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Abstract

This paper presents a method for automatically transforming faithful
transcripts or ASR results into clean transcripts for human consumption
using a framework we label speaking style transformation (SST). We per-
form a detailed analysis of the types of corrections performed by human
stenographers when creating clean transcripts, and propose a model that is
able to handle the majority of the most common corrections. In particu-
lar, the proposed model uses a framework of monotonic statistical machine
translation to perform not only the deletion of disfluencies and insertion of
punctuation, but also correction of colloquial expressions, insertions of omit-
ted words, and other transformations. We provide a detailed description of
the model implementation in the weighted finite state transducer (WFST)
framework. An evaluation of the proposed model on both faithful transcripts
and speech recognition results of parliamentary and lecture speech demon-
strates the effectiveness of the proposed model in performing the wide variety
of corrections necessary for creating clean transcripts.
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1. Introduction

One of the major goals of automatic speech recognition (ASR) is to be
used in the automatic or semi-automatic creation of transcripts for human
consumption. In order to achieve this goal, ASR-based transcription systems
must be able to create transcripts that are similar to those created by hu-
mans assigned to do the same task. While conventional ASR systems are
generally designed to faithfully reproduce utterances word-for-word, faithful
transcripts are generally not suitable for human consumption. It has been
shown that significant editing of faithful transcripts is necessary to create
text that is aesthetically pleasing and easy to read [1].

This editing is necessary due to the spontaneous nature of speech. As
speakers are generally planning what they say next as they speak, in many
cases they will use fillers to buy time to think about what they want to say
next, or go back to repeat or correct previously spoken information. Stenog-
raphers consistently remove these disfluencies [2] from final transcripts1, and
there has been significant amounts of research into systems for disfluency
detection and removal.

However, even in apparently fluent speech, there is still a large discon-
nect between spoken and written language. The most obvious difference is
the lack of punctuation in speech, which must be replaced to allow for read-
able written text [1]. In addition, there is often a large amount of redundancy
in speech, which is added by speakers to attract listeners’ attention and al-
low them to keep up with the speakers pace more easily. For example, the
phrase “this, you know, is serious business” would be edited into “this is se-
rious business” in a parliamentary record to remove the contentless discourse
marker “you know” that is simply added for emphasis. This redundant in-
formation can be removed in transcripts, as readers may read transcripts at
their own pace.

Additionally, there are significant stylistic differences between speech and
written text that are corrected in transcripts. For example, colloquial expres-
sions are transformed into written-style expressions, dialects are normalized
into standard text, and omitted function words are re-inserted.

This paper first investigates the types of editing necessary to create nat-
ural written transcripts from faithful transcripts or ASR results, and then

1In fact, many stenographers say they do not even “hear” disfluencies when making
transcriptions.
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proposes a system that is able to automatically perform these edits. In par-
ticular, using corpora of Japanese parliamentary speeches, we examine the
type of transformations necessary to create formal transcripts, focusing on
not only disfluencies, but also on stylistic transformations. Based on the re-
sults of this study, we present an approach to speaking style transformation
(SST), a general framework to automatically convert faithful text or ASR
results into transcript-style text, for use in automatic transcription systems.

We adopt techniques from statistical machine translation (SMT), re-
formulating the model to match the requirements of the SST task. Using
this re-formulated model, we introduce a number of improvements over tra-
ditional noisy-channel models such as log-linear weighting, context-sensitive
translation modeling, and an efficient implementation based on weighted fi-
nite state transducers (SMT).

We evaluate the model on a large corpus of official transcripts from the
Japanese Diet (national parliament), using both faithful transcripts and ASR
results as input. In this evaluation, we find that the proposed SMT-based
method is able to accurately conduct both disfluency correction and stylistic
transformation. We also find that the proposed modeling techniques result
in significant improvements over a conventional noisy-channel model.

The rest of this paper is organized as follows: In Section 2, we describe the
task of speaking style transformation in detail. We define the type of edits we
need to handle in order to create transcript-style text from spoken language,
and provide examples and a detailed tabulation of different correction types
for a corpus of the Japanese parliament. In Section 3, we provide a survey of
previous work on the topic, describing to what extent each work covers the
edits necessary to create clean transcripts.

In Section 4, we describe the framework of monotonic statistical machine
translation (MSMT) that we adopt for this task. We formalize this model
using weighted finite state transducers (WFSTs), which allows for efficient
processing, as well as the coupling of SST with WFST-based ASR systems. In
Section 5, we describe an extension of the traditional noisy channel model,
allowing the model to handle context. By properly handling context, we
expect to perform significantly better on context-sensitive edits such as the
deletion of discourse markers, or the insertion of dropped words. In Section 6,
we describe a number of additional features tailored to the SST task that were
incorporated in a log-linear model.

In Section 7, we present results for two evaluation tasks on transcript
creation for spontaneous Japanese in a semi-spontaneous, formal context.
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We investigate a number of different statistical models, and examine the
effect of data size on the effectiveness of each model.

Finally, in Section 8 we conclude the paper with a retrospective on what
the proposed model was able (and not able) to do, and provide a look at
possible future directions.

2. Speaking Style Transformation

In speaking style transformation (SST), the input to a system is faithful
transcripts or ASR results that lack punctuation and contain spoken lan-
guage phenomena rendering them inappropriate for formal transcripts. The
desired output of the system is clean text, punctuated and free of extrane-
ous or colloquial expressions, that is appropriate for a written record. This
clean text output is desirable for both human readability [1] or later machine
processing such as machine translation [3, 4].

2.1. Types of Transformations Performed by Stenographers

As our goal is to create transcripts that are of similar quality to those
created by human stenographers, it is useful to examine the kind of edits
performed by human stenographers in the creation of transcripts. For this
purpose, we created the following categorization, which is roughly based on
transcription guidelines drafted by stenographers working for local govern-
ments in Japan.

In general, the edits performed by stenographers can be split into three
phases, simple editing, intermediate editing, and semantic checking, with
several separate types of edits being performed at each phase.

1. Simple editing includes the deletion of disfluencies, insertion of dropped
function words, correction of colloquial and dialectal expressions, and
other relatively simple edits.

(a) Removal of fillers: Removal of fillers that are used exclusively to
buy time while the speaker plans his/her next utterance. Fillers
include words such as “um” in English or “e-tto” in Japanese.

(b) Removal of discourse markers: Discourse markers include words
such as “well” in English or “desune” in Japanese, which are used
to buy time in some contexts, but also are parts of actual fluent
speech in other contexts, and thus cannot be deleted 100% of the
time.
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(c) Insertion of dropped words: In colloquial speech, function words
such as postpositions in Japanese or neutral verbs in English are
often dropped [5]. These words must be recovered to create gram-
matical transcripts.

(d) Correction of colloquial or dialectal expressions: There are many
expressions that are generally acceptable in speech, but are changed
to more appropriate written language in transcripts. For example,
“she was like” is often changed into “she said” in English [5]. In
addition, in many languages, a particularly notable case of which
being Arabic [6], dialectal speech is generally converted into a
standardized form in transcriptions.

(e) Removal of extraneous expressions: In many cases, a speaker will
start speaking with the words “Mr. Chairman” or ask questions
such as “how much time do I have left?” These contentless expres-
sions are removed in the process of creating cleaned transcripts.

(f) Removal of repeats and repairs: Words are often repeated (“the
Federal, Federal reserve board”), or repaired (“the FR..., Fed-
eral Reserve Board”) by speakers. In transcripts, the earlier part
(reparandum) of the repeat or repair is deleted or merged with the
later part. It should be noted that repeats or repairs also often
contain word fragments, as in the second example.

(g) Insertion of punctuation or line breaks: Punctuation and line
breaks improve readability by allowing for the division of text
into coherent units. As punctuation marks and line breaks are
not explicitly present in speech, they must be inserted during the
transcript creation process.

2. Intermediate editing: considers the grammar and sentence structure
of the text.

(a) Correction of out-of-order words or phrases: In spontaneous speech,
speakers will often forget to say something at the beginning of a
sentence, and add it on later as an afterthought. These words or
phrases are re-ordered into a more natural position, where they
would occur if the speaker had the ability to edit his or her utter-
ance. For example, “he will be going tonight, probably” becomes
“he will probably be going tonight.”

(b) Correction of run-on sentences: In spontaneous speech, partic-
ularly formal spontaneous speech, many speakers will use long
sentences with no clear break point. These run-on sentences can
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Table 1: The size of the Japanese parliament corpus used for analysis of correction types.

Words in Faithful Transcript 418k
Words in Clean Transcript 379k
Percentage of Words Corrected 12.87%

Punctuation
Periods 7917
Commas 22833

be split into multiple sentences for improved readability. This of-
ten includes both the insertion of punctuation and the deletion of
a conjunction such as “and” or “but.”

(c) Syntactic check: Correction of mistaken grammar such as incor-
rect tense, plural forms, or substituted function words such as
articles, prepositions, or particles.

3. Semantic check considers the actual meaning of the text. This mainly
consists of the correction of factual errors, as well as common techni-
cal terms, or quotes that are not spoken 100% accurately. Another
less common example is the redacting of politically offensive words or
confidential information.

2.2. An Empirical Analysis of Correction Types

We performed an analysis of the prevalence of each type of correction
required using transcripts from parliamentary meetings. The reason why we
chose parliamentary meetings specifically is because they represent an im-
portant target of transcription systems and require a relatively large number
of stylistic transformations that cannot be classified as disfluencies. Specif-
ically, we analyzed a corpus from the House of Representatives of the Diet
(national parliament) of Japan [7].

We selected a number of committee meetings, which consist of semi-
spontaneous speeches and question-and-answer sessions, purposely avoiding
the plenary sessions for lack of spontaneity. Text from the official record of
the Diet was used as clean transcripts, and faithful transcripts were prepared
by workers contracted for the task. Details on the corpus size can be found
in Table 1 and the number of each type of correction can be found in Ta-
ble 2. A number of interesting observations can be gleaned from this data,
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Table 2: A break-down of corrections in the Japanese parliament corpus for simple, in-
termediate, and syntactic editing. Categories that consist mainly of either deletions (del),
insertions (ins), or substitutions (sub) are marked accordingly.

Level Type Instances Instance % Words Word %

Simple

Filler (del) 19554 50.05% 19596 35.76%
Discourse Marker (del) 9238 23.64% 13393 24.44%
Repeat/Repair (del) 2342 5.99% 4501 8.21%
Extraneous (del) 672 1.72% 1515 2.76%
Colloquial (sub) 2465 6.31% 9297 16.97%
Word Insertion (ins) 3024 7.74% 3098 5.65%
Total 37295 95.46% 51400 93.80%

Inter.

Syntax Check 679 1.74% 1086 1.98%
Reordering 765 1.96% 1632 2.98%
Run-on Sentence 136 0.35% 190 0.35%
Total 1580 4.04% 2908 5.31%

Semantic Total 195 0.50% 492 0.90%

particularly when compared to another detailed analysis of corrections made
by annotators in English telephone conversations by Fitzgerald [5]2.

First, it can be seen that the parliamentary speech we are analyzing is
significantly more fluent than the English telephone speech. This is reflected
by the fact that only 12.87% of all words for the parliamentary speech are cor-
rected, as opposed to 34.4% reported for telephone speech. It is also notable
that the percentage of repeats and repairs is significantly lower: only 8.21%
of corrected words are attributed to repeats, repairs, and false starts, while
44.2% of corrections in telephone speech are attributed to these categories.

Another interesting aspect of the parliamentary data is the correction of
simple, yet non-disfluent phenomena. The most significant examples of these
corrections are the transformation of colloquial expressions (16.97%), and in-
sertion of dropped words (5.65%). While together these result in 22.62% of
corrections, they fall outside of the traditional target of previous disfluency

2Punctuation insertion is omitted from our analysis to allow for a direct comparison
with Fitzgerald [5].
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detection systems. While these also exist in English telephone conversation,
they account for only 3.0% of all corrections. The first reason for this differ-
ence is that transcripts for parliamentary speech are expected to be in correct,
formal style, and thus require a larger number of edits to correct colloquial
or syntactically incorrect sentences. This phenomenon is also mentioned
by Fitzgerald [5] with regards to a corpus of European parliament speech. In
addition, in Japanese (and other languages such as Arabic [6] and Czech [8])
there is a larger disconnect between spoken and written language [9] than in
English. As a result, there are a greater number of colloquial expressions to
be corrected, or omitted words to be re-inserted.

Based on this analysis, we choose to develop a system that is able to
handle the most common types of corrections found in parliamentary speech.
Particularly, we focus on simple editing, and develop a framework that can
handle all simple edits, with the exception of long-distance repairs. Even if
we exclude repeats and repairs, which are the main focus of previous work
in RT (described in more detail in the next section), the remaining simple
edits account for 85.58% of all edited words in this task.

3. Related Work

The transformation of spoken language to written language has been the
subject of a large amount of research over the past two decades. In general
SST is one part of the larger task of “rich transcription” [10].

3.1. Disfluency Detection

With regards to SST in particular, the great majority of work has focused
on the detection and deletion of disfluencies. These works can be classified
by the features they use, and the techniques they use to model these features.

Early research includes the work by Bear et al. [11], which used lexical
features in a rule-based framework, with simple prosodic features such as
pauses being used to reduce the number of errors. Nakatani and Hirschberg
[12] further expanded the use of prosody, integrating a number of different
prosodic features in a decision-tree framework, demonstrating that a certain
level of disfluency detection is possible without the use of lexical information.

Over the past ten years, there have been advances in both machine learn-
ing techniques and the features used. A number of methods using lexical
features such as repeated words, deletion history, and bigram context have
been introduced, in combination with machine learning techniques such as
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boosting, transformation-based-learning, or noisy-channel models [13, 14, 15,
16, 17]. The work of Johnson et al. [18] is particularly notable for their use of
Tree Adjoining Grammars (TAG) to find edits using a noisy-channel model,
allowing for the discovery of repairs through rough matching.

In addition, many recent works integrate both prosodic and lexical fea-
tures. Liu et al. [19] integrated prosodic and lexical features for disflu-
ency detection and sentence boundary detection using hidden Markov mod-
els (HMMs), maximum entropy classifiers, and conditional random fields
(CRFs). They found that CRFs were able to achieve slightly superior per-
formance, with system combination further improving results. Yeh and Wu
[20] used a language-model based approach that uses prosodic features to
detect the interruption point, and an alignment model to match repair re-
gions. Fitzgerald [5] also used CRFs to detect false-starts, incorporating both
prosody and the model proposed by Johnson et al. [18], and demonstrated a
two-step approach to first identify, then process erroneous sentences leads to
higher accuracy.

3.2. Punctuation Insertion

In addition to disfluency detection, there has also been a large amount
of research on detecting sentence boundaries and inserting punctuation. A
number of works integrate lexical and syntactic features with pause and other
prosodic information. These are incorporated using language models [21, 22,
23], maximum entropy models or re-rankers [24, 25], or SVMs [26]. Paulik
et al. [27] use an SMT-based approach to recover punctuation by simply
deleting punctuation from the original data. Gravano et al. [28] tested the
effect of very large data sets on punctuation and capitalization restoration,
and found that large data allowed for significant improvements in common
punctuation such as periods and commas, but was less effective for question
marks and dashes.

3.3. Formatting and Speaking Style Transformation

Despite the extensive research on the previously mentioned tasks, there
has been relatively little research into general frameworks that are also able
to perform the stylistic correction necessary to create natural transcript-
style text. One example of an approach that is able to handle insertions and
substitutions in speaking style transformation is Lee and Seneff [29], which
describes a system for automatic correction of non-native English speakers’
grammar. In addition, there have been a few works on converting Arabic
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spoken dialects to Modern Standard Arabic text [30, 31], but these use rule-
based approaches that are not immediately applicable to other languages.
Hori et al. [32] presented a method for paraphrasing speech that uses hand-
crafted rules rescored by a language model, and a similar approach is pre-
sented by Shugrina [33] in the context of formatting numbers and punctuation
for voice-mail transcripts.

The first work towards full speaking style transformation with the goal of
creating lecture transcripts was presented by Shitaoka et al. [34]. They used
a noisy-channel model to handle filler deletion, transformation of colloquial
expressions, insertion of particles, and insertion of periods, but stopped short
of a general framework for handling all necessary transformations. In addi-
tion, their implementation of the naive noisy channel model was not fully
probabilistic, using a number of heuristics to cope with small data sizes.

4. Monotonic Statistical Machine Translation for SST

This section describes a model for SST based on monotonic statistical
machine translation (SMT). Monotonic SMT requires that the input and
output of the system remain in fundamentally the same order. In other words,
while elements can be inserted, deleted, or substituted, arbitrary reordering
of elements is not allowed.

As shown in Section 2.2, only 1.96% of corrections and 2.98% of words
require reordering, so this monotonicity assumption holds for the majority
of corrections performed by human stenographers. By making this mono-
tonicity assumption, it is possible to achieve effective and efficient modeling
without the complex alignment and reordering models that are necessary for
non-monotonic tasks such as traditional bilingual machine translation.

4.1. Modeling for Monotonic SMT

SST is performed by transforming the faithful transcript or ASR re-
sults V = vJ1 = v1, v2, . . . , vJ , into the transcript-style text W = wI1 =
w1, w2, . . . , wI . SMT creates a model for the posterior probability P (W |V ),
the probability of a particular target sequence W given a source sequence
V . With this model, SMT searches for the sequence Ŵ that maximizes this
probability, and returns it as the output for V

Ŵ = argmax
W

P (W |V ). (1)
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Bayes’ law is used to decompose P (W |V ) into the translation model (TM)
probability Pt(V |W ) and language model (LM) probability Pl(W )

Ŵ = argmax
W

P (V |W )P (W )/P (V )

= argmax
W

Pt(V |W )Pl(W ). (2)

In most cases, the parameters of these models are estimated from a par-
allel corpus. In particular, the TM must be trained on this sort of parallel
corpus of faithful and clean transcripts (hereafter probabilities that require
a parallel corpus for training are indicated by the subscript t). However,
because the LM does not need to model V , a larger non-parallel corpus con-
taining only clean transcripts can be used for training of the LM (indicated
by subscript l).

Models decomposed in this manner are often called noisy-channel models,
and are, as described in the previous section, the basis of many existing
methods for SST. It should be noted that the main difference between the
proposed monotonic SMT method and traditional bilingual SMT [35, 36] lies
in the construction of the TM, while the modeling techniques used in the LM
are shared between the two approaches. The following two sections provide
a formal description of these two models.

4.1.1. Language Modeling

The most prevalent method for calculating the LM probability is the
n-gram model. The n-gram model is based on the idea that the overall
probability of a word sequence can be modeled sequentially without any loss
of generality

Pl(W ) =
∏
i

Pl(wi|ww−1
1 ).

N -gram models attempt to mitigate the problem of data sparsity by limiting
the history length, only conditioning the probability on the preceding n− 1
words

Pl(W ) =
∏
i

Pl(wi|wi−1
i−n+1).

To prevent the model from assigning zero probability when the word wi
has never been observed in context wi−1

i−n+1, models are further generalized by
applying smoothing techniques [37]. In the following experiments, Kneser-
Ney smoothing [38] is used unless otherwise indicated.
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4.1.2. Translation Modeling

As there is no clear way to estimate the TM probability Pt(V |W ) for the
entire sequence simultaneously, the relationship between the two sequences
is modeled on a finer phrase-based level.

In our monotonic SMT framework, this is done by first creating a seg-
mentation model (SM) Pt(W̃ |W ) to segment word sequence W into phrase
sequence W̃ = w̃1, w̃2, . . . , w̃K . Pt(W̃ |W ) can be estimated with a corpus of
phrase-aligned word sequences. The segmentation probability is then set to
be proportional to this phrase LM probability

Pt(W̃ |W ) ∝
∏
k

Pt(w̃k|w̃k−1
k−n+1).

Next, a phrase-based TM Pt(Ṽ |W̃ ) calculates the conditional probability
of a phrase sequence Ṽ = ṽ1, ṽ2, . . . , ṽk in the source language given the target
language phrase sequence W̃ . The simplest way to approximate this transla-
tion probability for the full sequence is to assume that each phrase translation
is independent of the surrounding translations and take the product of the
phrase-to-phrase translation probabilities

Pt(Ṽ |W̃ ) ≈
∏
k

Pt(ṽk|w̃k). (3)

The phrase-to-phrase translation probabilities can be estimated using the
maximum likelihood (ML) criterion over the phrase-aligned training corpus.
A special empty phrase ε of length zero can be used to handle insertions and
deletions.

As a unique V exists for each Ṽ , the full translation probability between
V and W can be realized by the product of these two probabilities

Pt(V |W ) = Pt(Ṽ |W̃ )Pt(W̃ |W ). (4)

In order to obtain the phrase-aligned corpus necessary for training these
models, we first performed word-based alignment to minimize the edit dis-
tance between V and W over a turn-aligned corpus. Then the expectation-
maximization (EM) algorithm was used to align phrases so that the TM
likelihood is maximized (Equation (3)) over the remaining unmatched sec-
tions. Once the aligned corpus has been obtained, it can be used to create
an n-gram language model over the set of W̃ phrase sequences.
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Figure 1: An example of the LM transitions that may
be followed when calculating PLM (wi|wi−1

i−2). PBO in-
dicates the n-gram backoff probability.

Figure 2: An example of TM tran-
sitions for one-to-one, one-to-zero,
and one-to-many transformations.

4.2. Implementation of Monotonic Translation using WFSTs

While the techniques in the previous section describe a method to model
the output sequence that has the largest probability of being a translation
for V , we still need a mechanism to search the space of possible W for the
most probable sequence Ŵ . Monotonic translation lends itself to description
using weighted finite state transducers (WFSTs), a framework that allows
for flexible model combination and efficient optimization [39]. Once the TM,
LM, and SM have been combined into one large model, a decoding algorithm
is used to search for Ŵ given an input V .

4.2.1. WFSTs and Model Construction

Finite state transducers (FSTs) are an expansion of traditional finite au-
tomata with transitions labeled with both input and output symbols. WFSTs
further expand FSTs by assigning a weight to transitions, allowing for the
definition of weighted relations between two strings.

The LM, TM, and SM used in monotonic SMT can be represented as
WFSTs by creating edges that represent a single word or translation pairs,
and setting the weight of the edge to the appropriate LM, TM, or SM prob-
ability. Examples of the representations of the LM and TM as WFSTs are
shown in Figures 1 and 2 respectively. A bold circle indicate the initial state
of the WFST, while double circles indicate final states in Figure 2 (Figure 1
displays only part of an WFST, so the initial and final states are not marked).
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Figure 3: A finite state automaton encoding an input V .

The ε appearing in both figures is the aforementioned null string. ε tran-
sitions can always be followed regardless of the input, and thus allow for the
representation of the LM smoothing operations.

After each model has been represented as an individual transducer, the
models can be combined using WFST operations that are equivalent to func-
tional composition (X ◦ Y ) or intersection (X ∩ Y ) [39]. In particular, the
composition is useful, as it allows for the creation of input-output cascades.
For example, if the composition operation TM ◦ SM ◦ LM is performed, it
is possible to create a single unified WFST that transforms Ṽ directly into
W and assigns a probability of

Pt(Ṽ |W̃ )Pt(W̃ |W )Pl(W ) (5)

to each candidateW . If this is further composed with a simple transducer to
enumerate all possible segmentations of V into Ṽ , a transducer that trans-
forms directly from input V to output W with the appropriate probability
can be obtained.

Another benefit of using WFSTs is that efficient algorithms for operations
such as determinization and minimization exist. These algorithms can be
used to automatically reduce the amount of memory space and decoding
time required for the model.

4.2.2. Monotonic Translation Decoding

Once the model is represented as an optimized WFST, we can use the
model to find the optimal translation for an input sequence V . This can be
done in three steps:

1. Create a linear finite state automaton (FSA) to represent the input V
(Figure 3).

2. Compose the input FSA and the model WFST, which creates the space
that must be searched to find the appropriate Ŵ for V .

3. Use the Viterbi algorithm to find the optimal path through the search
space. The output symbols along this path and the weight of the path
are Ŵ and P (Ŵ |V ) respectively.
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This strategy is simple, and can be used to find the optimal solution for
small to medium sized models. However, when searching larger models, full
expansion of the search space in Step 2 and exact search in Step 3 require
unrealistic amounts of memory and processing time.

In order to make Step 2 more efficient, it is possible to perform lazy
composition [39]. Unlike regular composition, lazy composition only expands
the parts of the composed WFST that are specifically referenced. This means
that unnecessary expansion of highly unlikely sections of the search space will
not be performed, reducing the number of operations performed in Step 2.
Furthermore, search can be made more efficient by performing beam search,
instead of Viterbi search. These two techniques allow for rapid search even
for large models and long input sequences of up to several hundred words.

4.3. Comparison with Bilingual Machine Translation

In bilingual machine translation (MT), V and W represent sentences
from two different natural languages. While the statistical models presented
in the previous sections are largely similar to those applied in bilingual MT,
translations between natural languages are generally non-monotonic.

Because of this, in order to create natural sentences in the target language,
translations of each word in the input must be appropriately re-ordered into
a natural ordering in the target language. This is achieved by replacing the
SM of the previous section with an alignment model, which tries to model
the different orderings of the words in the two languages [35, 36].

Finally, it should be noted that while WFSTs can be used for monotonic
SMT, they cannot be straightforwardly applied to traditional bilingual SMT3.
WFSTs, like all finite automata, are only able to express monotonic string
relations, and have no mechanism to handle arbitrary reordering. As a result,
the search problem of traditional SMT is significantly more difficult than that
of monotonic SMT4. This is reflected in processing times of the systems, as
demonstrated in Section 7.

3Casacuberta and Vidal [40] proposes a WFST-based model for speech translation with
limited reordering. However, phrase-based SMT with more sophisticated alignment models
was found to have superior performance on most translation tasks [41]. In addition, Zhou
et al. [42] describe a method for using WFSTs for speech translation that requires specific
reconstruction of reordering candidates for each sentence to be translated.

4It is NP-complete to find the optimal solution for traditional translation models with
reordering [43], while the monotonic assumption makes search achievable in linear time
with regards to the input length.
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5. Context-Sensitive Translation Modeling for Monotonic SMT

Section 4.1.2 introduced a method for estimating translation model prob-
abilities by assuming that each phrase TM probability is context independent
(Equation (3)). However, in many cases the appropriate translation of a word
is actually highly context dependent, a phenomenon that is particularly pro-
nounced in SST. For example, whether the word “well” is used as a filler or
not depends highly on context. While the LM probability helps ensure some
degree of natural output, it can be expected that incorporating context in-
formation directly into the TM probability will result in improved modeling
accuracy.

In Section 5.1, a previously reported method for incorporating this con-
text information is described. In Section 5.2, we extend the method so that
context information can be included in the TM for use in the noisy-channel
framework.

5.1. Joint Probability Translation Model

One method for expressing context directly in the TM is through the
direct modeling of the joint probability Pt(V,W ) [40]. By limiting the search
space so that only results where V is the source sequence are returned,

Ŵ = argmax
W

P (V,W )

is ensured to give the same result as Equation (1).
The joint probability can be modeled using the monotonic alignments

described in Section 4.2. The phrase-segmented source sequence Ṽ and target
sequence W̃ are represented as a string of symbols Γ = γK1 = γ1, . . . , γK ,
where γk is a symbol representing 〈ṽk, w̃k〉. For notational convenience, we
also define two functions over γ = 〈ṽ, w̃〉:

ψv(γ) ≡ ṽ, ψw(γ) ≡ w̃.

Given these monotonic alignments, it is straightforward to create a smoothed
n-gram model trained over a corpus of Γ strings. Pt(Ṽ , W̃ ) is approximated
using this model according to the standard n-gram equation:

Pt(Ṽ , W̃ ) = Pt(Γ) ≈
K∏
k=1

Pt(γk|γk−1
k−n+1). (6)

16



5.2. Conditional Context-Sensitive Model

While the joint probability model provides an effective way to handle
context, it must be trained on a parallel corpus. This leaves no room for use
of large-scale non-parallel data through the LM probability Pl(W ), which
can be easily incorporated using the standard noisy-channel model. This
section describes a technique for approximating a context-dependent TM
probability from joint probabilities. This allows for creation of a model that
can both consider context when choosing translation probabilities, and use
non-parallel data to compensate for sparsity in the parallel corpus.

We first note that Pt(Ṽ |W̃ ) can be modeled sequentially:

Pt(Ṽ |W̃ ) =
K∏
k=1

Pt(ṽk|ṽk−1
1 , w̃K1 )

=
K∏
k=1

Pt(ṽk|γk−1
1 , w̃Kk ).

This model faces the same problem of sparseness as traditional n-gram mod-
els, so an n-order Markov model is used to limit the length of the considered
history

Pt(Ṽ |W̃ ) ≈
K∏
k=1

Pt(ṽk|γk−1
k−n+1, w̃

K
k ).

Further, we assume that ṽk does not depend on any target sequence symbol
w̃h where h > k

Pt(Ṽ |W̃ ) ≈
K∏
k=1

Pt(ṽk|γk−1
k−n+1, w̃k). (7)

This has a double-effect of helping to reduce data sparseness and facilitating
a WFST implementation.

Equation (7) can be further factored as follows:

Pt(Ṽ |W̃ ) ≈
K∏
k=1

Pt(γk|γk−1
k−n+1)

Pt(w̃k|γk−1
k−n+1)

. (8)
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The denominator of this equation can be obtained by marginalizing over
the n-gram probabilities for γ where ψw(γ) = w̃k

Pt(w̃k|γk−1
k−n+1) =

∑
γ∈{γ:ψw(γ)=w̃k}

Pt(γ|γk−1
k−n+1). (9)

Because the numerator of Equation (8) and each element in the sum of
Equation (9) have the same form as the n-gram probabilities in Equation (6),
Pt(V |W ) can be estimated using the joint n-gram probabilities. This context-
dependent model for Pt(V |W ) can be used along with the LM probability in
the noisy-channel model as in Equation (2). Details on the implementation
of this model in the WFST framework can be found in Appendix A.

5.3. Log-Linear Interpolation with Joint Probabilities

While the aforementioned conditional model has the advantage of allow-
ing for the usage of non-parallel text, it does not consider overall translation
pattern frequency. For example, if there is a pattern γx = 〈ṽx, w̃x〉 with
counts ct(γx) = 100, ct(w̃x) = 1000, and a pattern γy = 〈ṽy, w̃y〉 with counts
ct(γy) = 1, ct(w̃y) = 10, both will be given the same conditional probability

Pt(ṽx|w̃x) = Pt(ṽy|w̃y) = 0.1

even though the less frequent γy may simply be the result of semi-random
variance in sparse training data. Infrequent patterns are particularly unreli-
able when dealing with the output of ASR, which is highly inconsistent.

While Pt(ṽx|w̃x) and Pt(ṽy|w̃y) are equal, Pt(γx) is 100 times larger than
Pt(γy). Thus, it can be seen that the joint probability contains informa-
tion about translation pattern frequency that is not included in the standard
conditional TM. The log-linear model framework [44] can be used to com-
bine the LM, TM, SM, and joint probabilities, thus capturing this frequency
information

logP (W̃ |Ṽ ) ∝ λlmlogPl(W ) + λtmlogPt(Ṽ |W̃ ) + λsmlogPt(W̃ |W ) + λjlogPt(Ṽ , W̃ ).

(10)

Here, each λ is a weight of its respective model. The weight of all four λ
valuse can be normalized so that the sum of the absolute values

∑
λ |λ| is

equal to one with no loss of generality.
Note that while setting λj = 0 is an extension to the naive noisy-channel

model in Equation (2), setting λtm = 0 and interpolating only the joint
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and LM probabilities is neither theoretically correct nor practical. From the
theoretical standpoint, without Pt(Ṽ |W̃ ) it is impossible to derive P (W |V ),
the posterior function that we are trying to optimize. Practically, a model
created in this way over-aggressively deletes words, resulting in accuracy no
better than the standard joint model. It is for this reason that the con-
ditional model introduced in the previous section is necessary, even when
interpolating with the joint probability.

An essential element in the training of the log-linear model described in
Equation (10) is the training of the weights λ. In the experiments presented
in the following section, minimum error rate training (MERT) is used to
optimize these weights [45]. MERT uses the following iterative process:

1. Initialization: Weights are initialized to an appropriate value5.

2. n-best decoding: A decoder finds the n-best list given the current
weights, and saves the value that each model contributed to each can-
didate.

3. Weight optimization: Weights are adjusted to minimize the error
rate within the n-best list.

4. Iterate: A stopping criterion is checked, and if it has been met, the
training stops and outputs the current weights. If the stopping cri-
terion has not been met, the training returns to Step 2. Here, we
stopped training when the absolute change in weights was 0.0001, or
10 iterations had been reached.

This is a flexible and straightforward process that is able to minimize any
arbitrary error measure.

In order to keep track of these weights in a WFST implementation, it is
possible to store the contribution of each component to the overall weight of
the arc. When an operation such as addition is performed on the weights of
the arc, an identical operation is performed on every component of the arc as
well. This allows for simple bookkeeping of the contribution of each element
to a path’s weight, which is used in the weight optimization step.

5In all experiments in this paper, the weights in Equation (10) were initialized to
replicate the naive noisy-channel model (λlm = λtm = λsm = 1, λj = 0).
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6. Additional Features for Speaking Style Transformation

When using a log-linear model as described in Section 5.3, it is possible
to introduce additional features that may be useful for the task at hand by
redefining Equation (10) as a generalized log-linear model:

logP (W̃ |Ṽ ) ∝
N∑
n=1

λnfn(W̃ , Ṽ ). (11)

The first four feature functions correspond to the probabilities in Equation
(10), while the remaining feature functions represent a novel set of lexical
features that we derived specifically for the SST task.

6.1. Filler Dictionary

The first additional feature is motivated by the fact that many of the
deleted words were common fillers. A 23-word filler list was created, and
a fixed penalty or bonus was added every time one of the fillers was deleted
(λf ). It should be noted that traditional rule-based methods simply delete
fillers from a list, and thus adding this feature guarantees that the log-linear
model can achieve performance at least equal to that of rule-based systems.

6.2. Transformation Group Penalty

Because there is a tendency for transformed areas to appear in groups
(strings of deleted fillers, etc.), it makes sense to add a penalty that con-
tributes to the cohesion of these groups. By adding a fixed penalty for each
group of words translated (λg), for phrases such as “I uh don’t um do,” in-
stead of creating two translation groups by deleting the underlined words in
“I uh don’t um do,” the system will prefer to delete a single block as in “I
uh don’t um do.”

6.3. Transformation Type Penalty

We observed in preliminary experiments that deletion, insertion, and sub-
stitution transformations have a different level of difficulty. Deletions tend to
be easier, and substitutions and insertions are more difficult because they are
less frequent in the training data and have greater variety. The transforma-
tion type penalty adds a separate penalty or bonus for each of the transfor-
mation types (λd, λi, λs), allowing each type to be modified to an appropriate
level of precision or recall based on its difficulty.
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6.4. On the Incorporation of Prosodic Features

It should be noted that a large amount of previous research has found it
useful to incorporate prosodic features for disfluency detection and sentence
boundary annotation [19]. Here, we integrate information about the existence
of pauses by inserting them as tokens into the word string, but do not handle
any other prosodic features.

We have two reasons for doing so. First, this eases direct integration with
existing speech recognition decoders, as most WFST-based decoders are able
to annotate pause information, but do not explicitly handle prosody. Second,
this removes an extra acoustic processing step, expediting and simplifying the
transcript generation process as a whole. Regardless, comprehensive study
of the integration into the current framework is left to future work.

7. Experimental Evaluation

In order to test the effectiveness of the proposed SST model, we conducted
experiments on Japanese SST using the Diet corpus described in Section 2.2
and the Corpus of Spontaneous Japanese (CSJ [46]).

7.1. Experimental Setup

We created training and testing data for the two corpora. In both tasks,
either ASR results or manually created faithful transcripts were used as in-
put, and clean transcripts were used as output. For the Diet task, the official
transcripts were used. For the CSJ task, which has only faithful transcripts,
we commissioned human editors to create clean transcripts according to an-
notation guidelines. Evaluation was performed on test sets that were held
out from both corpora.

The details of the corpora are shown in Table 3. Here, ASR error rate
refers to the edit distance between the ASR results and faithful transcripts,
while Manual and ASR Pre-SST Error Rates refer to the edit distance be-
tween the clean transcripts and the faithful transcripts and ASR results re-
spectively. The word error rate (WER) between the system output and clean
transcripts was used as an evaluation measure.

For the system using manual transcripts as input, a parallel corpus of
faithful and official transcripts was used as TM training data. Likewise,
when using ASR results as input, a parallel corpus of ASR results and offi-
cial transcripts was used for training the TM. A system trained with man-
ual transcripts was also tested, but it performed approximately 3% absolute
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Table 3: The size of the corpora for SST.

Corpus Diet CSJ

LM Training 158M 181k
TM Training 2.31M 181k
Weight Training 66.3k 21.5k
Test Set 300k 11.4k
ASR Error Rate 17.10% 19.43%

Pre-SST Error Rate
Manual 18.62% 27.70%

ASR 36.10% 36.49%

WER worse, largely because models trained on ASR results are better at
inserting punctuation, as well as correcting homonyms and ASR errors. It
should be noted that this result is contrary to Honal and Schultz [47], who
found that noise introduced by ASR results in the training data degraded
final accuracy. It is likely that the fact that we used a larger training set
was able to absorb some of this noise. This result is particularly interesting,
as it indicates that the system can be trained with no faithful transcripts.
As clean transcripts are generally available in greater quantities than faith-
ful transcripts, this allows the system to be trained with significantly larger
amounts of data.

The ASR results used for both the training and testing of the system
were created using the Julius decoder, version 4.1.2 [48]. The acoustic models
used in ASR were trained specifically for each task, and are based on shared-
state triphone HMMs with cepstral variance normalization, vocal tract length
normalization, and minimum phoneme error training. HMMs of 5000 shared
states and 32 mixture components were used for the Diet task, and HMMs
of 3000 states and 16 mixture components were used for the CSJ task. For
the CSJ, a Kneser-Ney smoothed 3-gram LM was trained for ASR using
the faithful transcripts that are included with the corpus. For the Diet,
a Witten-Bell smoothed 3-gram LM was trained using a large volume of
clean transcripts, and adapted to the speaking style by adjusting n-gram
frequencies [49]. The ASR error rate on the Diet task (17.10%) was slightly
smaller than that on the CSJ task (19.43%).

All models for SST were represented as WFSTs, and composed, deter-
minized, and minimized using the OpenFST toolkit [50]. Model weights were
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Table 4: SST results (WER) for different TM n-gram orders

Diet CSJ
TM Order Manual ASR Manual ASR

Pre-SST 18.62% 36.10% 27.70% 36.49%
1-gram 6.51% 21.84% 15.06% 25.70%
2-gram 5.33% 20.99% 14.71% 25.03%
3-gram 5.32% 21.09% 14.64% 25.26%

optimized using the MERT tools included in the Moses [51] toolkit. WFST
decoding used depth-first beam search with histogram pruning, which we
implemented and released as an open-source toolkit6. The decoder also sup-
ports the hierarchical φ transitions mentioned in Appendix A.

7.2. Effect of Context-Sensitive Translation Modeling

The first evaluation was performed to assess the effectiveness of incorpo-
rating context in the noisy-channel model (Equations (5) and (8)). Models
were trained using TMs of orders 1-3, and the WER was compared over
the Diet and CSJ tasks7. The results in Table 4 show that in all cases the
context-sensitive 2-gram and 3-gram TMs exceeded the context-insensitive
1-gram TM in accuracy. This advantage was particularly obvious for the Diet
corpus, which contains a relatively large amount of data for use in n-gram
training.

In the evaluations on manual transcripts of both the Diet and CSJ cor-
pora, the 3-gram models outperformed the 2-gram models, while the 2-grams
outperformed the 3-grams when evaluated on ASR results. This is most likely
due to the fact that the noise intrinsic in the ASR result training set caused
the 3-gram context to be unreliable, preventing any increase in accuracy.
In all the following experiments, 2-gram context will be used for the ASR
transcripts, while 3-gram context will be used for manual transcripts.

6Available at http://www.phontron.com/kyfd.
7In preliminary experiments, 3-grams outperformed 4-grams in all cases, so the results

of 4-grams are omitted.
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7.3. Translation Model Type

This section compares the effectiveness of the three translation models
proposed in this paper.

• Noisy: The context-sensitive noisy channel model of Equation (8)

• Noisy LL: The context-sensitive noisy channel model with log-linear
weights for each element (Equation (10) with λj = 0)

• Noisy+Joint: The log-linear interpolation of the noisy channel and
joint probability models of Equation (10)

In addition, the following three existing methods are also tested for com-
parison.

• Baseline: The noisy channel model using the traditional context-
insensitive TM of Equation (3)

• Joint: The joint probability model of Equation (6)

• Moses: The open-source software package “Moses,” an implementa-
tion of phrase-based SMT [51]. The default settings were used, with
exception of word alignment, which was performed by the method pro-
posed in this paper, as it achieved higher accuracies in preliminary ex-
periments than Moses’s standard word alignment program “GIZA++.”

The WER of each system is shown in Table 5. In every test situation, the
proposed Noisy+Joint model resulted in the highest accuracy. In all tasks,
this was a statistically significant difference from Baseline according to the
two-proportions z test (significance p < 0.01). It can thus be concluded
that the proposed method is effective over both manual transcripts and ASR
results, as well as over the different styles of speech represented by the Diet
and CSJ corpora.

The Joint model was able to achieve a higher accuracy than the Noisy
model in the case of manual transcripts, likely a result of its clean design and
inclusion of frequency information as mentioned in Section 5.3. However,
with respect to ASR results, the Noisy model achieved a higher accuracy,
as the LM was able to help reduce the number of clearly ungrammatical
outputs. Finally, the Noisy+Joint model was able to outperform each of
the separate models in all testing situations, demonstrating that both models
are able to provide complementary information when combined together.
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Table 5: SST results (WER) across various model types. Italics indicate a significant
difference from Baseline.

Diet CSJ
Task Manual ASR Manual ASR

Pre-SST 18.62% 36.10% 27.70% 36.49%
Baseline 6.51% 21.84% 15.06% 25.70%
Joint 4.59% 22.61% 14.56% 25.08%
Moses 5.45% 20.97% 14.73% 25.62%
Noisy 5.32% 20.99% 14.64% 25.03%
Noisy LL 5.13% 20.97% 14.49% 24.65%
Noisy+Joint 4.05% 20.04% 13.55% 23.39%

The Moses decoder uses log-linear weight tuning, lexical-probability-
based phrase smoothing, and a number of other techniques to achieve high
accuracies on traditional bilingual MT tasks. However, unlike the methods
presented in this paper, Moses does not directly condition the phrase TM
probabilities on the identity of the surrounding phrases. In the evaluation,
Moses achieved a higher accuracy than Baseline in all situations, but only
achieved accuracy approximately equal to, or lower than Noisy. This can
be explained by the fact that the majority of the sophisticated techniques
used by Moses are aimed at achieving proper reordering of words between
languages, and are less useful in a monotonic translation task such as SST.
In addition, it should be noted that due to the monotonicity constraint,
processing with the proposed system is significantly faster than Moses, with
the most accurate monotonic SMT system processing text approximately
12.5 times faster (611 words/sec. and 49 words/sec. respectively).

7.4. Effect of TM Data Size

As collecting parallel data to train the TM is more difficult than gathering
non-parallel data to train the LM, it is desirable to have a method that works
even with a small amount of parallel data. The following experiments assess
the amount of parallel data required to effectively train each model by varying
the size of the data used in the TM training over the Diet corpus. For all the
cases, the size of the data used in the training of the LM remains the same.
The results are displayed in Figure 4.
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Figure 4: The effect of TM corpus data size on SST accuracy on the Diet corpus.

It can be seen that models using the noisy-channel approach are more
robust in the face of small amounts of TM training data. This is a natural
result as they are able to use the large amounts of LM training data to ensure
that the output is somewhat natural. However, Joint is able to make better
use of large amounts of TM data. In the manual transcript experiments of
Figure 4, Joint surpasses Noisy at large data sizes. Noisy+Joint demon-
strates both robustness to small data sizes and effective use of large amounts
of data. As a result, the Noisy+Joint model outperforms the other models
at all data sizes.

In addition, it should be noted that performance of Joint andNoisy+Joint
has not saturated even when using the full 2.32M-word TM training data.
This indicates that increasing the data size would further improve the accu-
racy of the system. This can be easily achieved in the case of ASR results,
where the only resources needed are clean transcripts and speech data.

Finally, for most models there is a rapid increase in accuracy up until 17k
words, after which accuracy increases at a slower pace. This may be because
simple context-independent corrections such as fillers are learned in the first
17k words of TM training data, while the corrections that follow are more
difficult context-dependent transformations.

7.5. Correction Success by Transformation Type

We also tabulated the success of each system by transformation type, with
Figure 5 showing results for faithful transcript input, and Figure 6 showing
results for ASR input. The graphs show instance-based correction recall, the
number of correctly transformed instances divided by the total number of
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Figure 5: The number of transformations correctly performed by type on faithful tran-
scripts (recall).

Figure 6: The number of transformations correctly performed by type on ASR resuls
(recall).
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instances requiring transformation8. It should be noted that in the faithful
transcript results, the punctuation annotated in the input follows the gold-
standard, and thus punctuation insertion and run-on sentence detection is
largely trivial.

As an overall trend, it can be seen that the proposed context-sensitive
features are generally helpful, with Noisy+Joint meeting or exceeding the
baseline in most categories. Also, it can be seen that the Noisy and Joint
both have strong and weak points. Noisy tends to outperform Joint on
word, comma, and period insertion. This is because insertions tend to be
more context dependent than deletions and thus rely on large amounts of LM
training data to resolve sparsity issues. On the other hand, Joint is much
stronger at deletion of multi-word phrases such as discourse markers and
multi-word phrases, a result of the cleaner model that is able to more directly
model deleted multi-word phrases. Noisy+Joint allows for combination of
these two sources of information, and achieves accuracy similar to the better
of the two models in most categories.

When comparing results using fathful and ASR-produced transcripts, it
can be seen that recall drops across the board when using ASR, as would be
expected. Ignoring the drops in punctuation insertion and sentence boundary
accuracy, which are a by-product of the switch from gold-standard punctua-
tion annotation to pause-based information, it can be seen that most simple
editing categories see a drop between 10-20%, which can be expected given
the WER of 17.10%. The one exception to this is extraneous expressions,
which are often not included in the ASR language model, and thus tend to
be mis-recognized more often than other words.

It can be seen that the system is largely successful in correcting all of its
major targets. For simple edits other than repeats and repairs, it was able
to achieve a recall between 71-99% across all categories on clean transcripts,
and between 56-87% on ASR results.

7.6. Effect of Additional Features

Experiments were also conducted to assess the effect of adding the features
mentioned in Section 6, the results of which can be found in Figure 7. It can
be seen that adding additional features is useful when using the Baseline

8As our system does not explicitly determine transformation types when making cor-
rections, it is difficult to accurately determine type-by-type precision. Increases in overall
precision are roughly reflected in the WER results reported in the previous section.
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Figure 7: The increase in accuracy provided by each feature over the model with no
additional features.

TM, resulting in an over 1% increase in accuracy on ASR results. However,
when the best Noisy+Joint TM is used, the additional features results in
very little change 9.

From this result, it may be concluded that the lexical features introduced
in this paper are redundant with the more advanced translation model. How-
ever, features representing prosody [52] might provide information orthogonal
to that provided by the proposed method, and further increase accuracy.

8. Conclusion

This paper has described a novel framework for creating clean transcripts
from faithful transcripts or ASR results. We proposed an SMT-based model
that combines joint probability, context-sensitive conditional probability, and
language models in a log-linear framework. This was implemented using
WFSTs, which allow for integration with existing ASR systems, and simple
addition of task-specific features. Experiments on both faithful transcripts
and ASR results showed that the proposed method was effective in not only
deletions of redundant words and insertion of punctuation, but also insertion
of dropped words and correction of colloquial expressions, which were not
handled by previous models.

9The actual learned feature weights for Noisy+Joint were λlm = .153, λtm = .143,
λsm = .139, λj = .330, λi = −.020, λs = −.007, λd = −.012, λg = .051, and λf = −.140.
It can be seen that the majority of weight is put on the LM, TM, SM, joint probability,
and filler deletion bonus.
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Future research directions include the incorporation of richer information
such as prosody in the transformation process, which has the potential to
further improve the handling of disfluent phenomena. In addition, we also
plan to examine the use of part of speech information to improve robustness
to sparsity, or structural and semantic information to improve robustness to
repairs. Finally, we also plan on examining the tight coupling of the proposed
system with a WFST-based speech recognition decoder.
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Appendix A. WFST Implementation of the Context Sensitive TM

In order to implement a context-sensitive translation model in the WFST
framework, it is necessary to create a WFST to represent the TM probability.
The naive representation would be to create a single edge from every node
γk−1
k−n+1 to every node γkk−1 weighted with the probability PTM(ṽk|γk−1

k−n+1, w̃k).
However, for a vocabulary of size M and n-gram length n, this creates a
WFST withMn edges, which requires excessive amounts of memory for large
M or n. This problem can be ameliorated through a representation similar to
that of the LM in Section 4.2, which only requires that specifically observed
histories be explicitly expressed in the WFST.

In order to create this WFST representation, we first note that all n-gram
TM probabilities PTM(ṽk|γk−1

k−n+1, w̃k) for which PML(γk|γk−1
k−n+1) = 0 are a

constant multiple of the (n − 1)-gram TM probability PTM(ṽk|γk−1
k−n+2, w̃k).

We show this by first noting that the language model probabilities that we use
in construction of the context-sensitive translation model probabilities take
the standard format of maximum likelihood probability PML and a backoff
probability PBO.

PLM(wi|wi−1
i−n+1) =

{
φ(wii−n+1)PML(wi|wi−1

i−n+1) if PML(wi|wi−1
i−n+1) > 0,

PBO(w
i−1
i−n+1)PLM(wi|wi−1

i−n+2) otherwise.

(A.1)
Next, we substitute in the LM probability for unobserved instances into

Equation (7) and perform some simple algebra:

PTM(ṽk|γk−1
k−n+1, w̃k) =

PTM(γk|γk−1
k−n+1)

PTM(w̃k|γk−1
k−n+1)

=
PTM(γk|γk−1

k−n+2)PBO(γ
k−1
k−n+1)

PTM(w̃k|γk−1
k−n+1)

= PTM(ṽk|γk−1
k−n+2, w̃k)

PTM(w̃k|γk−1
k−n+2)PBO(γ

k−1
k−n+1)

PTM(w̃k|γk−1
k−n+1)

= PTM(ṽk|γk−1
k−n+2, w̃k) ∗ adj(γ

k−1
k−n+1, w̃k) (A.2)
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where

adj(γk−1
k−n+1, w̃k) ≡

PTM(w̃k|γk−1
k−n+2)PBO(γ

k−1
k−n+1)

PTM(w̃k|γk−1
k−n+1)

. (A.3)

Because of this, adj(γk−1
k−n+1, w̃k) can be used similarly to the backoff prob-

ability in the WFST implementation of a LM in Figure 1.
In addition, it should be noted that in the case where

∀γ∈{γ:ψw(γ)=w̃k}PML(ψv(γ)|γk−1
k−n+1, ψw(γ)) = 0

it can be shown that
adj(γk−1

k−n+1, w̃k) = 1.

This can be done by substituting the sum from Equation (9) into Equation
(A.3), and further substituting in the LM probability for unobserved events
from Equation (A.1)

adj(γk−1
k−n+1, w̃k) =

∑
γ∈{γ:ψw(γ)=w̃k} Pt(γ|γ

k−1
k−n+2)PBO(γ

k−1
k−n+1)∑

γ∈{γ:ψw(γ)=w̃k} Pt(γ|γ
k−1
k−n+1)

=

∑
γ∈{γ:ψw(γ)=w̃k} Pt(γ|γ

k−1
k−n+2)PBO(γ

k−1
k−n+1)∑

γ∈{γ:ψw(γ)=w̃k} Pt(γ|γ
k−1
k−n+2)PBO(γ

k−1
k−n+1)

= 1. (A.4)

Thus, while a WFST edge must be created to express all adj(γk−1
k−n+1, w̃k)

where there is at least one observed instance of γk−1
k−n+1, γ where ψw(γ) = w̃k,

all other adj(·) can be expressed with a single edge with a weight equal to 1.

Appendix A.1. φ Transitions

However, these separate backoff weights for each w̃k cannot be expressed
with the ε transitions that are traditionally used to express non-determinism
in WFSTs. This can be best illustrated by an example. Suppose there are
four γ in our vocabulary, Γ = {c = 〈ṽc, w̃a〉, d = 〈ṽd, w̃b〉, e = 〈ṽe, w̃b〉, f =
〈ṽf , w̃b〉}, and that only d has been observed after c

PML(γk = d|γk−1 = c) = 1

By simply converting the LM transducer in figure 1, this can be expressed
as a transducer in the form of Figure A.8-a. However, this transducer is
not guaranteed to assign the correct probability to an input/output pair.
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Figure A.8: The context-sensitive TM using ε transitions and hierarchical φ transitions

This is because, as shown in Equation (A.4), the adj(·) for non-observed
sequences will be 1, which is generally larger than adj(·) for the observed
sequences. As the Viterbi search employed by the decoder will prefer larger
probabilities, it will follow the ε transition, even for γ for which γk−1

k−n+1, γ̃
where ψw(γ̃) = ψw(γ) has been observed, resulting in an incorrectly high
probability.

As a solution to this problem, φ transitions (failure transitions) can be
substituted for ε transitions [53]. While ε transitions may be followed un-
der any circumstances, φ transitions can only be followed if there is no
other matching edge outgoing from the node. By expanding all edges for
which adj(γk−1

k−n+1, w̃k) 6= 1 and ensuring that the backoff transition will only
be followed when no other edge is matched, it is possible to ensure that
adj(γk−1

k−n+1, w̃k) = 1 will only be assigned to the appropriate sequences.

Appendix A.2. Hierarchical φ Transitions

Even when using φ transitions, the WFST is still unnecessarily large.
This is because all edges for which adj(γk−1

k−n+1, w̃k) 6= 1 must be expanded,
even though all γ for which ψw(γ) = w̃k share a single backoff weight (e.g.
the edges from c to e and c to f in Figure A.8). In SST this is a particular
problem, as there are often hundreds or thousands of separate words that
may be deleted, and all share the single backoff weight adj(γk−1

k−n+1, w̃k = ε).
In order to resolve this problem, we first notice that the rule for which
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Table A.6: Size of Context-Sensitive TM for Different Construction Approaches

Type 1-gram 2-gram 3-gram 4-gram

ε Transitions (Full Expansion) 53.0k 1.28G 17.4G 66.1G
φ Transitions 53.0k 18.7M 145M 436M
Hierarchical φ Transitions 53.0k 382k 1.61M 4.04M

path to follow according to failure transitions is:

follow arc labeled

{
γ if adj(γi−1

i−n+1, ψw(γ)) 6= 1,

φ otherwise.
(A.5)

Instead we are interested in a logic where a single symbol can be used to
represent a backoff for all symbols for which the adj(γi−1

i−n+1, ψw(γ)) is equal

follow arc labeled


γ if PML(ψv(γ)|γi−1

i−n+1, ψw(γ)) > 0,

φψw(γ) else if adj(γi−1
i−n+1, ψw(γ)) 6= 1,

φ otherwise.

(A.6)

Using this logic, we define hierarchical φ transitions, where every symbol
has a parent symbol. All γ symbols have a parent of φψw(γ) and all φx symbols
have φ as their parent. When searching for a transition for a particular
symbol in the WFST, first the symbol itself is searched, and if it is not
found, its parents are recursively searched until a match is made.

An example of hierarchical φ transitions can be found in Figure A.8-b.
Compared with Figure A.8-a, the edges between c and e or f have been
replaced by a hierarchical φ transition between the c and ε nodes.

Table A.6 shows the actual reduction in the number of arcs necessary to
implement the n-gram TMs using the Diet corpus described in section 7.1.
It can be seen that the hierarchical φ transitions allow for an approximately
100-fold decrease in WFST size over regular φ transitions.
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