<table>
<thead>
<tr>
<th>Title</th>
<th>Studies on internal rarefied gas flows on the basis of kinetic theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Funagane, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-03-26</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k16794</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Studies on internal rarefied gas flows on the basis of kinetic theory

Hitoshi Funagane

2012
Contents

Preface

1 Fluid modeling for the Knudsen compressor: Case of polyatomic gases 1
 1.1 Introduction .. 1
 1.2 Fluid-dynamic model for a single channel 3
 1.2.1 Problem and assumptions .. 3
 1.2.2 Basic equation and boundary conditions 3
 1.2.3 Dimensionless form .. 6
 1.2.4 Macroscopic equation ... 8
 1.2.4.1 Zeroth order .. 9
 1.2.4.2 First order .. 10
 1.2.4.3 Second order and macroscopic equation 13
 1.3 Connected channels and connection condition 14
 1.4 Data for M_p and M_T: Reduction to BGK model 15
 1.5 Knudsen pump and its performance 17
 1.6 Concluding remarks ... 20
 1.7 Appendix A: Equations for ϕ_P and ϕ_T 21

2 Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows 27
 2.1 Introduction .. 27
 2.2 Poiseuille flow and thermal transpiration through a circular tube 29
 2.2.1 Problem, assumptions, and notations 29
 2.2.2 Basic equations .. 31
 2.2.3 Similarity solutions ... 32
 2.2.4 Further transformation and reduction to the BGK model 34
 2.2.5 Mass-flow and heat-flow rates 36
 2.2.6 Numerical results .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Diffusion-type system</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Applications of diffusion-type system</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Flow caused by a large pressure difference</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Knudsen compressor</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Concluding remarks</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>Appendix A: ES model of the Boltzmann equation</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Problem and formulation</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Preliminary arguments</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Structure of the over-concentration and solution method</td>
<td>63</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Iterative approximation: method and error estimate</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Structure of over-concentration</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Overview of computational method</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Numerical results and discussions</td>
<td>68</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Velocity distribution functions</td>
<td>68</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Net mass flows</td>
<td>69</td>
</tr>
<tr>
<td>3.6</td>
<td>Further discussions on asymptotic behaviour as (k \to \infty)</td>
<td>71</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Grad’s hard potential and asymptotic formula for (M[\phi_J])</td>
<td>71</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Similarity between (u[\phi_T]) and (Q[\phi_P])</td>
<td>73</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Appendix A: Sketch of proofs of the statements in § 3.3and § 3.4.1</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Appendix B: Database of the net mass flows for the HS model</td>
<td>76</td>
</tr>
<tr>
<td>3.10</td>
<td>Appendix C: Grad’s hard potential</td>
<td>78</td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>List of Publications</td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>
Preface

In order to describe ordinary gas flows, one uses fluid dynamics (or gas dynamics), which is a macroscopic and continuum model based on phenomenological assumptions, and it works quite well in most situations. However, in low pressure gases, the gas molecules do not undergo sufficient intermolecular collisions, so that the gas deviates from a local equilibrium state. In such a case, the macroscopic approach is not valid, and one has to use kinetic theory of gases, in which the velocity distribution of gas molecules is taken into account. More specifically, kinetic theory is necessary when the molecular mean free path is not negligibly small compared with characteristic length of the considered system. Therefore, the same situation occurs when the system is of microscale even if the pressure of the gas is ordinary. A gas in which the mean free path is not negligibly small compared with the characteristic length is called a rarefied gas (even if the pressure of the gas is not low). The fundamental equation of kinetic theory of gases is the celebrated Boltzmann equation, and gas dynamics based on kinetic theory is called rarefied gas dynamics or molecular gas dynamics.

Molecular gas dynamics achieved great progress in the 1960’s and 1970’s in connection with the rapid space development at that time. In the meanwhile, it has spread to other fields such as vacuum technology and micro engineering. Nowadays it is a hot research topic in these fields.

External gas flows are of importance in aerospace applications, whereas internal gas flows appear much more frequently in vacuum technology and micro engineering. In addition, some internal flows have played a role of fundamental problems, which have promoted understanding of physical properties of rarefied gas flows as well as mathematical structures of the solution of the Boltzmann equation. Among such internal flows are the Poiseuille and thermal transpiration flows through a channel or pipe. The former, which is familiar also in ordinary fluid dynamics, is a flow driven by a pressure gradient, and the latter, which is peculiar to rarefied gases, is caused by a temperature gradient imposed on the channel or pipe wall. These two flows have been extensively studied by many researchers since the early stage of modern molecular gas dynamics, and important and useful information has been
accumulated. In these flows, however, there is still enough room for research, for instance, on mathematical structures of the solution of the Boltzmann equation, accurate numerical methods with mathematical basis, etc.

On the other hand, these classical flows of rarefied gases have attracted attentions in recent years, since it turned out that they provided potential mechanisms for vacuum pumps and microscale flow controllers. An example is the revived Knudsen compressor (or pump) without any mechanical or moving parts. A typical configuration of the Knudsen pump is a periodic structure consisting of alternately arranged narrow and wide pipes with a saw-tooth temperature distribution along the pump wall. The Poiseuille and thermal transpiration flows form the basis of the mechanism of the Knudsen pump. Therefore, a theoretical and numerical study of the Knudsen compressor based on the accumulated knowledge of the Poiseuille and thermal transpiration flows is highly desirable at this moment.

The present thesis contains the results of some studies on internal rarefied gas flows performed with the motivation given by the above facts. Chapters 1 and 2 are devoted to a study of Knudsen compressor, whereas Chapter 3 to a fundamental study of linearized Poiseuille and thermal transpiration flows. A more detailed description of these chapters follows.

In Chapter 1, Knudsen compressor consisting of a periodic arrangement of narrower and wider two-dimensional channels, having a periodic saw-tooth temperature distribution, is considered. The properties of the Knudsen compressor, when the gas is a polyatomic gas, are investigated. A macroscopic equation of convection-diffusion type, describing the behavior of a polyatomic gas in the Knudsen compressor, is derived, on the basis of the polyatomic version of the ellipsoidal statistical (ES) model of the Boltzmann equation, by a systematic asymptotic analysis under the assumption that the channel width is much shorter than the length of the pump. The properties of the Knudsen compressor, containing the effect of the internal structure of a gas molecule, are shown by some numerical results based on the macroscopic model.

In Chapter 2, as the first step, Poiseuille and thermal transpiration flows of a rarefied polyatomic gas in a long circular tube is investigated, using the ES model of the Boltzmann equation for a polyatomic gas. It is shown that the solutions to these problems can be reduced to those based on the Bhatnagar, Gross & Krook (BGK) model for a monatomic
gas. As the second step, a rarefied polyatomic gas in a long circular pipe in the following situations is considered: (i) the pressure and temperature variations along the pipe can be arbitrary and large; (ii) the length scale of variations is much longer than the radius of the pipe; (iii) the pipe may consist of circular tubes with different radii. By the same procedure as in the case of two-dimensional channels (Chapter 1), a macroscopic equation is derived. The equation is applied to a polyatomic gas flow through a single long pipe caused by a large pressure difference imposed at both ends, and to a Knudsen compressor consisting of alternately arranged narrower and wider circular tubes.

In Chapter 3, Poiseuille and thermal transpiration flows of a highly rarefied gas between two parallel plates are investigated on the basis of the linearized Boltzmann equation, with a special interest in the phenomenon of over-concentration of gas molecules on velocities parallel to the plates. An iterative approximation method with an explicit convergence estimate is presented, by which the structure of the over-concentration is clarified. A numerical computation on the basis of the method is performed for a hard-sphere molecular gas to construct a database that promptly gives the induced net mass flow for an arbitrary value of large Knudsen numbers (the ratio of the molecular mean free path to the characteristic length). An asymptotic formula of the net mass flow is also presented for molecular models belonging to Grad’s hard potential. Finally, the resemblance of the profiles between the heat flow in the Poiseuille flow and the flow velocity in the thermal transpiration is pointed out, and its cause is explained.
Chapter 1

Fluid modeling for the Knudsen compressor: Case of polyatomic gases

1.1 Introduction

The Knudsen pump (or compressor) is a non-mechanical thermal pump for gases, the prototype of which is the device made by Knudsen in 1910 [24,25]. The driving mechanism is the thermal transpiration, a gas flow caused by a temperature gradient along the wall of a pipe, which is peculiar to rarefied gases (gases in low-density circumstances or in micro scales). Since the pump does not contain any moving parts, it has a potential applicability for specific purposes in vacuum and micro technologies. Therefore, the properties of the pump have been investigated in detail numerically and experimentally [30,41,43,23,39,4,37,40,20,19].

A typical configuration of the Knudsen pump is a long tube, consisting of alternately arranged thin and thick pipes, with an imposed periodic temperature distribution along the pipe wall (say, saw-tooth distribution increasing in the thin pipes and decreasing in the thick pipes). Because of the opposite temperature gradients, the flows induced in the thick pipes are in the opposite direction to the flows induced in the thin pipes. However, these flows in the opposite directions do not cancel out completely because of the different thickness of the pipes. As a result, the flows in the thin pipes become dominant and cause a global one way flow, which has a pumping effect. As is seen from this mechanism, the performance of the pump can be improved by a cascade system using many thick and thin pipes (i.e., many units).

Since the thermal transpiration is an effect of a rarefied gas, one has to use kinetic theory to analyze the behavior of the gas in the Knudsen pump. The most widely used tool for simulations of rarefied gas flows is the direct simulation Monte Carlo (DSMC) method [8]. However, for the pump consisting of large number of units, the computational cost required for the DSMC method makes it impossible to perform practical computations. The same is true for other numerical methods, such as finite-difference methods based on
the model Boltzmann equations. In contrast, a simple and convenient macroscopic system, composed of an equation of convection-diffusion type and a connection condition at the junctions of the thick and thin pipes, was proposed recently for the purpose of overcoming the computational difficulty [2,42,3]. The system, which is valid for any Knudsen number (the mean free path of the gas molecules divided by the characteristic length of the system), was derived systematically from the Boltzmann equation under the assumption that the pipes are sufficiently thin compared with their length. The convection-diffusion-type equation contains variable coefficients (say, transport coefficients), which correspond to the mass-flow rate of the thermal transpiration and that of the Poiseuille flow (the flow caused by the pressure gradient along the pipe axis) in an infinitely long single pipe as the functions of the Knudsen number. Applying the macroscopic system with the transport coefficients based on the model Boltzmann equations, some quantitative results for two-dimensional Knudsen pumps composed of wider and narrower channels between two plates have been obtained [42,3]. For instance, the fact that the Knudsen pump is applicable to gas separation was pointed out in [42].

The previous results are formally based on the Boltzmann equation for a single gas or a mixture of gases of monatomic molecules, and the quantitative results are based on the transport coefficients obtained by using the model Boltzmann equations for monatomic molecules [the Bhatnagar–Gross–Krook (BGK) model [7,44] for a single gas in [3], the ellipsoidal statistical (ES) model [21,22] for a single gas in [5], and the McCormack model [26] for a gaseous mixture in [42]]. The aim of the present paper is to extend the macroscopic system to a single polyatomic gas and clarify the effect of the polyatomic molecules on the properties of the Knudsen pump. We employ the ES model for a polyatomic gas [1] as the basic equation and derive the macroscopic system following the procedure in [2,42,3]. As in the examples in [42,3], we restrict ourselves to the case of a two-dimensional Knudsen pump consisting of wider and narrower channels between two plates.

The paper is organized as follows. In Sec. 1.2, we first formulate the flow of a rarefied polyatomic gas between two parallel infinite plates using the ES model and then derive a convection-diffusion-type equation by a formal asymptotic analysis, under the assumption that the channel width is much smaller than the length scale of variation of the wall temperature along the channel. In Sec. 1.3, we derive the connection condition at the junctions
of wider and narrower channels for the convection-diffusion-type equation when it is applied to each channels. In Sec. 1.4, we show that the transport coefficients in the convection-diffusion-type equation can be obtained readily from the corresponding quantities for the BGK model for a monatomic gas by a simple conversion. Finally in Sec. 1.5, the behavior of a polyatomic gas in the Knudsen pump is investigated with the help of the macroscopic system.

1.2 Fluid-dynamic model for a single channel

In this section, we consider a rarefied gas in a single channel between two parallel plates, and following the analysis in [42], [3], we derive a macroscopic equation of convection-diffusion type in the case where the channel width is much smaller than the length scale of variation along the channel.

1.2.1 Problem and assumptions

Let us consider a rarefied gas in a channel between two infinite parallel plates. We take the X_1 axis (of a rectangular coordinate system X_i) perpendicular to the plates and X_2 axis along them and let the plates be located at $X_1 = \pm D/2$. The temperature of the plates, which is common to both plates and depends only on X_2, is denoted by $T_w(X_2)$.

We investigate the motion of the gas in the channel under the following assumptions:

(i) The behavior of the gas is described by the ES model [1] of the Boltzmann equation for a polyatomic gas.

(ii) The gas molecules undergo diffuse reflection on the plates.

(iii) The problem is two dimensional, i.e., the physical quantities do not depend on X_3.

(iv) The scale of variation L_* of the plate temperature is much longer than the width of the channel D, i.e., $L_* \gg D$.

1.2.2 Basic equation and boundary conditions

Let us consider a polyatomic gas consisting of molecules with internal degree of freedom δ. The number of the molecules with position in dX around X, velocity in $d\xi$ around ξ, and
energy related to the internal degree of freedom in dE around E at time t is written as

$$\frac{1}{m} f(t, X, \xi, E) dX d\xi dE,$$

where f is the velocity and energy distribution function of the gas molecules, and m is the mass of a molecule. The equation for f, the ES model for a polyatomic gas, can be written in the following form [1] (see the last paragraph of this subsection for the difference in notations between [1] and the present paper):

$$\frac{\partial f}{\partial t} + \xi_1 \frac{\partial f}{\partial X_1} + \xi_2 \frac{\partial f}{\partial X_2} = A_c(T) \rho (G - f),$$

$$G = \frac{\rho \Lambda_5 \delta^{5/2}}{(2\pi)^{3/2} |T|^{3/2}} \exp\left(-\frac{1}{2} (\xi - \nu) \cdot T^{-1} \cdot (\xi - \nu) - \frac{E}{RT_{\text{rel}}}
ight),$$

$$T = (1 - \eta) \left\{ (1 - \nu) R T_{\text{tr}} I_d + \nu \Theta \right\} + \eta R T I_d,$$

$$\Theta = \frac{1}{\rho} \int_0^\infty (\xi - \nu) \cdot t(\xi - \nu) f dE d\xi,$$

$$\rho = \int_0^\infty f dE d\xi,$$

$$v_i = \frac{1}{\rho} \int_0^\infty \xi_i f dE d\xi,$$

$$T_{\text{tr}} = \frac{1}{3 \rho R} \int_0^\infty (\xi_i - v_i)^2 f dE d\xi,$$

$$T_{\text{int}} = \frac{2}{\delta \rho R} \int_0^\infty E f dE d\xi,$$

$$T = \frac{3 T_{\text{tr}} + \delta T_{\text{int}}}{3 + \delta},$$

$$T_{\text{rel}} = \eta T + (1 - \eta) T_{\text{int}}.$$

Here, ρ is the mass density of the gas, v_i is the flow velocity, T is the temperature, T_{tr} is the temperature related to the translational energy, T_{int} is the temperature related to the energy of the internal degree of freedom, and R is the specific gas constant (the Boltzmann constant divided by the mass of a molecule); $\nu \in [-1/2, 1)$ and $\eta \in (0, 1]$ are the parameters to adjust the Prandtl number and the bulk viscosity to the gas under consideration [see Eqs. (1.6c) and (1.6d)]; $A_c(T)$ is a function of T such that $A_c(T) \rho$ is the collision frequency of the gas molecules, and Λ_5 is a dimensionless constant defined by

$$\Lambda_5^{-1} = \int_0^\infty s^{5/2-1} e^{-s} ds.$$

In addition, T and Θ are 3×3 symmetric matrices, I_d is the 3×3 identity matrix, $|T|$ and T^{-1} are the determinant and the inverse matrix of T, respectively, and the symbol $'$ indicates
the transpose operation. In what follows, for an arbitrary matrix A, its (i, j) component, determinant, inverse matrix, and transposed matrix are denoted by A_{ij}, $|A|$, A^{-1}, and $^t A$, respectively. In the above equations, $d\xi = d\xi_1 d\xi_2 d\xi_3$, and the domain of integration with respect to ξ_i is the whole space of ξ_i. It should be noted that the pressure p and the stress tensor p_{ij} are given by

$$p = \rho RT,$$

$$p_{ij} = \rho \Theta_{ij} = \int_0^\infty (\xi_i - v_i)(\xi_j - v_j) f d\xi.$$

The vanishing right-hand side of Eq. (1.2a) is equivalent to the fact that f is a local equilibrium distribution f_{eq} [1]:

$$f_{eq} = \frac{\rho A_3}{(2\pi RT)^{3/2} |A_c(T)|^{3/2} E^{\delta/2 - 1}} \exp\left(-\frac{(\xi_i - v_i)^2}{2RT} - \frac{E}{RT}\right).$$

(1.5)

It is also known [1] that Eq. (1.2) leads to the viscosity μ, the thermal conductivity κ, the Prandtl number Pr, and the bulk viscosity μ_b in the following form:

$$\mu = \frac{1}{1 - \nu + \eta \nu A_c(T)},$$

$$\kappa = \frac{RT}{\gamma - 1} \frac{R}{A_c(T)},$$

$$Pr = \frac{\gamma - 1 \mu}{\mu} = \frac{1}{1 - \nu + \eta \nu}$$

$$\mu_b = \frac{1}{\eta (\frac{5}{3} - \gamma)} \frac{\mu}{Pr},$$

(1.6a, 1.6b, 1.6c, 1.6d)

with γ the ratio of the specific heats given by

$$\gamma = \frac{\delta + 5}{\delta + 3}.$$

(1.7)

Equation (1.2a) contains the set of parameters (ν, η, δ) characterizing the gas under consideration. In place of this set, we may use another set (Pr, μ_b/μ, δ) because of relations (1.6c), (1.6d), and (1.7) (cf. Secs. 1.2.4 and 1.4 and 1.7).

The diffuse-reflection condition [10,11,35,36], adapted to the present polyatomic case, on the channel walls are expressed as

$$f = \frac{\rho_w A_3}{(2\pi RT_w)^{3/2} (RT_w)^{3/2} E^{\delta/2 - 1}} \exp\left(-\frac{\xi_i^2}{2RT_w} - \frac{E}{RT_w}\right),$$

$$\rho_w = \pm \left(\frac{2\pi}{RT_w}\right)^{1/2} \int_{\xi_1 \geq 0} \int_0^\infty \xi_1 f d\xi d\xi.$$

(1.8a, 1.8b)
where the upper (or lower) signs go together. The initial condition is given by

\[f(0, X_1, X_2, \xi, \mathcal{E}) = f^0(X_1, X_2, \xi, \mathcal{E}). \]

The mass-flow rate \(M \) in the \(X_2 \) direction (per unit time and per unit length in \(X_3 \)) is expressed as

\[M = \int_{D/2}^{D/2} \rho \upsilon_2 dX_1. \]

In [1], the energy \(\mathcal{E} \), which is denoted by \(\varepsilon \) there, is assumed to be expressed as \(\mathcal{E} = I^{2/3} \) in terms of a variable \(I \), and \(I \) is used as an independent variable. More specifically, the distribution function in [1], which we denote by \(\overline{f}(t, X, \xi, I) \) here, is defined in such a way that

\[\frac{1}{m} \overline{f}(t, X, \xi, I) dX d\xi dI, \]

indicates the number of the molecules with position in \(dX \) around \(X \), velocity in \(d\xi \) around \(\xi \), and the variable \(I \) in \(dI \) around \(I \) at time \(t \). Therefore, the relation between \(\overline{f} \) and the present \(f \) is as follows:

\[f(t, X, \xi, \mathcal{E}) = (\delta/2)\mathcal{E}^{\delta/2-1} \overline{f}(t, X, \xi, \mathcal{E}^{\delta/2}). \]

In addition, \(\Lambda_\delta \) in [1], which we denote \(\overline{\Lambda}_\delta \) here, is related to \(\Lambda_\delta \) in Eq. (1.3) as

\[\Lambda_\delta^{-1} = (2/\delta)(\overline{\Lambda}_\delta)^{-1}. \]

1.2.3 Dimensionless form

Let us introduce the following dimensionless quantities:

\[\hat{t} = t/t_*, \quad x_1 = X_1/D_*, \quad x_2 = X_2/L_*, \]
\[\zeta_i = \xi_i/(2RT_*)^{1/2}, \quad \hat{\mathcal{E}} = \mathcal{E}/RT_*, \]
\[(\hat{f}, \hat{G}) = (f, G)/2\rho_*(2RT_*)^{-5/2}, \]
\[\hat{\rho} = \rho/\rho_*, \quad \hat{\upsilon}_i = \upsilon_i/(2RT_*)^{1/2}, \]
\[(\hat{T}_{\text{tr}}, \hat{T}_{\text{int}}, \hat{T}, \hat{T}_{\text{rel}}) = (T_{\text{tr}}, T_{\text{int}}, T, T_{\text{rel}})/T_*, \]
\[\hat{p} = p/p_*, \quad \hat{p}_{ij} = p_{ij}/p_*, \quad \hat{M} = M/\rho_*(2RT_*)^{1/2}D_*, \]
\[\hat{\rho}_w = \rho_w/\rho_*, \quad \hat{T}_w = T_w/T_*, \quad a = D/D_*, \]
\[\hat{A}_c(\hat{T}) = A_c(T)/A_c(T_*), \quad (\hat{T}, \hat{\Theta}) = (T, \Theta)/RT_*, \]
where \(t_* \) is the reference time, \(D_* (\ll L_*) \) is the reference width of the channel, \(\rho_* \) is the reference density, \(T_* \) is the reference temperature, \(p_* = R\rho_*T_* \) is the reference pressure. The mean free path \(l_* \) of the gas molecules in the equilibrium state at rest is given as \(l_* = (2/\sqrt{\pi})(2RT_*)^{1/2}/A(T_*)\rho_* \).

Then, Eq. (1.2) is transformed to the following dimensionless form:

\[
\begin{align*}
\text{Sh} \frac{\partial \hat{f}}{\partial \hat{t}} + \zeta_1 \frac{\partial \hat{f}}{\partial \hat{x}_1} + \epsilon \zeta_2 \frac{\partial \hat{f}}{\partial \hat{x}_2} &= \frac{1}{\sqrt{\pi} K_*} \dot{A}_c (\hat{G} - \hat{f}), \\
\hat{G} &= \frac{\hat{\rho} \Lambda_\delta}{\pi^{3/2} |\mathcal{I}|^{1/2} \hat{T}_{rel}^{3/2}} \exp \left(-\frac{1}{4} (\zeta - \hat{\nu}) \cdot \hat{T}^{-1} (\zeta - \hat{\nu}) \right), \\
\hat{T} &= (1 - \eta) \{ (1 - \nu) \hat{T}_{tr} \mathcal{I} + \nu \hat{\Theta} \mathcal{I} \} + \eta \hat{T} \mathcal{I} \\
\hat{\Theta} &= \frac{2}{\hat{\rho}} \int_0^\infty (\zeta - \hat{\nu}) \cdot \hat{f} \hat{d} \hat{E} \hat{d} \zeta, \\
\hat{\rho} &= \int_0^\infty \hat{f} \hat{d} \hat{E} \hat{d} \zeta, \\
\hat{\nu}_i &= \frac{1}{\hat{\rho}} \int_0^\infty \zeta_i \hat{f} \hat{d} \hat{E} \hat{d} \zeta, \\
\hat{T}_{tr} &= \frac{2}{3} \hat{T}_{tr} \int_0^\infty (\zeta_i - \hat{\nu}_i)^2 \hat{f} \hat{d} \hat{E} \hat{d} \zeta, \\
\hat{T}_{int} &= \frac{2}{3} \hat{T}_{int} \int_0^\infty \hat{E} \hat{f} \hat{d} \hat{E} \hat{d} \zeta, \\
\hat{T} &= \frac{3\hat{T}_{tr} + \delta \hat{T}_{int}}{3 + \delta}, \\
\hat{T}_{rel} &= \eta \hat{T} + (1 - \eta) \hat{T}_{int},
\end{align*}
\]

where \(d\zeta = d\zeta_1 d\zeta_2 d\zeta_3 \), and the domain of integration with respect to \(\zeta_i \) is the whole space of \(\zeta_i \). The Sh, \(\epsilon \), and \(K_* \) in Eq. (1.15) are the dimensionless parameters defined by

\[
\text{Sh} = \frac{D_*}{t_*(2RT_*)^{1/2}}; \quad \epsilon = \frac{D_*}{L_*}; \quad K_* = \frac{l_*}{D_*},
\]

where Sh is the reference Strouhal number, and \(K_* \) is the reference Knudsen number. Corresponding to Eqs. (1.4a) and (1.4b), we have

\[
\begin{align*}
\hat{\rho} &= \hat{\rho} \hat{T}, \\
\hat{p}_{ij} &= \hat{\rho} \hat{\Theta}_{ij} = \int_0^\infty 2(\zeta_i - \hat{\nu}_i)(\zeta_j - \hat{\nu}_j) \hat{f} \hat{d} \hat{E} \hat{d} \zeta.
\end{align*}
\]
The dimensionless form of the boundary condition (1.8) is given by

\[
\hat{f} = \frac{\hat{\rho}_w \Lambda \delta}{(\pi T_w)^{3/2} \hat{\delta}^{5/2}} \hat{E}^{5/2-1} \exp \left(-\frac{\zeta_1^2}{T_w} - \frac{\hat{E}}{T_w}\right) \quad (x_1 = \pm a/2, \quad \zeta_1 \leq 0),
\]

(1.18a)

\[
\hat{\rho}_w = \pm 2 \sqrt{\frac{\pi}{T_w}} \int_{\zeta_1 \geq 0} \int_0^{\infty} \zeta_1 \hat{f} d\hat{E} d\zeta,
\]

(1.18b)

and that of the initial condition (1.9) is given by

\[
\hat{f}(0, x_1, x_2, \zeta, \hat{E}) = \hat{f}^0(x_1, x_2, \zeta, \hat{E}).
\]

(1.19)

From Eq. (1.10), we have, for the dimensionless mass-flow rate \(\hat{M} \),

\[
\hat{M} = \int_{-a/2}^{a/2} \hat{\rho} \hat{v}_2 dx_1.
\]

(1.20)

Because of assumption (iv) in Sec. 1.2.1, \(\epsilon \) in Eq. (1.16) is the small parameter in our problem, whereas the reference Knudsen number \(K^* \) is arbitrary. In this situation, the induced gas flow is expected to be slow. If we assume that \(\hat{v}_i \) is of the order of \(\epsilon \), the reference time \(t^* \) and thus the Strouhal number \(\text{Sh} \) may be chosen as

\[
t^* = L^*/(2RT^*_s)^{1/2} \epsilon, \quad \text{Sh} = \epsilon^2.
\]

(1.21)

Therefore, Eq. (1.15a) becomes

\[
\epsilon^2 \frac{\partial \hat{f}}{\partial \zeta_1} + \zeta_1 \frac{\partial \hat{f}}{\partial x_1} + \epsilon \zeta_2 \frac{\partial \hat{f}}{\partial x_2} = \frac{2}{\sqrt{\pi} K^*} \hat{A}_c \hat{\rho} (\hat{G} - \hat{f}).
\]

(1.22)

1.2.4 Macroscopic equation

We analyze the problem (1.22) [with Eqs. (1.15b)–(1.15j)], (1.18), and (1.19) by expanding \(\hat{f} \) in terms of \(\epsilon \):

\[
\hat{f} = \hat{f}(0) + \hat{f}(1) \epsilon + \hat{f}(2) \epsilon^2 + \cdots.
\]

(1.23)

Correspondingly, the moments of \(\hat{f} \) occurring in Eq. (1.22), i.e., \(\hat{\rho}, \hat{v}_i, \hat{T}_{tr}, \hat{T}_{int}, \) and \(\hat{\Theta} \), and thus all the other (macroscopic) quantities that are defined in terms of these moments are expanded as

\[
\hat{h} = \hat{h}(0) + \hat{h}(1) \epsilon + \hat{h}(2) \epsilon^2 + \cdots.
\]

(1.24)
Here, \(\hat{h} \) stands for \(\hat{\rho}, \hat{v}, \hat{T}_{ir}, \hat{T}_{int}, \) and \(\hat{\Theta} \) and also \(\hat{T}, \hat{T}_{rel}, \hat{A}_{c}, |\hat{T}|, \hat{T}^{-1}, \hat{p} \) and \(\hat{p}_{ij} \). For instance, for \(\hat{\rho}, \hat{\Theta}, \hat{A}_{c} \), we write

\[
\hat{\rho} = \hat{\rho}_{(0)} + \hat{\rho}_{(1)}\epsilon + \hat{\rho}_{(2)}\epsilon^2 + \cdots, \quad \text{(1.25a)}
\]

\[
\hat{\Theta} = \hat{\Theta}_{(0)} + \hat{\Theta}_{(1)}\epsilon + \hat{\Theta}_{(2)}\epsilon^2 + \cdots, \quad \text{(1.25b)}
\]

\[
\hat{A}_{c} = \hat{A}_{c(0)} + \hat{A}_{c(1)}\epsilon + \hat{A}_{c(2)}\epsilon^2 + \cdots. \quad \text{(1.25c)}
\]

The expansion of the macroscopic quantities (1.24) leads to the corresponding expansion of the Gaussian \(\hat{G} \):

\[
\hat{G} = \hat{G}_{(0)} + \hat{G}_{(1)}\epsilon + \hat{G}_{(2)}\epsilon^2 + \cdots. \quad \text{(1.26)}
\]

In addition, \(\hat{\rho}_{w} \) in the boundary condition (1.18) and the dimensionless mass-flow rate \(\hat{M} \) [Eq. (1.20)] are expanded as well:

\[
\hat{\rho}_{w} = \hat{\rho}_{w(0)} + \hat{\rho}_{w(1)}\epsilon + \hat{\rho}_{w(2)}\epsilon^2 + \cdots, \quad \text{(1.27a)}
\]

\[
\hat{M} = \hat{M}_{(0)} + \hat{M}_{(1)}\epsilon + \hat{M}_{(2)}\epsilon^2 + \cdots. \quad \text{(1.27b)}
\]

The explicit expressions of the coefficients in the expansions (1.24), (1.26), and (1.27), some of which will be given when necessary in the sequel, are omitted here. By the substitution of these expansions in Eqs. (1.22) [with Eqs. (1.15b)–(1.15j)], (1.18), and (1.19), we can solve the problem from the lowest order of \(\epsilon \).

1.2.4.1 Zeroth order

The equation at the zeroth order in \(\epsilon \) is as follows:

\[
\zeta_1 \frac{\partial \hat{f}_{(0)}}{\partial x_1} = \frac{2}{\sqrt{\pi}} \frac{1}{K}\hat{A}_{c(0)}\hat{\rho}(\hat{G}_{(0)} - \hat{f}_{(0)}), \quad \text{(1.28)}
\]

where \(\hat{A}_{c(0)} = \hat{A}_{c}(\hat{T}_{(0)}) \), and the explicit forms of \(\hat{\rho}_{(0)} \) and \(\hat{G}_{(0)} \), which can be obtained from Eqs. (1.15b)–(1.15j) straightforwardly, are omitted here. The corresponding boundary condition is given by

\[
\hat{f}_{(0)} = \frac{\hat{\rho}_{w(0)}\Lambda_{\delta}}{(\pi T_{w})^{3/2} T_{w}^{3/2}} \hat{\epsilon}^{3/2-1} \exp\left(-\frac{\zeta_1^2}{T_{w}} - \frac{\hat{\epsilon}}{T_{w}}\right), \quad (x_1 = \pm a/2, \; \zeta_1 \leq 0), \quad \text{(1.29a)}
\]

\[
\hat{\rho}_{w(0)} = \pm 2\sqrt{\frac{\pi}{T_{w}}} \int_{\zeta_1 \geq 0} \int_{0}^{\infty} \zeta_1 \hat{f}_{(0)}(\hat{\epsilon}) d\hat{\epsilon} d\zeta_1. \quad \text{(1.29b)}
\]
It should be noted that \(\hat{t} \) and \(x_2 \) appear only as parameters in the problem \((1.28)\) and \((1.29)\).

It is seen by the direct substitution that Eqs. \((1.28)\) and \((1.29)\) have a solution of the following form:

\[
\hat{f}_0 = \frac{\sigma(0)(\hat{t}, x_2) \Lambda_\delta}{[\pi \hat{T}_w(x_2)]^{3/2}} \hat{\delta}^{3/2 - 1} \exp \left(-\frac{\zeta^2 + \hat{\delta}}{\hat{T}_w(x_2)} \right),
\]

where \(\sigma(0)\) is an arbitrary function of \(\hat{t}\) and \(x_2\) to be determined later. In fact, Eq. \((1.30)\) gives the following macroscopic quantities:

\[
\begin{align*}
\hat{\rho}_0 &= \sigma(0)(\hat{t}, x_2), \\
\hat{\nu}_i(0) &= 0, \\
\hat{T}_{tr}(0) &= \hat{T}_{int}(0) = \hat{T}_0 = \hat{T}_w(x_2), \\
\hat{p}_0 &= \sigma(0)(\hat{t}, x_2) \hat{T}_w(x_2), \\
\hat{p}_{ij}(0) &= \hat{p}_0 \delta_{ij}, \\
\hat{M}_0 &= 0,
\end{align*}
\]

which reduce \(\hat{G}(0)\) and \(\hat{A}_c(0)\) to

\[
\begin{align*}
\hat{G}_0 &= \hat{f}_0, \\
\hat{A}_c(0) &= \hat{A}_c(\hat{T}_w).
\end{align*}
\]

Moreover, we can show, by following [14], that Eq. \((1.30)\) is the unique solution (up to the arbitrariness of \(\sigma(0)\)).

1.2.4.2 First order

The equation in the first order of \(\epsilon\) is obtained as follows:

\[
\begin{align*}
\zeta_1 & \frac{\partial \hat{f}_1(1)}{\partial x_1} + \zeta_2 \frac{\partial \hat{f}_0}{\partial x_2} = \frac{2}{\sqrt{\pi} K_\ast} \frac{1}{\hat{T}_w} \hat{A}_c(0) \sigma(0) (\hat{G}_1 - \hat{f}_1(1)), \\
\hat{G}_1 &= \hat{G}_0 \left[\frac{\hat{\rho}_1(1)}{\sigma(0)} - \frac{1}{2} \frac{\hat{T}_1(1)}{\hat{T}_w} - \frac{\hat{\delta}}{2 \hat{T}_w} + \frac{\hat{E} \hat{T}_{rel}(1)}{\hat{T}_w} \right. \\
&\quad + \left. 2 \frac{\zeta_i \hat{v}_i(1)}{\hat{T}_w} - t \cdot \zeta \cdot (\hat{T}_w^{-1})_{(1)} \cdot \zeta \right], \\
|\hat{T}_1(1)| &= \hat{T}_w \left[3(1 - \eta) \hat{T}_{tr(1)} + 3\eta \hat{T}_{1(1)} \right], \\
\zeta \cdot (\hat{T}_w^{-1})_{(1)} \cdot \zeta &= -\frac{1}{\hat{T}_w^2} \left[(1 - \eta) \hat{T}_{tr(1)} + \eta \hat{T}_{1(1)} \right] \zeta_i^2 \\
&\quad + (1 - \eta) \nu \frac{\hat{p}_{ij}(1)}{\sigma(0)} \left(\zeta_i \zeta_j - \frac{1}{3} \zeta_k^2 \delta_{ij} \right), \\
\hat{\rho}_1(1) &= \int_0^\infty \hat{f}_1(1) d\hat{E} d\zeta, \\
\sigma(0) \hat{\nu}_i(1) &= \int_0^\infty \zeta_i \hat{f}_1(1) d\hat{E} d\zeta, \\
\sigma(0) \hat{T}_{tr(1)} &= \frac{2}{3} \int_0^\infty \zeta_i^2 \hat{f}_1(1) d\hat{E} d\zeta - \hat{\rho}_1(1) \hat{T}_w.
\end{align*}
\]
\[\sigma(0) \hat{T}_{\text{int}(1)} = \frac{2}{\delta} \int_0^{\infty} \hat{E} \hat{f}(1) d\hat{E} d\zeta = \hat{\rho}(1) \hat{T}_w, \quad (1.33h) \]
\[\hat{T}(1) = \frac{3 \hat{T}_{\text{tr}(1)} + \delta \hat{T}_{\text{int}(1)}}{3 + \delta}, \quad (1.33i) \]
\[\hat{T}_{\text{rel}(1)} = \eta \hat{T}(1) + (1 - \eta) \hat{T}_{\text{int}(1)}. \quad (1.33j) \]

The corresponding boundary condition is given by
\[\hat{f}(1) = \frac{\hat{\rho}_w(1) A_\delta}{(\pi T_w)^{3/2} T_w^{1/2}} \hat{E}^{3/2} \exp\left(-\frac{\zeta_r^2}{T_w}\right) (x_1 = \pm a/2, \ \zeta_1 \leq 0), \quad (1.34a) \]
\[\hat{\rho}_w(1) = \pm 2 \sqrt{\pi} \int_{\zeta_1 \geq 0} \int_0^{\infty} \zeta_1 \hat{f}(1) d\hat{E} d\zeta. \quad (1.34b) \]

In addition, the pressure, the stress tensor, and the mass-flow rate in the first order of \(\epsilon \) are expressed as follows:
\[\hat{p}(1) = \sigma(0) \hat{T}(1) + \hat{\rho}(1) \hat{T}_w, \quad (1.35a) \]
\[\hat{p}_{ij}(1) = \int_0^{\infty} 2 \zeta_1 \zeta_j \hat{f}(1) d\hat{E} d\zeta, \quad (1.35b) \]
\[\hat{M}(1) = \int_{-a/2}^{a/2} \sigma(0) \hat{v}(1) d\zeta. \quad (1.35c) \]

Here again, the problem (1.33) and (1.34) contains \(\hat{t} \) and \(x_2 \) only as parameters [see Eqs. (1.31) and (1.32)]. Now we can show, as in the same way as [42], that the solution to Eqs. (1.33) and (1.34) is obtained in the following form:
\[\hat{f}(1) = \hat{f}(0) \left[\phi_g(\hat{t}, x_2) + \frac{\zeta_2}{\zeta_r} a \phi_P \left(\frac{x_1}{a}, \frac{\zeta_1}{T_w^{1/2}}, \frac{\zeta_r}{T_w^{1/2}}, \frac{\hat{E}}{T_w} K(\hat{t}, x_2) \right) \frac{1}{\hat{\rho}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} \right] \]
\[+ \frac{\zeta_2}{\zeta_r} a \phi_T \left(\frac{x_1}{a}, \frac{\zeta_1}{T_w^{1/2}}, \frac{\zeta_r}{T_w^{1/2}}, \frac{\hat{E}}{T_w} K(\hat{t}, x_2) \right) \frac{1}{T_w} \frac{d \hat{T}_w(x_2)}{d x_2}, \quad (1.36) \]

where
\[\zeta_r = (\zeta_2^2 + \zeta_3^2)^{1/2}, \quad (1.37a) \]
\[K(\hat{t}, x_2) = \frac{K_s T_w^{3/2}(x_2)}{\hat{\rho}(0)(\hat{t}, x_2) A_c(0)(\hat{t}, x_2) a}, \quad (1.37b) \]

\(\phi_g(\hat{t}, x_2) \) is an arbitrary function of \(\hat{t} \) and \(x_2 \), and \(\phi_P \) and \(\phi_T \) are, respectively, the solutions of the specific boundary-value problems for the linearized ES model. The equation and boundary condition for \(\phi_P \) and those for \(\phi_T \) are given in Sec. 1.7, where the parameter set \((Pr, \mu_b/\mu, \delta) \) is used in place of \((\nu, \eta, \delta) \) in Eq. (1.67) [see the comment following Eq. (1.7)]. The \(\phi_P \) corresponds to the solution for the flow induced between two parallel plates by the
uniform pressure gradient (Poiseuille flow) \cite{36}, whereas ϕ_T corresponds to the solution for the flow induced between two parallel plates by the uniform temperature gradient along the plates (thermal transpiration) \cite{36}. They are fundamental and classical problems in rarefied gas dynamics and have been investigated by many authors by various methods. Since an exhaustive list of references is beyond the scope of the present paper, we only mention some early works, \cite{12}, \cite{28}, \cite{29}, and more recent works, \cite{34}, \cite{15} (see also \cite{36}, \cite{32} and references therein). We will discuss these problems in Sec. 1.4.

The macroscopic quantities in the first order of ϵ, i.e., those corresponding to the solution (1.36), are obtained as follows:

$$
\hat{\rho}(1) = \sigma(0)(\hat{t}, x_2) \phi_g(\hat{t}, x_2), \quad \hat{v}_1(1) = \hat{v}_3(1) = 0,
$$

$$
\hat{v}_2(1) = a \hat{T}^{1/2}_w \left(u_P \frac{1}{\hat{p}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} + u_T \frac{1}{T_w} \frac{d \hat{T}_w}{dx_2} \right),
$$

$$
\hat{T}_{tr}(1) = \hat{T}_{int}(1) = \hat{T}(1) = \hat{T}_{rel}(1) = 0,
$$

$$
\hat{p}(1) = \hat{p}(0)(\hat{t}, x_2) \phi_g(\hat{t}, x_2),
$$

$$
\hat{p}_{ij}(1) = \hat{p}(1) \delta_{ij} + a \hat{p}(0) \left(\sum_P \frac{1}{\hat{p}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} + \sum_T \frac{1}{T_w} \frac{d \hat{T}_w}{dx_2} \right) (\delta_{i1} \delta_{j2} + \delta_{i2} \delta_{j1}),
$$

where, with $\alpha = P, T$,

$$
u_\alpha = u_\alpha \left(\frac{x_1}{a}; K(\hat{t}, x_2) \right)
= \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} c_1^2 Y^{\delta/2-1} \phi_\alpha \left(\frac{x_1}{a}, c_1, c_r, Y; K(\hat{t}, x_2) \right) \tilde{E}_Y dY dc_r dc_1,
$$

$$
\Sigma_\alpha = \Sigma_\alpha \left(\frac{x_1}{a}; K(\hat{t}, x_2) \right)
= 2 \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} c_1 c_r^2 Y^{\delta/2-1} \phi_\alpha \left(\frac{x_1}{a}, c_1, c_r, Y; K(\hat{t}, x_2) \right) \tilde{E}_Y dY dc_r dc_1,
$$

$$
\tilde{E}_Y = \Lambda_\delta \pi^{-1/2} \exp(-c_1^2 - c_r^2 - Y).
$$

[It turns out that $\Sigma_P = -x_1/a$ and $\Sigma_T = 0$ (see Sec. 1.7).] In addition, the corresponding mass-flow rate is given as

$$
\hat{M}_1(1) = a^2 \frac{\hat{p}(0)}{\hat{T}_w^{1/2}} \left(M_P \frac{1}{\hat{p}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} + M_T \frac{1}{T_w} \frac{d \hat{T}_w}{dx_2} \right),
$$

where

$$
M_\alpha = M_\alpha(K(\hat{t}, x_2)) = \int_{-1/2}^{1/2} u_\alpha(y; K(\hat{t}, x_2))dy, \quad (\alpha = P, T).
$$
The equation in the second order of ϵ reads as follows:

$$\partial \hat{f}(0) \partial t + \zeta_1 \partial \hat{f}(2) \partial x_1 + \zeta_2 \partial \hat{f}(1) \partial x_2 = \frac{2}{\sqrt{\pi} K_s} \left[\hat{A}_c(0) \sigma(0)(\hat{G}(2) - \hat{f}(2)) + (\hat{A}_c(0) \hat{\rho}(1) + \hat{A}_c(1) \sigma(0))(\hat{G}(1) - \hat{f}(1)) \right], \quad (1.42)$$

where the explicit form of $\hat{G}(2)$ is omitted. The boundary condition for Eq. (1.42) is given by

$$\hat{f}(2) = \hat{\rho}_w(2) \Lambda_3 \left(\pi T_w^{3/2} \hat{p}^{\delta/2-1} \exp\left(-\frac{\zeta_1^2}{T_w} - \frac{\hat{E}}{T_w} \right) \right), \quad (x_1 = \pm a/2, \zeta_1 \leq 0), \quad (1.43a)$$

$$\hat{\rho}_w(2) = \pm \frac{2}{\sqrt{\pi} T_w} \int_{\zeta_1 \geq 0} \int_0^{\infty} \zeta_1 \hat{f}(2) d\hat{E} d\zeta. \quad (1.43b)$$

We now integrate Eq. (1.42) with respect to ζ_i and \hat{E} over their whole ranges and then with respect to x_1 from $-a/2$ to $a/2$. If we take into account, in this process, the explicit forms of $\hat{f}(0)$ [Eq. (1.30)] and $\hat{f}(1)$ [Eq. (1.36)], as well as the relation

$$\int_0^{\infty} \zeta_1 \hat{f}(2) |_{x_1 = \pm a/2} d\hat{E} d\zeta = 0, \quad (1.44)$$

obtained from the boundary condition (1.43), then we have the following equation:

$$\frac{\partial \hat{p}(0)}{\partial t} + \hat{T}_w \frac{\partial M}{\partial x_2} = 0, \quad (1.45a)$$

$$M = \frac{\hat{\rho}(0)}{T_w^{1/2}} \left[M_T(K; \delta, \Pr) \frac{1}{\hat{\rho}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} + M_T(K; \delta) \frac{1}{T_w} \frac{d\hat{T}_w}{dx_2} \right], \quad (1.45b)$$

$$K = K_s T_w^{3/2}/\hat{\rho}(0) \hat{A}_c(0)a, \quad \hat{A}_c(0) = \hat{A}_c(\hat{T}_w), \quad (1.45c)$$

where, $\hat{\rho}(0) = \sigma(0) \hat{T}_w$, rather than $\sigma(0)$, has been used as the unknown function. In Eq. (1.45), $\hat{\rho}(0)$, M, and K are the functions of \hat{t} and x_2, whereas \hat{T}_w and $\hat{A}_c(0)$ are the functions of x_2 only. As shown in Sec. 1.7, ϕ_P depends only on (\Pr, δ) and ϕ_T only on δ among the set of parameters $(\Pr, \mu_b/\mu, \delta)$. Thus, the same dependency holds for M_T and M_T. This fact is shown explicitly in Eq. (1.45). Further relevant properties of M_T and M_T will be shown in Sec. 1.4. The original (dimensional) mass-flow rate M [cf. Eq. (1.10)] is expressed as

$$M/\rho_s (2RT_s)^{1/2} D_s = aM \epsilon + O(\epsilon^2). \quad (1.46)$$

Thus, M is the dimensionless first-order mass flux.
In summary, Eq. (1.45) is the equation of convection-diffusion type for the pressure \(\hat{p}(0) \) at the zeroth order in \(\epsilon \) if we have the data of \(M_P \) and \(M_T \) as the functions of \(K \). The construction of the database will be made in Sec. 1.4.

The steady version of Eq. (1.45) is essentially the same as the generalized Reynolds equation derived in [17] and often used in micro-fluid applications [33,13]. Mathematical study of the derivation of diffusion-type equations from the Boltzmann equation is found, for instance, in Refs. [6,18,16]. In Ref. [3], the term corresponding to \(\phi_g \) in Eq. (1.36) is set to be zero because this setting does not make any change in the resulting equation of convection-diffusion type.

1.3 Connected channels and connection condition

Let us consider a long channel composed of several (or many) channels with different width connected linearly one after another. If each channel is long enough compared with its width, the macroscopic equation (1.45) should be valid in each channel except the regions near the junctions. If we assume that the macroscopic equation is valid even in the junction regions, it should be complemented by an appropriate connection condition at the junctions. This condition can be derived by the analysis of the original kinetic equation in the junction regions (see [2,42,3]). Here, we only give the result thus obtained.

Let us consider the junction of two channels shown in Fig. 1.1. That is, the channel I with width \(D_I (X_2 < 0) \) is connected with the channel II with width \(D_{II} (X_2 > 0) \) at \(X_2 = 0 \). We assume the diffuse reflection on the wall at \(X_2 = 0 \) and that the temperature of the channel wall is continuous at \(X_2 = 0 \) though its derivative may be discontinuous. Then, the
connection condition for Eq. (1.45) applied to each channel is given by

\[\hat{p}_I(\hat{t}, x_2 = 0_-) = \hat{p}_{II}(\hat{t}, x_2 = 0_+), \tag{1.47a} \]

\[M_I(\hat{t}, x_2 = 0_-) a_I = M_{II}(\hat{t}, x_2 = 0_+) a_{II}, \tag{1.47b} \]

with

\[a_I = D_I / D_*, \quad a_{II} = D_{II} / D_. \tag{1.48} \]

Here, \(\hat{p}_J(0) \) and \(M_J \) \((J = I, II)\) are the zeroth-order pressure and the first-order mass flux in the channel \(J \), respectively. The condition (1.47) is valid irrespective of the positions of the center lines of the two channels (i.e., the center lines do not need to be common).

In the case of a channel composed of many channels with different width, the condition (1.47) is to be applied at each junction.

1.4 Data for \(M_P \) and \(M_T \): Reduction to BGK model

The convection-diffusion-type equation (1.45) is of the same form as in the case of a monatomic gas [42,3]. In other words, the effect of the polyatomic gas is confined in the transport coefficients \(M_P \) and \(M_T \). As we have seen in Sec. 1.2.4.2, \(M_P \) and \(M_T \) are obtained by Eqs. (1.39a) and (1.41) from the solutions \(\phi_P \) and \(\phi_T \) to Eq. (1.67) with boundary condition (1.66). In this section, we investigate this problem in detail.

We first note that we can eliminate the variable \(Y \) from our problem by introducing the following marginal velocity distribution functions:

\[\Phi_\alpha(y, c_1, c_r; K(\hat{t}, x_2)) = \Lambda_\delta \int_{-\infty}^{\infty} \int_0^{\infty} Y^{\delta/2-1} \phi_\alpha(y, c_1, c_r, Y; K(\hat{t}, x_2)) \exp(-Y) dY, \]

\[(\alpha = P, T). \tag{1.49} \]

More specifically, if we multiply Eq. (1.67a) by \(\Lambda_3 Y^{\delta/2-1} \exp(-Y) \) and integrate with respect to \(Y \) from 0 to \(\infty \), we obtain the boundary-value problems for \(\Phi_P \) and \(\Phi_T \). That is, the problem for \(\Phi_P \) is

\[c_1 \frac{\partial \Phi_P}{\partial y} = \frac{2}{\sqrt{\pi}} K \left[-\Phi_P + 2c_r u_P - 2 \left(1 - \frac{1}{Pr} \right) c_1 c_r y \right] - c_r, \tag{1.50a} \]

\[u_P = \int_{-\infty}^{\infty} \int_0^{\infty} c_r^2 \Phi_P E_c dc_r dc_1, \tag{1.50b} \]

\[\Phi_P = 0, \quad (y = \pm 1/2, \ c_1 \leq 0), \tag{1.50c} \]
where
\[E_c = \pi^{-1/2} \exp(-c_1^2 - c_r^2), \]
(1.51)
and the problem for Φ_T is
\[c_1 \frac{\partial \Phi_T}{\partial y} = \frac{2}{\sqrt{\pi} K} \left(-\Phi_T + 2c_r u_T\right) - c_r \left(c_1^2 + c_r^2 - \frac{5}{2}\right), \]
(1.52a)
\[u_T = \int_{-\infty}^{\infty} \int_{0}^{\infty} c_r^2 \Phi_T E_c dc_r dc_1, \]
(1.52b)
\[\Phi_T = 0, \quad (y = \pm 1/2, \ c_1 \leq 0). \]
(1.52c)

In addition, we have
\[M_P = \int_{-1/2}^{1/2} u_P dy, \quad M_T = \int_{-1/2}^{1/2} u_T dy. \]
(1.53)

It should be remarked that the parameter δ of the internal degree of freedom of a molecule has been eliminated from the problems (1.50) and (1.52). As seen from Eqs. (1.50) and (1.52), Φ_P depends only on Pr and Φ_T on none of the parameters $(Pr, \mu_b/\mu, \delta)$. Thus, we may write M_P and M_T as $M_P(K, Pr)$ and $M_T(K)$.

In fact, Eqs. (1.50) and (1.52) are of the same form as the equations and boundary conditions corresponding to the plane Poiseuille flow and thermal transpiration based on the ES model for a monatomic gas. The only difference lies in the different values of Pr in the former. Furthermore, Eq. (1.52) is identical to the equation and boundary condition corresponding to the thermal transpiration based on the BGK model for a monatomic gas. Therefore, we can just exploit the existing data of M_T based on the BGK model [38]. On the other hand, the problem (1.50) differs from that based on the BGK model. However, if we let
\[\Phi_P = \Psi_P - \frac{2}{\sqrt{\pi} K} \left(1 - \frac{1}{Pr}\right) c_r \left(y^2 - \frac{1}{4}\right), \]
(1.54)
then we have the following equation and boundary condition for Ψ_P:
\[c_1 \frac{\partial \Psi_P}{\partial y} = \frac{2}{\sqrt{\pi} K} (-\Psi_P + 2c_r u_P[\Psi_P]) - c_r, \]
(1.55a)
\[u_P[\Psi_P] = \int_{-\infty}^{\infty} \int_{0}^{\infty} c_r^2 \Psi_P E_c dc_r dc_1, \]
(1.55b)
\[\Psi_P = 0, \quad (y = \pm 1/2, \ c_1 \leq 0), \]
(1.55c)
which does not contain Pr and is identical to the equation and boundary condition for the plane Poiseuille flow based on the BGK model for a single-component gas. Let $u_P[\Phi_P]$ and $M_P[\Phi_P]$ denote u_P and M_P based on Φ_P, and $u_P[\Psi_P]$ and $M_P[\Psi_P]$ those based on Ψ_P. Then, they are related as

\[
\begin{align*}
 u_P[\Phi_P] &= u_P[\Psi_P] - \frac{1}{\sqrt{\pi}} \frac{1}{K} \left(1 - \frac{1}{Pr}\right) \left(y^2 - \frac{1}{4}\right), \\
 M_P[\Phi_P] &= M_P[\Psi_P] + \frac{1}{6} \frac{1}{\sqrt{\pi}} \frac{1}{K} \left(1 - \frac{1}{Pr}\right).
\end{align*}
\]

Since $M_P[\Psi_P]$ is independent of Pr, the functional form of $M_P(K, Pr)$, as the function of Pr, is given by the last term on the right-hand side of Eq. (1.57). In this way, the data of $M_P(K, Pr)$ can be obtained readily from the existing data of $M_P[\Psi_P]$ for the BGK model for a monatomic gas [38]. The same conversions as (1.54), (1.56), and (1.57) can be used even when the boundary condition other than the diffuse reflection (e.g., Cercignani–Lampis model [10]) is used in the formulation of the problem [or in place of (1.50c)]. It should be noted that, for a monatomic gas, the conversion between the ES and BGK models is mentioned in [9,10], where a conversion formula corresponding to Eq. (1.57) is given for the cylindrical Poiseuille flow, assuming the diffuse reflection boundary condition.

In summary, we can obtain the database for $M_P(K, Pr)$ and $M_T(K)$ without any new computation.

1.5 Knudsen pump and its performance

In this section, we apply the macroscopic equation (1.45) and connection condition (1.47) to a Knudsen pump. We take the nitrogen gas (N_2), for which the experimental values of Pr and μ_b/μ are available (Pr = 0.718 [27] and $\mu_b/\mu = 0.731$ [31]). We set the values of ν and η in such a way that the resulting Pr and μ_b/μ are close to the above experimental values, that is, $\nu = -0.50$ and $\eta = 0.46$, which lead to Pr = 0.787 and $\mu_b/\mu = 0.722$.

Now, let us consider a Knudsen pump (or compressor) shown in Fig. 1.2, that is, a long channel consisting of alternately arranged N narrower channels (Channel I: length L_I and width D_I) and N wider channels (Channel II: length L_{II} and width $D_{II}(> D_I)$) along the X_2 axis. We let $L = L_I + L_{II}$ and assume that $D_I \ll L_I$ and $D_{II} \ll L_{II}$. In addition, we assume that the temperature $T_w(X_2)$ of the channel walls is a piecewise linear and continuous
Figure 1.2: Knudsen pump composed of Channel I and Channel II.

periodic function (period L) of X_2, varying between T_0 and $T_1 (> T_0)$. With this setting, we can apply Eq. (1.45) to each channel and Eq. (1.47) to each junction. To be more specific, if we denote the dimensionless pressure $\hat{p}(0)$ in Channel J ($J = I$, II) by $\hat{p}_J^{(0)}$, we have

$$\frac{\partial \hat{p}_J^{(0)}}{\partial t} + \hat{T}_w \frac{\partial \mathcal{M}_J}{\partial x_2} = 0,$$

$$\mathcal{M}_J = \frac{\hat{p}_J^{(0)}}{T_w^{1/2}} a_J \left[M_p(K_J, Pr) \frac{1}{\hat{p}_J^{(0)}} \frac{\partial \hat{p}_J^{(0)}}{\partial x_2} + M_T(K_J) \frac{1}{T_w} \frac{d\hat{T}_w}{dx_2} \right],$$

$$a_J = \frac{D_J}{D_s}, \quad K_J = \frac{K_s \hat{T}_w^{3/2}}{\hat{p}_J^{(0)} a_J},$$

where

$$J = \begin{cases} I & \text{for } mL/L_s < x_2 < (L_1 + mL)/L_s, \\ II & \text{for } (L_1 + mL)/L_s \leq x_2 \leq (1 + m)L/L_s, \end{cases}$$

$$(m = 0, \ldots, N - 1).$$

Here, we have assumed that $A_c(T)$ does not depend on T, so that $\hat{A}_c = 1$ (or $\hat{A}_c(0) = 1$). We also have to impose the following conditions at the junctions:

$$\hat{p}_I^{(0)} = \hat{p}_II^{(0)}, \quad \mathcal{M}_I a_I = \mathcal{M}_II a_{II},$$

at $x_2 = L_1/L_s$, $(L_1 + mL)/L_s$ and mL/L_s, $m = 1, \ldots, N - 1$. (1.60)

If we assign the appropriate initial condition and conditions at both ends, we can describe the time evolution of the pressure distribution along the Knudsen pump. Here, we consider the following two types of end condition that are simple and natural:

(i) Open end: the pressure of the gas is specified there.
Let us consider the following two problems for the Knudsen pump:

(A) The left end ($X_2 = 0$) is open, and the right end ($X_2 = NL$) is closed. The pressure at the left end is kept at p_0. The initial condition is that the density is uniform at $t = 0$.

(B) Both ends are open. The pressure at the left end is kept at p_0 and that at the right end is kept at $p_1 (> p_0)$. The initial condition is that the density is uniform at $t = 0$.

We take p_0, T_0, D_1, and L as the reference pressure p_*, temperature T_*, channel width D_*, and channel length L_*, respectively. Therefore, the reference mean free path becomes $l_* = (2/\sqrt{\pi})(2RT_0)^{1/2}/A_c\rho_0$ (with $\rho_0 = p_0/RT_0$), and thus the reference Knudsen number $K_* = l_*/D_1$. In what follows, we show the steady pressure distribution for Problem (A) and the steady mass-flow rate for Problem (B), obtained as the long-time limits of the time-dependent solutions. The results for the N$_2$ gas ($Pr = 0.787$) are compared with those for a monatomic gas with $Pr = 0.666$ (Note that the values of Pr obtained experimentally as well as theoretically are very close to $2/3$ for any monatomic gas).

The steady pressure distribution $p/p_0 (= \hat{p})$ along the pump at $K_* = 0.1$, 1, and 10 in Problem (A) is shown in Fig. 1.3 for $D_{II}/D_1 = 2$, $L_1/L = 0.5$, $T_1/T_0 = 1.5$, and $N = 100$. Figure 1.3(a) shows the result for the N$_2$ gas. Figure 1.3(b) shows the distribution of the pressure averaged over each unit. The result for the monatomic gas is also shown in Fig. 1.3(b) for comparison. In this problem, we observe the property of the Knudsen pump
Table 1.1: Steady mass-flow rate $M_I^{a_I}$ versus the number of the units N in Problem (B).

<table>
<thead>
<tr>
<th>N</th>
<th>K_* = 10</th>
<th>K_* = 1</th>
<th>K_* = 0.1</th>
<th>K_* = 10</th>
<th>K_* = 1</th>
<th>K_* = 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.1107</td>
<td>-0.7529(-1)</td>
<td>-0.3029</td>
<td>-0.1112</td>
<td>-0.7321(-1)</td>
<td>-0.2664</td>
</tr>
<tr>
<td>50</td>
<td>0.3414(-2)</td>
<td>0.1970(-1)</td>
<td>-0.4618(-1)</td>
<td>0.2783(-2)</td>
<td>0.1875(-1)</td>
<td>-0.3905(-1)</td>
</tr>
<tr>
<td>100</td>
<td>0.1595(-1)</td>
<td>0.2910(-1)</td>
<td>-0.1410(-1)</td>
<td>0.1539(-1)</td>
<td>0.2788(-1)</td>
<td>-0.1064(-1)</td>
</tr>
<tr>
<td>150</td>
<td>0.1917(-1)</td>
<td>0.3097(-1)</td>
<td>-0.3410(-2)</td>
<td>0.1867(-1)</td>
<td>0.2971(-1)</td>
<td>-0.1182(-2)</td>
</tr>
<tr>
<td>200</td>
<td>0.2031(-1)</td>
<td>0.3142(-1)</td>
<td>0.1928(-2)</td>
<td>0.1984(-1)</td>
<td>0.3017(-1)</td>
<td>0.3542(-2)</td>
</tr>
</tbody>
</table>

Read as -0.7529×10^{-1}.

Table 1.1 shows the (dimensionless) steady mass-flow rate $M_I^{a_I}$ [cf. Eq. (1.46)] versus the number of the units N in Problem (B) at three different Knudsen numbers (K_* = 10, 1, 0.1) for $D_{II}/D_{I} = 2$, $L_{I}/L = 0.5$, $T_{I}/T_{0} = 1.5$, and $p_{I}/p_{0} = 2$: $M_I^{(0.787)a_I}$ indicates the result for the N_2 gas, whereas $M_I^{(0.666)a_I}$ that for the monatomic gas. In this problem, we can see the pumping effect against the pressure difference. As the number of units increases, the pumping effect finally overcomes the flow caused by the pressure difference, and the gas flows from the low-pressure circumstances to the high-pressure ones. The mass-flow rate of the N_2 gas does not differ much from that of the monatomic gas.

1.6 Concluding remarks

In the present study, we considered the Knudsen pump consisting of alternately arranged wider and narrower channels between two parallel plates and investigated its properties when the working gas is a polyatomic gas, using a polyatomic version of the ES model. We first derived, under the assumption that the width of each channel is sufficiently small compared with its length, the macroscopic system composed of a differential equation of convection-diffusion type and its connection condition at the junctions of the wider and narrower channels. The resulting macroscopic system is the same form as that derived from the BGK model for a monatomic gas, and the effect of the polyatomic gas is confined only in the transport coefficients in the equation. We also showed that the transport coefficients

as a compressor. If the Knudsen number K_*, which is the Knudsen number at the left end, is not small, the pressure ratio of $6.5 \sim 7$ is obtained at the right end. The difference between the pressure at the right end for the N_2 gas and that for the monatomic gas is relatively small: the difference is around 6% at K_* = 10, 3% at K_* = 1, and 4% at K_* = 0.1.
can be obtained readily from those corresponding to the BGK model for a monatomic gas by a simple conversion. Finally, we applied the macroscopic system to investigate numerically the properties of the Knudsen pump for a diatomic N_2 gas. As the result, we confirmed that the polyatomic-gas effect on the performance of the Knudsen pump is quite limited, so that the existing macroscopic system derived for a monatomic gas can be applied safely also to a polyatomic gas in the level of practical applications.

1.7 Appendix A: Equations for ϕ_P and ϕ_T

Let us consider Eqs. (1.33) and (1.34). We note that, with the help of Eq. (1.30), the inhomogeneous term of Eq. (1.33a), i.e., the term $-\zeta_2 \partial \hat{f}(0)/\partial x_2$, can be expressed as the sum of two terms, one in proportion to $(1/\hat{p}(0))(\partial \hat{p}(0)/\partial x_2)$ and the other to $(1/\hat{T}_w)(d\hat{T}_w/dx_2)$.

We first introduce the following new variables:

$$\phi = \frac{\hat{f}(1)}{\hat{f}(0)}, \quad \psi = \frac{\hat{G}(1)}{\hat{f}(0)}, \quad c_i = \frac{\zeta_i}{\hat{T}_w^{1/2}}, \quad Y = \frac{\hat{E}}{\hat{T}_w}, \quad y = \frac{x_1}{a},$$ \hspace{0.5cm} (1.61)

so that $\phi = \phi(\hat{t}, y, x_2, c_i, Y)$. Then, taking into account the form of the inhomogeneous term, we let

$$\phi = \phi_g + \frac{1}{\hat{p}(0)} \frac{\partial \hat{p}(0)}{\partial x_2} \phi_P \gamma + \frac{1}{\hat{T}_w} \frac{d\hat{T}_w}{dx_2} \phi_T. \hspace{0.5cm} (1.62)$$

From the form of the equation and boundary condition for ϕ_g, it is easy to show that ϕ_g is independent of y, c_i, and Y (cf. [42]), i.e.,

$$\phi_g = \phi_g(\hat{t}, x_2). \hspace{0.5cm} (1.63)$$

On the other hand, it can be shown that ϕ_P^α and ϕ_T^α of the following form:

$$\phi_s^\alpha = a(c_2/c_r)\phi_s(\gamma, c_1, c_r, Y; K(\hat{t}, x_2)), \quad (\alpha = P, T), \hspace{0.5cm} (1.64a)$$

$$c_r = (c_2^2 + c_3^2)^{1/2}, \hspace{0.5cm} (1.64b)$$

are compatible with their equations and boundary conditions (similarity solutions). The
resulting equation and boundary condition for $\phi_\alpha(y, c_1, c_r, Y; K(\hat{t}, x_2))$ are as follows:

$$
c_1 \frac{\partial \phi_\alpha}{\partial y} = 2 \frac{1}{\sqrt{\pi} K} \left[-\phi_\alpha + 2c_r u_\alpha + 2(1 - \eta)\nu c_1 c_r \Sigma_\alpha \right] + I_\alpha \quad (\alpha = P, T),
$$

(1.65a)

$$
u_a = \int_{-\infty}^{\infty} \int_0^{\infty} \int_0^{\infty} c_2^2 Y^{\delta/2 - 1} \phi_\alpha \tilde{E}_Y dY dc_r dc_1,
$$

(1.65b)

$$
\Sigma_\alpha = 2 \int_{-\infty}^{\infty} \int_0^{\infty} \int_0^{\infty} c_1^2 c_r^2 Y^{\delta/2 - 1} \phi_\alpha \tilde{E}_Y dY dc_r dc_1,
$$

(1.65c)

$$
I_P = -c_r, \quad I_T = -c_r \left(c_1^2 + c_r^2 + Y - \frac{5 + \delta}{2} \right),
$$

(1.65d)

$$
\tilde{E}_Y = \Lambda_\delta \pi^{-1/2} \exp(-c_1^2 - c_r^2 - Y),
$$

(1.65e)

and

$$
\phi_\alpha = 0, \quad (y = \pm 1/2, \ c_1 \leqslant 0).
$$

(1.66)

But, by integrating Eq. (1.65a) multiplied by $2c_2^2 Y^{\delta/2 - 1} \tilde{E}_Y$ over the whole ranges of Y, c_r, and c_1, we have $\Sigma_P = -y$ and $\Sigma_T = 0$ because of the symmetry $\phi_\alpha(y, c_1, c_r, Y) = \phi_\alpha(-y, -c_1, c_r, Y)$. Therefore, Eq. (1.65) is recast as

$$
c_1 \frac{\partial \phi_\alpha}{\partial y} = 2 \frac{1}{\sqrt{\pi} K} \left[-\phi_\alpha + 2c_r u_\alpha + 2 \left(1 - \frac{1}{\text{Pr}} \right) c_1 c_r \Sigma_\alpha \right] + I_\alpha \quad (\alpha = P, T),
$$

(1.67a)

$$
u_a = \int_{-\infty}^{\infty} \int_0^{\infty} \int_0^{\infty} c_2^2 Y^{\delta/2 - 1} \phi_\alpha \tilde{E}_Y dY dc_r dc_1,
$$

(1.67b)

$$
\Sigma_P = -y, \quad \Sigma_T = 0,
$$

(1.67c)

$$
I_P = -c_r, \quad I_T = -c_r \left(c_1^2 + c_r^2 + Y - \frac{5 + \delta}{2} \right),
$$

(1.67d)

where ($\text{Pr}, \mu_b/\mu, \delta$), rather than ($\nu, \eta, \delta$), has been used as the set of parameters characterizing the gas under consideration [see the comment following Eq. (1.7)]. It is seen from Eq. (1.67) that ϕ_P does not depend on μ_b/μ and ϕ_T depends on neither μ_b/μ nor Pr.

References

Chapter 2

Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows

2.1 Introduction

The Poiseuille flow and thermal transpiration of a rarefied gas through a long tube are fundamental and classical problems in rarefied gas dynamics. The former is a flow driven by a small and uniform pressure gradient imposed along the tube, and the latter, which is peculiar to a rarefied gas, is a flow caused by a small and uniform temperature gradient along the tube. Since 1960’s, these flows have been the subjects of many papers. From 1960’s to 1980’s, the linearized model Boltzmann equation, in particular, the Bhatnagar-Gross-Krook (BGK) model [7,42], was used mainly both for theoretical and numerical analyses (see, for example, Refs. [10,11,37,23,17] for the Poiseuille flow and Refs. [37,23,17,22,26] for the thermal transpiration). But after around 1990, accurate numerical analysis based on the linearized Boltzmann equation became possible (see, for example, Refs. [27] and [31]). The reader is referred to Ref. [30], which contains an extensive review of the works earlier than this reference. Mention should also be made of the recent development [31,29], in particular, the mathematical study of the thermal transpiration [12].

The importance of these fundamental flows has rapidly been increased in connection with the recent progress of micro-mechanical systems because the small characteristic length leads the effect of rarefied gas to manifest itself even under atmospheric conditions. In practical applications, one encounters microscale systems with complex geometry, so that the direct application of kinetic theory, such as numerical simulations using the direct simulation Monte Carlo (DSMC) method, is computationally expensive and is not an efficient approach. Therefore, some heuristic macroscopic equations, which are intended to cover the transition regimes with non-small Knudsen numbers, have been proposed. The accurate numerical results for the Poiseuille flow and thermal transpiration provide a good standard for the
assessment of these macroscopic equations.

On the other hand, in many microscale applications, gas-flow channels or pipes are very thin compared with their length. This property enables us to derive simple macroscopic equations systematically from kinetic theory without any ambiguity. Such an approach has been taken in some different applications (see, for example, Ref. [15] for a thin-gap slider bearing and Refs. [13] and [14] for plasma thrusters). Recently, macroscopic equations of the same type were constructed for the purpose of analyzing the property of the Knudsen compressor [2,5], showing its applicability to gas separation [40], and investigating gas flows in a curved channel [4]. According to Ref. [5], the behavior of a gas in a thin pipe with an arbitrary but slowly-varying temperature distribution in the axial direction is described by a diffusion-type equation for any Knudsen number. The equation contains two functions, which correspond to the mass-flow rate of the Poiseuille flow and that of the thermal transpiration through the same pipe regarded as functions of the Knudsen number. Therefore, obtaining accurate data for the mass-flow rates of the Poiseuille flow and thermal transpiration for the whole range of the Knudsen number is essential for the application of the diffusion-type equation. Actually, in Ref. [5], the diffusion-type equation is applied to obtain the mass-flow rate and pressure distribution for the Knudsen pump, consisting of alternately arranged narrow and wide two-dimensional (2D) channels with a saw-tooth temperature distribution. In this application, use has been made of the database of the mass-flow rates of the Poiseuille flow and thermal transpiration between two parallel plates, constructed by the modified Knudsen-number expansion on the basis of the linearized BGK model [33].

Recently in Ref. [39], the macroscopic system of Ref. [5] was extended to a single polyatomic gas in the case of 2D channels, using the polyatomic version [1] of the Ellipsoidal Statistical (ES) model [18,19] of the Boltzmann equation. In the present study, we carry out the same extension in the case of circular tubes and apply the resulting system to the Knudsen compressor consisting of circular pipes with different radii, as well as to the flow through a long circular tube driven by a large pressure difference at both ends. Since the extension is essentially the same as in the case of 2D channels, we will just summarize the result. However, since the Poiseuille flow and thermal transpiration in a circular tube, the mass-flow rates of which give the two coefficients occurring in the macroscopic system, are the problems of fundamental importance, we will spend more space to discuss these flows. In
fact, as in the case of 2D channels, it turns out that the solution of the thermal transpiration through a circular tube based on the ES model for a polyatomic gas is identical with that based on the BGK model for a monatomic gas, and that the solution of the Poiseuille flow through a circular tube based on the ES model for a polyatomic gas is obtained by a simple conversion formula from that based on the BGK model for a monatomic gas.

The paper is organized as follows. In Sec. 2.2, we investigate Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through an infinitely long straight tube with circular cross section on the basis of the linearized ES model for a polyatomic gas. After the formulation of the problems and some preliminary analysis (Secs. 2.2.1–2.2.3), we show that the problems can be reduced to the corresponding problems for the BGK model for a polyatomic gas (Sec. 2.2.4). Then, after some discussions of the properties of the mass-flow and heat-flow rates (Sec. 2.2.5), we show some numerical results (Sec. 2.2.6). In Sec. 2.3, we consider a rarefied polyatomic gas in a long circular tube with arbitrary and large temperature variation along the tube wall. The radius of the circular cross section may change discontinuously if the portion with a constant radius is long enough. The macroscopic equation of diffusion-type for such a tube, based on the ES model for a polyatomic gas, is summarized, together with the condition at the junction where the radius changes discontinuously. In Sec. 2.4, the macroscopic system is applied to a gas flow through a long circular pipe caused by a large pressure difference (Sec. 2.4.1) and to a Knudsen compressor composed of many long circular tubes (Sec. 2.4.2). Finally concluding remarks are given in Sec. 2.5.

2.2 Poiseuille flow and thermal transpiration through a circular tube

2.2.1 Problem, assumptions, and notations

Let us consider a rarefied polyatomic gas in an infinitely long and straight circular tube, and let δ be the number of degrees of freedom of a gas molecule. We take the X_3 axis (of a rectangular coordinate system X_i) along the tube axis and let the radius of the tube be R_0. A uniform pressure gradient in the X_3 direction is imposed in the gas, and a uniform temperature gradient in the same direction is imposed along the tube wall. That is, the pressure p and the temperature of the tube wall T_w are expressed as $p_0(1 + \alpha X_3/R_0)$ and
The degree of freedom, Λ, is a reference length (one may naturally let $R_s = R_0$, but we do not do so for later convenience). The fact that p is uniform in the cross section will be found later. We investigate the steady flow of the gas induced in the tube under the following assumptions.

(i) The behavior of the gas is described by the ES model [18,19] of the Boltzmann equation for a polyatomic gas [1].

(ii) The gas molecules undergo diffuse reflection on the tube wall.

(iii) The imposed pressure gradient α and temperature gradient β are so small that the equation and boundary condition can be linearized around an equilibrium state at rest.

Before presenting the basic equations, we summarize other notations used in Sec. 2.2 (see also Sec. 2.6). The symbol $\rho_0 = p_0/RT_0$ denotes the density of the gas at $X_3 = 0$, R the gas constant per unit mass (the Boltzmann constant divided by the mass of a molecule), l_0 the mean free path of the gas molecules in the equilibrium state at rest at density ρ_0 and temperature T_0 (thus pressure p_0), and $Kn = l_0/R_s$ the Knudsen number. Further, $x_i = X_i/R_s$, $(2RT_0)^{1/2}\xi_i$ is the molecular velocity, $RT_0\varepsilon$ the energy related to the internal degree of freedom, $\Lambda_\delta\varepsilon^{3/2-1}(2\pi RT_0)^{-3/2}(RT_0)^{-1}\exp(-\xi^2 - \varepsilon)\rho_0(1 + \phi)$ the molecular velocity distribution function, Λ_δ the dimensionless constant defined by Eq. (2.48), $\rho_0(1 + \omega)$ the density of the gas, $T_0(1 + \tau)$ the temperature, $T_0(1 + \tau_{in})$ the temperature related to the translational energy, $T_0(1 + \tau_{in})$ the temperature related to energy of the internal degree of freedom, $p_0(1 + P)$ the pressure, $(2RT_0)^{1/2}u_i$ the flow velocity, $p_0(\delta_{ij} + P_{ij})$ the stress tensor, and $p_0(2RT_0)^{1/2}Q_i$ the heat-flow vector. The quantities $|\phi|$, $|\omega|$, $|\tau|$, $|\tau_{in}|$, $|\tau_{in}|$, $|P|$, $|u_i|$, $|P_{ij}|$, and $|Q_i|$ are assumed to be small. We introduce the cylindrical coordinate system (r, θ, x_3) in the dimensionless x_i space and denote by a_i and b_i the unit vector in the r direction and that in the θ direction, respectively. Then, we denote $\zeta_r = \zeta^i a_i$, $\zeta_\theta = \zeta^i b_i$, $u_r = u_i a_i$, $u_\theta = u_i b_i$, $Q_r = Q_i a_i$, $Q_\theta = Q_i b_i$, $P_{rr} = P_{ij} a_i a_j$, $P_{\theta \theta} = P_{ij} b_i b_j$, $P_{r \theta} = P_{ij} a_i b_j$, $P_{r 3} = P_{33} a_i$, $P_{33} = P_{r 3} = P_{i 3} b_i$. In addition, $\zeta = (\zeta^2)^{1/2} = (\zeta_r^2 + \zeta_\theta^2 + \zeta^2)^{1/2}$, and $E(\zeta, \varepsilon) = \pi^{-3/2} \Lambda_\delta \exp(-\zeta^2 - \varepsilon)$. The summation convention (e.g., $\zeta_a = \sum_i \zeta_i a_i$) is used throughout the paper. We assume that the flow field is axisymmetric, i.e., ϕ in the cylindrical coordinate system does not depend on θ.

$T_0(1 + \beta X_3/R_s)$, respectively, where R_s is a reference length (one may naturally let $R_s = R_0$, but we do not do so for later convenience).
2.2.2 Basic equations

The linearized version of the ES model reads (see Sec. 2.6 for the original form of the model)

\[
\zeta_r \frac{\partial \phi}{\partial r} + \frac{\zeta_\delta}{r} \frac{\partial \phi}{\partial r} - \frac{\zeta_r \zeta_\theta}{r} \frac{\partial \phi}{\partial \zeta} + \zeta_3 \frac{\partial \phi}{\partial x_3} = \frac{2}{\sqrt{\pi}} \frac{1}{Kn} (\phi_g - \phi),
\]

(2.1)

with

\[
\phi_g = \omega + 2\zeta_i u_i + \left(\zeta^2 - \frac{3}{2} \right) \left[(1 - \eta) \tau_{tr} + \eta \tau \right] + \left(E - \frac{\delta}{2} \right) \tau_{rel} \tag{2.2a}
\]

\[
+ (1 - \eta) \nu [P_{ij} \zeta_i \zeta_j - (\omega + \tau_{tr}) \zeta^2],
\]

\[
\omega = \int_0^\infty E^{\delta/2-1} \phi E d^d \zeta, \tag{2.2b}
\]

\[
u = \int_0^\infty \zeta_i E^{\delta/2-1} \phi E d^d \zeta, \tag{2.2c}
\]

\[
\tau_{tr} = \frac{2}{3} \int_0^\infty \zeta^2 E^{\delta/2-1} \phi E d^d \zeta - \omega, \tag{2.2d}
\]

\[
\tau_{int} = \frac{2}{\delta} \int_0^\infty E^{\delta/2} \phi E d^d \zeta - \omega, \tag{2.2e}
\]

\[
\tau = \frac{3 \tau_{tr} + \delta \tau_{int}}{3 + \delta}, \tag{2.2f}
\]

\[
\tau_{rel} = \eta \tau + (1 - \eta) \tau_{int}, \tag{2.2g}
\]

\[
P_{ij} = \int_0^\infty 2 \zeta_i \zeta_j E^{\delta/2-1} \phi E d^d \zeta, \tag{2.2h}
\]

where \(d^d \zeta = d\zeta_1 d\zeta_2 d\zeta_3 = d\zeta_r d\zeta_\theta d\zeta_3 \), and \(\nu \) and \(\eta \) are parameters to adjust the Prandtl number. The Knudsen number \(Kn \) is expressed as

\[
Kn = \frac{2}{\sqrt{\pi}} (1 - \nu + \eta \nu) \left(\frac{2RT_0}{p_0 R_s} \right)^{1/2} \mu_0, \tag{2.3}
\]

in terms of \(\nu, \eta \), and the viscosity \(\mu_0 \) corresponding to the temperature \(T_0 \) [see Sec. 2.6, Eq. (2.54a)]. In Eqs. (2.2b)–(2.2h) and in what follows, the domain of the integration with respect to \(\zeta_i \) is its whole space, unless the contrary is stated.

The diffuse-reflection condition on the tube wall is written as

\[
\phi = 2\sqrt{\pi} \int_{\zeta_r > 0} \int_0^\infty \zeta_r E^{\delta/2-1} \phi E d^d \zeta + \left(\zeta^2 - 2 + \frac{\delta}{2} \right) \beta x_3, \quad (r = R_0/R_s, \zeta_r < 0), \tag{2.4}
\]

where \(T_0(1 + \beta x_3) \) is the temperature of the tube wall.
The linearized equation of state and the heat-flow vector are expressed as

\[P = \omega + \tau, \]

\[Q_i = \int_0^\infty \int_0^{\infty} \zeta_i (\zeta_r^2 + \mathcal{E}) \mathcal{E}^{\delta/2-1} \phi d \mathcal{E} d^3 \zeta - \frac{5 + \delta}{2} u_i. \]

In addition, if we denote by \(\rho_0 (2RT_0)^{1/2} \pi R^2 M \) the (dimensional) mass-flow rate (per unit time) through the tube, we have

\[M = 2 \int_0^{R_0/R_\star} u_3 r dr. \]

2.2.3 Similarity solutions

Let us introduce \(\zeta_\rho \) and \(\theta_\zeta \) that express \(\zeta_r \) and \(\zeta_\theta \) as

\[\zeta_r = \zeta_\rho \cos \theta_\zeta, \quad \zeta_\theta = \zeta_\rho \sin \theta_\zeta, \]

(see Fig. 2.1) and transform the molecular velocity variables from \((\zeta_r, \zeta_\theta, \zeta_3) \) to \((\zeta_\rho, \theta_\zeta, \zeta_3) \). Note that \(\zeta_\rho = (\zeta_r^2 + \zeta_\theta^2)^{1/2} = (\zeta_1^2 + \zeta_2^2)^{1/2} \) and \(0 \leq \zeta_\rho < \infty, -\pi < \theta_\zeta \leq \pi, \) and \(-\infty < \zeta_3 < \infty. \)

Then, we seek the solution in the following form:

\[\phi = \left[\alpha + \beta \left(\zeta_\rho^2 + \zeta_3^2 + \mathcal{E} - \frac{5 + \delta}{2} \right) \right] x_3 + \zeta_3 [\alpha \Phi_P(r, \zeta_\rho, |\theta_\zeta|, \zeta_3^2, \mathcal{E}) + \beta \Phi_T(r, \zeta_\rho, |\theta_\zeta|, \zeta_3^2, \mathcal{E})]. \]

Actually, substitution of Eq. (2.8) into Eqs. (2.1) and (2.4) shows the consistency of Eq. (2.8) and leads to the following equation and boundary condition for \(\Phi_J \), where \(J = P \) or \(T \): The
equation is
\[
ζ_ρ \cos θ_ζ \frac{∂J}{∂r} - \frac{ζ_ρ}{r} \sin θ_ζ \frac{∂J}{∂θ_ζ} = 2 \frac{1}{\sqrt{π} Kn} \left[-Φ_J + 2u_J + 2(1 - η)νζ_ρ Π_J\right] - I_J,
\]
\[(0 \leq r < R_0/R_*, \ 0 \leq ζ_ρ < \infty, \ 0 \leq θ_ζ \leq π, \ -∞ < ζ_3 < ∞, \ 0 \leq E < ∞), \quad (2.9)\]

where
\[
I_P = 1, \quad I_T = ζ_ρ^2 + ζ_3^2 + E - \frac{5 + δ}{2}, \quad (2.10a)
\]
\[
u_J = 2 \int_{-∞}^{∞} \int_{0}^{π} \int_{0}^{∞} \int_{0}^{∞} ζ_ρ ζ_3 Ξ^{5/2 - 1} Φ_J E dE dζ_ρ dθ_ζ dζ_3, \quad (2.10b)
\]
\[
Π_J = 4 \int_{-∞}^{∞} \int_{0}^{π} \int_{0}^{∞} \int_{0}^{∞} ζ_ρ^2 ζ_3^2 \cos θ_ζ Ξ^{5/2 - 1} Φ_J E dE dζ_ρ dθ_ζ dζ_3, \quad (2.10c)
\]
\[
E(ζ, E) = Λ_δ π^{-3/2} \exp(-ζ_ρ^2 - ζ_3^2 - E), \quad (2.10d)
\]

and the boundary condition is
\[
Φ_J = 0, \quad (r = R_0/R_*, \ 0 \leq ζ_ρ < \infty, \ π/2 < θ_ζ \leq π, \ -∞ < ζ_3 < ∞, \ 0 \leq E < ∞). \quad (2.11)
\]

In Eqs. (2.9)–(2.11), the range of θ_ζ has been reduced to 0 ≤ θ_ζ ≤ π by the use of the fact that Φ_J is an even function of θ_ζ.

The macroscopic quantities corresponding to Eq. (2.8) are obtained from Eqs. (2.2b)–(2.2h), (2.5a), and (2.5b) as follows.
\[
ω = (α - β)x_3, \quad P = αx_3, \quad (2.12a)
\]
\[
u_r = u_θ = 0, \quad u_3 = αu_P + βu_T, \quad (2.12b)
\]
\[
τ_{rr} = τ_{int} = τ = τ_{rel} = β x_3, \quad (2.12c)
\]
\[
P_{rr} = P_{θθ} = P_{33} = αx_3, \quad P_{rθ} = P_{θ3} = 0, \quad P_{r3} = αΠ_P + βΠ_T, \quad (2.12d)
\]
\[
Q_r = Q_θ = 0, \quad Q_3 = αQ_P + βQ_T, \quad (2.12e)
\]

where u_J and Π_J are given in Eqs. (2.10b) and (2.10c), and Q_J by
\[
Q_J = 2 \int_{-∞}^{∞} \int_{0}^{π} \int_{0}^{∞} \int_{0}^{∞} ζ_ρ ζ_3 \left(ζ_ρ^2 + ζ_3^2 + E - \frac{5 + δ}{2}\right) \epsilon^{5/2 - 1} Φ_J E dE dζ_ρ dθ_ζ dζ_3. \quad (2.13)
\]

That is, Eq. (2.8) indicates a flow in the axial direction with a uniform pressure and temperature gradients in the same direction. Note that the density, temperature, and pressure are
independent of \(r \). The solution \(\Phi_P \) corresponds to the Poiseuille flow, and \(\Phi_T \) to the thermal transpiration. Correspondingly, the dimensionless mass-flow rate [Eq. (2.6)] is expressed as

\[
M = \alpha M_P + \beta M_T, \tag{2.14a}
\]

\[
M_J = 2 \int_0^{R_0/R_*} u_J r \, dr. \tag{2.14b}
\]

If we multiply Eq. (2.9) by \(\zeta \rho \zeta_3^2 \delta^{1/2}/2 - 1 \) and integrate it with respect to \(E, \zeta \rho, \theta \zeta, \) and \(\zeta_3 \) over the domain \(0 < E < \infty, \ 0 < \zeta \rho < \infty, \ 0 < \theta \zeta < \pi, \) and \(-\infty < \zeta_3 < \infty, \) we have

\[
\frac{d\Pi_J}{dr} + \frac{\Pi_J}{r} = \begin{cases} -1 & (J = P), \\ 0 & (J = T). \end{cases} \tag{2.15}
\]

Since \(\Pi_J \) should be finite at \(r = 0 \), it is obtained as

\[
\Pi_P = -\frac{r}{2}, \quad \Pi_T = 0. \tag{2.16}
\]

Equation (2.16) simplifies Eq. (2.9) further.

2.2.4 Further transformation and reduction to the BGK model

The system, Eqs. (2.9) [with Eq. (2.16)] and (2.11), can be simplified further by multiplying by \((2/\sqrt{\pi}) \Lambda \delta^{E/2-1} \) and integrating with respect to \(E \) from 0 to \(\infty \) and \(\zeta_3 \) from \(-\infty\) to \(\infty \). The resulting system is as follows: The equation is

\[
\zeta \rho \cos \theta \zeta \frac{\partial \Psi_J}{\partial r} - \frac{\zeta \rho}{r} \sin \theta \zeta \frac{\partial \Psi_J}{\partial \theta \zeta} = \frac{2}{\sqrt{\pi}} \frac{1}{\text{Kn}} \left[-\Psi_J + 2u_J[\Psi_J] + 2 \left(1 - \frac{1}{Pr} \right) \zeta \rho \cos \theta \zeta \Pi_J \right] - \tilde{I}_J, \\
\left(0 \leq r < R_0/R_\alpha, \ 0 \leq \zeta \rho < \infty, \ 0 \leq \theta \zeta \leq \pi \right), \tag{2.17}
\]

where

\[
u_J[\Psi_J] = \frac{1}{\pi} \int_0^\pi \int_0^\infty \zeta \rho \Psi_J \exp(-\zeta_\rho^2) d\zeta_\rho d\theta \zeta, \tag{2.18a}
\]

\[
\Pi_P = -\frac{r}{2}, \quad \Pi_T = 0, \tag{2.18b}
\]

\[
\tilde{I}_P = 1, \quad \tilde{I}_T = \zeta_\rho^2 - 1, \tag{2.18c}
\]

and the boundary condition is

\[
\Psi_J = 0 \quad (r = R_0/R_\alpha, \ 0 \leq \zeta \rho < \infty, \ \pi/2 < \theta \zeta \leq \pi). \tag{2.19}
\]
Here, Ψ_J is defined by

$$\Psi_J = \frac{2}{\sqrt{\pi}} \Lambda_\delta \int_{-\infty}^{\infty} \int_{0}^{\infty} \mathcal{E}^{\delta/2} - 1 \zeta_3^2 \Phi_J \exp(-\mathcal{E} - \zeta_3^2) d\mathcal{E} d\zeta_3. \quad (2.20)$$

Once the solution Ψ_J (and thus u_J) of Eqs. (2.17)–(2.19) is obtained, one can reconstruct the original Φ_J by solving Eq. (2.9), which reduces to a partial differential equation for Φ_J, under the boundary condition (2.11). Therefore, any macroscopic quantity, such as Q_J in Eq. (2.13), can be obtained. For convenience of discussion below, we rewrite the mass-flow rates M_J [Eq. (2.14)] in the following form:

$$M_J[\Psi_J] = 2 \int_{R_0/R_*}^{0} u_J[\Psi_J] r dr. \quad (2.21)$$

Here, we note that Eqs. (2.17)–(2.19) are of the same form as the corresponding equations and boundary conditions for the cylindrical Poiseuille flow and thermal transpiration based on the ES model for a monatomic gas [6]. The difference between monatomic and polyatomic gases arises only in the different values of Pr. Furthermore, Eqs. (2.17)–(2.19) with $J = T$, which do not contain Pr, are the same as the corresponding equation and boundary condition for the thermal transpiration based on the BGK model. As for the cylindrical Poiseuille flow, although Eqs. (2.17)–(2.19) with $J = P$ are different from the corresponding equation and boundary condition based on the BGK model, we can reduce the solution of the former to that of the latter by a simple conversion, as in the case of the plane Poiseuille flow. Let us put

$$\Psi_P = \Psi_P' - \frac{1}{\sqrt{\pi}} \frac{1}{Kn} \left(1 - \frac{1}{Pr}
ight) \left[r^2 - \left(\frac{R_0}{R_*}\right)^2\right]. \quad (2.22)$$

Then, it follows from Eqs. (2.17)–(2.19) with $J = P$ that Ψ_P' satisfies

$$\zeta \rho \cos \theta \zeta \frac{\partial \Psi_P'}{\partial r} - \zeta \rho \sin \theta \zeta \frac{\partial \Psi_P'}{\partial \theta} = \frac{2}{\sqrt{\pi}} \frac{1}{Kn} \left(-\Psi_P' + 2u_P[\Psi_P'] - 1\right), \quad (2.23a)$$

$$\Psi_P' = 0 \quad (r = R_0/R_*, \pi/2 < \theta \leq \pi), \quad (2.23b)$$

which are identical with the corresponding equation and boundary condition for the cylindrical Poiseuille flow based on the BGK model. To summarize these facts, we obtain the
following relations for the solutions, flow velocities, and mass-flow rates:

\[
\Psi_P = \Psi_P^{BGK} - \frac{1}{\sqrt{\pi} \text{Kn}} \left(1 - \frac{1}{\text{Pr}}\right) \left[r^2 - \left(\frac{R_0}{R_*}\right)^2\right], \tag{2.24a}
\]

\[
u_P[\Psi_P] = \nu_P[\Psi_P^{BGK}] - \frac{1}{2\sqrt{\pi} \text{Kn}} \left(1 - \frac{1}{\text{Pr}}\right) \left[r^2 - \left(\frac{R_0}{R_*}\right)^2\right], \tag{2.24b}
\]

\[
u_T[\Psi_T] = \nu_T[\Psi_T^{BGK}], \tag{2.24c}
\]

\[
M_P[\Psi_P] = M_P[\Psi_P^{BGK}] + \frac{1}{4\sqrt{\pi} \text{Kn}} \left(1 - \frac{1}{\text{Pr}}\right) \left(\frac{R_0}{R_*}\right)^4, \tag{2.24d}
\]

\[
M_T[\Psi_T] = M_T[\Psi_T^{BGK}], \tag{2.24e}
\]

where \(\Psi_P^{BGK}\) and \(\Psi_T^{BGK}\) are the solutions corresponding to \(\Psi_P\) and \(\Psi_T\) for the BGK model. As mentioned in Sec. 2.1, the database of \(\nu_P[\Psi_P^{BGK}], \nu_T[\Psi_T^{BGK}], M_P[\Psi_T^{BGK}],\) and \(M_T[\Psi_T^{BGK}]\), the original version of which was built by Sone and Itakura [33], has been constructed by Sone, Itakura, and Handa. From this, one can obtain an accurate value of these quantities instantaneously for an arbitrary Knudsen number. The database is available from the present authors (the software package can be downloaded from the webpage http://www.mfd.me.kyoto-u.ac.jp/Sone/database-e.html). Therefore, we do not need to carry out new computations to obtain \(\nu_P, \nu_T, M_P,\) and \(M_T\) for the ES model for a polyatomic gas. It should be noted that the conversion formula for the mass-flow rate of the Poiseuille flow between the ES model for a monatomic gas and the BGK model, corresponding to Eq. (2.24d), is given in Ref. [8].

2.2.5 Mass-flow and heat-flow rates

If we denote by \(\mathcal{M}\) the total mass-flow rate in the \(X_3\) direction per unit time, then it follows from Eqs. (2.6) and (2.14) that

\[
\mathcal{M} = \pi \rho_0 (2RT_0)^{1/2} R_*^2 \left[M_P(\text{Kn}; R_0/R_*) \frac{R_*}{\rho_0} \frac{dp}{dX_3} + M_T(\text{Kn}; R_0/R_*) \frac{R_*}{T_0} \frac{dT_w}{dX_3}\right], \tag{2.25}
\]

where

\[
M_J(\text{Kn}; R_0/R_*) = 2 \int_0^{R_0/R_*} u_J r dr, \quad (J = P, T). \tag{2.26}
\]

Here, the fact that \(M_J\) depends on \(\text{Kn}\) and \(R_0/R_*\) is shown explicitly as arguments.

Now we take the radius of the circular tube \(R_0\) as the reference length \(R_*\) and denote the corresponding \(\text{Kn}\) by \(\text{Kn}_0\), i.e., \(\text{Kn} = (R_0/R_*) \text{Kn}_0\). Then Eq. (2.25) becomes

\[
\mathcal{M} = \pi \rho_0 (2RT_0)^{1/2} R^2 \left[M_P(\text{Kn}_0; 1) \frac{R_0}{\rho_0} \frac{dp}{dX_3} + M_T(\text{Kn}_0; 1) \frac{R_0}{T_0} \frac{dT_w}{dX_3}\right]. \tag{2.27}
\]
Since Eqs. (2.25) and (2.27) express the same quantity, we have the following relation:

\[M_J(K_n; R_0/R_s) = (R_0/R_s)^3 M_J(K_n; 1). \]

(2.28)

Similarly, from the solution \(\Phi_J \) (or \(Q_J \)), we can compute the heat-flow rate through the tube. Let \(\mathcal{H} \) be the total heat-flow rate in the \(X_3 \) direction per unit time. Then we have

\[
\mathcal{H} = \pi p_0 (2RT_0)^{1/2} R_s^2 \left[H_P(K_n; R_0/R_s) \frac{R_s}{p_0} \frac{dp}{dX_3} + H_T(K_n; R_0/R_s) \frac{R_s}{T_0} \frac{dT_w}{dX_3} \right],
\]

(2.29)

where

\[H_J(K_n; R_0/R_s) = 2 \int_0^{R_0/R_s} Q_J r \, dr, \quad (J = P, T), \]

(2.30)

and it satisfies the following relation:

\[H_J(K_n; R_0/R_s) = (R_0/R_s)^3 H_J(K_n; 1). \]

(2.31)

2.2.6 Numerical results

In this Sec. 2.2.6, we show the profiles of the velocity and heat flow and mass-flow rates for the Poiseuille flow and thermal transpiration obtained with the help of Eq. (2.24). The basic equation (2.1) contains the set of parameters \((\nu, \eta, \delta)\) to characterize the polyatomic gas under consideration. In place of this set, we may also use another set \((Pr, \mu_b/\mu, \delta)\) because of relations (2.51c), (2.51d), and (2.52). Here, we consider the nitrogen gas \((N_2; \delta = 2)\), for which experimental data for \(Pr\) and \(\mu_b/\mu\) are available \((Pr = 0.718 [25] \text{ and } \mu_b/\mu = 0.731 [28])\). We set the values of \(\nu\) and \(\eta\) in such a way that the resulting \(Pr\) and \(\mu_b/\mu\) are close to the above experimental values, that is, \(\nu = -0.50\) and \(\eta = 0.46\), which lead to \(Pr = 0.787\) and \(\mu_b/\mu = 0.722\). We also set \(R_s = R_0\) and assume \(A_c\) in Eq. (2.47) to be constant.

Figures 2.2(a) and 2.2(b) show the velocity profile for the Poiseuille flow \(u_P\) and that for the thermal transpiration \(u_T\) for various values of Kn [cf. Eq. (2.12b)]. Figures 2.3(a) and 2.3(b) show the corresponding profiles of the heat-flow vectors \(Q_P\) and \(Q_T\) [cf. Eq. (2.12e)]. Tables 2.1 and 2.2 show the mass-flow rates \(M_P\) and \(M_T\) versus Kn, respectively. In Table 2.1, the result for a monatomic gas \((Pr = 2/3)\) is also shown for comparison \((M_T\) in Table 2.2 does not depend on the value of \(Pr\) and is the same as that for the BGK model).
Figure 2.2: Profiles of the flow velocities for the Poiseuille flow and thermal transpiration through a circular tube. (a) Dimensionless flow velocity u_P for the Poiseuille flow. (b) Dimensionless flow velocity u_T for the thermal transpiration.

Figure 2.3: Profiles of the heat-flow vectors for the Poiseuille flow and thermal transpiration through a circular tube. (a) Dimensionless heat-flow vector Q_P for the Poiseuille flow. (b) Dimensionless heat-flow vector Q_T for the thermal transpiration.
Table 2.1: Dimensionless mass-flow rate M_P for the Poiseuille flow.

| Kn | $-M_P|_{Pr=2/3}$ | $-M_P|_{Pr=0.787}$ |
|------------|------------------|-------------------|
| 10^{-2} | 0.2167(2)* | 0.1843(2) |
| 2×10^{-2} | 0.1109(2) | 0.9474(1) |
| 3×10^{-2} | 0.7567(1) | 0.6489(1) |
| 4×10^{-2} | 0.5807(1) | 0.4998(1) |
| 6×10^{-2} | 0.4048(1) | 0.3509(1) |
| 8×10^{-2} | 0.3170(1) | 0.2766(1) |
| 10^{-1} | 0.2645(1) | 0.2322(1) |
| 2×10^{-1} | 0.1604(1) | 0.1442(1) |
| 3×10^{-1} | 0.1263(1) | 0.1155(1) |
| 4×10^{-1} | 0.1096(1) | 0.1015(1) |
| 6×10^{-1} | 0.9336(0) | 0.8797 |
| 8×10^{-1} | 0.8558(0) | 0.8154 |
| 1 | 0.8112 | 0.7788 |
| 5 | 0.7037 | 0.6972 |
| 10^1 | 0.7068 | 0.7035 |
| 10^2 | 0.7377 | 0.7373 |
| 10^3 | 0.7496 | 0.7495 |
| 10^4 | 0.7519 | 0.7519 |

* Read as 0.2167×10^2.

Table 2.2: Dimensionless mass-flow rate M_T for the thermal transpiration.

<table>
<thead>
<tr>
<th>Kn</th>
<th>M_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td>0.3364(−2)*</td>
</tr>
<tr>
<td>2×10^{-2}</td>
<td>0.6665(−2)</td>
</tr>
<tr>
<td>3×10^{-2}</td>
<td>0.9903(−2)</td>
</tr>
<tr>
<td>4×10^{-2}</td>
<td>0.1308(−1)</td>
</tr>
<tr>
<td>6×10^{-2}</td>
<td>0.1923(−1)</td>
</tr>
<tr>
<td>8×10^{-2}</td>
<td>0.2514(−1)</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>0.3079(−1)</td>
</tr>
<tr>
<td>2×10^{-1}</td>
<td>0.5558(−1)</td>
</tr>
<tr>
<td>3×10^{-1}</td>
<td>0.7555(−1)</td>
</tr>
<tr>
<td>4×10^{-1}</td>
<td>0.9197(−1)</td>
</tr>
<tr>
<td>6×10^{-1}</td>
<td>0.1176</td>
</tr>
<tr>
<td>8×10^{-1}</td>
<td>0.1370</td>
</tr>
<tr>
<td>1</td>
<td>0.1524</td>
</tr>
<tr>
<td>5</td>
<td>0.2579</td>
</tr>
<tr>
<td>10^1</td>
<td>0.2934</td>
</tr>
<tr>
<td>10^2</td>
<td>0.3573</td>
</tr>
<tr>
<td>10^3</td>
<td>0.3730</td>
</tr>
<tr>
<td>10^4</td>
<td>0.3757</td>
</tr>
</tbody>
</table>

* Read as 0.3364×10^{-2}.

2.3 Diffusion-type system

In this section, we consider a rarefied polyatomic gas in a straight pipe composed of long circular tubes connected longitudinally. The radius of each tube is different each other, as shown in Fig. 2.4. Therefore, the cross section of the pipe changes suddenly at the junctions of the tubes. We assume the following:

(i) The behavior of the gas is described by the ES model for a polyatomic gas.

(ii) The gas molecules undergo diffuse reflection on the pipe wall (including the walls at the junctions).

(iii) The length of each circular tube is much longer than its diameter.

(iv) The temperature of the pipe wall is uniform at each cross section (and at each junction).

The distribution of the wall temperature along the pipe axis is arbitrary but continuous (its derivative may be discontinuous at the junctions), and its variation may be large. However, the length scale of its variation is much longer than the diameters of the tubes.
In this situation, one can derive, by a systematic asymptotic analysis of the kinetic system, a macroscopic system consisting of a diffusion-type equation in each tube and a connection condition at each junction that describes the (slow) time evolution of the distribution of the pressure (or density) of the gas along the pipe axis. In Ref. [5], such a system was derived for a single and monatomic gas for tubes with arbitrary (not necessarily circular) cross sections on the basis of the Boltzmann equation and a general form of the boundary condition. Here, we repeat the same analysis for the ES model for a polyatomic gas with the diffuse reflection condition and for circular tubes. Since analysis is basically the same as that in Refs. [40] and [5], we only summarize the result.

We assume that the axis of the pipe is set along the X_3 axis. Let t be the time variable, $T_w(X_3)$ the temperature of the pipe wall, T the temperature of the gas, ρ the density of the gas, $p = R\rho T$ the pressure of the gas, and \mathcal{M} is the mass-flow rate across the pipe in the X_3 direction per unit time. Let L_* denote the reference length in the axial direction (a typical length of the tubes, the length scale of variation of the temperature, etc.), R_* ($\ll L_*$) the reference length in the radial direction (a typical radius of the tubes), T_* the reference temperature, ρ_* the reference density, $p_* = R\rho_* T_*$ the reference pressure, l_* the reference mean free path of the gas molecules defined as $l_* = (2/\sqrt{\pi})(2RT_*)^{1/2}/A_c(T_*)\rho_*$ (see Sec. 2.6), and $K_* = l_*/R_*$ the reference Knudsen number. Furthermore, we introduce the following dimensionless quantities:

$$\hat{\tau} = t[L_*^2/(2RT_*)^{1/2}R_*]^{-1}, \quad z = X_3/L_*; \quad (2.32a)$$

$$\hat{T}_w = T_w/T_*, \quad \hat{\rho} = \rho/\rho_*, \quad \hat{T} = T/T_*, \quad \hat{p} = p/p_* (= \hat{\rho}\hat{T}); \quad (2.32b)$$

$$M = \mathcal{M}/\pi \rho_* (2RT_*)^{1/2}R_*^2. \quad (2.32c)$$
The quantities $\hat{\rho}$, \hat{T}, \hat{p}, and M are expanded in terms of a small parameter $\epsilon = R_*/L_*$ as

$$\hat{\rho} = \hat{\rho}(0) + \hat{\rho}(1)\epsilon + \cdots,$$ \hspace{1cm} (2.33a)

$$\hat{T} = \hat{T}(0) + \hat{T}(1)\epsilon + \cdots,$$ \hspace{1cm} (2.33b)

$$\hat{p} = \hat{p}(0) + \hat{p}(1)\epsilon + \cdots,$$ \hspace{1cm} (2.33c)

$$M = M(1)\epsilon + \cdots,$$ \hspace{1cm} (2.33d)

and $\hat{\rho}(0)$, $\hat{T}(0)$, $\hat{p}(0)$, and $M(1)$ are found to be the functions of \hat{t} and z (i.e., they do not depend on the radial coordinate). In addition, $\hat{T}(0)(\hat{t}, z) = \hat{T}_w(z)$ holds, so that $\hat{p}(0)(\hat{t}, z) = \hat{\rho}(0)(\hat{t}, z)\hat{T}_w(z)$.

Let us consider the ith tube and denote $\hat{p}(0)$ and $M(1)$ thereby by $\hat{p}_i(0)$ and $M_i(1)$, respectively. Let R_i and $\hat{R}_i = R_i/R_*$ be the dimensional and dimensionless radii of the ith tube, respectively. Then, $\hat{p}_i(0)$ is governed, through $M_i(1)$, by the following equation:

$$\frac{\partial \hat{p}_i(0)}{\partial \hat{t}} + \frac{\hat{T}_w}{(R_i)^2} \frac{\partial M_i(1)}{\partial z} = 0,$$ \hspace{1cm} (2.34a)

$$M_i(1) = \frac{\hat{p}_i(0)}{\hat{T}_w^{1/2}} \left[M_p(K_i) \frac{\partial \ln \hat{p}_i(0)}{\partial z} + M_T(K_i) \frac{d \ln \hat{T}_w}{dz} \right],$$ \hspace{1cm} (2.34b)

where

$$K_i = \frac{K_*\hat{T}_w^{3/2}}{A_c(T_w)\hat{p}_i(0)},$$ \hspace{1cm} (2.35)

and we have assumed that $A_c(T)$ in Eq. (2.47) can be written as

$$A_c(T) = A_c(T_\ast\hat{T}) = A_c(T_\ast)\hat{A}_c(\hat{T}).$$ \hspace{1cm} (2.36)

(If $A_c = \text{const} \times T^m$, then $\hat{A}_c = \hat{T}^m$.) Here, $M_p(K_i)$ and $M_T(K_i)$ correspond to the dimensionless mass-flow rate of the Poiseuille flow and that of the thermal transpiration through an infinitely long circular tube with radius R_i. More precisely, they are related to $M_p(\text{Kn}; R_0/R_*)$ and $M_T(\text{Kn}; R_0/R_*)$ in Sec. 2.2.5 [cf. Eqs. (2.26) and (2.28)] as

$$M_j(K_i) = M_j(K_i; \hat{R}_i) = (\hat{R}_i)^3 M_j(K_i/\hat{R}_i; 1) \hspace{1cm} (J = P, T).$$ \hspace{1cm} (2.37)

At the junction of the ith tube with the neighboring $(i+1)$th tube, the following connection condition has to be satisfied:

$$\hat{p}_i(0) = \hat{p}_{i+1}(0), \hspace{1cm} M_i(1) = M_{i+1}(1).$$ \hspace{1cm} (2.38)
Equations (2.34) and (2.38) are to be supplemented by an appropriate initial condition and end conditions (see Sec. 2.4.2). Once the solution of this system is found, the dimensional pressure \(p^i \) and the dimensional mass-flow rate \(\mathcal{M}^i \) in the \(i \)th tube are given, respectively, by [cf. Eqs. (2.32) and (2.33)]

\[
\begin{align*}
p^i &= p_\ast [\hat{p}^i(0) + O(\epsilon)], \\
\mathcal{M}^i &= \pi \rho_\ast (2RT_\ast)^{1/2} R_0^2 [M^i_\ast \epsilon + O(\epsilon^2)].
\end{align*}
\]

(2.39a) (2.39b)

2.4 Applications of diffusion-type system

In this section, we apply the diffusion-type equation with the connection condition summarized in Sec. 2.3 to two problems. As in Sec. 2.2.6, we consider the nitrogen gas and let \(\nu = -0.50 \) and \(\eta = 0.46 \), which lead to \(\text{Pr} = 0.787 \) and \(\mu_b/\mu = 0.722 \). We also assume \(A_c \) in Eq. (2.47) to be constant (thus \(\hat{A}_c = 1 \)).

2.4.1 Flow caused by a large pressure difference

We first consider a single long circular tube of radius \(R_0 \) and length \(L \) kept at a uniform temperature \(T_0 \) and set in the interval \(0 \leq X_3 \leq L \). Let both ends of the tube be open, and the pressure at \(X_3 = 0 \) and that at \(X_3 = L \) be kept at \(p_0 \) and \(p_1 \), respectively. We investigate the steady flow of the gas through the tube.

Let us take \(p_0, T_0, R_0, \) and \(L \) as the reference quantities \(p_\ast, T_\ast, R_\ast, \) and \(L_\ast \), respectively. Then, \(\hat{T}_w = 1 \), and \(K_\ast \) is the Knudsen number based on \(R_0, p_0, \) and \(T_0 \). In addition, we omit the superscript \(i \) in Eqs. (2.34), (2.35), (2.37), and (2.39). Then, the end conditions become

\[
\hat{p}(0) = 1 \quad \text{at} \quad z = 0, \quad \hat{p}(0) = p_1/p_0 \quad \text{at} \quad z = 1.
\]

(2.40)

We solve Eq. (2.34) with end conditions (2.40) and an appropriate initial condition, e.g., \(\hat{p}(0) = 1 \) at \(\hat{t} = 0 \) for \(0 < z < 1 \), and obtain the steady flow as the long-time limit of the solution. In the final steady state, since \(\partial \hat{p}(0)/\partial \hat{t} = 0 \) holds, we have \(M_{(1)} \equiv M_f = \text{const.} \), and the mass-flow rate \(\mathcal{M} \) is given by [cf. Eq. (2.39b)]

\[
\mathcal{M} = \pi \rho_0 (2RT_0)^{1/2} R_0^2 [M_f \epsilon + O(\epsilon^2)],
\]

(2.41)

where \(\rho_0 = p_0/RT_0 \) and \(\epsilon = R_0/L \). Since the numerical solution method is straightforward, we show only the result of analysis.
Figure 2.5 shows the reduced mass-flow rate G versus K_* for $p_1/p_0 = 10^{-2}$. Here, $G = \mathcal{M}/\mathcal{M}_{FM} = (3\sqrt{\pi}/4)[1-(p_1/p_0)]^{-1}M_f \approx (3\sqrt{\pi}/4)M_f$ [with the term of $O(\epsilon^2)$ neglected in Eq. (2.41)], and \mathcal{M}_{FM} is the mass-flow rate for the free-molecular flow, i.e., $\mathcal{M}_{FM} = (4\sqrt{\pi}/3)R_0^3[(p_0-p_1)/L](2/RT_0)^{1/2}$. In the figure, the solid line indicates the numerical result for N_2 gas ($Pr = 0.787$ and $\mu_0/\mu = 0.722$), and the black square indicates the experimental result taken from Ref. [24], where the experiment of the same problem is carried out with the nitrogen gas, using a bundle of huge number of tiny circular tubes, under the condition that $p_1/p_0 \approx 0$ and $\epsilon = 1/2727$. Figure 2.5(a) shows the results for $0.005 \leq K_* \leq 20$ and Fig. 2.5(b) is the magnified figure for $0.1 \leq K_* \leq 20$. The pressure ratio p_1/p_0 in the present example might be too small to apply the diffusion-type system with confidence. Nevertheless, the numerical and experimental results show good agreement on the whole, except for the difference of 10% to 15% in the range $0.5 \leq K_* \leq 8$.

In Fig. 2.5, the experimental data are plotted after a suitable conversion of the Knudsen number, which is explained in the following. In Ref. [24], the mean free path l_0 is defined by $l_0 = kT_0/\sqrt{2\pi}d^2p_0$ (with k the Boltzmann constant), assuming that an N_2 molecule is a hard sphere with effective diameter d. Therefore, it is expressed in terms of the viscosity μ_0 at temperature T_0 and pressure p_0 as $l_0 = (2/\sqrt{\pi})(\mu_0/\gamma_1)(2RT_0)^{1/2}/p_0$ where $\gamma_1 = 1.270042$ [32]. On the other hand, from Eqs. (2.51c) and (2.54a), our l_0 is given by $l_0 = (2/\sqrt{\pi})(\mu_0/Pr)(2RT_0)^{1/2}/p_0$. If we assume that the viscosity μ_0 is a common quantity and eliminate it from the two expressions for l_0, we obtain a conversion formula for l_0 between our numerical result and experimental data in Ref. [24]. That is, in terms of the Knudsen number, we have $K_* = (\gamma_1/Pr)Kn_i = 1.613777Kn_i$, where Kn_i is the Knudsen number (at temperature T_0 and pressure p_0) in Ref. [24]. For instance, the measured value for $Kn_i = 1$ is plotted at $K_* = 1.613777$ in Fig. 2.5.

2.4.2 Knudsen compressor

The Knudsen compressor [20,21] is a non-mechanical device that produces a one-way gas flow with a pumping effect using the imbalance of the thermal transpiration caused by periodic temperature distribution and periodic structure of the device. It has been attracting attention as a microscale flow controller (e.g., Refs. [36,41,34,35,16]) and gas separator (e.g., Ref. [40]) without any moving parts, and its variants (e.g., Refs. [38] and [3]) have been
Figure 2.5: Reduced mass-flow rate $G \equiv (3\sqrt{\pi}/4)M_f$ vs K_* for N_2 gas in the case of $p_1/p_0 = 10^{-2}$. (a) $0.005 \leq K_* \leq 20$, (b) magnified figure for $0.1 \leq K_* \leq 20$. The solid line indicates the numerical result ($Pr = 0.787$ and $\mu_b/\mu = 0.722$), and the black square indicates the experimental result taken from Ref. [24].

proposed. A typical Knudsen pump is a long pipe with a periodic structure consisting of alternately arranged narrow and wide pipes. The temperature of the pipe is also periodic with the same period as the structure, such as a saw-tooth distribution increasing in the narrow segments and decreasing in the wide segments. The flow and its pumping effect have been studied numerically as well as experimentally. In practical applications, however, a large number of segments should be used, so that the estimate of the properties and performance of the compressor in various steady and unsteady situations by the DSMC computation or by experiment is a formidable task. Therefore, the simple macroscopic system summarized in Sec. 2.3 is useful for this purpose.

Let us consider the system shown in Fig. 2.6, that is, a pipe composed of alternately arranged m narrow circular tubes (radius R_0 and length aL) and m wide circular tubes [radius R_1 and length $(1-a)L$], set in the interval $0 \leq X_3 \leq mL$. The temperature $T_w(X_3)$ of the pipe wall has a saw-tooth shape as shown in the figure, i.e.,

$$T_w = \begin{cases} T_0, & \text{at } X_3 = nL \text{ and } mL, \\ T_1, & \text{at } X_3 = (a+n)L, \end{cases} \quad (n = 0, 1, 2, ..., m-1), \quad (2.42)$$

and $T_w(X_3)$ is a piecewise linear function of X_3 joining T_0 and T_1. We assume that the assumptions (i)–(iii) of Sec. 2.3 are satisfied, so that (iv) there is also fulfilled. We consider
the following two situations (Fig. 2.6):

(A) The pipe is closed at $X_3 = mL$, and the pressure at the open end $X_3 = 0$ is kept at p_0.

(B) Both ends are open, and the pressure at $X_3 = 0$ and that at $X_3 = mL$ are kept at p_0 and p_1, respectively.

We take p_0, T_0, R_0, and L as the reference quantities p_\ast, T_\ast, R_\ast, and L_\ast, respectively. Therefore, $\hat{T}_w(z) = 1$ at $z = n$ ($n = 0, 1, 2, ..., m-1$) and m, and $\hat{T}_w(z) = T_1/T_0$ at $z = a + n$, and K_\ast is the Knudsen number of the inlet condition. In addition, the end conditions become

$\hat{p}(0) = 1$ (at $z = 0$), $M_{(1)} = 0$ (at $z = m$) in Case (A),

$\hat{p}(0) = 1$ (at $z = 0$), $\hat{p}(0) = p_1/p_0$ (at $z = m$) in Case (B).

We solve Eq. (2.34) with end conditions (2.43) and the initial condition

$\hat{p}(0) = 1$, at $\hat{t} = 0$, for $0 < z < 1$, (2.44)

and obtain the steady solution as the long-time limit of the unsteady solution. In the final steady state, $M_{(1)} = 0$ in case (A), and $M_{(1)} \equiv M_f = \text{const.}$ in case (B). In the latter case, the mass-flow rate \mathcal{M} is given by [cf. Eq. (2.39b)]

$$\mathcal{M} = \pi \rho_0 (2RT_0)^{1/2} R_0^2 [M_f \epsilon + O(\epsilon^2)]$$

(2.45)
Figure 2.7: Steady pressure distribution along the pipe in Case (A) for $R_1/R_0 = 2$, $a = 0.5$, $T_1/T_0 = 1.5$, and $m = 100$ (N_2 gas: $Pr = 0.787$ and $\mu_b/\mu = 0.722$). (a) Various K_*, (b) Average pressure distribution for N_2 gas and monatomic gas ($Pr = 2/3$). In (b), the solid lines indicate the results for N_2 gas, and the dashed lines those for a monatomic gas.

Some numerical results for the steady pressure distribution along the pipe, i.e., p/p_0 versus z, in case (A) are shown in Figs. 2.7 and 2.8 for N_2 gas ($Pr = 0.787$ and $\mu_b/\mu = 0.722$). Figure 2.7 shows p/p_0 versus z for $m = 100$ in the case of $R_1/R_0 = 2$, $a = 0.5$, and $T_1/T_0 = 1.5$: Fig. 2.7(a) shows the effect of different K_*, and Fig. 2.7(b) the comparison between N_2 gas and a monatomic gas ($Pr = 2/3$) for $K_* = 0.1$, 1, and 10. In the latter figure, we show the average pressure \bar{p} over each segment, rather than the pressure p itself, to make the difference clearer. A relatively high pressure rise at the closed end can be obtained for intermediate values of the entrance Knudsen number [Fig. 2.7(a)]. The pressure distribution for large numbers of the segments (i.e., large m) is shown in Fig. 2.8 for $R_1/R_0 = 2$, $a = 0.5$, $T_1/T_0 = 1.5$, and $K_* = 1$. In the case of $m = 1000$, the pressure at the closed end for N_2 gas becomes about 40 times the pressure at the open end.

An example of the manner of approach of the gas to the final steady state in Case (A) is shown in Fig. 2.9 for N_2 gas. More precisely, the time evolution of the pressure p_1 at the closed end ($z = m$ or $X_3 = mL$) versus \hat{t} is plotted for $m = 10$ in the case of $R_1/R_0 = 2$, $a = 0.5$, and $T_1/T_0 = 1.5$. Figure 2.9(a) shows the global behavior ($0 \leq \hat{t} \leq 600$), and Fig. 2.9(b) the short-time behavior ($0 \leq \hat{t} \leq 1$). The approach is slower for intermediate

where $\rho_0 = p_0/R_0T_0$ and $\epsilon = R_0/L$.

46
Figure 2.8: Steady pressure distribution along the pipe in Case (A) for $K^* = 1$, $T_1/T_0 = 1.5$, $a = 0.5$, and $R_1/R_0 = 2$. Various m for the N$_2$ gas and monatomic gas. The solid lines indicate the results for the N$_2$ gas, and the dashed lines those for the monatomic gas.

and large Knudsen numbers ($K^* = 1$ and 10).

Finally, we show in Table 2.3 the steady mass-flow rate M_f [Eq. (2.45)] in case (B) for different m and K^* in the case of $R_1/R_0 = 2$, $a = 0.5$, $T_1/T_0 = 1.5$, $p_1/p_0 = 2$, and $K^* = 1$. The results for N$_2$ (Pr = 0.787 and $\mu_b/\mu = 0.722$) as well as for a monatomic gas (Pr = 2/3) are shown in the table. For small Knudsen numbers ($K^* = 0.1$), the flow from the high-pressure end to the low-pressure end dominates (i.e., M_f is negative) even for $m = 200$. However, for intermediate and large Knudsen numbers ($K^* = 1$ and 10), the flow induced by the wall-temperature distribution overcomes the pressure-driven flow (i.e., M_f is positive).

2.5 Concluding remarks

In the present study, we considered two fundamental and classical problems of rarefied gas dynamics, Poiseuille flow and thermal transpiration through a circular tube for a polyatomic

| m | $K^* = 10$ | $K^* = 1$ | $K^* = 0.1$ | $M_f|_{Pr=2/3}$ | $M_f|_{Pr=0.787}$ |
|-----|-------------|-------------|-------------|-----------------|-----------------|
| 10 | -8.080(−2)* | -7.037(−2) | -4.451(−1) | -8.161(−2) | -6.667(−2) | -3.875(−1) |
| 50 | 1.096(−2) | 3.382(−2) | -7.268(−2) | 9.971(−3) | 3.279(−2) | -6.127(−2) |
| 100 | 1.935(−2) | 4.286(−2) | -2.612(−2) | 1.851(−2) | 4.133(−2) | -2.049(−2) |
| 200 | 2.127(−2) | 4.439(−2) | -2.842(−3) | 2.055(−2) | 4.275(−2) | -1.082(−4) |

* Read as -8.080×10^{-2}.
gas. Our basic equation is the linearized version of the ES model of the Boltzmann equation for a polyatomic gas. But, we showed that the solution of the thermal transpiration through a circular tube based on the ES model for a polyatomic gas is identical with that based on the BGK model for a monatomic gas, and that the solution of the Poiseuille flow through a circular tube based on the ES model for a polyatomic gas is obtained by a simple conversion formula from that based on the BGK model for a monatomic gas. Therefore, we were able to obtain the profiles of the flow velocity and heat flow as well as the mass-flow rate for the present problem, exploiting the existing database for the BGK model for a monatomic gas (Sec. 2.2).

On the other hand, we derived a macroscopic equation of diffusion type and the connection conditions that describe the pressure distribution in a pipe consisting of many thin circular tubes with different radii connected one after another. The resulting macroscopic system is summarized in Sec. 2.3. With the database for the mass-flow rates mentioned above, the macroscopic system became applicable to practical problems of microscale gas flows when the pipe consists of circular tubes and the behavior of the gas is described by the ES model for a polyatomic gas.

Finally, we applied the macroscopic system to a gas flow through a single long circular tube caused by a large pressure difference imposed at both ends (Sec. 2.4.1) and to a Knudsen compressor consisting of many alternately arranged thinner and thicker circular tubes.
(Sec. 2.4.2). With this procedure, we were able to obtain the pressure distribution along the pipe and the mass-flow rate through the pipe in the two problems easily.

It should be stressed that the direct numerical analysis of such problems, either by the DSMC method or by finite-difference methods based on the model Boltzmann equations, is a formidable task. Therefore, the present approach, using the diffusion-type system plus the database for the Poiseuille-flow and thermal-transpiration mass-flow rates, provides a useful and powerful tool. The applicability of the diffusion-type system can be extended easily just by constructing the corresponding database for the tubes with different cross sections.

2.6 Appendix A: ES model of the Boltzmann equation

In this appendix, we summarize the ES model of the Boltzmann equation for a polyatomic gas. Let us consider a gas consisting of molecules with internal degree of freedom δ. The number of the molecules with position in d^3X around X, velocity in $d^3\xi$ around ξ, and energy related to the internal degree of freedom in $d\tilde{E}$ around \tilde{E} at time t is written as

$$\frac{1}{m} f(t, X, \xi, \tilde{E}) d^3X d^3\xi d\tilde{E},$$

where f is the velocity and energy distribution function of the gas molecules, and m is the mass of a molecule. The ES model for a polyatomic gas can be written in the following form [1] (see the last paragraph of this appendix for the difference in notations between Ref. [1] and the present paper):

$$\frac{\partial f}{\partial t} + \xi_j \frac{\partial f}{\partial X_j} = A_c(T) \rho (G[f] - f),$$

$$G[f] = \frac{\rho \Lambda_0 \tilde{E}^{\delta/2 - 1}}{(2\pi)^{3/2} |T|^{3/2} (RT_{rel})^{\delta/2}}$$

$$\times \exp \left(-\frac{1}{2} (\xi - v) \cdot T^{-1} (\xi - v) - \frac{\tilde{E}}{RT_{rel}} \right),$$

$$T = (1 - \eta) \left[(1 - \nu) RT_{tr} I_d + \nu \Theta \right] + \eta RT I_d,$$

$$\Theta = \frac{1}{\rho} \int \int \int_0^{\infty} (\xi - v) \cdot T^{-1} (\xi - v) f \tilde{E} d^3\xi,$$

$$\rho = \int \int \int_0^{\infty} f \tilde{E} d^3\xi,$$

$$v_i = \frac{1}{\rho} \int \int \int_0^{\infty} \xi_i f \tilde{E} d^3\xi,$$

$$T_{tr} = \frac{1}{3\rho R} \int \int \int_0^{\infty} (\xi_i - v_i)^2 f \tilde{E} d^3\xi,$$
\[T_{\text{int}} = \frac{2}{\delta \rho R} \int_{0}^{\infty} \tilde{E} f d\tilde{E} d^3 \xi, \quad (2.47\text{h}) \]
\[T = \frac{3T_{\text{tr}} + \delta T_{\text{int}}}{3 + \delta}, \quad (2.47\text{i}) \]
\[T_{\text{rel}} = \eta T + (1 - \eta)T_{\text{int}}. \quad (2.47\text{j}) \]

Here, \(\rho \) is the mass density of the gas, \(v_i \) is the flow velocity, \(T \) is the temperature, \(T_{\text{tr}} \) is the temperature related to the translational energy, \(T_{\text{int}} \) is the temperature related to the energy of the internal degree of freedom, and \(R \) is the specific gas constant (the Boltzmann constant divided by the mass of a molecule); \(\nu \in [-1/2, 1) \) and \(\eta \in (0, 1] \) are the parameters to adjust the Prandtl number and the bulk viscosity to the gas under consideration [see Eqs. (2.51c) and (2.51d)]; \(A_c(T) \) is a function of \(T \) such that \(A_c(T) \rho \) is the collision frequency of the gas molecules, and \(\Lambda_\delta \) is a dimensionless constant defined by

\[\Lambda_\delta^{-1} = \int_{0}^{\infty} s^{\delta/2 - 1} e^{-s} ds. \quad (2.48) \]

In addition, \(\mathcal{T} \) and \(\Theta \) are \(3 \times 3 \) symmetric matrices, \(\mathcal{I}d \) is the \(3 \times 3 \) identity matrix, \(|\mathcal{T}| \) and \(\mathcal{T}^{-1} \) are the determinant and the inverse matrix of \(\mathcal{T} \), respectively, and the symbol \(^t \) indicates the transpose operation. In what follows, for an arbitrary matrix \(A \), its \((i, j)\) component, determinant, inverse matrix, and transposed matrix are denoted by \(A_{ij} \), \(|A| \), \(A^{-1} \), and \(^tA \), respectively. In the above equations, \(d^3 \xi = d\xi_1 d\xi_2 d\xi_3 \), and the domain of integration with respect to \(\xi_i \) is the whole space of \(\xi_i \). It should be noted that the pressure \(p \) and the stress tensor \(p_{ij} \) are given by

\[p = \rho RT, \quad (2.49\text{a}) \]
\[p_{ij} = \rho \Theta_{ij} = \int_{0}^{\infty} (\xi_i - v_i)(\xi_j - v_j) f d\tilde{E} d^3 \xi. \quad (2.49\text{b}) \]

The vanishing right-hand side of Eq. (2.47a) is equivalent to the fact that \(f \) is a local equilibrium distribution \(f_{\text{eq}} \) [1]:

\[f_{\text{eq}} = \frac{\rho \Lambda_\delta}{(2\pi RT)^{3/2}(RT)^{\delta/2}} \tilde{\xi}^{\delta/2 - 1} \exp\left(-\frac{(\xi_i - v_i)^2}{2RT} - \frac{\tilde{\xi}}{RT}\right). \quad (2.50) \]

It is also known [1] that Eq. (2.47) leads to the viscosity \(\mu \), the thermal conductivity \(\kappa \), the
Prandtl number Pr, and the bulk viscosity μ_b in the following form:

$$
\mu = \frac{1}{1 - \nu + \eta \nu} \frac{\mathcal{R} T}{A_c(T)},
$$

(2.51a)

$$
\kappa = \frac{\gamma}{\gamma - 1} \frac{\mathcal{R} T}{A_c(T)},
$$

(2.51b)

$$
\text{Pr} = \frac{\gamma}{\gamma - 1} \frac{\mathcal{R} \mu}{\kappa} = \frac{1}{1 - \nu + \eta \nu},
$$

(2.51c)

$$
\mu_b = \frac{1}{\eta} \left(\frac{5}{3} - \gamma \right) \frac{\mu}{\text{Pr}},
$$

(2.51d)

with γ the ratio of the specific heats given by

$$
\gamma = \frac{\delta + 5}{\delta + 3}.
$$

(2.52)

Equation (2.47) contains the set of parameters (ν, η, δ) characterizing the gas under consideration. In place of this set, we may use another set $(\text{Pr}, \mu_b/\mu, \delta)$ because of relations (2.51c), (2.51d), and (2.52).

The molecular mean free path l_0 in an equilibrium state at rest at temperature T_0 and density ρ_0 is defined as

$$
l_0 = \frac{2}{\sqrt{\pi}} \frac{(2RT_0)^{1/2}}{A_c(T_0)\rho_0},
$$

(2.53)
in terms of the mean molecular speed $(2/\sqrt{\pi})(2RT_0)^{1/2}$ and the collision frequency $A_c(T_0)\rho_0$ in the equilibrium state. Therefore, the viscosity μ_0, the thermal conductivity κ_0, and the bulk viscosity μ_{b0} corresponding to the equilibrium state are expressed (in terms of l_0) as

$$
\mu_0 = \frac{\sqrt{\pi}}{2} \frac{1}{1 - \nu + \eta \nu} \left(\frac{2RT_0}{(2RT_0)^{1/2}} \right)^{1/2} l_0,
$$

(2.54a)

$$
\kappa_0 = \frac{\sqrt{\pi}}{2} \frac{\gamma}{\gamma - 1} \left(\frac{2RT_0}{(2RT_0)^{1/2}} \right)^{1/2} l_0,
$$

(2.54b)

$$
\mu_{b0} = \frac{1}{\eta} \left(\frac{5}{3} - \gamma \right) \frac{\mu_0}{\text{Pr}}.
$$

(2.54c)

The diffuse-reflection condition [8,9,32], adapted to the present polyatomic case, on the boundary is expressed as

$$
f = \frac{\rho_w \Lambda_\delta}{(2\pi RT_w)^{3/2}(RT_w)^{3/2}} \tilde{\xi}^{3/2 - 1} \exp \left(- \frac{\xi_i^2}{2RT_w} - \frac{\tilde{\xi}}{RT_w} \right), \quad (\xi \cdot \mathbf{n} > 0),
$$

(2.55a)

$$
\rho_w = - \left(\frac{2\pi}{RT_w} \right)^{1/2} \int_{\xi \cdot \mathbf{n} < 0} \int_0^\infty \xi \cdot \mathbf{n} f d\tilde{\xi} d^3 \xi,
$$

(2.55b)

where T_w is the temperature of the boundary, and \mathbf{n} is the unit normal vector of the boundary pointed toward the gas.
In Ref. [1], the energy \tilde{E}, which is denoted by ε there, is assumed to be expressed as $\tilde{E} = I^{3/8}$ in terms of a variable I, and I is used as an independent variable. More specifically, the distribution function in Ref. [1], which we denote by $f(t, X, \xi, I)$ here, is defined in such a way that

$$\frac{1}{m} \int f(t, X, \xi, I) d^3X d^3\xi dI,$$

(2.56)

indicates the number of the molecules with position in d^3X around X, velocity in $d^3\xi$ around ξ, and the variable I in dI around I at time t. Therefore, the relation between f and the present \overline{f} is as follows:

$$f(t, X, \xi, \tilde{E}) = \frac{(\delta/2)\tilde{E}^{3/2-1}}{(\delta/2)} \overline{f}(t, X, \xi, \tilde{E}^{3/2}).$$

(2.57)

In addition, Λ_δ in Ref. [1], which we denote by $\overline{\Lambda}_\delta$ here, is related to Λ_δ in Eq. (2.48) as

$$\Lambda_\delta^{-1} = (2/\delta)(\overline{\Lambda}_\delta)^{-1}.$$

(2.58)

References

Chapter 3

Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function

3.1 Introduction

Poiseuille and thermal transpiration flows are among the most fundamental problems in rarefied gas dynamics or in microfluidics and have been investigated by many researchers. At the early stage of the modern rarefied gas dynamics, analyses were made by the use of arbitrary assumptions on the velocity distribution function, such as the variational and moment methods. Direct numerical computations were also carried out, first on the basis of the model equations, such as the Bhatnagar–Gross–Krook (BGK or Boltzmann–Krook–Welander) model [2,30], and then of the original Boltzmann equation. An exhaustive list of references is beyond the scope of the present paper. The reader is referred to, e.g., [7] and [26] and the references therein for the background and representative results. Some references rather directly related to the present work will be cited at proper occasions.

In the present paper we come back to the above classical problems, especially those in the two-dimensional channel, because there occurs an interesting phenomenon of the over-concentration of molecules on velocities parallel to the walls in the highly rarefied regime (see figures 3 and 6 in [23]). We shall focus on this issue and clarify its structure. We also propose a numerical method that handles the difficulty arising from this phenomenon. The method enables us to obtain the net mass flow through the channel in that regime accurately. For the linearized Boltzmann equation, an accurate deterministic numerical method was established in late 1980s ([27]) for the intermediate rarefied regime, and there is a general asymptotic theory for the slightly rarefied regime ([24,25]). Thus, the proposed method fills the last gap for preparing the database of net mass flow that covers the entire range of the Knudsen number Kn, i.e. from the continuum to the free molecular regime.

In the case of the two-dimensional channel, the flows in the highly rarefied regime have
been studied analytically by [5] for the Poiseuille flow and by [22] for the thermal transpiration on the basis of the BGK equation. They reported that the net mass flow grows logarithmically in Kn (Kn ≫ 1) as Kn is increased. In the analyses, they used an advantageous property of the model equation that the basic equation and its boundary condition can be reduced to a set of integral equations for macroscopic quantities. The same reduction can be applied to more sophisticated model equations such as the ellipsoidal statistical model [11,12,1] and the McCormack model for gas mixtures [18]. It cannot, however, be applied to the original Boltzmann equation. As a result, analyses of the flows in the highly rarefied regime on the basis of the Boltzmann equation have not been carried out for a long time, though the logarithmic growth in Kn has been expected.

Recently, [9] studied the thermal transpiration in the highly rarefied regime on the basis of the linearized Boltzmann equation for hard-sphere (HS) molecules and proved rigorously mathematically the logarithmic growth of the induced mass flow. They introduced a pointwise estimate of the velocity distribution function in addition to the norm estimates that are widely used in mathematical studies of the Boltzmann equation. The pointwise estimate plays a key role in the proof of logarithmic growth. In the present paper, motivated by their result, we construct an iterative approximation method and clarify the behaviour of the gas in the highly rarefied regime for both the Poiseuille flow and thermal transpiration problems. The method is rather ordinary, but we will ensure its convergence and estimate the order of error at each stage of iteration explicitly. Consequently, we will have a clear view of practical numerical analyses, by which the structure of the over-concentration will be clarified.

The paper is organized as follows. We start from the statement and formulation of the problems in § 3.2 and summarize the mathematical estimates by [9] in § 3.3. Then in § 3.4.1 we present an iterative approximation procedure and show its convergence and explicit error estimates at each stage of iteration in the highly rarefied regime. In § 3.4.2, we clarify the structure of the over-concentration on the basis of § 3.4.1. In § 3.4.3, we present the actual numerical method to be adopted that is based on the procedure in § 3.4.1. Numerical results are shown in § 3.5. Finally in § 3.6 we present an asymptotic formula of the net mass flow through the channel for large Kn, which is available not only for HS molecules but also for any molecular model belonging to Grad’s hard potential [10]. We will also point out that the profiles of the heat flow in Poiseuille flow and of the flow velocity in thermal transpiration
agree well with each other in the highly rarefied regime. The reason is also given.

3.2 Problem and formulation

Consider a rarefied gas between two parallel resting plates located respectively at \(X_1 = \pm D/2 \) \((D > 0)\), where \(X_i \) are the Cartesian coordinates. The two plates are kept at the temperature \(T_0(1 + \beta_T X_2/D) \) (\(\beta_T \) is a constant), and a uniform pressure gradient is imposed on the gas in the direction of \(X_2 \); i.e. the pressure is given by \(p_0(1 + \beta_P X_2/D) \). (It can be shown that the pressure is independent of \(X_1 \).) We will investigate the behaviour of the gas under the following assumptions:

(i) The behaviour of the gas can be described by the Boltzmann equation for hard-sphere molecules with a common diameter \(\sigma \) and mass \(m \). (The restriction to HS molecules will be relaxed later in § 3.6.1.)

(ii) The gas molecules are diffusely reflected on the surface of the plates.

(iii) \(|\beta_T|, |\beta_P| \ll 1 \), so that the equation and boundary condition can be linearized around the reference equilibrium state at rest with temperature \(T_0 \) and pressure \(p_0 \).

Usually, the above problem with \(\beta_T = 0 \) (the case that the plate temperature is uniform) is called the Poiseuille flow problem, while that with \(\beta_P = 0 \) (the case of no pressure gradient) is called the thermal transpiration problem. We call the gap between the plates occupied by the gas the (two-dimensional) channel. It is known that a flow is induced along the channel in both problems.

Let us denote the molecular velocity by \((2RT_0)^{1/2}\zeta\) and the velocity distribution function by \(\rho_0(2RT_0)^{-3/2}[1 + \phi(x, \zeta)]E(|\zeta|) \), where \(x = X/D \), \(E(t) = \pi^{-3/2} \exp(-t^2) \), \(\rho_0 = p_0/RT_0 \) and \(R \) is the specific gas constant. Then, the problem is described by the following boundary-value problem for \(\phi \):

\[
\zeta_i \frac{\partial \phi}{\partial x_i} = -\frac{\nu}{k} \phi + \frac{1}{k} K(\phi),
\]

\[
\phi = (|\zeta|^2 - 2)\beta_T x_2 \pm 2\sqrt{\pi} \int_{\zeta_1 \geq 0} \zeta_1 \phi E d\zeta, \quad \text{for } \zeta_1 \leq 0, \ x_1 = \pm \frac{1}{2},
\]
where
\[
K(\phi) = \int \kappa(\zeta, \zeta') \phi(\zeta') E(|\zeta'|) d\zeta',
\]
(3.3)
\[
\kappa(\zeta, \zeta') = \frac{\sqrt{\pi}}{\sqrt{2} |\zeta - \zeta'|} \exp \left(\frac{|\zeta \times \zeta'|^2}{2\sqrt{2}} \right) - \frac{\sqrt{\pi}}{2\sqrt{2} |\zeta - \zeta'|},
\]
(3.4)
\[
\nu(|\zeta|) = \frac{1}{2\sqrt{2}} \left[\exp(-|\zeta|^2) + \left(\frac{2}{\zeta} + 1 \right) \int_0^{|\zeta|} \exp(-s^2) ds \right],
\]
(3.5)
\[
k = \sqrt{\frac{\pi}{2}} \ell_0 D, \quad \ell_0 = \frac{1}{\sqrt{2} \pi \sigma^2 (\rho_0/m)},
\]
(3.6)
and \(\ell_0 \) is the mean free path of a gas molecule at the reference equilibrium state. Note that we shall use \(k \) in place of the Knudsen number \(\text{Kn}(=\ell_0/D) \) to indicate the degree of gas rarefaction (see (3.6)). The above \(\phi \) should be consistent with the imposed pressure field \(p_0(1 + \beta_p x_2/D) \), which is reduced to the following condition:
\[
\frac{2}{3} \int |\zeta|^2 \phi E d\zeta = \beta_p x_2.
\]
(3.7)

Since the problem is linear, we can seek the solution \(\phi \), independent of \(x_3 \), in the form
\[
\phi = \beta_p [x_2 + \phi_p(x_1, \zeta)] + \beta_T [(|\zeta|^2 - \frac{5}{2})x_2 + \phi_T(x_1, \zeta)],
\]
(3.8)
where \(\phi_J(x_1, \zeta) (J = P, T) \) is a solution of the following boundary-value problem:
\[
\zeta_1 \frac{\partial \phi_J}{\partial x_1} = -\nu k \frac{\phi_J}{k} + \frac{1}{k} K(\phi_J) - I_J \quad (J = P, T),
\]
(3.9a)
\[
\phi_J = 0, \quad \text{for } \zeta_1 \leq 0, \ x_1 = \pm \frac{1}{2},
\]
(3.9b)
\[
I_P = \zeta_2, \quad I_T = \zeta_2 (|\zeta|^2 - \frac{5}{2}).
\]
(3.9c)
Throughout this paper, the subscript \(J \) represents the problem indicator \(P \) or \(T \): the former indicates the Poiseuille flow and the latter the thermal transpiration. Here \(\phi_J \) is considered to be odd in \(\zeta_2 \), even in \(\zeta_3 \) and symmetric in the following sense:
\[
\phi_J(x_1, \zeta_1, \zeta_2, \zeta_3) = \phi_J(-x_1, -\zeta_1, \zeta_2, \zeta_3).
\]
(3.10)

Macroscopic quantities can be obtained once \(\phi \) is known. Because of (3.8), the density, temperature, pressure and stress tensor of the gas are simply expressed as \(\rho_0[1+(\beta_p - \beta_T)x_2] \), \(T_0(1 + \beta_T x_2) \), \(p_0(1 + \beta_p x_2) \) and
\[
p_0(1 + \beta_p x_2) \mathbf{I} - p_0 \beta_p x_1 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (\mathbf{I}: \text{the identity matrix}),
\]
(3.11)
while the flow velocity \((2RT_0)^{1/2}u\) and the heat flow vector \(\frac{1}{2}\rho_0(2RT_0)^{3/2}Q\) have their \(x_2\)-components only, which are expressed as a moment of \(\phi\) as follows:

\[
\begin{align*}
u_2 &= \int \zeta_2 \phi E d\zeta, \\
Q_2 &= \int \zeta_2 (|\zeta|^2 - \frac{5}{2}) \phi E d\zeta.
\end{align*}
\] (3.12)

For the sake of later convenience, we introduce the notation convention that

\[
u[f] = \int \zeta_2 f E d\zeta, \\
Q[f] = \int \zeta_2 (|\zeta|^2 - \frac{5}{2}) f E d\zeta, \\
M[f] = \int_{-1/2}^{1/2} u[f] dx_1.
\] (3.13)

Then, \(u_2\) and \(Q_2\) may be rewritten by \(u_2 = u[\phi] = \beta_p u[\phi_T] + \beta_T u[\phi_T]\) and \(Q_2 = Q[\phi] = \beta_p Q[\phi_T] + \beta_T Q[\phi_T]\). The net mass flow through the channel per unit length in \(X_3\) is expressed by \(\rho_0 D (2RT_0)^{1/2} M[\phi]\), where \(M[\phi] = \beta_p M[\phi_T] + \beta_T M[\phi_T]\).

3.3 Preliminary arguments

The problem (3.9) can be solved formally as

\[
\begin{align*}
\phi_J &= \phi_J^{(0)} + \phi_J^R, \\
\phi_J^{(0)} &= -\frac{k}{\nu} \left[1 - \exp \left(-\frac{\nu}{k} \frac{|x_1 \pm (1/2)|}{|\zeta_1|} \right) \right] I_J, \\
\phi_J^R &= \frac{1}{k \zeta_1} \int_{x_1/2}^{x_1} \exp \left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) K(\phi_J) ds, \\
\end{align*}
\] (3.14a)

In accordance with (3.14a), \(u\), \(M\) and \(Q\) may be written as

\[
u[\phi_J] = u[\phi_J^{(0)}] + u[\phi_J^R], \\
M[\phi_J] = M[\phi_J^{(0)}] + M[\phi_J^R], \\
Q[\phi_J] = Q[\phi_J^{(0)}] + Q[\phi_J^R].
\] (3.15)

We primarily discuss the former two quantities; \(Q\) will be considered in § 3.6.2.

Chen et al. [9] studied the thermal transpiration problem \(\phi_T\) by the use of the formal solution (3.14) and proved mathematically the following for \(k \gg 1\):

(i) There is a unique solution \(\phi_T \in L^\infty\), where \(L^\infty\) is defined with the norm \(||f||_\infty = \sup_{\zeta} |f|E^{1/2}|\) for each \(x_1\).

(ii) There is a constant \(C > 0\) independent of \(k\) such that

\[
|\phi_T E^{1/2}| \leq C \left(|\zeta_1| + \frac{1}{k} \right)^{-1}, \quad |K(\phi_T) E^{1/2}| \leq C (1 + \ln k).
\] (3.16)

(iii) There are constants \(C_2 \geq C_1 > 0\) and \(C_3 > 0\) independent of \(k\) such that

\[
C_1 \ln k \leq u[\phi_T^{(0)}] \leq C_2 \ln k, \quad |u[\phi_T^R]| < C_3 (1 + \ln k)^2 / k.
\] (3.17)
The last estimate (3.17) implies that in the highly rarefied regime the flow $u[\phi_T^{(0)}]$ induced by the known inhomogeneous term corresponding to the temperature gradient is predominant, and the contribution of the remainder $u[\phi_T^R]$ is much smaller than $u[\phi_T^{(0)}]$, i.e. $O(k^{-1}\ln k)$ relative to $u[\phi_T^{(0)}]$. Since (3.17) is a uniform estimate in x_1, $M[\phi_T^R]$ and $M[\phi_T^{(0)}]$ follow the same estimate as (3.17).

By the analysis parallel to that of [9], we can show for the Poiseuille flow problem that the statements (i) and (ii) with ϕ_T being replaced by ϕ_P hold as they are and that (iii) is replaced by the following:

(iii)' There are constants $C_2 \geq C_1 > 0$ and $C_3 > 0$ independent of k such that

$$-C_1 \ln k \geq u[\phi_P^{(0)}] \geq -C_2 \ln k, \quad |u[\phi_P^R]| < C_3(1 + \ln k)^2/k \quad (3.18)$$

(see Sec. 3.8). Again, because of the uniform estimate in x_1, $M[\phi_P^R]$ and $M[\phi_P^{(0)}]$ follow the same estimate as (3.18).

Remark 1 One may think that dropping the first two terms on the right-hand side of (3.9a) would give a reasonable approximation in the highly rarefied regime. It, however, leads to the divergence of flow velocity, which has been known for a long time. Physically, the divergence is caused by completely neglecting the scattering of molecules with a velocity parallel to the walls ($\zeta_1 = 0$). In the dominant part $\phi_J^{(0)}$ of the solution, the effect of such a scattering is partially included (only the term $K(\phi_J)/k$ is dropped from (3.9a)), which prevents the divergence for every fixed k and captures the asymptotic behaviour as $k \to \infty$. See, e.g., [6] and [26] for related discussions.

Figure 3.1 shows $M[\phi_J^{(0)}]$, the expression of which is eventually reduced to (3.24) that appears later. The direct numerical solution of $M[\phi_J]$ by Ohwada et al. [23] is also shown for comparison. The relative error of $M[\phi_T^{(0)}]$ to $M[\phi_T]$ is less than 17%, 13% and 11% for $k = 10, 15$ and 20, while that of $M[\phi_P^{(0)}]$ to $M[\phi_P]$ is less than 19%, 15% and 12% for $k = 10, 15$ and 20. Thus, it is strongly suggested that the use of $\phi_J^{(0)}$ as the initial guess is effective for an iterative solution method in the highly rarefied regime.
Figure 3.1: $M[\phi_j^{(0)}]$ for large Knudsen numbers. (a) $M[\phi_T^{(0)}]$ versus k and (b) $M[\phi_P^{(0)}]$ versus k. In each panel, $M[\phi_j^{(0)}]$ is shown by a solid line. Numerical results of $M[\phi_j]$ by Ohwada et al. [23] for intermediate Knudsen numbers are also shown for comparison by the closed symbols.

3.4 Structure of the over-concentration and solution method

3.4.1 Iterative approximation: method and error estimate

Motivated by the result shown in figure 3.1, we consider a sequence of functions $\phi_j^{(0)}$, $\phi_j^{(1)}$, $\phi_j^{(2)}$, \ldots generated by the following procedure:

$$
\phi_j^{(n)} = \phi_j^{(0)} + \int_{x_1/2}^{x_1} \frac{1}{k\zeta_1} \exp\left(-\frac{\nu |s-x_1|}{k|\zeta_1|}\right) K(\phi_j^{(n-1)}) ds, \quad \zeta_1 \geq 0, \quad (n = 1, 2, \ldots). \quad (3.19)
$$

By using both the norm and pointwise estimates following [9], we can prove the following for $k \gg 1$ (see Sec. 3.8):

(a) $\{\phi_j^{(n)}\}$ is a Cauchy sequence in L^∞ and thus has a limit in L^∞. Further, this limiting function is a solution of (3.14): $\phi_J = \lim_{n \to \infty} \phi_j^{(n)}$.

(b) By introducing $\psi_j^{(0)} = \phi_j^{(0)}$ and $\psi_j^{(n)} = \phi_j^{(n)} - \phi_j^{(n-1)}$ ($n = 1, 2, \ldots$), $\phi_j^{(n)}$ is rewritten as $\phi_j^{(n)} = \sum_{i=0}^{n} \psi_j^{(i)}$. In order to have the sequence $\{\phi_j^{(n)}\}$, we may use the following generating procedure for $\{\psi_j^{(n)}\}$ in place of (3.19):

$$
\psi_j^{(n)} = \int_{x_1/2}^{x_1} \frac{1}{k\zeta_1} \exp\left(-\frac{\nu |s-x_1|}{k|\zeta_1|}\right) K(\psi_j^{(n-1)}) ds, \quad \zeta_1 \geq 0. \quad (3.20)
$$

Then there are positive constants C_0 and C_1 independent of k such that

$$
|\psi_j^{(i)} E^{1/2}| \leq C_0(|\zeta_1| + k^{-1})^{-1}[C_1 k^{-1}(\ln k + 1)]^i, \quad (3.21a)
$$
\[\| \psi_j^{(i)} \|_\infty \leq C_0 k [C_1 k^{-1}(\ln k + 1)]^i, \quad (3.21b) \]
\[|K(\psi_j^{(i)}) E^{1/2}| \leq C_0 (\ln k + 1) [C_1 k^{-1}(\ln k + 1)]^i, \quad (3.21c) \]

where \(i = 0, 1, 2, \ldots \). Thus the error of \(\phi_j^{(i)} E^{1/2} \) is \(O(k^{-i}(1 + \ln k)^{i+1}) \).

(c) There are positive constants \(C_0 \) and \(C_1 \) independent of \(k \) such that
\[|u[\psi_j^{(i)}]|, |M[\psi_j^{(i)}]| \leq C_0 [C_1 k^{-1}(\ln k + 1)]^i(\ln k + 1). \quad (3.22) \]

Remark 2 Equation (3.19) or (3.20) is a rather common iterative approximation procedure. Here the point is that we can prove (a)–(c) in the present problems, which have not been known so far. Incidentally, the above convergence rates (3.21a) and (3.22) of the sequences are faster than those suggested in remark 4.4 of [9]. This is because we make use of (3.21c) at each stage of iteration in the estimate (see Sec. 3.8).

3.4.2 Structure of over-concentration

Estimate (3.21a) clearly shows the structure of the over-concentration of molecules on \(\zeta_1 \sim 0 \). Further, \(\phi_j^{(0)} E^{1/2} \) or \(\psi_j^{(0)} E^{1/2} \) has a peak \(O(k) \) around \(\zeta_1 = 0 \), remains \(O(k) \) for \(|\zeta_1| = O(k^{-1}) \) and decreases down to \(O(1) \) for \(|\zeta_1| \sim 1 \). As a result, its \(L^\infty \) norm, which picks up the peak value, is \(O(k) \), while its averages such as \(u[\phi_j^{(0)}] \) and \(M[\phi_j^{(0)}] \) are smaller quantities \(O(\ln k + 1) \).

At each stage of iteration, \(\psi_j^{(n)} E^{1/2} \) is scaled down by the factor \(O(k^{-1}(\ln k + 1)) \) with the peak position essentially unchanged.

In summary, the over-concentration in the highly rarefied regime occurs in the range of \(|\zeta_1| = O(k^{-1}) \). This phenomenon should be captured correctly by taking into account the first correction \(\psi_j^{(1)} \) to the initial guess \(\phi_j^{(0)} \) in the present iterative procedure, because \(\psi_j^{(2)} E^{1/2} \) and higher-order corrections decrease with the rate \(O(k^{-1}(\ln k + 1)^2) \) as \(k \) increased, as is clear from the above estimates. The feature is schematically shown in figure 3.2. Strictly speaking, estimate (3.21a) is not necessarily optimal, so that the actual peak and the range of over-concentration may be smaller and thinner than estimated. However, figure 3.3 and the data to be shown in \S\ 3.5, which we obtained numerically, demonstrate that the estimate is actually optimal.
Figure 3.2: Change of (a) $\phi_J^{(0)}$, (b) $\psi_J^{(1)}$ and (c) $\psi_J^{(2)}$ for small $|\zeta|$ as k is increased ($k \gg 1$). In each panel, the rate and the direction of change when k is increased are shown.

Figure 3.3: $\tilde{\phi}_T^{(0)}/k$ versus $k\zeta$ at $\zeta_\rho = 0.611$ on three spatial points ($x_1 = 0$, $1/4$ and $1/2$), where $\zeta_\rho = (|\zeta|^2 - \zeta_1^2)^{1/2}$. (a) $k = 10$, (b) $k = 10^2$ and (c) $k = 10^3$. Here, $\tilde{\phi}_T^{(0)} \equiv \phi_T^{(0)}E^{1/2}/\zeta_2$ is a function of x_1, ζ_1 and ζ_ρ.
3.4.3 Overview of computational method

Most plainly, a straightforward iterative finite-difference scheme would be used for numerical computation, especially for intermediate Knudsen numbers. The scheme is obtained by discretizing in both x_1 and ζ the following equation arising from (3.9):

$$\zeta_1 \frac{\partial \phi^{(n)}_J}{\partial x_1} = -\frac{\nu}{k} \phi^{(n)}_J + \frac{1}{k} K(\phi^{(n-1)}_J) - I_J,$$

$$\phi^{(n)}_J = 0, \quad \text{for } \zeta_1 \leq 0, \quad x_1 = \pm \frac{1}{2}. \quad (3.23a)$$

Equation (3.19), which was the basis of the discussion of § 3.4.2, is also obtained by analytical integration of (3.23) with respect to x_1. Thus, the sequence of functions $\phi^{(0)}_J, \phi^{(1)}_J, \ldots$ generated by (3.19) is identical to that generated by (3.23) with $\phi^{(-1)}_J = 0$. Thus, the finite-difference scheme that is based on (3.23) should converge also with the rate $O(k^{-1}(\ln k + 1))$ in the highly rarefied regime, which actually gives a numerical solution in that regime only by several (or even a few) iterations. Nevertheless, the straightforward finite-difference approach will be faced with a difficulty. The difficulty lies in the discretization. As described before, $M[\phi_J]$ is a quantity $O(\ln k)$ (see (3.17) and (3.18)). The contribution from the region in ζ_1 where ϕ_J decreases down from $O(k)$ to $O(1)$ is $O(\ln k)$, while the contribution from the remaining region is $O(1)$ (see (3.16)). Thus, a well-balanced arrangement of grid points both to the thin over-concentration part and to the remaining part is required, which becomes difficult to realize for large k, especially when the knowledge in § 3.4.2 is lacking. (Note that, in practice, $\ln k$ is not so different from 1 when k is large. Compare 1, $\ln k$ and k when $k = 10^3$.)

Because of the above observation, we carry out the numerical computations in the following way. Here the main concern is the net mass flow $M[\phi_J]$. We first calculate the zeroth and first approximations, which are responsible for the over-concentration, analytically as much as possible. In this step, thanks to the simple form of $\phi^{(0)}_J$ (see (3.14b)), $M[\phi^{(0)}_J]$ is eventually reduced to

$$M[\phi^{(0)}_J] = \frac{1}{\sqrt{\pi}} \int_0^\infty \left[\left(1 - \frac{a^2}{12k^2}\right) \text{Ei}\left(-\frac{a}{k}\right) + \frac{1}{12} \left(1 - \frac{a}{k}\right) e^{-\frac{a}{k}} \right] t^3 I_J e^{-\frac{t^2}{2}} dt, \quad (3.24)$$
where \(E_i \) is the exponential integral defined by \(E_i(-x) = -\int_x^\infty t^{-1} \exp(-t) dt \) \((x > 0)\) and
\[
a = \frac{\nu(t)}{t}, \quad \hat{I}_P = 1, \quad \hat{I}_T = \left(t^2 - \frac{5}{2}\right). \tag{3.25}
\]
The remaining integration with respect to \(t \) is easily performed numerically. The results shown in figure 3.1 are thus obtained. For \(n \geq 1 \), \(\psi_j^{(n)} \) is expressed by (3.20). The corresponding net mass flow is expressed as
\[
M[\psi_j^{(n)}] = 2 \int_{-1/2}^{1/2} \int_{\zeta_1 > 0} \zeta_2 \nu \left(1 - \exp\left(-\frac{\nu((1/2) - s)}{\zeta_1}\right)\right) K(\psi_j^{(n-1)}) E(|\zeta|) d\zeta ds, \tag{3.26}
\]
because the integration with respect to \(x_1 \) from \(-1/2\) to \(1/2\) can be performed analytically after changing the order of integration. As to \(\psi_j^{(1)} \) and \(M[\psi_j^{(1)}] \), the integration with respect to \(s \) and a part of the others can be performed analytically, thanks to the simple form of \(\phi_j^{(0)} \) (see (3.14b)). As a result, (3.20) and (3.26) are eventually reduced to three- and fivefold integrations of a given function respectively. These integrations are performed numerically by first applying the double exponential transformation \([28,20,19]\) and then using the trapezoid formula for transformed variables.

By the method in the previous paragraph, we can deal with the over-concentration and its contribution to the net mass flow accurately. In the extremely highly rarefied regime, the first (or even zeroth) approximation is accurate enough, thanks to the convergence rate \(O(k^{-1}(\ln k + 1)) \) in one iteration. Further iterations are required only in the regime close to the intermediate rarefied regime. The required number of iterations increases as \(k \) is decreased, because the convergence rate \(O(k^{-1}(\ln k + 1)) \) becomes worse. Fortunately, however, we do not expect a serious numerical difficulty in that regime, because the range of the over-concentration in \(\zeta_1 \), which is \(O(k^{-1}) \), is no longer too thin. The main technical problem in solving \(\psi_j^{(2)} \) and higher-order corrections is that only the discretized data of \(\psi_j^{(n-1)} \) are available in (3.20) and (3.26) and that the integration with respect to \(s \) cannot be carried out analytically. The integration with respect to \(\zeta \) is performed by using the trapezoid formula after the double exponential transformation. As to the integration with respect to \(s \), \(K(\psi_j^{(n-1)}) \) is approximated by the piecewise quadratic interpolation of the data on grid points. Then the integration of the approximated \(K(\psi_j^{(n-1)}) \) multiplied by \(1 - \exp(-\nu((1/2) - s)/(k\zeta_1)) \) in (3.26) or \(\exp(-\nu|s - x_1|/(k|\zeta_1|)) \) in (3.20) is carried out analytically. In the actual numerical computations, we seek \(\psi_j^{(n)}(x_1, \zeta) \) in the form of \((\zeta_2/\zeta_\rho) \Psi_j^{(n)}(x_1, \zeta_1, \zeta_\rho) (\zeta_\rho = \sqrt{|\zeta|^2 - \zeta_1^2})\).
Figure 3.4: $\tilde{\psi}^{(1)}/(1 + \ln k)$ versus $k\zeta_1$ at $\zeta_\rho = 0.611$ [$\zeta_\rho = (|\zeta|^2 - \zeta_1^2)^{1/2}$] on three spatial points ($x_1 = 0, 1/4$ and $1/2$), where $\tilde{\psi}^{(1)} = \psi^{(1)} E^{1/2}/\zeta_2$ is a function of x_1, ζ_1 and ζ_ρ. (a) $k = 10$, (b) $k = 10^2$ and (c) $k = 10^3$.

Figure 3.5: $\tilde{K}(\phi^{(0)}/(1 + \ln k)$ versus ζ_1 at $\zeta_\rho = 0.611$ [$\zeta_\rho = (|\zeta|^2 - \zeta_1^2)^{1/2}$] on three spatial points ($x_1 = 0, 1/4$ and $1/2$), where $\tilde{K}(\phi^{(0)}) = K(\phi^{(0)}) E^{1/2}/\zeta_2$ is a function of x_1, ζ_1 and ζ_ρ. (a) $k = 10$, (b) $k = 10^2$ and (c) $k = 10^3$. In each panel, the solid, dash-dotted and dashed lines indicate the profile at $x_1 = 0$, 0.25 and 0.5, respectively.

following [23]. The same similarity applies to $K(\psi^{(n)})$. Thus, the computations have been carried out for functions of x_1, ζ_1 and ζ_ρ. In the computations, 11, 97 and 113 grid points have been arranged in the half-ranges of x_1 and ζ_1 (i.e., $0 \leq x_1 \leq 1/2$ and $\zeta_1 > 0$) and in the whole range of $\zeta_\rho > 0)$. Grid points in $-1/2 \leq x_1 \leq 0$ and $\zeta_1 < 0$ have been arranged symmetrically with respect to $x_1 = 0$ and $\zeta_1 = 0$.

3.5 Numerical results and discussions

3.5.1 Velocity distribution functions

Figures 3.4 and 3.5 show an example of $\psi^{(1)}$ and $K(\phi^{(0)})$ obtained numerically. The behaviour of $K(\phi^{(0)})$ and $\psi^{(1)}$ in the figures actually follows the estimate (3.21). That is, as
is seen in figure 3.4, $\psi_T^{(1)}$ is $O(\ln k + 1)$ and is localized in the range of $|k\zeta_1| \lesssim 1$. On the other hand, as is seen in figure 3.5, $K(\phi_T^{(0)})$ is also $O(\ln k + 1)$, but there is no trace of the over-concentration observed in $\phi_T^{(0)}$; i.e. $K(\phi_T^{(0)})$ behaves moderately in ζ_1. These facts mean that the localization of $\phi_T^{(0)}$ disappears by the action of K but is reproduced by the action of integration (3.20). Note that $\psi_T^{(1)}$ and $\phi_T^{(0)}$ are similar to each other (see figures 3.3 and 3.4). Thus, roughly speaking, with the action of integration (3.20) after K as a unit process, the original distribution is reproduced with the scale reduced by the factor of $k^{-1}(\ln k + 1)$.

Figure 3.6 shows the transition from $\phi_T^{(0)}$ to $\psi_T^{(4)}$ that is obtained numerically for $k = 10$. The figure shows the expected invariance of the form of $\psi_T^{(n)}$ in the iterative process. This implies that estimate (3.21a) is actually optimal, as mentioned at the end of §3.4.2.

3.5.2 Net mass flows

The net mass flows that have been obtained numerically for several values of k are shown in table 3.1. In table 3.1, the zeroth-, first- and higher-order iterative approximation solutions $(M[\phi_T^{(0)}], M[\phi_T^{(1)}]$ and $M[\phi_T^{(n)}])$ are presented, where the data in the columns of $M[\phi_T^{(n)}]$ have converged to five digits. We have also prepared a database that promptly gives the net mass flows for arbitrary values of $k \geq 10$ in the same way as [15]. The details are given in Sec. 3.9.

<table>
<thead>
<tr>
<th>k</th>
<th>$M[\phi_T^{(0)}]$</th>
<th>$M[\phi_T^{(1)}]$</th>
<th>$M[\phi_T^{(n)}]$</th>
<th>$M[\phi_T^{(0)}]$</th>
<th>$M[\phi_T^{(1)}]$</th>
<th>$M[\phi_T^{(n)}]$</th>
<th>$M[\phi_T]$</th>
<th>$M[\phi_P]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3530</td>
<td>0.4117</td>
<td>0.4241</td>
<td>-0.8267</td>
<td>-0.9805</td>
<td>-1.0159</td>
<td>0.4241</td>
<td>-1.0159</td>
</tr>
<tr>
<td>15</td>
<td>0.4064</td>
<td>-</td>
<td>-</td>
<td>-0.9360</td>
<td>-</td>
<td>-</td>
<td>0.4668</td>
<td>-1.0907</td>
</tr>
<tr>
<td>20</td>
<td>0.4451</td>
<td>0.4924</td>
<td>0.4982</td>
<td>-1.0146</td>
<td>-1.1322</td>
<td>-1.1477</td>
<td>0.4982</td>
<td>-1.1477</td>
</tr>
<tr>
<td>10^2</td>
<td>0.6673</td>
<td>0.6893</td>
<td>0.6900</td>
<td>-1.4621</td>
<td>-1.5125</td>
<td>-1.5143</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10^3</td>
<td>0.9910</td>
<td>0.9960</td>
<td>0.9960</td>
<td>-2.1102</td>
<td>-2.1210</td>
<td>-2.1210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10^4</td>
<td>1.3157</td>
<td>1.3166</td>
<td>1.3166</td>
<td>-2.7596</td>
<td>-2.7615</td>
<td>-2.7615</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10^5</td>
<td>1.6404</td>
<td>1.6406</td>
<td>1.6406</td>
<td>-3.4091</td>
<td>-3.4094</td>
<td>-3.4094</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10^6</td>
<td>1.9652</td>
<td>1.9652</td>
<td>1.9652</td>
<td>-4.0587</td>
<td>-4.0587</td>
<td>-4.0587</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Direct numerical solution by Ohwada et al. [23]. The data refined by Kosuge et al. [14], which may differ at most by 2 at the last digit from those of [23], are shown in the table. Converged data. The superscript number in parentheses indicates the order of approximation n. Converged data. The superscript number in parentheses indicates the order of approximation n.

Table 3.1: Net mass flows in the highly rarefied regime
Figure 3.6: Transition from $\phi_T^{(0)}$ to $\psi_T^{(4)}$ ($\phi_T^{(0)} \to K(\phi_T^{(0)}) \to \psi_T^{(1)} \to K(\psi_T^{(1)}) \to \psi_T^{(2)} \to K(\psi_T^{(2)}) \to \psi_T^{(3)} \to K(\psi_T^{(3)}) \to \psi_T^{(4)}$) in the case of $k = 10$ at $\zeta_\rho = 0.611$ ($\zeta_0 = (|\xi|^2 - \zeta_1^2)^{1/2}$).

In each panel, rescaled $\tilde{\phi}_T^{(0)} = \phi_T^{(0)} E^{1/2}/\zeta_2$, $\tilde{\psi}_T^{(n)} = \psi_T^{(n)} E^{1/2}/\zeta_2$ ($n = 1, \ldots, 4$) or $\tilde{K}(\cdot) = K(\cdot) E^{1/2}/\zeta_2$, which is a function of x_1, ζ_1 and ζ_ρ, is shown in place of $\phi_T^{(0)}$, $\psi_T^{(n)}$ or $K(\cdot)$. The solid, dash-dotted and dashed lines indicate the profile at $x_1 = 0$, 0.25 and 0.5, respectively. Note the difference of the scale of abscissa between two groups of panels, i.e. (a), (c), (e), (g) and (i) versus (b), (d), (f) and (h). The factor 0.4 in the ordinate corresponds to the constant C_1 in (3.21).
3.6 Further discussions on asymptotic behaviour as $k \to \infty$

3.6.1 Grad’s hard potential and asymptotic formula for $M[\phi_J]$

In obtaining (3.24), we have changed the order of integration, which is allowed because there is a positive constant ν_* such that $\nu \geq \nu_* > 0$. The expression (3.24) is valid for any molecular model if its $\nu(|\zeta|)$ has a positive lower bound. Grad [10] showed that such a positive lower bound exists for his hard-potential model (Grad’s hard potential; see Sec. 3.10), which contains the HS model as a special case. Further, by using the mathematical estimates of [10], we can show that the estimates (a)–(c) in § 3.4.1 are valid also for Grad’s hard
potential. Thus, the discussion so far also applies to Grad’s hard potential. Besides the HS model, various practical models such as the cutoff inverse-power-law (IPL) model with the exponent \(s \geq 5 \) (\(s = 5 \) is the cutoff Maxwell molecule), the variable hard-sphere (VHS) model ([3]) with the viscosity index \(1/2 \leq \omega \leq 1 \) and the variable soft-sphere (VSS) model ([16]) with \(1/2 \leq \omega \leq 1 \) and the exponent of cosine of deflection angle \(\alpha \geq 1 \) belong to Grad’s hard potential. (As to the notation \(\omega \) and \(\alpha \) we follow [3], while as to \(s \) we follow [10]. The viscosity index of the IPL model with the exponent \(s \) is given by \(\omega = (s + 3)/[2(s - 1)] \).)

One useful consequence of the above facts is that \(M[\phi_J] \) can be expressed by the right-hand side of (3.24) for any molecular model belonging to Grad’s hard potential within the error \(O(k^{-1}(\ln k)^2) \). Examining the behaviour of the integrand in (3.24) as \(k \to \infty \) leads to the following simple asymptotic formula for \(M[\phi_J] \) for Grad’s hard potential:

\[
M[\phi_J] = C_{J0} \ln k + C_{J1} + C_J[\nu] + O(k^{-1}(\ln k)^2),
\]

where

\[
C_P0 = -\frac{1}{2\sqrt{\pi}}, \quad C_P1 = -\frac{3}{4\sqrt{\pi}}(1 - \gamma), \quad C_T0 = \frac{1}{4\sqrt{\pi}}, \quad C_T1 = \frac{1}{8\sqrt{\pi}}(1 - 3\gamma),
\]

\[
C_J[\nu] = \frac{1}{\sqrt{\pi}} \int_0^\infty t^3 \ln \nu(t) \tilde{I}_J e^{-t^2} dt,
\]

and \(\gamma \) is the Euler constant (\(\gamma = 0.577216 \)). Note that \(C_P0 \) and \(C_T0 \) are independent of molecular models. Thus, as far as the leading order is concerned, \(M[\phi_J] \) is independent of molecular models in the highly rarefied regime. This is not obvious from (3.14b).

Further, \(C_P[\nu] \) and \(C_T[\nu] \) can be obtained easily. Some examples are shown in table 3.2, where \(\nu \) is normalized in such a way that \(\nu \) defined by \(\nu := (4/\sqrt{\pi}) \int_0^\infty t^2 \nu(t) e^{-t^2} dt \) is unity. For instance, for the VHS and IPL models with the viscosity index \(\omega, \nu \) is commonly given by

\[
\nu(t) = \frac{2^{\omega-2}}{\Gamma(-\omega + (5/2))} \frac{1}{t} \int_0^\infty r^{3-2\omega}(\exp(-|t - r|^2) - \exp(-|t + r|^2)) dr.
\]

Thus, the formula (3.27a) for the VHS model is identical to that for the IPL model with the same viscosity index. They can be different from each other at \(O(k^{-1}(\ln k)^2) \) or higher order of \(k^{-1} \), because of the difference of \(K \) in (3.9a). Incidentally, if \(\nu \) is normalized in such a way that \(\nu \neq 1 \), we rewrite (3.27a) as

\[
M[\phi_J] = C_{J0} \ln(k/\nu) + C_{J1} + C_J[\nu/\nu] + O(k^{-1}(\ln k)^2)
\]

and identify the values of \(\sqrt{\pi}C_J[\nu/\nu] \) with those of \(\sqrt{\pi}C_J[\nu] \) in table 3.2.

72
<table>
<thead>
<tr>
<th>Molecular model</th>
<th>Viscosity index ω</th>
<th>$\sqrt{\pi C_P[\nu]}$</th>
<th>$\sqrt{\pi C_T[\nu]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>$1/2$</td>
<td>0.0310229</td>
<td>0.120791</td>
</tr>
<tr>
<td>VHS (helium or neon)</td>
<td>0.66</td>
<td>0.0237010</td>
<td>0.0832157</td>
</tr>
<tr>
<td>VHS (argon)</td>
<td>0.81</td>
<td>0.0147201</td>
<td>0.0471379</td>
</tr>
<tr>
<td>VHS (xenon)</td>
<td>0.85</td>
<td>0.0119477</td>
<td>0.0373583</td>
</tr>
<tr>
<td>Pseudo-Maxwell</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

aTaken from table A1 in [3]

Table 3.2: Coefficients $C_P[\nu]$ and $C_T[\nu]$ in (3.27)

In the case of the HS model, the actual error of formula (3.27) (the first three terms) is less than 20%, 3.6%, 0.52% and 0.073% for $k = 10$, 10^2, 10^3 and 10^4, respectively. For $k \geq 10^4$, formula (3.27) gives the same values as those of $M[\phi_{J}^{(0)}]$ at least to five digits.

The asymptotic formula corresponding to (3.27) can be obtained along the same lines for Poiseuille and thermal transpiration flows in a circular tube. Let us denote by D a radius of the pipe cross-section and by $\rho_0(\pi D^2)(2RT_0)^{1/2}M[\phi]$ the net mass flow through the pipe cross-section, where ϕ is written as $\phi = \beta_P[x_2 + \phi_P(x_1, x_3, \zeta)] + \beta_T[(|\zeta|^2 - 5/2)x_2 + \phi_T(x_1, x_3, \zeta)]$. Then, we can show that $M[\phi_J]$ is given by

$$M[\phi_P] = -\frac{4}{3} \frac{1}{\sqrt{\pi}} + O(k^{-1} \ln k), \quad M[\phi_T] = \frac{2}{3\sqrt{\pi}} + O(k^{-1} \ln k),$$

(3.29)

for $k \gg 1$, irrespective of the molecular model as long as it belongs to Grad’s hard potential. It should be noted that (3.29) agrees with the classical results for the BGK model, including the order of the error terms ([8,21]; see also [13]).

3.6.2 Similarity between $u[\phi_T]$ and $Q[\phi_P]$

It is known that the dimensionless net mass flow of the thermal transpiration is identical to the dimensionless net heat flow of the Poiseuille flow for arbitrary Knudsen numbers ([17]; see also [29]):

$$\int_{-1/2}^{1/2} u[\phi_T]dx_1 = \int_{-1/2}^{1/2} Q[\phi_P]dx_1.$$

(3.30)

It is, however, seen from (3.14b) that $u[\phi_T^{(0)}]$ and $Q[\phi_P^{(0)}]$ are identical even at the level of spatial profile:

$$u[\phi_T^{(0)}] = Q[\phi_P^{(0)}].$$

(3.31)
Figure 3.8: Profiles of $u[\phi_T]$ and $Q[\phi_P]$ in the half-range of the channel ($0 \leq x_1 \leq 1/2$). (a) Large k and (b) small and intermediate k. The solid lines indicate $u[\phi_T]$, while the closed symbols indicate $Q[\phi_P]$. The data shown were obtained by Kosuge et al. [14].

That is, the profile of dimensionless flow velocity of thermal transpiration agrees with that of dimensionless heat flow of Poiseuille flow within the error of $O(k^{-1} (\ln k)^2)$ for large k:

$$u[\phi_T] = Q[\phi_P] + O(k^{-1} (\ln k)^2) \quad (k \gg 1).$$

(3.32)

Figure 3.8(a) shows the profiles of $u[\phi_T]$ and $Q[\phi_P]$ for $k = 10, 15$ and 20 obtained by [14]. In the figure, $u[\phi_T]$ is indicated by the solid lines, while $Q[\phi_P]$ is indicated by the closed symbols. They agree well with each other, which is explained by relation (3.32). As shown in figure 3.8(b), the profiles do not agree for small and intermediate Knudsen numbers.

3.7 Conclusion

In the present paper, we have investigated the Poiseuille and thermal transpiration flows of a highly rarefied gas, with a special interest in the over-concentration of molecules on velocities parallel to the walls. Making use of the mathematical estimate given in [9] and [10], we have constructed an iterative approximation scheme with an explicit convergence estimate for the highly rarefied regime and have clarified the structure of the over-concentration in the velocity distribution function. We have also constructed a database for both problems that promptly gives the accurate data of the net mass flow for an arbitrary value of $k \geq 10$ for an HS molecular gas. In addition, we have presented an explicit simple asymptotic formula for the net mass flows for large Knudsen numbers, which is valid up to $O(1)$ and is applicable to any molecular model belonging to Grad’s hard potential. Finally, we have pointed out that the profiles of the heat flow of Poiseuille flow and of the flow velocity of thermal transpiration
agree with each other in the highly rarefied regime and have clarified the reason.

3.8 Appendix A: Sketch of proofs of the statements in § 3.3 and § 3.4.1

The difference between the Poiseuille flow and thermal transpiration problems lies only in the form of I_J. This difference requires a few minor changes in the course of the proof in [9] to reach statements (i), (ii), and (iii)' of § 3.3. Thus, we shall provide below only the sketch of proof of the statements in § 3.4.1.

Part (b). By using lemma 4.2 of [9], we first easily obtain that there is a positive constant C_0 such that

$$|\psi_j^{(0)} E^{1/2}| \leq C_0 (\frac{1}{k} + |\zeta_1|)^{-1}, \quad ||\psi_j^{(0)}||_\infty \leq C_0 k,$$

(3.33)

where $|| \cdot ||_\infty = \sup_{\zeta} | \cdot E^{1/2} |$. Then, by following the proof of lemma 4.3 of [9], we have from the above estimate that there is a positive constant C such that

$$|K(\psi_j^{(0)}) E^{1/2}| \leq CC_0 (\ln k + 1).$$

(3.34)

Using this estimate in (3.20), we obtain

$$|\psi_j^{(1)} E^{1/2}| \leq C_0^2 C k^{-1} (\ln k + 1) \left(\frac{1}{k} + |\zeta_1|\right)^{-1}, \quad ||\psi_j^{(1)}||_\infty \leq C_0^2 C (\ln k + 1).$$

(3.35)

Note that $\psi_j^{(1)}$ follows the same estimate as $\psi_j^{(0)}$ as a function of ζ and x_1. Thus, by repeating the above process, we have

$$|K(\psi_j^{(1)}) E^{1/2}| \leq (CC_0)^2 k^{-1} (\ln k + 1)^2$$

(3.36)

and further conclude (3.21) in § 3.4.1. (The max(C_0, CC_0) and CC_0 here are the C_0 and C_1 in (3.21).) Since the above constants C and C_0 are independent of k, $||\psi_j^{(n)}||_\infty \to 0$ as $n \to \infty$.

Part (a). By the use of estimate (3.21a), we see that $||\phi_j^{(n)}||_\infty \leq C_0 k/[1 - CC_0 k^{-1} (\ln k + 1)] < \infty$ and that for $\forall n > m$,

$$|(\phi_j^{(n)} - \phi_j^{(m)}) E^{1/2}| \leq C_0 \left(\frac{1}{k} + |\zeta_1|\right)^{-1} \frac{CC_0 k^{-1} (\ln k + 1)^m + 1}{1 - CC_0 k^{-1} (\ln k + 1)}.$$

(3.37)
For sufficiently large \(k \), the right-hand side tends to zero as \(m \to \infty \), so that \(||\psi_j^{(n)} - \phi_j^{(m)}||_\infty \to 0 \). Thus \(\{ \phi_j^{(n)} \} \) is a Cauchy sequence in \(L^\infty \). Now denote \(\lim_{n \to \infty} \phi_j^{(n)} \) by \(\Phi_j \) and define a function \(R_J \) by

\[
R_J \equiv \Phi_j - \phi_j^{(0)} - \int_{x/1/2}^{x_{1/2}} \frac{1}{k \zeta_1} \exp\left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) K(\Phi_j) ds, \quad \zeta_1 \geq 0. \tag{3.38}
\]

Since this equation can be rewritten as

\[
R_j = \Phi_j - \phi_j^{(n)} - \int_{x/1/2}^{x_{1/2}} \frac{1}{k \zeta_1} \exp\left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) K(\Phi_j - \phi_j^{(n-1)}) ds, \quad \zeta_1 \geq 0, \tag{3.39}
\]

we obtain \(||R_J||_\infty \leq ||\Phi_j - \phi_j^{(n)}||_\infty + C_0 ||K(\Phi_j - \phi_j^{(n-1)})||_\infty \to 0 \) as \(n \to \infty \), where lemma 4.1 of [9] has been used. Thus \(\Phi_j \) is a solution of (3.14) in \(L^\infty \).

Part (c). First, \(u[\psi_j^{(n)}] \) is expressed as

\[
u[\psi_j^{(n)}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\zeta_2}{\zeta_1} \exp\left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) \frac{1}{k} K(\psi_j^{(n-1)}) E \delta d\zeta_1 d\zeta_2 d\zeta_3 \]

\[
+ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\zeta_2}{\zeta_1} \exp\left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) \frac{1}{k} K(\psi_j^{(n-1)}) E \delta d\zeta_1 d\zeta_2 d\zeta_3. \tag{3.40}
\]

Then, in the same way as the estimate of \(A_1 \) in [9], we have, by using (3.21c),

\[
u[\psi_j^{(n)}] \leq C'[C_1 k^{-1} (\ln k + 1)]^n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\zeta_2}{\zeta_1} \exp\left(-\frac{\nu}{k} \frac{|s - x_1|}{|\zeta_1|} \right) E^{1/2} \delta d\zeta_1 d\zeta_2 d\zeta_3 \]

\[
\leq C''[C_1 k^{-1} (\ln k + 1)]^n (\ln k + 1), \tag{3.41}
\]

where \(C' \) and \(C'' \) are some positive constants. The estimate for \(M[\psi_j^{(n)}] \) can be obtained in the same way.

3.9 Appendix B: Database of the net mass flows for the HS model

The database of the net mass flows for \(k \geq 10 \) that has been constructed in the present work makes use of the Chebyshev polynomial interpolation (see [4]) for \(10 \leq k < 10^7 \):

\[
M[\phi_j] = \sum_{j=0}^{N} a_{j}^{(j)} P^{(j)}\left(\frac{\ln(k^2/(k_{\text{max}} k_{\text{min}})))}{\ln(k_{\text{max}}/k_{\text{min}})} \right), \tag{3.42}
\]

where \(P^{(j)} \) is the following polynomial of degree \(j \) of its argument:

\[
P^{(0)}(x) = 1, \quad P^{(1)}(x) = x, \quad P^{(n)}(x) = 2xP^{(n-1)}(x) - P^{(n-2)}(x), \tag{3.43}
\]
\[\ln(\lambda_j^{a_j}) = (8^{+0}) \times 10^{-4}. \]

Table 3.3: Coefficients \(a_P^{(j)} \) and \(a_T^{(j)} \) in (3.42) for \(10 \leq k < 10^4 \).

\[
\begin{array}{cccc}
 j & a_P^{(j)} & a_T^{(j)} & j & a_P^{(j)} & a_T^{(j)} \\
 0 & -1.84790018^{(+0)^a} & 8.54825701(-1) & 9 & 1.49228707(-7) & -1.25559087(-7) \\
 1 & -8.83316631(-1) & 4.49679688(-1) & 10 & 2.60089118(-7) & -8.99270022(-8) \\
 2 & -3.92650101(-2) & 1.52324109(-2) & 11 & -1.14839592(-7) & 3.11987783(-8) \\
 3 & 1.05217018(-2) & -3.54414570(-3) & 12 & -2.17698962(-8) & 8.08859477(-9) \\
 4 & -1.57787850(-3) & 3.01542071(-4) & 13 & 9.70450516(-8) & -3.18197288(-8) \\
 5 & 2.70953882(-5) & 8.62335466(-5) & 14 & -2.15201321(-7) & 6.99137082(-8) \\
 6 & 3.90220820(-5) & -3.32236013(-5) & 15 & 2.68421948(-7) & -1.00798691(-7) \\
 7 & -5.19294709(-6) & 3.56117808(-6) & 16 & -1.68935567(-7) & 5.64147556(-8) \\
 8 & -1.00587844(-6) & 5.59709749(-7) & & & \\
\end{array}
\]

\[a \text{ Read as } -1.84790018 \times 10^{-4}. \]

Table 3.4: Coefficients \(a_P^{(j)} \) and \(a_T^{(j)} \) in (3.42) for \(10^4 \leq k < 10^7 \).

\[
\begin{array}{cccc}
 j & a_P^{(j)} & a_T^{(j)} & j & a_P^{(j)} & a_T^{(j)} \\
 0 & -3.73438354^{(+0)^a} & 1.80303014(+0) & 5 & 1.25230608(-5) & -5.76967764(-6) \\
 1 & -9.73557111(-1) & 4.86790137(-1) & 6 & -2.45021285(-6) & 1.09473993(-6) \\
 2 & -4.16662892(-4) & 2.00691591(-4) & 7 & 3.79936917(-7) & -1.61013000(-7) \\
 3 & 1.66673351(-4) & -7.94789372(-5) & 8 & -4.39077230(-8) & 1.66539324(-8) \\
 4 & -5.13184520(-5) & 2.41268625(-5) & & & \\
\end{array}
\]

\[a \text{ Read as } -3.73438354 \times 10^{-4}. \]

for \(n \geq 2 \) and \(-1 \leq x \leq 1 \), \((N, k_{\text{min}}, k_{\text{max}}) = (16, 10, 10^4) \) for \(10 \leq k < 10^4 \) and \((N, k_{\text{min}}, k_{\text{max}}) = (8, 10^4, 10^7) \) for \(10^4 \leq k < 10^7 \). The coefficients \(a^{(j)}_j \) have been determined by the numerical data of \(M[\phi_j] \) computed for \(N + 1 \) different values of \(k \), say \(k^{(l)} \), such that \(\ln/(k^{(l)}/(k_{\text{max}}k_{\text{min}}))/\ln(k_{\text{max}}/k_{\text{min}}) = -\cos((2l+1)\pi/(2N+2)) \) \((l = 0, \ldots, N)\). They are shown in tables 3.3 and 3.4. For economy of computation, the values of \(a^{(j)}_T \) in the tables have been determined from the heat flow of the Poiseuille flow by using relation (3.30). (Note that the data of \(M[\phi^{(j)}_T] \) and \(M[\phi^{(j)}_P] \) \((i = 0, 1, n)\) in table 3.1 have been computed independently of each other.)

For \(k \geq 10^7 \), the database makes use of the first three terms of (3.27a):

\[
M[\phi_j] = C_{J0} \ln k + C_{J1} + C_J[\nu],
\]

where \(C_{J0} \) and \(C_{J1} \) are those in (3.27b) and \(C_J[\nu] \) that for the HS model in table 3.2.
3.10 Appendix C: Grad’s hard potential

In general, the collision frequency ν is written as

$$\nu(|\zeta|) = 2\pi \int_0^{\pi/2} \int_B B(\theta, |\zeta_* - \zeta|)E(|\zeta_*|)d\theta d\zeta_*.$$ (3.45)

The hard potential introduced by Grad [10] (Grad’s hard potential) is defined as the potential satisfying the condition that

$$\frac{B(\theta, V)}{|\cos \theta \sin \theta|} < C(V + V^{-1+\epsilon}), \quad B_0(V) \geq C \frac{V}{1 + V},$$ (3.46)

where C and $\epsilon < 1$ are positive constants and

$$B_0(V) = \int_0^{\pi/2} B(\theta, V)d\theta.$$ (3.47)

For Grad’s hard potential, Grad [10] showed that there are positive constants ν_0 and ν_1 such that $\nu_1(1 + |\zeta|^2)^{1/2} \geq \nu(|\zeta|) \geq \nu_0 > 0$, that $\nu(|\zeta|)$ is a monotonic increasing function of $|\zeta|$ and that \hat{K} defined by $\hat{K}(\hat{\phi}) = K(\phi)E^{1/2}$ with $\hat{\phi} = \phi E^{1/2}$ is a compact operator on L^2.

References

26 Y. Sone, Molecular Gas Dynamics, Birkhäuser, 2007. supplemental notes and errata are available at: http://hdl.handle.net/2433/66098.

Conclusion

The present thesis contains some studies on internal rarefied gas flows based on kinetic theory of gases. In Chapter 1, we have investigated properties of a Knudsen compressor (or pump) when the gas is a polyatomic gas. In Chapter 2, we have investigated rarefied polyatomic gas flows through a long circular pipe in some situations. In Chapter 3, we have investigated Poiseuille and thermal transpiration flows of a highly rarefied gas for the purpose of clarifying the physical properties based on a mathematical basis.

In Chapter 1, we have considered the Knudsen compressor consisting of many alternately arranged thin and thick two-dimensional channels, and have investigated its properties when the gas is a polyatomic gas. We have derived a simple fluid-dynamic-type system, describing a pressure distribution in the Knudsen compressor, together with an appropriate connection condition at junctions, on the basis of a polyatomic version of the ellipsoidal statistical (ES) model of the Boltzmann equation, by a systematic asymptotic analysis under the assumption that the channel width is much smaller than the length of the pump. The difference from the corresponding fluid-dynamic-type equation for a monatomic gas is confined in the transport coefficients occurring in the equation. The transport coefficients can be obtained readily from those corresponding to the Bhatnagar-Gross-Krook (BGK) model for a monatomic gas. We have showed by some numerical simulations that the polyatomic-gas effect on the performance of the Knudsen compressor is quite limited, so that the existing fluid-dynamic-type system for a monatomic gas can be applied safely to a polyatomic gas in the level of practical applications.

In Chapter 2, we have investigated the Poiseuille and thermal transpiration flows of a rarefied polyatomic gas through a long circular tube on the basis of the linearized ES model of the Boltzmann equation for a polyatomic gas. We have derived a simple conversion formula by which the solutions of the Poiseuille and thermal transpiration flows based on the ES model for a polyatomic gas are obtained from those based on the BGK model for a monatomic gas. We have obtained the numerical results of the flow velocities, mass-flow rates, etc. for the Nitrogen gas. Furthermore, we have considered a rarefied polyatomic gas in a long circular pipe under the following assumptions: (i) the pressure and temperature
variations along the pipe can be arbitrary and large; (ii) the length scale of variations is much longer than the radius of the pipe; (iii) the pipe may consist of circular tubes with different radii. We have shown that the pressure distribution along the pipe is described by a fluid-dynamic-type equation with the transport coefficients consisting of the mass-flow rates of the Poiseuille and thermal transpiration flows by the same way as in Chapter 1. We have applied the system to a gas flow through a single long circular tube caused by a large pressure difference imposed at both ends (Sec. 2.4.1) and to a Knudsen compressor consisting of many alternately arranged thinner and thicker circular tubes (Sec. 2.4.2). With this procedure, we have obtained, by easy computations, the pressure distribution along the pipe and the mass-flow rate through the pipe in the two problems.

In Chapter 3, we have investigated the Poiseuille and thermal transpiration flows of a highly rarefied gas between two parallel plates, with a special interest in the over-concentration of gas molecules on velocities parallel to the walls. Making use of the mathematical estimate, we have constructed an iterative approximation scheme with an explicit convergence estimate in the highly rarefied regime and have clarified the structure of the over-concentration in the velocity distribution function. We have also carried out numerical computations based on the scheme for a hard-sphere molecular gas and have constructed a database for both problems that promptly gives the accurate data of the net mass flow for an arbitrary value of large Knudsen numbers. In addition, we have presented an explicit and simple asymptotic formula for the net mass flows in the highly rarefied regime, which is applicable to any molecular model belonging to Grad’s hard potential. Finally, we have pointed out that the profiles of the heat flow of Poiseuille flow and of the flow velocity of thermal transpiration agree with each other in the highly rarefied regime and have clarified the reason.
Acknowledgment

I would like to express my heartfelt thanks to my supervisors, Professor Kazuo Aoki and Associate Professor Shigeru Takata, who offered me interesting and challenging works. I appreciate Professor Kazuo Aoki’s kind guidance and advices. I also appreciate Associate Professor Shigeru Takata’s kind guidance, fruitful discussions and encouragement. I would like to express my thanks to Assistant Professor Shingo Kosuge for his kind support for research and technical problems.

I am grateful to coworkers at our laboratory for providing good environment for university life. Finally, I am so grateful to my parents for supporting me for a long time.
List of Publications

Chapter 1

Chapter 2

Chapter 3