GIIx

I +∇xII y(x)cII + AT
II λ

II =




2.65e-006

−1.68e-008

−1.51e-006


 , with λII =


 3.355974139

0.829159978


 ,

AIIx
II − bII =


 −3.51e-006

−1.88e-005


 .

This indicates that we can look onxk as an approximate B-stationary Nash equilibrium of the

original NEP.

7 Conclusions

In this paper, we have proposed an approach to deal with a special class of EPECs, where

the players share a parametric P-matrix linear complementarity constraint. Exploiting the good
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properties of a P-matrix, we have reformulated the EPEC as an equivalent NEP with nonsmooth

objective functions. We have further employed a smoothing method to construct a sequence of

smoothed NEPs to approximate the original NEP. We have established some convergence re-

sults about the approximate global Nash equilibria and approximate stationary Nash equilibria.

We have confirmed the validity of the proposed approach through numerical experiments.
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