
Studies on Optimization of Container
Loading and Vehicle Routing for

Green Logistics

2012
Jidong Ren

Graduate School of Engineering
Kyoto University

JAPAN

.

Acknowledgements

First of all, I would like to express my sincere appreciation to Professor Tetsuo
Sawaragi for his guidance. He gave me much opportunity and continuous
support.

I am deeply grateful to Dr. Yajie Tian. She gave me much guidance and
encourage. Her advice provided insights into research activity for me.

I would like to thank Ph.D. Yukio Horiguchi, Ph. D. Hiroaki Nakanishi,
Ms. Shinobu Minato, Ms. Aya Araki, and all the members in Sawaragi lab.
They have been always willing to help me.

Finally, I would like to express my gratitude to my family for their heartfelt
cooperation and encouragement.

I

Abstract

Traditional logistics has concentrated on minimizing costs subject to opera-
tional constraints. In recent years there has been increasing concern about
the environmental effects on the planet of human activity and current logistics
practices may not be sustainable in the long term. Green logistics includes
logistics practices and strategies that reduce the environmental and energy
footprint of freight distribution. It focuses on material handling, waste man-
agement, packaging and transport. The container loading problem (CLP) and
vehicle routing problem (VRP) are of importance in both traditional logistics
and green logistics. The CLP concerns to best possible capacity utilization of
space, and the VRP is used for finding the minimum-cost to minimum-distance
route in transportation. In recent years many transportation management sys-
tems (TMS) are designed to manage transportation operations. However, in
most existing TMS the CLP and VRP were treated separately, and the green
logistics issue was not taken into account. The author has several years of
experience in developing practical logistics systems. For improving existing
transportation management systems, this research aims at providing a link
between the CLP and VRP. Moreover, fuels consumption and GHG emissions
are also taken into account. Therefore this research has key roles to play in
dealing with green logistics issue.

Chapter 1 introduces the background of this research, including loading and
routing optimization in green logistics, NP-hard problems and algorithms, the
CLP, VRP and their combination – the three-dimensional loading capacitated
vehicle problem (3L-CVRP).

In Chapter 2, an exact algorithm is proposed for the single CLP. In the
algorithm an effective method is used for generating possible positions for
packing items, which greatly reduce the search scope. For the reduction of the
computing time, a heuristics method is incorporated in the exact algorithm.
In the heuristics, blocks made up of identical items with the same orientation
are selected so that they can be packed into a container. Five evaluation func-
tions are proposed for block selection, and the different blocks selected by each
evaluation function constitute the branches of the search tree. The methods
of space splitting and merging are also embedded in the algorithm to facili-
tate efficient use of the container space. In addition, the proposed algorithm
covers an important constraint called shipment priority. This constraint of
shipment priority is important, both for the multiple CLP and the 3L-CVRP,
as mentioned later.

In Chapter 3, the multiple CLP is addressed, in which the objective is

II

to minimize the number of containers or to maximize the average utilization
of multiple containers. An exact algorithm is proposed, in which the distri-
bution of items into containers is treated as partition of multiset. In conse-
quence repetitions caused by same size items are avoided and the computing
time is reduced. Heuristic algorithms for the multiple CLP are also proposed.
The items with large volume are usually difficult to make efficient use of the
container space. These items are set higher priority over other items, and
preferentially assigned into the containers. Within the proposed algorithms a
CLP algorithm is used for solving the single container loading under the con-
straint of shipment priority. The proposed algorithms achieve excellent results
with reasonable computing time. For rail transport, ship transport and airline
transport, the model is usually ”one start point, one destination point”, and
the number of containers is directly relevant to the cost, energy consumption
and CO2 emissions. However, in road transport, items should be delivered
from one or more depot to multiple customers, therefore the combination of
routing and loading must be considered, as mentioned in the next section.

Chapter 4 addresses the 3L-CVRP. Both the single CLP algorithms and
the multiple CLP algorithms are used. In addition, algorithms for travel-
ling salesman problem (TSP) are also used. A branch and bound algorithm
based on set partition model is proposed. It is very time consuming to check
whether the items can be feasibly loaded into a vehicle. Therefore the load-
ing constraint is replaced with the constraint of volume ratio. The validity
of the proposed algorithms for the 3L-CVRP is examined by using the test
data that come from the literature. Considering the issue of green logistics,
we take the fuel consumption and CO2 emissions into account. As mentioned
in the report of European Committee for Standardization, for a certain vehi-
cle travelling with a constant speed, the fuel consumption and CO2 emissions
are approximately proportional to the travelling distance and linear correlate
to the weight of loaded items. The traditional models and algorithms can-
not be applied directly. An algorithm is proposed for solving the TSP with
fuel consumption, which can be incorporated in the 3L-CVRP algorithm. Be-
cause the CO2 emission has similar function to the fuel consumption, a similar
algorithm is proposed for minimizing the CO2 emissions. Computational ex-
periments show that the fuel consumption and CO2 emissions can be reduced
with a small increase in travelling distance. Furthermore, in the real-world in-
stance, for improving the utilization of vehicles, some constraints for traditional
VRP may be violated. The items demanded by one customer may exceed the
capacity of one vehicle. Therefore one customer may be served by multiple
vehicles. In another real-world instance, the items are divided into groups ac-
cording to their due dates of delivery, and only the high-priority items should
be delivered completely. Algorithms for the generalized 3L-CVRPs have also
been proposed. The computational results for real-world instance show that
proposed algorithms are fast and high-quality for solving practical problems.

Chapter 5 summarizes this research. This research links the CLP and the
VRP, and the green logistics issue is considered. Some well defined data struc-
tures are used, such as the staircase packing and the multiset partition. The
integration of the exact and heuristic algorithms obtained excellent results,
both for test data that come from the literature and for real-world instance.

III

Moreover, we can reduce fuel consumption and CO2 emissions in transporta-
tion, with little increase in travelling distance.

Only rectangular items have been considered in this research. Further
research is required to deal with other shapes of items, such as circular col-
umn, sphere or irregular items. Other variants of 3L-CVRP in real-world
applications should also be considered, such as 3L-CVRP with time windows,
3L-CVRP with multiple depots and 3L-CVRP with multiple vehicle types. Al-
gorithms for routing and loading optimization are, in the real world, just part
of the story. The algorithms have to be embedded in a system that enables
the decision-maker to actually use it. The system has to be integrated into
the information system of the enterprise. Database and user interface are also
important part of the system. The system usually has to interact with a num-
ber of different systems in an organization. It may receive information from
a higher level system and provide information to a lower system. Robustness
and reactive decision making is also an important issue for real-world trans-
portation management system. In practice, it often happens that soon after a
vehicle schedule has been generated, an unexpected event happens that forces
the decision-maker to make changes. It is necessary for the original vehicle
schedule to be robust so that the changes after a disruption are minimal.

IV

Contents

Acknowledgments

Abstract

1 Introduction 1
1.1 Loading and Routing Optimization for Green Logistics . . 1
1.2 NP-Hard Problems and Algorithms 3
1.3 Container Loading Problem 6
1.4 Vehicle Routing Problem 9
1.5 The Combination of Loading and Routing Problems . . . 9

2 Single Container Loading Problem 12
2.1 Problem Formulation of SCLP 12
2.2 Exact algorithm for SCLP 14
2.3 Heuristic Algorithm for SCLP 18

2.3.1 Block Building 20
2.3.2 Block Evaluation 22
2.3.3 Procedure of the Greedy Heuristic 24
2.3.4 Space Splitting and Merging 26
2.3.5 Tree Search 25

2.4 Shipment Priority 28
2.5 Computational Results 32

2.5.1 Computational Results for LN Data 35
2.5.1.1 Results for SCLP 35
2.5.1.2 Results for SCLPSP 36

2.5.2 Computational Results for BR Data 37
2.5.2.1 Results for SCLP 37
2.5.2.2 Results for SCLPSP 39

2.6 Conclusions 39

3 Multiple Container Loading Problem 41
3.1 Problem Formulation of MCLP 41
3.2 Set Partition and Multiset Partition 42
3.3 Exact Algorithm For MCLP 43
3.4 The Priority-Considering Approach for MCLP. 45

3.4.1 The Approach for 3DBPP 45

V

3.4.2 The Approach for 3DKP 49
3.5 Computational Results 50
3.6 Conclusions 55

4 Three-Dimensional Loading Capacitated Vehicle
. Routing Problem 57

4.1 Problem Description of 3L-CVRP 57
4.2 NP-Hard problem with NP-Hard Constraint 58
4.3 Practical Loading Constraints in Vehicle Routing Context . 59
4.4 Exact Algorithm For 3L-CVRP 60
4.5 Relaxation Method For 3L-CVRP 63
4.6 Fuel Consumption and GHG Emissions 64
4.7 The Traveling Salesman Problem with Fuel Consumption . 65
4.8 The 3L-CVRP without Item Partition and Shipment Priority 68
4.9 Computational Results 69

4.9.1 Computational Results for Distance 70
4.9.2 Computational Results for Fuel Consumption and

. CO2 Emissions 73
4.9.3 Computational Result for an Real-world Instance . 73

4.10 Conclusions 76

5 Conclusions 77

References 79

Published Papers 83

VI

List of Figures

1 The CLP . 7
2 The 3L-CVRP 10
3 Container in Three-Dimensional Coordinate System 13
4 Item Orientations 14
5 Staircase Packing and Pseudo-Staircase Packing 16
6 Block in Space 20
7 Possible Blocks 22
8 Evaluations of Block 23
9 Algorithm HEUR SCLP 25
10 Split Space . 26
11 Merge spaces 27
12 Tree Search for SCLP 27
13 Background of SCLPSP 30
14 Three Loading Models 31
15 Tree Search for SCLPSP 31
16 Volume Utilization in Different breath Values 34
17 Running Time in Different breath Values 34
18 Illustrative Result of LN02 35
19 Illustrative Result of LN01&02 37
20 Supporting Area 59
21 The TSP Considering Distance or Fuel Consumption 66

VII

List of Tables

1 Algorithm EXAC SCLP 19
2 Algorithm TRS SCLP 29
3 Delete Infeasible Partial Solutions 32
4 Algorithm TRS SCLPSP 33
5 Results for LN Data 36
6 Results for LN Data Considering Priority 37
7 Results for BR Data 38
8 Frequencies of the Five Evaluations 38
9 Results from BR Data Considering Priority 39
10 Algorithm EXAC MCLP
45
11 Algorithm PRI BBP 46
12 Procedure LMC BBP 46
13 Algorithm PRI KP 48
14 Procedure LMC KP 49
15 Comparative Results for IV1 data 51
16 Results for IV1 data with Different Values of d 52
17 Comparative Results for IV2 data 53
18 Comparative Results for MO data 54
19 Running Time (Sec.) for One Test Case 55
20 Algorithm EXAC 3LCVRP 61
21 Comparative Results for GE Data 71
22 Average Running Time 71
23 Results for Different Loading Constraints 72
24 Results for Fuel Consumption and CO2 Emissions 74
25 Real-World Instance 75
26 Comparative Results for Real-World Instance 75

VIII

List of Symbols

A,A1: set of point 17
Ā: supporting area 60
aij: distance of two vertices 57
biω: binary coefficient 60
bl: length of block 20
bw: width of block 20
bh: height of block 20
breadth: in tree search only the best breadth nodes are kept 28
ci: a customer in permutation 65
D: weight of all the items 65
d: division parameter 47
E,E′: set of edges 57
e: base of natural logarithm 42
Fk: set of possible points 15
f : number of customers 57
gi: total weight of items demanded by customer i 62
H: height of container (vehicle) 13
h, hi: height of item i 13
I: Set of items . 13
i: general index . 13
il: length of item 20
iw: width of item 20
ih: height of item 20
j: general index . 13
K: loaded weight of a vehicle 64
k: general index . 13
L: length of container (vehicle) 13
l, li: length of item 13
M,M0: CO2 emissions 64
M1: in Step 1 of RELAX 3LCVRP, only M1 best solutions are kept 64
M2: in Step 2 of RELAX 3LCVRP, only M2 feasible routes are selected 64
m: number of item types 13
N : number of items 43
ni: number of items of type i 13
P, Pk: set of packed items 13
pi: packed item 13
Q,Q0, Q1, Q2: fuel consumption 65
q: demanded weight of items 63

IX

R: travel distance of a vehicle 64
r: general index . 17
sij: number of items of type i packed in the j-th packed container . . 41
sl: length of space 20
sw: width of space 20
sh: height of space 20
T : weight capacity of vehicle 57
t: number of packed containers (vehicles) 41
uk: number of packed containers of type k 41
V, V ′: set of vertices (depot and customers) 57
vi: volume of an item of type i 41
W : width of container (vehicle) 13
w,wi: width of item 13
xi: x coordinate . 13
xN : number of items along the x-axis in a block 20
yi: y coordinate . 13
yN : number of items along the y-axis in a block 20
zi: z coordinate . 13
zN : number of items along the z-axis in a block 20
α: minimum fraction of supported area 60
β: unit fuel consumption (g/tone-kilometre) 65
Γ: available number of vehicles 57
γ: unit CO2 emissions (ml/tone-kilometre) 64
δ: number of customers (in TSP) 65
ζω: binary variable 60
ηi: total volume of items demanded by customer i 62
Θ: parameter for modifying volume ratio 63
θ: number of container types 41
Λ: the set of all possible loaded weight of a single route 63
µi: value per unit volume of an item of type i 41
ρ: a given ratio of the vehicle space 63
σω: optimal distance of route ω 60
φk: volume of a container of type k 41
ψ(i): the value of a least distance single route passing through i . . . 41
ω: a single route . 60

X

1.

Chapter 1

Introduction

1.1 Loading and Routing Optimization for Green

Logistics

Logistics is the management of the flow of goods between the point of origin and
the point of use in order to meet the requirements of customers or corporations.
Logistics involves the integration of information, transportation, inventory,
warehousing, material handling, and packaging. Logistics is a channel of the
supply chain which adds the value of time and place utility (Wallenburg, 2011).
In the last decades, logistics has become one of the key factors in economy,
and received considerable attention from both governments and enterprises.
In recent yeas the proportions of logistics cost to GDP are about 10% in US,
Europe and Japan; in China the proportion is above 16% (Lin, 2011).

Traditional logistics for production and distribution has concentrated on
minimizing costs subject to operational constraints. In recent years there has
been increasing concern about the environmental effects on the planet of hu-
man activity and current logistics practices may not be sustainable in the long
term. There is therefore increasing interest in green logistics from companies
and governments. Green logistics is concerned with producing and distributing
goods in a sustainable way, taking account of environmental and social factors
(Sbihi and Eglese, 2010). Green logistics focus on material handling, waste
management, packaging, warehousing and transportation. Green logistics ac-
tivities include measuring the environmental impact of different distribution
strategies, reducing the energy usage in logistics activities, reducing waste and
managing its treatment.

Cutting and packing problem (C&P; Dyckhoff 1990) is a large class of
problems which represent problems of the optimal use of resources. Cutting
problem focuses on minimizing the waste of material, which involves, for ex-
ample, the cutting of paper rolls into narrower rolls in the paper industry, the
cutting of large wooden boards into smaller rectangular panels in the furniture

1

industry. Packing problem focuses on minimizing the waste of space, including
packing items into warehouse, containers, trucks or pallets in logistics appli-
cations. Both cutting problem and packing problem have essentially the same
logical structure; they require that ‘large objects’ are to be divided into ‘small
items’ in such a way that waste is minimized. The development of even more
effective cutting and packing methods is an important task in green logistics
because, in view of the size of today’s productions and distribution processes,
even relatively minor growth in the utilization of material and space capaci-
ties can result in considerable material and energy savings and reductions in
carbon emissions. For example, better packaging of goods reduces materials
consumption and waste, higher utilization of warehouse space involves reduc-
tion of energy consumption.

One issue of this paper is the container loading problem (CLP), which
calls for packing a set of three-dimensional rectangular items in one or more
three-dimensional rectangular containers, and the objective is the maximum
utilization of container space or minimum number of containers. Here ‘con-
tainer’ is a general word, which represents a lot of real-world objects in which
small items can be packed, such as box, pallet, vehicle and warehouse space.
The CLP is the most widely used problem among the cutting and packing
problems. In real-world applications, packing of different shapes of items is
also involved, such as packing of circular column, sphere or irregular items.
However, in most cases the packages of items are three-dimensional rectangu-
lar. The CLP is closely related to other cutting and packing problems. For
example, the CLP contains the two dimension rectangular packing problem,
and can be easily adapted for rectangular cutting problem because they have
the same logical structure (Fanslau and Bortfeldt, 2010).

More important, this paper focuses on the combination of the loading op-
timization and routing optimization, due to the requirement of transportation
management (TM). TM is the main part of the logistics processes, which in-
cludes scheduling, lead time, routing and loading of vehicles and other trans-
port medium. Considering that, on average, 3.5% of manufacturers sales costs
and 40-60% of total logistics costs are devoted to the movement of products,
TM is a crucial issue in todays business environment (Aprile et al., 2007).
Transportation can be divided into two parts: line-haul transportation and
branch transportation. Line-haul transportation is the movement of items be-
tween two major cities or ports by rails, ships, airlines or main high-ways.
The items are usually delivered through constant route, and the number of
containers is directly relevant to the cost, energy consumption and CO2 emis-
sions. Another part is the branch transportation, in which items are delivered
through a much more complex network of high-ways and urban roads. Usually
items are delivered from one or more depots to a large number of customers. In
branch transportation, both the loading optimization and routing optimization
should be taken into account. In the literature, many authors addressed the
routing optimization which is known as the vehicle routing problem (VRP).
It calls for the determination of the optimal set of routes to be performed by
a fleet of vehicles to serve a given set of customers. However, very few pa-
pers have dealt with integrated approaches for the CLP and the VRP. Only

2

in recent years algorithms combining these two problems have been proposed
in the literature. Combining two difficult problems leads to a considerable
increase of difficulty, but on the other hand it allows a better solution of the
corresponding logistics targets.

In recent years, many transportation management systems (TMS) are de-
signed to manage transportation operations. These systems reduced trans-
portation costs and raised service levels. However, as mentioned before, in
most systems the CLP and VRP were treated separately. Therefore there may
be great discrepancy between the computer simulated result and the practical
transportation plan. Furthermore, in most systems the only some traditional
goals were taken into account, such as costs and service levels, and few existing
systems considered to reduce the energy (fossil fuels) usage and the greenhouse
gas (GHG) emissions, which are required by green logistics.

For improving the existing transportation management systems, this paper
addresses a model which links the CLP and VRP, and moreover, fuels usage
and GHG emissions are also taken into account. Therefore the model has key
roles to play in dealing with green logistics issue.

The contributions of this paper are the following:

• Effective algorithms are proposed for the CLP and the combination of
CLP and VRP.

• Green logistics issues are taken into account, such as energy consumption
and CO2 emissions.

• Issues for real-world application are considered, which generalize the tra-
ditional models of loading and routing optimization.

The rest of this chapter is organized as follows. Sections 1.2 introduces
the NP-hard problems and algorithms, because both the CLP and VRP are
belong to the class of NP-hard problem, and this paper focus on proposing
algorithms for solving the problems. Sections 1.3 - 1.5 are literature overviews
of the CLP, VRP and the combination of the two problems, respectively.

1.2 NP-hard Problems and Algorithms

Many operational research models in logistics management systems are com-
binatorial optimization problems. An optimization problem is the problem of
finding the best solution from all feasible solutions. Usually the ‘optimal’ value
of an objective function is defined by the minimum or maximum. Especially,
for an optimization problem, if the set of feasible solutions is discrete or can
be reduced to discrete, the problem is a combinatorial optimization problem.
There are a variety of combinatorial optimization problems that appear in
many application fields, including the traveling salesman problem (TSP), the
minimum spanning tree problem (MSTP), the bin packing problem (BPP),
and the CLP and VRP mentioned before.

3

An algorithm is a specific, finite set of instructions for carrying out a pro-
cedure or solving a problem. In the late 1960s, the fundamental nature of
algorithms was discussed; Edmonds (1962) called an algorithm which runs in
polynomial time of the input size a ‘good’ algorithm. In computational com-
plexity theory, an algorithm for a problem is regarded as efficient if the time
complexity of an algorithm is bounded above by a polynomial of the instance
size of every problem instance. Some combinatorial optimization problems are
polynomial solvable problems, for instance, the shortest path problem can be
can be solved by the well-known Dijkstras algorithm and the minimum span-
ning tree problem can be solved by Prims algorithm, both in polynomial time.
However, there are many combinatorial optimization problems to which no
efficient algorithms are known. These problems were known to be difficult to
obtain an exact optimal solution and the difficulties were proved in the sense
of NP-hardness, which was the notion proposed around 1970.

For each optimization problem, there is a corresponding decision problem
that asks whether there exist a feasible solution such that the value of objective
function is better (larger or smaller) than a particular value. A class NP is the
set of decision problems such that any yes instance has a certificate that can
be verified in polynomial time. A class NP-complete is a subclass of NP, which
has a property that any problem in NP can be reduced to problems in NP-
complete in polynomial time. This means that if some problem in NP-complete
can be solved in polynomial time, then all problems in NP can be solved in
polynomial time as well. A class NP-hard is s set of optimization problems
that is at least as hard as NP-complete. It is strongly believe that NP-hard
problems admit no polynomial time algorithm. In other words, solving these
problems exactly may necessitate enumerating an essential portion of all the
solution candidates in a given instance, whose number increase exponentially
as the problem size grows.

Cook (1971) first proved that SAT is an NP-complete problem, and in
the subsequent years, the foundations for the theory of NP-completeness were
established. A class NP-hard is a set of optimization problems that is at
least as hard as NP-complete. Nowadays many combinatorial optimization
problems are proved to be NP-hard, such as the TSP, BBP, VRP and CLP. It
is strongly believed that an NP-hard problem cannot be solved in polynomial
time of the input size. In other words, solving an NP-hard problem exactly
may necessitate enumerating an essential portion of the set of all solutions,
whose number increases exponentially as problem size grows.

Because of the difficulty and enormous practical importance of combinato-
rial optimization problems, a large number of solution techniques have been
proposed. The available algorithms can be classified into two main classes:
exact and approximate algorithms. Exact algorithms are guaranteed to find
the optimal solution and to prove its optimality for every finite size instance
of a combinatorial optimization problem within an instance-dependent, finite
run-time. If optimal solutions cannot be computed efficiently in practice, the
only possibility is to trade optimality for efficiency. In other words, the guar-
antee of finding optimal solutions can be sacrificed for the sake of getting very
good solutions in polynomial time. The approximate algorithms include two

4

class: heuristic methods and metaheuristics.

Some well known exact algorithms are linear and integer programming,
branch-and-bound, lagrangian relaxation and dynamic programming. In re-
cent years remarkable improvements have been reported for exact algorithms
when applied to some NP-hard problems. The exact algorithms are usually
time consuming and difficult to extend if some details of the problem formu-
lation change. However the following advantages of exact algorithms attract
researchers’ interesting:

• Proven optimal solutions can be obtained if the algorithm succeeds.

• Valuable information on solution structure are obtained from a well-
designed exact algorithm.

• Upper/lower bounds to the optimal solution can be obtained even if the
algorithm is stopped before completion.

Most heuristic algorithms are experiment-based and problem-specified. Ex-
amples includes the nearest neighbor method for the TSP, the saving method
for the VRP, the block building method for the CLP.

A metaheuristic is a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimization
algorithms (Blum and Roli,2003). Most metaheuristics are inspired by bio-
logical or physical phenomena. Examples include simulated annealing (SA),
tabu search (TS), genetic algorithm (GA), ant colony optimization algorithm
(ACO) and particle swarm optimization (PSO. Most of them are belong to
the class of local search, which iteratively applying small modifications (local
moves) to a solution in the hope of finding a better one. In the last decades,
metaheuristics have been shown to be the most successful class of approx-
imate algorithms. Many metaheuristics implement some form of stochastic
optimization. Because metaheuristic frameworks are defined in general terms,
metaheuristic algorithms can be adapted to fit the needs of most optimiza-
tion problems. Especially for complicated real-world problems or large-scale
instances, metaheuristics often offer a better trade-off between solution quality
and computing time.

In recent years, algorithmic developments in exact method, heuristics and
metaheuristics have recently drawn the three fields closely together, and com-
binations of the three method are now common. The resulting methods often
integrate existing exact procedures to solve subproblems generated by a decom-
position strategy, a restriction strategy or a relaxation strategy. The results
of solving these subproblems are used to guide a higher-level heuristic (Raidl
and Puchinger, 2008).

A famous formula in computer science is ‘Algorithms + Data Structures
= Programs’ (Wirth, 1976). Data structure is the way to store and organize
the data. For example, for TSP, a data structure of solution is permutation.
Many combinatorial optimization problems can be classified into some basic
classes according to their data structure: the class of subset problems, the
class of permutation problems, and the class of partition problems (Woeginger,
2001). In a subset problem, every feasible solution can be specified as a subset

5

of an underlying ground set. For instance, fixing a truth-assignment in the
satisfiability problem corresponds to selecting a subset of TRUE variables.
In the independent set problem, every subset of the vertex set is a solution
candidate. In a permutation problem, every feasible solution can be specified
as a total ordering of an underlying ground set. For instance, in the TSP every
route corresponds to a permutation of the cities. In single machine scheduling
problems, feasible schedules are often specified as permutations of the jobs. In
a partition problem, every feasible solution can be specified as a partition of an
underlying ground set. For instance, in parallel machine scheduling problems,
feasible schedules are often specified by partitioning the job set and assigning
every part to another machine.

This paper uses some problem-specified exact algorithms, incorporating
heuristics for reducing computing time. Some well-designed data structures
are also used. The reasons for not using metaheuristics are the folloing:

• Metaheuristics do not suit for all kinds of data structures.

• Metaheuristics are much more time consuming than heuristic algorithms.

• For small-scale instances, metaheuristics are usually inferior to well-
designed exact algorithms.

• Metaheuristics are problem-independent frameworks, which makes it dif-
ficult for them to make good use of problem-specified properties.

1.3 Container Loading Problem

The container loading problem (CLP), in its basic model, can be described as
follows: a set of three-dimensional, rectangular items are to be packed in one
or more containers in a manner that uses the container space as efficient as
possible (Figure 1). The problem has several applications in manufacturing,
logistics and so on. Here ‘container’ is a general word, which can represent a
lot of in real-world objects, including box, pallet, vehicle, ship and warehouse
space.

Dyckhoff (1990) classified the CLP into two categories: single container
loading problem (SCLP) and multiple containers loading problem (MCLP). In
the SCLP, only one container is considered and the objective is to maximize
the utilization of the container space. In the MCLP, more than one container is
concerned. MCLP can also be classified into two types of problems. One is the
three-dimensional bin packing problem (3DBPP), for which the available con-
tainer space is sufficient to pack all the items and the objective is to minimize
the number of containers used, or to minimize the total cost of the containers
used (if more than one container type is available, i.e., the containers are of
different sizes). Usually the cost of a container has been assumed to be propor-
tional to the volume of the container, when the cost data on real-life problems
is absent. The other is the three-dimensional knapsack problem (3DKP), for
which the available container space is not enough to pack all items and the
objective is to maximize the volume or the value of the packed items.

6

Figure 1: The CLP.

The items to be packed are categorized into types. Two items are the same
type if they have the same dimensions. If there is only one item type in a item
set, it is described as homogeneous. If there are only a few item types with a
relatively large number of specimens per type, this is a weakly heterogeneous
item set; on the other hand, if there are many item types with only a few
exemplars per type, the item set is strongly heterogeneous.

Wächer et al. (2007) proposed a more elaborate typology for cutting and
packing problems, under the typology the SCLP can be classified into the
Single Large Object Placement Problem (SLOPP, weakly heterogeneous) and
the Single Knapsack Problem (SKP, strongly heterogeneous).

And the MCLP can be classified into seven types of problems as follows:

• Single Bin Size Bin Packing Problem (SBSBPP).

• Multiple Bin Size Bin Packing Problem (MBSBPP).

• Residual Bin Packing Problem (RBPP).

• Multiple Identical Large Object Placement Problem (MILOPP).

• Multiple Heterogeneous Large Object Placement Problem (MHLOPP).

• Multiple Identical Knapsack Problem (MIKP).

• Multiple Heterogeneous Knapsack Problem (MHKP).

The typology is according to the assortment of containers and items. For
example, in MBSBPP the containers are weakly heterogeneous, and in MIKP
the items are strongly heterogeneous and the containers are identical. The first
three types of problems belong to the 3DBPP and the last four types belong
to the 3DKP.

In the last years, several types of algorithms have been proposed to solve the
SCLP. Most algorithms are heuristics (George and Robinson, 1980; Bischoff
and Ratcliff, 1995; Moura and Oliveira, 2005), or metaheuristics such as ge-
netic algorithms (Bortfeldt and Gehring, 2001, Gehring and Bortfeldt, 2002,
Techanitisawad and Tangwiwatwong, 2004), tabu search (Bortfeldt and Gehring,

7

1998), and simulated annealing (Jin et al., 2004). Tree search methods (Pisinger,
1998; Eley, 2002; Wang et al., 2008; Fanslau and Bortfeldt, 2010) have also
been proposed for solving the CLP.

Many existing SCLP algorithms are based on different heuristic packing
approaches such as wall building approach, stack building approach, guillo-
tine cutting approach, and block building approach (or cuboid arrangement
approach). Pisinger (2002) gave an excellent overview of these approaches.
For instance, the wall building approach fills the container with vertical lay-
ers (‘walls’) that follow along the longest side of the container (George and
Robinson, 1980; Pisinger, 1998; Pisinger, 2002; Moura and Oliveira, 2005).
The block building approach fills the container with cuboid blocks that mostly
contain only identical items with the same spatial orientation (Bortfeldt and
Gehring, 1998; Eley, 2002; Mack et al., 2004; Parreao et al., 2008; Fanslau and
Bortfeldt, 2010; Ren et al., 2011).

Unlike the SCLP, not much research has been devoted to the MCLP. Usu-
ally the sequential strategy or the simultaneous strategy is used for adapting
the SCLP algorithm to the MCLP algorithm.

• Sequential strategy: the containers are filled one by one by using a SCLP
algorithm.

• Simultaneous strategy: the items are simultaneously stowed into multiple
containers.

Ivancic et al. (1989) addressed the 3DBPP and Mohanty et al. (1994)
addressed the 3DKP. Both of them used sequential strategies and considered
different container types. Bischoff and Ratcliff (1995) and Eley (2002) pre-
sented approaches for the 3DBPP with only one container type. They used
both a sequential and a simultaneous loading strategy and compared the re-
sults of both strategies. Bortfeldt (2000) examined both problem types with
different container types and extended the sequential strategy by diversifying
the search. Other approaches were also presented. For example, Terno (2000)
used a pre-assignment strategy to solve the multiple pallet loading problem
with only one pallet type. In his strategy large and small items are distributed
uniformly over all containers, and then a single container algorithm is applied
for each pre-assigned container. Eley (2003) presented a bottleneck approach
based on integer programming for solving both the 3DBPP and the 3DKP with
different container types. Within his approach a single container algorithm is
used to produce alternative loading patterns and a solution can be considered
as a linear combination of these loading patterns.

Few papers proposed exact algorithms for CLP. Martello et al. (2000)
proposed an exact branch-and-bound algorithm for the 3DBPP with one con-
tainer type, which also incorporated approximation algorithms. In his paper
an exact algorithm has also been proposed for SCLP, which is based on the
data structure of staircase packing.

8

1.4 Vehicle Routing Problem

The vehicle routing problem (VRP) can be described as follows: a set of routes
for a fleet of vehicles based at one or several depots must be determined for
a number of geographically dispersed cities or customers, and the objective is
to deliver a set of customers with known demands of items on minimum-cost
vehicle routes originating and terminating at a depot.

In practice several variants of the problem exist because of the diversity of
operating rules and constraints encountered in real-life applications. Thus the
VRP should perhaps be viewed as a class of problems, such as the Distance-
Constrained VRP, the VRP with time windows, the VRP with bachhauls,
and the VRP with pickup and delivery. For example, in the VRP with time
windows, each customer specifies a time interval, called time window. The
travel time between two customers and the service time for customer and
the time when a vehicle leaves a depot are known in advance. The service
for each customer must start within the given time window, moreover when
vehicles arrive before the beginning of a time window they have to wait until
the beginning of the time window to start their service.

In 1959, Dantzig and Ramser first introduced the VRP. The described a
real-world application concerning the delivery of gasoline to service stations
and proposed a mathematical formulation and an algorithm. A few years
later in 1964, Clarke and Wright proposed an effective greeedy heuristic that
improved on the Dantzi-Ramser algorithm. In the last decades, hundreds of
models and algorithms were present for the exact and approximate solution
of the different variants of the VRP. Recent overview on heuristic and meta-
heuristic approaches for the VRP can be seen in Toth and Vigo (2005).

The VRP generalizes the well-known traveling salesman problem (TSP) but
is much more difficult to solve in practice. Whereas there exist exact algorithms
capable of routinely solving TSPs containing hundreds or thousands of vertices
(Applegate et al., 2007), this is not the case of the VRP for which the best
exact algorithms can only solve instances involving approximately 100 vertices
(Baldacci et al., 2008). Because real instances of the VRP often exceed this
size and solutions must often be determined quickly, most algorithms used in
practice are heuristics. In recent years, several powerful metaheuristics have
been developed.

1.5 The Combination of Container Loading and

Vehicle Routing Problems

As mentioned by Davies and Bischoff (1999), much of the literature on CLP
has considered the container purely as a storage device rather than a transport
medium. In other words, only the maximum volume utilization or minimum
number of containers has been considered and the transportation of the loaded
containers has been ignored. On the other hand, most literature on the VRP

9

Figure 2: The 3L-CVRP.

problem has not explicitly taken the three-dimensional loading into account,
except checking that, for each vehicle, the total weight of the loaded items
does not exceed the given vehicle weight capacity.

The three-dimensional loading capacitated vehicle routing problem (3L-
CVRP) is a highly complex problem combining the VRP and the CLP. The
problem calls for the determination of the routes travelled by a vehicle fleet
for delivering items to customers. Items consist of rectangular boxes of given
size and weight, and must be feasibly loaded within the vehicles before they
are shipped (Figure 2).

The 3L-CVRP is of both practical interest and theoretical interest. From
the viewpoint of practical application, the 3L-CVRP is especially relevant for
the cases that suppliers have to deal with large items and the loading aspect
is not trivial, i.e., when one is distributing kitchen components, auto parts,
mechanical components , and household appliances, the loading problem must
be taken into account. Concerning theoretical importance, the 3L-CVRP is a
very challenging problem for it generalizes two of the most well known NP-
hard problems: the VRP and the CLP, which have been studied widely but
independently.

The 3L-CVRP is first introduced by Gendreau M. et al. (2006). In their
paper, a tabu search algorithm has been proposed that iteratively invokes an
inner tabu search procedure for the solution of the loading subproblem. Other
literatures about the 3L-CVRP includes: Aprile et al. (2007) proposed an
simulate annealing algorithml; an integrated approach has been proposed by
Moura (2009); and an ant colony algorithm has been proposed by Fuellerer
(2010). However, no exact algorithm has been proposed for the 3L-CVRP.

In this paper, for solving the 3L-CVRP, both the single CLP algorithms
and the MCLP algorithms are used. In addition, algorithms for VRP and
TSP are also used. It is very time consuming to check whether the items can

10

be feasibly loaded into a vehicle. Therefore the loading constraint is replaced
with the constraint of volume ratio. Considering the issue of green logistics,
we take the fuel consumption and CO2 emissions into account. As mentioned
in the report of European Committee for Standardization, for a certain vehicle
which travelling with a constant speed, the fuel consumption is approximately
proportional to the travelling distance and linear correlate to the weight of
loaded items. Furthermore, in the real-world instance, for improving the uti-
lization of vehicles, some constraints for traditional VRP may be violated.
Algorithm for the generalized 3L-CVRPs have also been proposed. The com-
putational result for real-world instance shows that proposed algorithms are
fast and high-quality for solving practical problems.

The rest of the paper is organized as follows. Chapter 2, 3, and 4 give
formulation, algorithms and computational results for the SCLP, MCLP and
3L-CVRP, respectively. And Chapter 5 summarizes the paper.

11

2.

Chapter 2

The Single Container Loading Prob-

lem

2.1 Problem Formulation of the SCLP

As shown in Figure 3, a three-dimensional coordinate system and the directions
‘front’, ‘back’, ‘left’, ‘right’, ‘up’ and ‘down’ are illustrated. The container is
placed in the system with its back-left-down corner in the origin, and its length,
width and height are parallel to the x-, y- and z-axes, respectively. Similar to
many existing CLP algorithms (e.g., Bortfeldt and Gehring, 2001; Eley, 2002;
Moura and Oliveira, 2005), we assume the following:

• Each item is placed completely within the container.

• Each item does not overlap with another item.

• Only orthogonal packing is considered, i.e., each items is placed parallel
to the edges of the container.

• Item can be rotated. Consequently, up to six different orientations are
allowed.

The six possible orientations of item are shown in Figure 4. An item with
length l, width w and height h has six possible orientations whose dimensions
on the x-, y-, and z-axes are (l, w, h), (w, l, h), (l, h, w), (h, l, w), (h,w, l), and
(w, h, l), respectively.

A solution of the SCLP consists of a set of packed items, i.e., items packed
into the container. The following notations are used in the formulation.

Notation:

12

Figure 3: Container in Three-Dimensional Coordinate System.

(L,W,H) length,width and height of the container
I = {1 · n1, . . . ,m · nm} the set of items
P = {p1, . . . , pn} ⊆ I the set of packed items
(li, wi, hi) length, width and height of pi (i = 1, . . . , n)
(xi, yi, zi) x, y and z coordinate of pi (i = 1, . . . , n)

To avoid repetition, the items of the same size and permitted orientations
are categorized into a same type, and nj is the available number of items of
type j (j = 1, . . . ,m). Therefore the set of items are denoted by a multiset I.
The notion of multiset is a generalization of the notion of set in which elements
are allowed to appear more than once. The operations and relations of multiset
are similar to that of set. The interested reader is referred to Wayne (1989) and
Knuth (2005). The set of packed items P is also a multiset, because different
packed items may be of the same type. The coordinates (xi, yi, zi) of pi means
that the back-left-down corner of pi is positioned at the point (xi, yi, zi).

The SCLP is formulated as follows:

[SCLP]

Maximize
n∑

i=1

liwihi, (2.1)

subject to xi + li ≤ L, ∀i = 1, 2, . . . , n, (2.2)

yi + wi ≤ W,∀i = 1, 2, . . . , n, (2.3)

zi + hi ≤ H, ∀i = 1, 2, . . . , n, (2.4)

xi, yi, zi ≥ 0, ∀i = 1, 2, . . . , n, (2.5)

xi + li ≤ xj or xj + lj ≤ xi or yi + wi ≤ yj or

yj + wj ≤ yi or zi + hi ≤ zj or zj + hj ≤ zi,

13

Figure 4: Item Orientations.

∀i, j = 1, 2, . . . , n, i ̸= j, (2.6)

The constraints (2.2)-(2.5) require that each packed item lies completely in
the container. The constraint (2.6) prevents packed items from overlapping.

Definition 1 (feasible packing). A set of packed items P = {p1, . . . , pn} is
called a feasible packing if it satisfies the constraints (2.2) - (2.6).

The rest of this chapter is organized as follows. Section 2.2 and 2.3 provide
exact and heuristic algorithms for SCLP, respectively. Section 2.4 addresses
a practical constraint – shipment priority. Section 2.5 is the computational
experiments and Section 2.6 summarizes this chapter.

2.2 Exact algorithm for SCLP

In this section we propose a branch-and-bound algorithm (algorithm EXAC SCLP,
described later in Table 1) to find the optimal solution of the CLP, i.e., to find
a feasible packing that achieves maximum utilization of the container. The
operation of generating feasible packing may be drastically simplified through
the following definitions and lemmas.

Definition 2 (adjoin). For ∀pi, pj ∈ P , we say that pj x-adjoin pi, if

xi = xj + lj, (2.7)

yi < yj + wj, (2.8)

zi < zj + hj, (2.9)

yj < yi + wi, (2.10)

zj < zi + hi. (2.11)

14

Analogously, we can define y- and z-adjoin.

Definition 3 (staircase packing). A feasible packing P is called a staircase
packing, if

∀pi ∈ P and xi > 0, ∃pj ∈ P, pj x-adjoin pi, (2.12)

∀pi ∈ P and yi > 0,∃pj ∈ P, pj y-adjoin pi, (2.13)

∀pi ∈ P and zi > 0,∃pj ∈ P, pj z-adjoin pi, (2.14)

∀pi, pj ∈ P and i > j, xi ≥ xj + lj or yi ≥ yj + wj or

zi ≥ zj + hj. (2.15)

Intuitively, the shape of a staircase packing looks like a staircase from a
side view (Figure 5 (a)), and no packed-items can be moved leftward, down-
ward, or backward. The idea of using staircase placements was first proposed
in Martello et al. (2000) and applied for the two-dimensional strip packing
problem by Kenmochi et al. (2009).

Lemma 1. Any feasible packing can be replaced by an equivalent staircase
packing.

Lemma 1 has been proved by Martello et al. (2000) by (i) moving the
packed items leftward, downward, or backward (to satisfy constraints (2.12) -
(2.14)) and (ii) reordering the packed items (to satisfy constraint (2.15)).

However it is still difficult to directly generate staircase packing. Thus we
propose the notions of pseudo-adjoin and pseudo-staircase packing as follows.

Definition 4 (pseudo-adjoin). For ∀pi, pj ∈ P , we say that pj x-pseudo-adjoin
pi, if the constraints (7) - (9) are satisfied. Analogously, we can define y- and
z-pseudo-adjoin.

Definition 5 (pseudo-staircase packing). A feasible packing P is called a
pseudo-staircase packing, if

∀pi ∈ P and xi > 0, ∃pj ∈ P, pj x-pseudo-adjoin pi, (2.16)

∀pi ∈ P and yi > 0,∃pj ∈ P, pj y-pseudo-adjoin pi, (2.17)

∀pi ∈ P and zi > 0,∃pj ∈ P, pj z-pseudo-adjoin pi, (2.18)

and (2.15).

As shown in Figure 5, if p1, p2 and p3 have the same y-coordinate, then
both (a) and (b) are pseudo-staircase packing. However, (b) is not a staircase
packing, because p2 z-pseudo-adjoin p3 but not z-adjoin p3.

Definition 6 (possible points). For a pseudo-staircase packing Pk = {p1, . . . , pk},
a possible point is a position (x, y, z) such that there exists a residual item pk+1

(i.e., pk+1 ∈ I \ Pk), and if pk+1 is packed at (x, y, z), Pk+1 = {p1, . . . , pk+1} is
still a pseudo-staircase packing. The set of all of the possible points of Pk is
denoted by Fk. Specifically for P0 = ∅, let F0 = {(0, 0, 0)}.

15

Figure 5: Staircase Packing and Pseudo-Staircase Packing (perspective: side

view).

Obviously, any staircase packing is also a pseudo-staircase packing. And if
{p1, . . . , pn} is a pseudo-staircase packing, its subset Pk = {p1, . . . , pk} is also a
pseudo-staircase packing (k = 1, . . . , n). In algorithm EXAC SCLP, different
kinds of pseudo-staircase packing are generated in a branch-decision tree. At
each node of the tree, a current partial solution, which packs the items of a
certain subset of I, is increased by selecting in turn each residual item and
generating child nodes by placing the item into all the possible points.

First at all, we use a recursion method (called algorithm POSSIPOIONTS,
described later) to generate the possible points, i.e., given a set of existing
possible points Fk and an additional item pk+1, to generate the set of new
possible points Fk+1. The following lemmas and corollary are proposed for
this purpose.

Lemma 2. For a pseudo-staircase packing Pk+2 = {p1, . . . , pk, pk+1, pk+2}, we
have the following:

(i) If pk+1 doesn’t pseudo-adjoin pk+2, then (xk+2, yk+2, zk+2) ∈ Fk;

(ii) If pk+1 x-pseudo-adjoin pk+2, then ∃(x, y, z) ∈ Fk, y = yk+2, z = zk+2;

(iii) If pk+1 y-pseudo-adjoin pk+2, then ∃(x, y, z) ∈ Fk, x = xk+2, z = zk+2;

(iv) If pk+1 z-pseudo-adjoin pk+2, then ∃(x, y, z) ∈ Fk, x = xk+2, y = yk+2.

Proof.

(i) If pk+1 doesn’t pseudo-adjoin pk+2, then delete pk+1 from Pk+2. By
Definition 5, the set {p1, . . . , pk, pk+2} is also a pseudo-staircase packing. Then
by Definition 6, (xk+2, yk+2, zk+2) ∈ Fk.

(ii) If pk+1 x-pseudo-adjoin pk+2, then delete pk+1 from Pk+2, and move pk+2

backwards, which makes {p1, . . . , pk, pk+2} become a pseudo-staircase packing.

16

In detail, let P ∗ = {pi ∈ Pk : yi + wi > yk+2, zi + hi > zk+2},

x∗ =

{
maxpi∈P ∗(xi + li), P ∗ ̸= ∅,
0, P ∗ = ∅,

and move pk+2 to the position (x∗, yk+2, zk+2). By Definition 5, the set {p1, . . . ,
pk, pk+2} is also a pseudo-staircase packing. Then by Definition 6, (x∗, yk+2, zk+2)
∈ Fk.

(iii) and (iv) are similar to (ii).

By Lemma 2, we can easily induce the following corollary.

Corollary 1. Each point in Fk+1 belongs to Fk, or belongs to the (ortho-
graphic) projection of Fk on plane x = xk+1 + lk+1, y = yk+1 + wk+1 or
z = zk+1 + hk+1.

Definition 7 (contain). For any point (x, y, z) in the container, and item
r ∈ I, if there exists a permitted orientation of r whose dimensions on the x-,
y- and z-axis are (l′, w′, h′), and l′ ≤ L − x,w′ ≤ W − y, h′ ≤ H − z, we say
that (x, y, z) contains item r.

Lemma 3. Let A = {(x, y, z) ∈ Fk : x ≤ xk+1 + lk+1, y ≤ yk+1 + wk+1, z ≤
zk+1+hk+1}, A1 = {(x, y, z) ∈ A : for ∀(x′, y′, z′) ∈ A and (x, y, z) ̸= (x′, y′, z′),
y′ > y or z′ > z}, we have the following:

(i) For ∀(x, y, z) ∈ Fk\A, if ∃r ∈ I\Pk+1, (x, y, z) contains r, then (x, y, z) ∈
Fk+1;

(ii) For ∀(x, y, z) ∈ A1, if ∃r ∈ I\Pk+1, (x, y, z) contains r, then (xk+1 +
lk+1, y, z) ∈ Fk+1;

Proof.

(i) is easy to prove by Definition 5.

(ii) Proof by contradiction. Assume that (xk+1 + lk+1, y, z) /∈ Fk+1. Pack
r on (xk+1 + lk+1, y, z). Similar to the proof of Lemma 2 (ii), move r leftward
and downward to make {p1, . . . , pk, pk+1, r} become a pseudo-staircase packing.
Then delete pk+1 from Pk+1 and move r backward to make {p1, . . . , pk, r} be-
come a pseudo-staircase packing. Assume the new coordinate of r is (x′, y′, z′).
Obviously (x′, y′, z′) ∈ A, (x, y, z) ̸= (x′, y′, z′), y′ ≤ y, z′ ≤ z, which conflicts
with that (x, y, z) ∈ A1.

As shown in Corollary 1, all of the points of Fk+1 belong to Fk or the
projection of Fk. By Lemma 3 (i), we can search for the points of Fk+1 in Fk,
and by Lemma 3 (ii), we can search for the points of Fk+1 in the projection of
Fk on the plane x = xk+1 + lk+1. Analogously, we can search for the points of
Fk+1 in the projection of Fk on the plane y = yk+1 +wk+1 or z = zk+1 + hk+1.
It is not difficult to prove that no other points belong to Fk+1. Therefore all
the points of Fk+1 can be generated. Algorithm POSSIPOIONTS is described
as follows:

[Algorithm POSSIPOIONTS]

17

Input: Fk, pk+1.

Output: Fk+1.

• Step 1: Search for possible points in Fk\A (Lemma 3 (i)).

• Step 2: Search for possible points in the projection of A1 on plane
x = xk+1 + lk+1 (Lemma 3 (ii)).

• Step 3: Similar to Step 2. Select possible points in the projection on
plane y = yk+1 + wk+1 and on plane z = zk+1 + hk+1.

In Step 1, the the computational complexity of generating Fk\A is O(|Fk|).
In Step 2, the computational complexity of generating A1 is O(|Fk|), plus
O(|Fk|log |Fk|) for the initial sorting of possible points. Therefore if we don’t
consider whether a point can contain an item (in fact it can be tested in the
following algorithm EXAC SCLP), the computational complexity of algorithm
POSSIPOIONTS is O(|Fk|) + 3(O(|Fk|) +O(|Fk|log |Fk|)) = O(|Fk|log |Fk|. In
Martello et al. (2000), the computational complexity of the same-function
algorithm is O(m2) (m is the number of items). In computational experiments,
algorithm POSSIPOIONTS is much faster than Martello’s algorithm.

In algorithm EXAC SCLP, each node denote a partial solution, which in-
cludes information on possible points and residual items. Especially, the root
node denotes an empty container, which has only one possible point (0,0,0)
and the residual items is I. Child nodes are generated by packing each residual
item with each of its permitted orientation at each possible point. Similar to
Martello et al. (2000), we can calculate the upper bound of each node. The
lower bound of each node can be calculated by using the heuristic algorithm
(mentioned in the next section). The maximum value of the lower bounds
serves as the current solution. If the upper bound of a node is less than the
current solution, the node is killed. Algorithm EXAC SCLP is described by
the pseudo-code in Table 1.

2.3 Heuristic Algorithm for SCLP

This heuristic algorithm is a tree search heuristics, which hierarchically consists
of a subordinated and a superior module. The subordinated module is a greedy
heuristic, which serves the complete loading of the container. The superior
module is a tree search which improves the solution generated by the greedy
heuristic.

The proposed greedy heuristic algorithm (algorithm HEURI SCLP) is sim-
ilar to other existing block building approaches (Eley, 2002; Parreto et al.,
2008). The container is filled with homogeneous blocks. Each block is com-
posed of identical items that have the same orientation. As is usual in block-
building approaches, each feasible placement position where a block may be
packed is called a(n) (empty) space. Beginning with the entire empty con-
tainer, which is initialized as the first space, new spaces are generated when a
block is packed in a space. The main difference between the proposed heuris-

18

Table 1: Algorithm EXAC SCLP

Input: items, container.

Output: MaxU (maximum utilization of container).

initialize MaxU = 0;

sort the item types in noincreasing order of item volume;

initialize Sol := {(F0 = {(0, 0, 0)}, I)};// the set of all partial solutions

while Sol ̸= ∅
tempSol := ∅;//temporary set of partial solutions

for all solutions in Sol do

for all possible points in current solution do

for all residual items and their permitted orientations do

generated possible points by using algorithm POSSIPOIONTS;

if the current possible point can contain the current item then

generate a new solution by packing current item in current

possible point;

endif

calculate the upper bound and lower bound of the new solution;

if the upper bound is less than MaxU then

continue;

endif

add the new solution to tempSol;

if the lower bound > MaxU then

MaxU = container utilization of the new solution;

endif

if the current possible point cannot contain any item do

delete it from the set of possible points;

endif

endfor

endfor

endfor

Sol := tempSol;

endwhile

tic and other existing approaches lies in the evaluation functions for selecting
blocks. Five evaluations are defined for block selection. Before we present a
description of the entire procedure of the heuristic, the following highlights the
strategies of block building and block evaluation.

19

Figure 6: Block in Space.

2.3.1 Block Building

As shown in Figure 6, let sl, sw, and sh be the length, width, and height,
respectively, of a space S. For a block that is composed of items of a specific
type and orientation status, let il, iw, and ih be the dimensions of the items
on the x-, y-, and z-axes, respectively; N be the residual number of the items
of the given type; xN, yN, and zN be the number of items along the x-, y-,
and z-axes in the block, respectively; and bl, bw, and bh be the length, width,
and height of the block, respectively.

A block can be packed into S if the following constraints are satisfied:

xN × yN × zN ≤ N (2.19)

bl = xN × il ≤ sl (2.20)

bw = yN × iw ≤ sw (2.21)

bh = zN × ih ≤ sh (2.22)

Example 2.1 (possible blocks): Assume that the three dimensions of the space
S are sl × sw × sh = 370 × 250 × 220 along the x-, y-, and z-axes, respec-
tively. There are two types of items: I1 and I2. Both item types can only be
horizontally rotated, i.e., only the orientations ”(l, w, h)” and ”(w, l, h)” are
permitted.

The length, width and height of I1 are 100, 120, and 90, respectively.

The length, width and height of I2 are 240, 45, and 200, respectively.

The residual numbers of I1 and I2 are 4 and 2, respectively.

Figure 7 shows all the possible blocks (B1 - B20) that satisfy constraints
(2.19) - (2.22). Note that the list of blocks is sorted according to the following
criteria:

• Main criterion: The order of item types (I1, I2).

• Tie-breaker 1: The order of orientations (from (l, w, h) to (w, h, l)).

• Tie-breaker 2: Decreasing order of bw.

• Tie-breaker 3: Decreasing order of bh.

20

21

Figure 7: Possible Blocks.

• Tie-breaker 4: Decreasing order of bl.

Blocks B1 - B8 are made up of I1, which is in its original status, i.e.,
il = 100, iw = 120, ih = 90 (Figure 7 (a)).

Blocks B9 - B16 are made up of I1, which is horizontally rotated, i.e.,
il = 120, iw = 100, ih = 90 (Figure 7 (b)).

Blocks B17 and B18 are made up of I2, which is in its original status, i.e.,
il = 240, iw = 45, ih = 200 (Figure 7 (c)).

Blocks B19 and B20 are made up of I2, which is horizontally rotated, i.e.,
il = 45, iw = 240, ih = 200 (Figure 7 (d)).

Therefore, for items of the same type with identical orientations, multiple
types of blocks can be built by changing the item numbers along the x-, y-,
and z-axes. Considering all of the item types and permissible orientations, a
large number of blocks can be built. It is crucial to evaluate all of the possible
blocks and to select a block for packing into the space.

2.3.2 Block Evaluation

Five evaluation functions for block selection are defined as follows:

• (E1) −min((sl − bl), (sw − bw), (sh− bh)),

• (E2) bw × bh,

• (E3) bl × bh,

• (E4) bl × bw,

• (E5) bl × bw × bh,

All of the above evaluations are greedy criteria and should be maximized. E1
evaluates the utilization of one dimension (i.e., the length, width or height of
the space), E2 - E4 evaluate the utilization of two dimensions (i.e., the YZ-
Area, XZ-Area or XY-Area of the space), and E5 evaluates the utilization of

22

Figure 8: Evaluations of Block.

three dimensions (i.e., the volume of the space). A number of experiments
have shown that no single evaluation is efficient for all situations, and the
five evaluation alternative is much more efficient. The frequencies of the five
evaluations in the numerical experiments are shown in Section 2.5.2.2.

Example 2.2 (Evaluations of Block): As shown in Figure 8, a container is
filled with a sequence of blocks (B1, B2, B3 and B4). First, to pack block
B1, it is arranged along the x-axis to make the best use of the length; then,
to pack block B2, it is arranged along the y- and z-axes to make the best use
of the YZ-area; next, to pack block B3, it is arranged along x- and z-axes to
make the best use of the XZ-area; finally, block B4 is packed so as to make
the best use of the three-dimensional space. Coincidences still exist; e.g., B4
also makes good use of one dimension or two dimensions.

The five evaluations can be applied in either a simultaneous manner or a
sequential manner, as described below.

Simultaneous manner: A block with the highest value for one of the five
evaluations is called a feasible block, and it may be selected for packing into
the space.

Sequential manner: A block is selected according to the following crite-
ria:

• Main criterion: Largest value of E1.

• Tie-breaker 1: Largest value of E2.

• Tie-breaker 2: Largest value of E3.

• Tie-breaker 3: Largest value of E4.

• Tie-breaker 4: The top block satisfying Tie-breaker 3 according to the
order criteria of blocks.

23

If multiple blocks satisfy the above criteria, only the first one (according to
position in the list of possible blocks) among them is selected. Evaluation E5
is not mentioned here because if two blocks achieve identical values for E2, E3
and E4, respectively, they must also achieve an identical value for E5.

Example 2.3 (simultaneous manner): Consider the data shown in Exam-
ple 2.1. As shown in Figure 7, for example, for block B1, evaluation E1=
−min((sl−bl), (sw−bw), (sh−bh)) = −min((sl−xN×il), (sw−yN×iw), (sh−
zN × ih)) = −min((370− 1× 100), (250− 2× 120), (220− 2× 90)) = −10. In
fact, no other block achieves a larger value for E1. Therefore, -10 is the largest
value for E1.

B1, B3, B5, B12, B19 and B20 all achieve the largest value for E1.

B19 and B20 achieve the largest value for E2.

B17 and B18 achieve the largest value for E3.

B3 and B11 achieve the largest value for E4.

B1, B2, B3, B9, B10, B11, B17 and B19 achieve the largest value for E5.

Delete the identical ones. Therefore B1, B2, B3, B5, B9, B10, B11, B12,
B17, B18, B19 and B20 are all selected as feasible blocks.

Example 2.4 (sequential manner): Consider the data shown in Example 2.1.
Using the main criterion, blocks B1, B3, B5, B12, B19 and B20 are selected
because all of these blocks achieve the largest value for E1. Then, using E2
as the first tie-breaker, the list can be narrowed down to blocks B19 and B20,
all of which achieve the same largest value for E2. Using E3 as the second
tie-breaker then narrows the list to only block B19 because it achieves the
largest value for E3.

In a simultaneous manner, usually multiple blocks can be selected as fea-
sible blocks. However, in the sequential manner, only one block is selected for
packing into the space. The simultaneous manner is used in the tree search,
which will be described in Section 2.3.5, and the sequential manner is used in
the greedy heuristic shown in Section 2.3.3.

2.3.3 Procedure of the Greedy Heuristic

The whole procedure of the heuristic algorithm for the SCLP (HEURI SCLP)
is described as follows (Figure 9):

[Algorithm HEUR SCLP]

Input: items, container.

Output: packed container.

• Step 0 (Initialize): The current space S := whole empty container;.

• Step 1 (Select block): If there is no residual item, stop. Otherwise,
build all of the possible blocks (i.e., blocks that satisfy constraints (2.19)

24

Figure 9: Algorithm HEUR SCLP.

- (2.22)) in the current space S. Then, from the list of possible blocks,
select a feasible block by using the five evaluations E1 - E5 (in the sequen-
tial manner described before) and pack it into S. A detailed explanation
of this step has been provided in Sections 2.3.4 and 2.3.2.

• Step 2 (Generate new spaces): Split the residual space of S into new
spaces, and add them into sList. Delete S from sList. Merge any two
contiguous spaces in sList if they satisfy certain conditions. Mark any
space in sList as ”unusable” if no residual item can be packed into it.
This procedure will be described in more detail in Section 2.3.4, which
discusses space splitting and merging.

• Step 3 (Select space): If all of the spaces in sList are marked as ‘unus-
able’, stop. Otherwise select the usable space (i.e., the space not marked
as ‘unusable’) that has the smallest Euclidean distance between its back-
left-down corner and the origin. Assign the selected space to S and go
to Step 1.

The entire process from Step 1 to Step 3 is called an iteration of the heuris-
tic. In each iteration, a block is selected and packed into the container. The
iteration is repeated until either all items have been packed or no more items
can be packed into the container.

25

Figure 10: Split Space.

2.3.4 Space Splitting and Merging

The residual space of S can be divided into three sub-spaces (i.e., the front
space, the side space, and the overhead space shown in Figure 10). Check each
of the three newly generated spaces, and if there is no any of the residual items
that can be packed in the space, mark it as ”unusable”. Then add the three
newly generated spaces into sList and delete S from sList.

Any two adjoining spaces in the space list that have the same z-coordinate
(for their back-left-down corner) can be merged if one of the following condi-
tions is satisfied:

(i) The two spaces have a common edge along the x-axis or y-axis as shown
in Figure 11 (a).

(ii) The two spaces do not have a common edge along the x-axis or y-axis,
but both are marked as ”unusable” as shown in Figure 11 (b).

In both of these conditions, the merged space replaces the two original
spaces in the space list. If the merged space is too small to contain any of the
residual items, it is marked as ‘unusable’. Furthermore, in condition (ii), the
contiguous edges of two spaces do not completely coincide with each other.
Therefore, other new spaces are generated. They are marked as ’unusable’
and added into the space list. The advantage of condition (ii) is making orig-
inal spaces, which cannot be filled before be reused by merging them. Other
new generated spaces are also marked as ‘unusable’. The method of merging
spaces has also been proposed by other authors (Bortfeldt and Gehring, 2001;
Eley, 2002). However, Eley only considered the merging in condition (i), and
Bortfeldt and Gehring only considered the merging of the front space and side

26

Figure 11: Merge spaces (perspective: top view).

Figure 12: Tree search for SCLP.

space, which are sub-spaces that are generated from the same space.

2.3.5 Tree Search

To improve the solution generated by algorithm HEURI SCLP, a tree search
method called TRS SCLP is implemented, which allows the selection of differ-
ent blocks for each space.

As mentioned in Section 2.3.2, when using evaluations E1 - E5 in a se-
quential manner, only one block is selected in each iteration of algorithm
HEURI SCLP. However, in the tree search, all five evaluations are applied
in a simultaneous manner. Usually multiple feasible blocks are selected, and
these blocks constitute the branches of the search tree.

The root node represents an empty container, and each node of the search
tree represents a partially filled container (i.e., a partial solution). Each node

27

is branched into some sub-nodes according to all of the feasible blocks that
achieve the highest value for one of the five evaluations. For example, as
shown in Figure 12, the first three sub-nodes are generated according to the
blocks B1, B2 and B3 that are selected using evaluation E1, and other sub-
nodes are generated according to other blocks that are selected using E2, E3,
E4, or E5. The set of all partial solutions at the same depth in the search tree
is called a partial solution list.

Considering the exponentially increasing number of nodes, only a fixed
number (parameter breadth) of nodes are retained from each depth. Similar
to Eley (2002), a best search strategy is applied, which selects the breadth of
nodes that obtained the highest ranking from an evaluation function. This
function should not only consider the volume utilization obtained thus far,
but it should also evaluate the potential for filling the residual spaces with the
residual items. The function is a lower bound (for the volume utilization of the
container) derived by filling the residual spaces of the corresponding partial
solution by applying the greedy heuristic (HEURI SCLP). Furthermore, to
avoid one good solution replacing all other good solutions, we use the following
criterion: if multiple nodes at the same depth in the tree achieve the same
evaluation function value, only the nodes among them with the largest volume
utilization obtained thus far (not including the items packed using the greedy
heuristic) are retained, and the remaining nodes are deleted.

The tree search is described by the pseudo-code shown in Table 2.

2.4 Shipment Priority

Additional constraints can be added to the general SCLP (i.e., SCLP in basic
form) to take into account some aspects of real-life problems. These constraints
include load bearing strength, multi-drop, load stability, shipment priority,
weight distribution and so on (Bischoff and Ratcliff, 1995). In this paper
the single container loading problem with the constraint of shipment priority
(SCLPSP) is addressed. The constraint of shipment priority can be described
as follows: some items have higher priority over others; an item with low
priority should not be packed into the container if it leads to high-priority
items being left behind. In some practical situations, the shipment of some
items may be more important than that of others, e.g., because of the delivery
deadlines or the shelf life of the product concerned. In such situations, the
prior loading of the important items must be taken into account.

In recent literature, increased attention has been focused on the SCLP
with additional constraints. For instance, Davies and Bischoff (1999) and Eley
(2002) took into account the weight distribution within a container. Bischoff
(2006) considered the load bearing strength. Christensen and Rousøe (2009)
addressed the container loading problem with multi-drop constraints.

However, no single study has addressed the SCLPSP. Bischoff and Ratcliff
(1995) suggested that the priorities for shipment can be viewed in a knapsack
model simply as objective function coefficients which define or adjust the value

28

Table 2: Algorithm TRS SCLP

Input: items, container.

Output: MaxU (maximum utilization of container).

initialize MaxU = 0;

initialize Sol :={empty container};// the set of all partial solutions

while Sol ̸= ∅
for all solutions in Sol do

for all feasible blocks that achieve the largest value for one of the

five evaluations (E1 - E5) do

add current feasible block to current partial solution to generate

a new partial solution;

add the new partial solution to Sol;

endfor

if no item could be packed into the container and the volume

utilization of current partial solution is higher than MaxU then

MaxU := volume utilization of the current solution;

endif

delete current partial solution from Sol;

endfor

delete the partial solutions that have identical evaluation function value;

select breadth best partial solutions from Sol;

endwhile

ratings of the items. However, they did not propose any suitable algorithm
based on this idea.

The authors have had several years of experience in the development of
practical container loading systems. Shipment priority has been considered in
most of these practical systems. A practical case is mentioned here to illustrate
the background of the SCLPSP. As shown in Figure 14, the items are required
to be packed in containers and then transported by vehicles from a depot to a
customer. Assume the earliest arriving time of the vehicles is set to be t1 and
the second earliest arriving time is set to be t2 (t1 < t2). When we consider
the loading of the earliest arriving vehicle, the items can be divided into two
groups according to their deadlines (i.e., the latest allowed arrival time for the
items). The items whose deadlines < t2 are classified into the high-priority
group (group A), and those whose deadlines ≥ t2 are classified into the low-
priority group (group B). Assume that the high-priority items can be fully
loaded in the container but that the capacity of the container is not sufficient
to load all of the items. Along with the requirement of maximal loading, it is
a reasonable requirement that none of the high-priority items be left behind.

29

Figure 13: Background of SCLPSP.

There are also other applications of shipment priority, such as applications for
MCLP and 3L-CVRP, which will be mentioned in the following chapters.

An algorithm for solving the general SCLP cannot be applied directly for
the above case, though it may provide a high volume utilization of the con-
tainer. However, such an algorithm cannot guarantee that all of the high-
priority items will be loaded into the container (Figure 14(a)). Sequential
loading (first loading the high-priority items, then loading the low-priority
items) can require the high-priority items to be loaded into the container,
but it is difficult to obtain both high volume utilization and packing stability
because of the strict packing order (Figure 14(b)).

Note that the SCLPSP considers that all items in the same container will be
unloaded at the same destination. It does not consider the positions of items in
the same container, i.e., the high-priority items can be stowed anywhere inside
the container (Figure 14(c)). Appropriate allocation of the items is determined
by the volume utilization of the container and the priorities of the items.

The TRS SCLP algorithm can be generalized and adapted to solve the
SCLPSP when the constraint of shipment priority is considered. The general-
ized tree search algorithm is called TRS SCLPSP.

Five alternative evaluations (E1 - E5) are defined in algorithm HEURI SCLP
for block selection. Similarly, the following two criteria are proposed for the
proper allocation of the high- and low-priority items:

(P1): Select a block composed of high-priority items.

(P2): Select a block composed of low-priority items.

These two criteria can be combined with evaluations E1 - E5 to constitute

30

Figure 14: Three Loading Models.

Figure 15: Tree Search for SCLPSP.

ten evaluations for block selection: P1E1, P1E2, P1E3, P1E4, P1E5, P2E1,
P2E2, P2E3, P2E4, P2E5. For example,

P1E2 =

{
bw × bh , if the item is high priority,
−∞ , if the item is low priority;

(2.23)

P2E2 =

{
−∞ , if the item is high priority,
bw × bh , if the item is low priority.

(2.24)

Similar to the TRS SCLP algorithm, the blocks that achieve the highest
values for one of the ten evaluations are called feasible blocks, and these blocks
constitute the branches of the search tree (Figure 15).

Considering the characteristics of the SCLPSP, any infeasible solution (or
partial solution) that violates the priority constraint must be eliminated. In
detail, the process can be described as follows:

(i) For each solution, if high-priority items are left behind, the solution is
eliminated.

(ii) For each partial solution, the total volume of the residual high-priority

31

items and the total volume of the usable spaces are calculated. If the former
exceeds the latter, then the partial solution is eliminated.

The procedure of deleting the infeasible partial solutions, as mentioned in
(ii), is explained in terms of pseudo-code (Table 3).

Table 3: Delete Infeasible Partial Solutions

Input: space list, Sol.

Output: Sol.

for all partial solution in partial solution list do

high priority volume:= 0;

usable volume:= 0;

for all item types do

if current item type is high priority then

high priority volume := high priority volume + residual volume

of current item type;

endif

endfor

for all space in space list do

if current space is not marked as ‘unusable’ then

usable volume := usable volume + volume of current space;

endif

endfor

if high priority volume > usable volume then

delete current partial solution from partial solution list;

endif

endfor

The pseudo-code of the TRS SCLPSP algorithm is shown in Table 4.

Then the TRS SCLPSP algorithm is incorporated in algorithm EXAC SCLP
to generate the exact algorithm for SCLPSP (EXAC SCLPSP).

2.5 Computational Results

The proposed approach was implemented in Visual C++ 2003 under Windows
XP. All tests were performed on an Intel Core 2 U9300 PC (1.2 GHz, 2 GB
RAM).

Two well-known reference problem sets from literature are used for bench-
marking purposes. These are the 15 test problems from Loh and Nee (1992)

32

Table 4: Algorithm TRS SCLPSP

Input: items, container.

Output: MaxU (maximum utilization of container).

initialize MaxU = 0;

initialize Sol :={empty container};// the set of all partial solutions

while Sol ̸= ∅
for all partial solutions in Sol do

for all feasible blocks that achieve the largest value for one of the

five evaluations (P1E1 - P2E5) do

add current feasible block to current partial solution to generate

a new partial solution;

add the new partial solution to Sol;

endfor

if no item could be packed into the container and no high-priority

items are left behind the volume and utilization of current partial

solution is higher than MaxU then

MaxU := volume utilization of the current partial solution;

endif

delete infeasible partial solutions;

delete current partial solution from Sol;

endfor

delete the partial solutions that have identical evaluation function value;

select breadth best partial solutions from Sol;

endwhile

(LN data) and the 700 test problems from Bischoff and Ratcliff (1995) (BR
data). For the LN data, the number of item types ranges from 6 to 10, and
the number of available items ranges from 100 to 250. Therefore the prob-
lems are weakly heterogeneous. The BR data are divided into seven groups
(BR1 - BR7) each containing 100 problems. With respect to the item types
and numbers, the seven groups vary from weakly heterogeneous to strongly
heterogeneous. Each group is distinguished by the number of different item
types which increases from 3 types of BR1 to 20 types of BR7. The average
number of items in each type is 50.2 for BR1, but decreases continuously and
is only 6.5 for BR7. The container used in the BR data is the standard ISO
20FT container with three dimensions of 587cm × 233 cm × 220 cm.

Due to the lack of universally acknowledged test data for the SCLPSP, the
test problems were generated from the above problems by adding shipment
priorities to the different item types.

33

Figure 16: Volume Utilization in Different breath Values.

Figure 17: Running Time In Different breath Values.

A large number of experiments were carried out according to different values
of the breadth parameter. Figure 16 and 17 show how the solution quality
and the running times are affected by different values for breadth parameter.
As shown in the two figures, for LN02 and LN06, breadth ≥ 100 guarantees
a stable, high volume utilization within a reasonable running time. Similar
results were also obtained with other data. Therefore, the breadth parameter
was set at 100.

In section 2.5.1.2 and 2.5.2.2, the shipment priority is considered and more
branches are generated at each node of the search tree. Therefore, a larger
value of breadth guarantees a stable, high volume utilization within a rea-
sonable running time. A large number of experimental results showed that
breadth ≥ 1000 guarantees a stable, high volume utilization.

34

Figure 18: Illustrative Result of LN02.

2.5.1 Computational Results for the LN Data

2.5.1.1 Results for SCLP

The proposed EXAC SCLP algorithm has been compared with the following
seven approaches:

• BR 1995: the heuristic approach of Bischoff and Ratcliff (1995).

• BG 1998: the TS of Bortfeldt and Gehring (1998).

• EL 2002: the tree search approach of Eley (2002).

• TT 2004: the GA of Techanitisawad and Tangwiwatwong (2004).

• MO 2005: the GRASP approach of Moura and Oliveira (2005).

• LI 2007: the hybrid metaheuristic approach of Liang et al. (2007).

• WA 2008: the tree search approach of Wang et al. (2008).

Table 5 shows the volume utilization (%) obtained from the eight algo-
rithms, including the proposed EXAC SCLP algorithm. We found that in
most problems other than LN02 and LN06, all items could be packed into
one container by most algorithms. The best results for LN02 and LN06 were
obtained with the proposed EXAC SCLP algorithm. Therefore, the proposed
EXAC SCLP algorithm obtained the highest average volume utilization for
all 15 problems. For highlighting, the average volume utilization for LN02
and LN06 are also listed. These results show that the proposed EXAC SCLP
algorithm has high validity for the general SCLP in comparison with other
algorithms.

For the EXAC SCLP algorithm, the time limit for each case is set to 300
seconds. The average running time is 72 seconds.

An illustrative result of LN02 is shown in Figure 18.

35

Table 5: Results for LN Data.
BR BG EL TT MO LI WA EXAC

Case 1995 1998 2002 2004 2005 2007 2008 SCLP

LN01 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5

LN02 90.0(35) 96.7(28) 90.8(53) 91.3(31) 92.6(19) 89.7(*) 90.7(35) 97.9(25)

LN03 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4

LN04 55 55 55 55 55 55 55 55

LN05 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2

LN06 83.1(77) 96.2(32) 87.9(44) 90.5(52) 91.7(28) 91.4(*) 92.9(37) 96.3(21)

LN07 78.7(18) 84.7 84.7 84.7 84.7 84.6(*) 84.7 84.7

LN08 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4

LN09 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9

LN10 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3

LN11 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2

LN12 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5

LN13 78.1(20) 85.6 85.6 85.6 85.6 85.6 85.6 85.6

LN14 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8

LN15 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5

Ave. 68.60 70.90 69.90 70.10 70.30 70.00 70.20 70.93

Ave1. 86.55 96.45 89.35 90.90 92.15 90.55 91.80 97.10

Note: the number of remaining items is given in parentheses;

(*) denotes the occurrence of remaining items, but the number of items is not provided.

Ave. denotes average value for all the cases, and Ave1. denotes average value for LN02 and LN06.

2.5.1.2 Results for SCLPSP

Algorithm EXAC SCLPSP was used for the test of shipment priority. The
test problems were generated from the LN problems by randomly setting the
shipment priorities of the item types. As shown in Table 6, for example,
the problem ”LN01&02” was generated by combining the problems LN01 and
LN02. The items in LN01 were all set to high priority, and the items in LN02
were all set to low priority. The problem ”LN02 1” was generated from LN02
by setting the first four item types to high priority and the last four item types
to low priority.

As shown in Table 6, even though some problems were generated from the
same problem (LN02 or LN06), their volume utilizations differed depending on
the assigned priorities. The results show that volume utilization depends not
only on the item types, but also on the priorities of the items. The average of
the volume utilizations for LN02 1 - LN02 5 is 97.00%, which is higher than the
results of all the algorithms except for the proposed EXAC SCLP algorithm
in Table 5 for LN02. The average of the volume utilizations for LN06 1 -
LN06 5 is 95.37%, which is higher than the results of all the algorithms except
for the BG 1998 approach and the proposed EXAC SCLP algorithm in Table
5 for LN06. The results show that, despite the addition of a new constraint
(shipment priority), the proposed algorithm obtains better results than most
algorithms that do not consider the shipment priority in Table 5.

The average running time for algorithm EXAC SCLPSP is 1012 seconds,
which is larger than that of EXAC SCLP, because the parameter breadth is
larger, and the shipment priority has been taken into account.

An illustrative result of LN01&02 is shown in Figure 19.

36

Table 6: Results for LN Data Considering Priority.

Original High Low Volume

Case Case Priority Priority Utilization (%)

LN01&02 LN01, LN02 LN01 LN02 99.3

LN02 1 LN02 1,2,3,4 5,6,7,8 97.27

LN02 2 LN02 5,6,7,8 1,2,3,4 96.94

LN02 3 LN02 1,2,3,4,5 6,7,8 97.27

LN02 4 LN02 4,5 1,2,3,6,7,8 97.14

LN02 5 LN02 1,3,5,7 2,4,6,8 96.39

LN06 1 LN06 1,2,3,4 5,6,7,8 95.97

LN06 2 LN06 5,6,7,8 1,2,3,4 94.37

LN06 3 LN06 7,8 1,2,3,4,5,6 95.74

LN06 4 LN06 1,2,3,4,5 6,7,8 95.31

LN06 5 LN06 1,3,5,7 2,4,6,8 95.45

Ave. 96.47

Figure 19: Illustrative Result of LN01&02.

2.5.2 Computational Results for BR Data

2.5.2.1 Results for SCLPS

The proposed EXAC SCLP algorithm has been compared with the following
seven approaches:

• BG 1998: the TS of Bortfeldt and Gehring (1998).

• GB 2002: the parallel GA of Gehring and Bortfeldt (2002).

• EL 2002: the tree search approach of Eley (2002).

• MA 2004: the parallel hybrid local search of Mack et al. (2004).

• BI 2006: the heuristic approach of Bischoff (2006).

37

• PA 2008: the GRASP approach of Parrenõ et al. (2008).

• FB 2010: the tree search approach of Fanslau and Bortfeldt (2010).

The average volume utilizations (%) of each problem are shown in Ta-
ble 7. The proposed EXAC SCLP algorithm competed well with the other
approaches. Only the FB 2010 approach achieved higher average volume uti-
lization for the 700 problems. The highest average volume utilization for BR5
was obtained with the proposed EXAC SCLP algorithm.

The average running time of the EXAC SCLP algorithm is 932 seconds.

Table 7: Results for BR Data.

BG GB EL MA BI PA FB EAXC

Case 1998 2002 2002 2004 2006 2008 2010 SCLP

BR1 92.63 88.1 88 93.7 89.39 93.85 94.51 93.9

BR2 92.7 89.56 88.55 94.3 90.26 94.22 94.73 94.54

BR3 92.31 90.77 89.5 94.54 91.08 94.25 94.74 94.35

BR4 91.62 91.03 89.3 94.27 90.9 94.09 94.41 94.08

BR5 90.86 91.23 89 93.83 91.05 93.87 94.13 94.17

BR6 90.04 91.28 89.2 93.34 90.7 93.52 93.85 93.52

BR7 88.63 91.04 88 92.5 90.44 92.94 93.2 92.9

Ave. 91.26 90.43 88.79 93.78 90.55 93.82 94.22 93.92

Table 8 shows the frequencies of the evaluations E1 - E5 in the experiment
on the BR problems. For example, in BR1, 1088 blocks were packed into 100
containers, out of which 978 blocks achieved the highest value with E1 and 570
blocks with E2. The evaluation E1 is used more often than other evaluations
(90.6%). It should be noted that in some cases, a block achieves the highest
value with multiple evaluations; therefore, the sum of the frequencies of E1 -
E5 is larger than the total number of the packed blocks.

Table 8: Frequencies of the Five Evaluations.

Case E1 E2 E3 E4 E5 Total

BR1 978(89.9%) 570(52.4%) 536(49.3%) 563(51.7%) 529(48.6%) 1088

BR2 1397(89.6%) 856(54.9%) 776(49.8%) 798(51.2%) 833(53.4%) 1559

BR3 1823(87.9%) 1152(55.5%) 945(45.5%) 949(45.7%) 1096(52.8%) 2075

BR4 2132(90.3%) 1283(54.3%) 1056(44.7%) 1068(45.2%) 1235(52.3%) 2361

BR5 2538(92.7%) 1444(52.7%) 1208(44.1%) 1309(47.8%) 1389(50.7%) 2738

BR6 2751(91.1%) 1624(53.8%) 1352(44.8%) 1429(47.3%) 1619(53.6%) 3019

BR7 3264(91.0%) 1932(53.9%) 1518(42.3%) 1656(46.2%) 1888(52.6%) 3586

Total 14883(90.6%) 8861(53.9%) 7391(45.0%) 7772(47.3%) 8589(52.3%) 16426

38

2.5.2.2 Results for SCLPSP

As shown in Table 9, the test problems of SCLPSP were generated from prob-
lems BR1, BR4 and BR7 by adding different priorities in the following manner:
BR1 1, BR4 1 and BR7 1 were generated by setting the first [n/2] (n is the
number of item types in each problem) item types to high priority and the
remaining item types to low priority, and BR1 2, BR4 2 and BR7 2 were gen-
erated by setting the last [n/2] item types to high priority and the remaining
item types to low priority. Despite the addition of the shipment priority con-
straint, high volume utilizations were obtained.

The average running time of the EXCA SCLPSP algorithm for each prob-
lem is 1825 seconds.

Table 9: Results from BR Data Considering Priority.

High Low Volume

Case Priority Priority Utilization (%)

BR1 1 1 2, 3 93.45

BR1 2 3 1, 2 93.48

BR4 1 1,2,. . . ,5 6,7,. . . ,10 92.99

BR4 2 6,7,. . . ,10 1,2,. . . ,5 93.14

BR7 1 1,2,. . . , 10 11,12,. . . ,20 91.75

BR7 2 11,12,. . . ,20 1,2,. . . ,10 91.74

Ave. 92.76

2.6 Conclusions

In the literature, mostly heuristic or metaheuristic algorithms have been pro-
posed for the SCLP. In this paper an exact algorithm (EXAC SCLP) has been
proposed for solving the problem. Different from existing heuristic or meta-
heuristic algorithms, the proposed algorithm searches for optimal solution in
the global solution space. Therefore, given enough computing time, stable and
high-quality solution is guaranteed. An effective method to generate possible
points for packing items has been proposed, which greatly reduces the search
scope.

The SCLP is NP-hard. Thus the proposed exact algorithm is not a polynomial-
time algorithm. For reducing the computing time, a heuristic method has been
incorporated. Therefore the algorithm suits for both small and large instances
because both solution quality and computing time are considered.

The heuristic method is a tree search method based on the greedy heuristic
with five evaluations (TRS SCLP). Five alternative evaluations for the utiliza-
tion of one, two and three dimensions of the container space have been defined

39

for block selection. The different blocks selected by each evaluation constitute
the branches of the search tree. A method of space splitting and merging has
also been embedded in the algorithm for making efficient use of the container
space.

The 15 test problems generated by Loh and Nee (1992) and the 700 test
problems generated by Bischoff and Ratcliff (1995) has been used to examine
the validity of the EXAC SCLP algorithm. The computational results show
that the EXAC SCLP algorithm obtains the highest average volume utilization
for the LN problems and the second highest average volume utilization for the
BR problems compared to the other algorithms.

A tree search considering the shipment priority (TRS SCLPSP) gener-
alized from the TRS SCLP has been proposed to solve the SCLPSP. The
TRS SCLPSP has been incorporated in the exact algorithm for solving SCLPSP.
The computational results show that the volume utilization depends not only
on the item type but also on the priorities of the items. High volume utiliza-
tion has been obtained despite the addition of the shipment priority constraint.
Thus, the proposed algorithm for shipment priority is considered to be useful
for solving practical problems with shipment priority. This constraint of ship-
ment priority is important, for both the multiple CLP and the 3L-CVRP, as
mentioned in the following chapters.

40

3.

Chapter 3

Multiple Container Loading Prob-

lem

3.1 Problem Formulation of MCLP

The following notations are used in the formulations of multiple container
loading problems.

θ number of the container types.
t number of the packed containers.
vi volume of an item of type i (i = 1, . . . ,m).
µi value per unit volume of an item of type i

(thus, the value of an the item of this type is = viµi, i = 1, . . . ,m).
ek available number of containers of type k (k = 1, . . . , K).
φk volume of a container of type k (k = 1, . . . , K).
uk number of packed containers of type k (k = 1, . . . , K).
sij number of items of type i packed in the j-th

packed container (i = 1, . . . ,m; j = 1, . . . , t).

Other notations, such as the set of items I, have already been defined in
Section 2.1, Chapter 1.

The three-dimensional bin packing problem (3DBPP) can then be formu-
lated as follows.

[3DBPP]

Minimize
θ∑

k=1

ukφk, (3.1)

41

subject to
t∑

j=1

sij = ni,∀i = 1, 2, . . . ,m. (3.2)

The corresponding three-dimensional knapsack problem (3DKP) is stated
as follows.

[3DKP]

Maximize.
m∑
i=1

t∑
j=1

aijviµi, (3.3)

subject to
t∑

j=1

sij ≤ ni,∀i = 1, 2, . . . ,m. (3.4)

The rest of this chapter is organized as follows. Section 2.2 presents multiset
partition model for MCLP. Section 3.3 and 3.4 provide exact and heuristic
algorithms for MCLP, respectively. Section 3.5 presents the computational
experiments and Section 3.6 summarizes this chapter.

3.2 Set Partition and Multiset Partition

The 3DBBP is belong to the class of partition problems, i.e., the set of items
should be partitioned into some containers. A partition of a set is a set of
nonempty subsets such that every element of the set is in exactly one of these
subsets.

Example 3.1 (set partition): The set { 1, 2, 3 } has these five partitions:

{ {1}, {2}, {3} }.
{ {1, 2}, {3} }.
{ {1, 3}, {2} }.
{ {1}, {2, 3} }.
{ {1, 2, 3} }.
The total number of partitions of an n-element set is the Bell number as

follows (Rota, 1964):

1

e

∞∑
i=1

in

i!

Here e is the base of natural logarithm. Therefore it is very time consuming
for generating all the partitions of a set. Particularly, in the 3DBBP for each
partition of the items, a SCLP algorithm should be used to check whether the
items in each subset can be packed into a container.

In real world instance, especially in mass production, usually some items
have the same size, permitted orientations and other characteristics. As men-
tioned before, the items is denoted by a mutiset {1 · n1, . . . ,m · nm} , here ni

42

is the number of items of type i (i = 1, 2 . . . ,m). Therefore the partition of
items is a partition of multiset. Consideration of multiset partition can greatly
reduce the repetition of set partition.

Example 3.2 (repetitions in set partition): For a set 1, 2, 3, 4, 5, if the item
1 and 2 are the same, and 3, 4, 5 are the same. The following partitions are
the same partition:

{ {1, 3}, {2, 4, 5} },
{ {1, 4}, {2, 3, 5} },
{ {1, 5}, {2, 3, 4} },
{ {2, 3}, {1, 4, 5} },
{ {2, 4}, {1, 3, 5} },
. . .

As mentioned by Yorgey and Parker (2007), a partition of multiset can be
transferred to a partition of vector. Knuth (2005) proposed an algorithm to
generate all the partitions of multiset. However, in the MCLP, considering the
capacity of container, not all the partitions are feasible. In the next section,
we propose a exact algorithm for the MCLP, which is based on the partition
of multiset.

3.3 Exact Algorithm For MCLP

For simplicity, we only consider the 3DBPP for single bin size bin packing
problem. Hence the problem can be be formulated as follows.

Minimize t, (3.5)

subject to
t∑

j=1

sij = ni, ∀i = 1, 2, . . . ,m. (3.6)

Other types of MCLPs can be solved analogously.

A solution of the 3DBPP is substantially a partition of the multiset I (i.e.,
m types of items are assigned into t packed containers). The whole number
of items of each type is denoted by vector N = (n1, . . . , nm), and the number
of items of each type assigned into the j-th packed container is denoted by
vector sj = (s1j, . . . , smj) (j = 1, . . . , t). If constraint (3.6) holds, we say that
S = {s1, . . . , st} is a partition of N . In MCLP, considering the capacity of
container, not all the partitions are feasible.

Without loss of generality, we assume that the packed containers are sorted
in nonincreasing order of volume utilization. Obviously the following con-
straints hold, which greatly reduce the search scope:

m∑
i=1

si1vi ≤ LWH, (3.7)

43

Table 10: Algorithm EXAC MCLP

Input: items, container.

Output: MinN (minimum number of packed containers).

initialize MinN by using the priority-considering approach;

set t :=MinN ;

sort the item types in decreasing order of item volume;

while (t > 0)

if t = the continuous lower bound then

return;

endif

t = t− 1;

partial solution list:= {(0, . . . , 0)};
for k = 0, . . . , t− 1 do

temp partial solution list:= ∅;
for all partial solution in partial solution list do

for all possible values of sk+1 which satisfy (3.7) - (3.10) do

generate a new partial solution;

if the sum volume of items represented by sk+1 is larger than

the volume of container then

continue;

endif

if the items represented by sk+1 cannot be packed into a

container by using the algorithm EXAC SCLP then

continue;

endif

calculate lower and upper bound of the new partial solution;

if MinN < the lower bound of the new partial solution then

continue;

endif

add the new partial solution to temp partial solution list;

if MinN > the upper bound of the new partial solution then

MinN := the upper bound of the new partial solution;

endif

endfor

endfor

if temp partial solution list= ∅ then

return;

endif

partial solution list:=temp partial solution list;

endfor

endwhile

44

m∑
i=1

si(k+1)vi ≤
m∑
i=1

sikvi, ∀k = 1, . . . , t− 2, (3.8)

m∑
i=1

si(k+1)vi ≥ (
m∑
i=1

nivi −
k∑

j=1

m∑
i=1

sijvi)/(t− k),

∀k = 0, . . . , t− 2, (3.9)
m∑
i=1

sitvi =
m∑
i=1

nivi −
t−1∑
j=1

m∑
i=1

sijvi. (3.10)

We propose a branch and bound algorithm (algorithm EXAC MCLP) to
solve the MCLP. In the proposed algorithm, first we initialize the number of
packed containers t by using the heuristic algorithm (the priority-considering
approach mentioned in Section 3.4). If t equals the continuous lower bound
(the total volume of items divided by the volume of a container, Martello et
al., 2000), then output t as the optimal solution. Otherwise, set t := t− 1 and
use a branching tree to assign items to t packed containers without specifying
their actual positions. The root node is (0, . . . , 0), which means that no item
has been assigned to the packed containers. Each node in depth k of the tree
denotes a partial solution {s1, . . . , sk}, and all of the possible values of sk+1

that satisfy (3.7) - (3.10) are generated in its child nodes. For each of the child
nodes, the SCLP algorithm is used to test whether the items can be packed
into a container. If the answer is negative, the node is killed.

For decreasing the computing time, we calculate the upper bound (by using
the priority-considering approach mentioned in the next section) and the con-
tinuous lower bound of each node. The minimum value of the upper bounds
serves as the current solution. If the lower bound of a node is more than the
current solution, the node is killed.

Algorithm EXAC MCLP is described by the pseudo-code in Table 10.

3.4 The Priority-Considering Approach for MCLP

3.4.1 The Approach for 3DBPP

The item types are sorted in decreasing order of item volume. From practi-
cal experiments, we know that large items are usually more difficult to pack
efficiently into the container space than small items. The pre-assignment of
the large items can prevent them being left to the end and thus improve the
utilization of the containers. However, no simple and efficient criterion has
been found so far to distinguish between a large and a small item. For this
reason, different divisions attempted, i.e., the division parameter d can vary
from 0 to m− 1. In the case d = 0, all items are set to low priority, and in the
cases d > 0, the first d item types are set to high priority and are pre-assigned.

45

Table 11: Algorithm PRI BBP

Input: items, containers.

Output: MinV (minimum of the total volume of the containers used).

initialize MinV := ∞;

initialize PList := Φ;//the packed-container list

sort the item types in decreasing order of item volume;

sort the container types in decreasing order of container volume;

for d = 1, 2, . . . , I − 1 do

use LMC BBP to get PList;//LMC BBP: load multiple containers

if MinV is larger than the container volume of PList then

set MinV := the container volume of PList;

endif

endfor

Table 12: Procedure LMC BBP

Input: items, containers, d.

Output: PList.

set PList := Φ

initialize PCont := empty container;// packed-container

initialize TempPCont := empty container;// temporary packed-container

set the residual number of items of each type (r1, r2, . . . , rm) := (n1, n2, . . . , nm);

set the first d item types to high priority and the remaining types to low priority;

while there exist residual items do

for container types k = 1, 2, . . . , K do

use LOCP to get TempPCont;//LOCP: load one container considering

// priority

if the volume utilization of TempPCont is larger than that of PCont

then

PCont := TempPCont;

endif;

endfor;

add PCont to PList;

URNI;// update the residual number of items

endwhile

The best result from the I attempts is selected as the final result. The com-

46

putational results with different values of the division parameter d are shown
in Table 16, Section 3.5.

Note that when there are different container types (MBSBPP or RBPP),
a greedy criterion is used for choosing the container type, i.e., the container
type that achieves the highest volume utilization ratio is chosen. If all of the
containers are identical (SBSBPP), then the choosing of the container type
can be ignored.

The priority-considering approach for the 3DBBP (algorithm PRI BBP)
is described by the pseudo-code in Table 11. Table 12 shows the procedure
LMC BBP (load multiple containers), which is used in the algorithm PRI BBP.

The procedure LOCP (load one container considering priority), which is
used in the procedure LMC BBP, is described as follows.

[procedure LOCP]

Input: items, containers, k, d.

Output: TempPCont.

• Step 1(Pre-Load by the SCLP Algorithm): If d = 0, or if no residual
high-priority items exist, pack the low-priority items into a container of
type k by using the SCLP algorithm. Set TempPCont := the packed-
container and then stop. Otherwise, pack the high-priority items in the
container by using the SCLP algorithm. Denote the number of high-
priority items packed in the container by (a01, a

0
2, . . . , a

0
d). Empty the

packed-container.

• Step 2(Load by the SCLPSP Algorithm): Pack all the items (high- and
low-priority items) in the container by using the SCLPSP algorithm, in
which the high-priority items are packed with the constrained numbers
(a01, a

0
2, . . . , a

0
d). Set TempPCont := the packed-container. If no residual

low-priority items exist, or some low-priority items have been packed
into the container, then stop. Otherwise if the volume utilization of
TempPCont is larger than a given value (parameter LeastU), stop.

• Step 3((Improve the Packed-Container): Generate another integer ar-
ray (a∗1, a

∗
2, . . . , a

∗
d) to replace (a01, a

0
2, . . . , a

0
d). Here (a∗1, a

∗
2, . . . , a

∗
d) is the

solution of the following one-dimensional knapsack problem:

Maximize
d∑

i=1

a∗i vi, (3.11)

subject to
d∑

i=1

a∗i vi <
d∑

i=1

a0i vi, (3.12)

a∗i ≤ ni, ∀i = 1, 2, . . . , d. (3.13)

The above problem can be easily solved, for example, by a dynamic
programming. If there exists a solution of the problem, pack all the
items in the container by using the SCLPSP algorithm, in which the high-
priority items are packed with the constrained numbers (a∗1, a

∗
2, . . . , a

∗
d).

47

If the volume utilization of the packed-container is higher than that of
TempPCont, set TempPCont := the packed-container.

Table 13: Algorithm PRI KP

Input: items, containers.

Output: MaxV (maximum of the sum value of packed items.

sort the item types in decreasing order of µi and increasing order of item volume;

sort the container types in decreasing order of container volume;

initialize MaxV := 0;

find the greatest number m∗ for which the sum of the volumes of the first m∗

items does not exceed the sum of the volumes of the containers;

initialize FulPack :=FALSE;// FulPack: whether the first m∗ items have been

//fully packed into the containers

initialize Low := 0;// low value for the binary search

initialize High := m∗; // high value for the binary search

while High >= Low do

set m∗ := (High+ Low)/2;

set i∗:= the least index for which
∑i∗

i=1 ni ≥ m∗; // i.e., the m∗-th item is of

// the i∗-th item type

set n∗ := m∗ −
∑i∗−1

i=1 ni;

for d = 0, 1, . . . , i∗ − 1 do

use LMC KP to get MaxV and FulPack; // LMC KP: load multiple

// containers

endfor

if FulPack = TRUE then

Low := m∗ + 1;

else

High := m∗ − 1;

endif

endwhile

Step 3 serves to prevent the container space from being occupied only by
the high-priority items and the volume utilization from being too low (less
than the parameter LeastU). The volume of the high-priority items in the
container is reduced slightly to allow the low-priority items to be packed in.

The procedures URNI (update the residual number of items), which is used
in the procedure LMC BBP, is described as follows: For a packed-container in
which the numbers of packed items of each type are (a1, a2, . . . , am), update
the residual number of items (r1, r2, . . . , rm) := (r1 − a1, r2 − a2, . . . , rm − am).

48

Table 14: Procedure LMC KP

Input: items, containers, d,m∗, n∗, i∗.

Output: MaxV, FulPack.

set the residual number of items of each type to be (n1, n2, . . . , ni∗−1, n
∗, ni∗+1,

. . . , nI);

set the residual number of containers of each type to be (e1, e2, . . . , eK);

from the first i∗ item types, find the d item types with the largest item volumes,

and set them to high priority and the remaining i∗ − d types to low priority;

while there exist residual containers and residual items do

pack the first i∗ item types in the first residual container by using LOCP;

// described in Section 4.1

if i∗ < I then

RPC;// reload the packed-container

endif

URNI;// update the residual number of items (described in Section 3.4.1)

the residual number of containers of the corresponding type is decreased by 1;

endwhile

if MaxV < the sum value of packed items then

MaxV := the sum value of packed items;

endif

if the first m∗ items have been fully packed into the containers then

FulPack :=TRUE;

else

FulPack :=FALSE;

endif

3.4.2 The Approach for 3DKP

The item types are sorted according to the following criteria:

• Main criterion: decreasing order of µi (value per unit volume of the
item).

• Tie-breaker: increasing order of item volume.

The main criterion is similar to the greedy criterion for the one-dimensional
knapsack problem proposed by Dantzig (1957). The tie-breaker is to ensure
that as many of the smaller items as possible are packed because they more
easily make efficient use of the container space.

Because the available container space is not enough to pack all the items,
it is necessary to choose a sub-set of items to be packed so that the total value

49

of the packed items is as large as possible. The proposed approach is a greedy
approach that searches for the greatest number m∗ for which the first m∗ items
(note: not item types) can be fully packed into the containers. A binary search
is used to decrease the search time.

The choosing of a container type is not considered because the available
number of containers of each type is certain and finite. The given containers are
sorted in decreasing order of container volume and are loaded one by one. The
approach can be applied to MILOPP, MHLOPP, MIKP and MHKP, because
it has no special requirement on the assortment of containers or items.

The priority-considering approach for the 3DKP (algorithm PRI KP) is
described by the pseudo-code in Table 13. Table 14 shows the procedure
LMC KP (load multiple containers), which is used in the algorithm PRI KP.

The procedure RPC (reload the packed-container), which is used in the
procedure LMC KP, is described as follows: Reload the packed-container. Here
the item types i∗ + 1, i∗ + 2, . . . ,m can be packed, but the packed numbers of
items of the first i∗ types must be kept. In fact, it is a SCLPSP in which the
first i∗ item types are high priority, the last m− i∗ types are low priority, and
the constrained numbers are the packed numbers of items of the first i∗ types.

3.5 Computational Results

The proposed EXAC MCLP algorithm was implemented in Visual C++ 2003
under Windows XP. All tests were performed on an Intel Core 2 U9300 PC
(1.2 GHz, 2 GB RAM). In the next sections, the results of exact and heuristic
algorithms for the SCLP and MCLP are shown, respectively.

The following test cases are used for benchmarking purposes.

• IV1: 47 test cases of 3DBPP with one container type (Ivancic et al.,
1989)

• IV2: 17 test cases of 3DBPP with two or three container types (Ivancic
et al., 1989)

• MO: 13 test cases of 3DKP with two or three container types (Mohanty
et al., 1994)

A large number of computational experiments have been carried out for
setting the breadth parameter (in the SCLP algorithm and SCLPSP algorithm)
and the leastU parameter (Step 2 of the procedure LOCP, Section 3.4.1). For
the sake of brevity, these computational experiments are not described in detail
in this paper. Using these experiments, the breadth parameter was set to 50
and the leastU parameter was set to 90% because such values guarantee stable,
high volume utilization in reasonable computing time for most test cases. The
computing time of the EXAC BPP algorithm for each case was limited to 30
minutes.

The proposed EXAC MCLP algorithm has been compared with the follow-
ing approaches:

50

Table 15: Comparative Results for IV1 data

Case IV 1989 BR 1995 BO 2000 EL 2002 EL 2003 TA 2008 EXAC MCLP
1 26 27 25 26 25 25 25*
2 11 11 10 10 10 10 10*
3 20 21 20 22 20 20 19*
4 27 29 28 30 26 26 26*
5 65 61 51 51 51 51 51
6 10 10 10 10 10 10 10*
7 16 16 16 16 16 16 16*
8 5 4 4 4 4 4 4*
9 19 19 19 19 19 19 19*
10 55 55 55 55 55 55 55*
11 18 19 18 18 17 16 16*
12 55 55 53 53 53 53 53*
13 27 25 25 25 25 25 25
14 28 27 28 27 27 27 27*
15 11 11 11 12 11 11 11*
16 34 28 26 26 26 26 26*
17 8 8 7 7 7 7 7*
18 3 3 2 1 2 2 2*
19 3 3 3 2 3 3 3*
20 5 5 5 2 5 5 5*
21 24 24 21 26 20 20 20
22 10 11 9 9 8 9 8*
23 21 22 20 21 20 20 20
24 6 6 6 6 6 5 5*
25 6 5 5 5 5 5 5
26 3 3 3 3 3 3 3*
27 5 5 5 5 5 5 4*
28 10 11 10 10 10 10 10
29 18 17 17 18 17 17 17
30 24 24 22 23 22 22 22
31 13 13 13 14 13 13 13
32 5 4 4 4 4 4 4*
33 5 5 5 5 5 5 4*
34 9 9 8 9 8 8 8
35 3 3 2 2 2 2 2*
36 18 19 14 14 14 14 14*
37 26 27 23 23 23 23 23*
38 50 56 45 45 45 45 45*
39 16 16 15 15 15 15 15
40 9 10 9 9 8 9 8*
41 16 16 15 15 15 15 15
42 4 5 4 4 4 4 4*
43 3 3 3 3 3 3 3*
44 4 4 3 4 4 3 3*
45 3 3 3 3 3 3 3
46 2 2 2 2 2 2 2*
47 4 3 3 3 3 3 3*

Total 763 763 705 716 699 698 693

Here’*’ means the optimal solution.

• IV 1989: a sequential strategy (Ivancic et al., 1989).

• MO 1994: a sequential strategy (Mohanty et al., 1994).

51

Table 16: Results for IV1 data with Different Values of d
Case d = 0 d = 1 d = 2 d = 3 d = 4 Min.
1 27 25 - - - 25
2 11 10 - - - 10
3 21 24 21 19 - 19
4 29 28 26 28 - 26
5 62 51 51 59 - 51
6 10 10 10 - - 10
7 16 16 16 - - 16
8 4 5 4 - - 4
9 19 19 - - - 19
10 55 55 - - - 55
11 16 16 - - - 16
12 53 53 53 - - 53
13 25 25 25 - - 25
14 28 28 27 - - 27
15 11 11 11 - - 11
16 28 26 26 - - 26
17 8 7 8 - - 7
18 2 2 2 - - 2
19 3 3 3 - - 3
20 5 5 5 - - 5
21 22 20 20 21 22 20
22 8 10 10 9 8 8
23 21 21 21 21 20 20
24 5 6 6 6 - 5
25 5 5 5 5 - 5
26 3 3 3 3 - 3
27 4 5 5 - - 4
28 10 10 10 - - 10
29 17 17 17 17 - 17
30 23 24 23 22 - 22
31 13 13 13 13 - 13
32 4 4 4 - - 4
33 5 5 4 - - 4
34 9 8 8 - - 8
35 2 2 - - - 2
36 18 14 - - - 14
37 26 23 25 - - 23
38 47 45 45 - - 45
39 15 15 15 - - 15
40 9 9 8 9 - 8
41 17 15 15 17 - 15
42 4 4 4 - - 4
43 3 3 3 - - 3
44 3 4 3 - - 3
45 3 3 3 3 - 3
46 2 2 2 2 - 2
47 3 4 3 3 - 3

Total 734 713 - - - 693

• BR 1995: a sequential strategy (Bischoff and Ratcliff, 1995).

• BO 2000: a sequential strategy (Bortfeldt, 2000).

• EL 2002: a sequential strategy (Eley, 2002).

52

• EL 2003: a bottleneck approach (Eley, 2003).

• TA 2008: a local search approach (Takahara, 2008).

Table 17: Comparative Results for IV2 data

IV 1989 BO 2000 EL 2003 TA 2008 EXAC MCLP

Case Ave(Cont)∗ Ave(Cont) Ave(Cont) Ave(Cont) Ave(Cont)

1 71.8(26/0) 74.7(25/0) 74.7(25/0) 74.7(25/0) 74.7(25/0)

2 97.6(7/13/6) 95.1(1/19/11) 99.9(2/13/17) 99.7(7/15/1) 99.1(2/22/3)

3 97.6(4/6/1) 99.7(4/1/2) 99.7(7/4/0) 99.6(7/1/0) 99.7(4/1/2)

4 85.8(10/1/7) 86.8(16/0/2) 87.4(2/0/14) 87.1(9/0/8) 87.4(2/0/14)

5 95.8(3/0/26) 97.9(7/0/23) 99.4(3/0/25) 98.7(1/1/25) 98.7(0/5/20)

6 92.2(7/6/1) 96.6(8/5/0) 96.6(6/9/0) 96.6(7/7/0) 96.6(7/7/0)

7 90.6(1/0/2) 90.6(1/0/2) 90.6(1/0/2) 90.6(1/0/2) 90.6(1/0/2)

8 81.2(3/3/11) 85.9(0/4/10) 88.4(9/2/5) 87.7(1/6/4) 91.0(2/7/0)

9 75.0(5/1/0) 90.2(2/1/1) 93.5(3/0/1) 92.7(5/0/0) 92.7(5/0/0)

10 87.3(2/5) 87.3(2/5) 88.5(1/7) 88.5(1/7) 95.0(4/0)

11 85.3(9/1/5) 87.8(14/1/1) 86.3(13/1/2) 85.0(5/11/2) 87.2(7/3/5)

12 88.7(0/2/4) 94.0(2/1/1) 94.0(2/1/1) 94.0(2/1/1) 94.0(2/1/1)

13 74.3(1/8) 92.2(2/0) 92.2(2/0) 92.2(2/0) 92.2(2/0)

14 76.3(3/2/11) 79.1(3/3/10) 79.2(2/3/11) 78.7(3/1/11) 81.3(3/0/11)

15 84.1(1/14) 89.0(0/15) 89.0(0/15) 89.5(2/11) 89.2(1/13)

16 82.7(4/0/0) 91.6(2/1/0) 91.6(2/1/0) 82.9(1/1/1) 91.6(2/1/0)

17 77.1(1/0/2) 84.7(0/0/3) 84.7(0/0/3) 91.6(0/1/1) 91.6(0/1/1)

Ave. 84.9 89.6 90.3 90.0 91.3

∗Here Ave is the average volume utilization ratio (%) of containers; Cont is the

number of containers used for each type.
Table 15 shows the comparative results for IV1. The numbers of used

containers obtained from different approaches are shown in the table. In total,
the proposed EXAC MCLP algorithm required fewer containers to solve all
47 test cases than any other approaches. In addition, for the three test cases
3, 27 and 33, new best solutions were found. These results show that the
proposed algorithms have high validity for the 3DBBP in comparison with
other approaches. Moreover, within the given time limit, 34 results are proved
to be optimal solutions by EXAC MCLP algorithm.

Table 16 shows the results for IV1 with different values of the division
parameter d. Note that if the number of item types was not larger than d, no
result was obtained. It is difficult to determine which value of d was the most
appropriate for all the cases. For most cases, the best result was obtained
when d > 0, but this was not guaranteed for all the cases. For example, for
cases 24 and 27, the result of d = 0 was better than that of d > 0. Therefore,
the best result for all the values of d was selected as the final result.

Table 17 shows the comparative results for IV2. Because there is more than

53

Table 18: Comparative Results for MO data

MO 1994 BO 2000 EL 2003 TA 2008 EXAC MCLP

Case Bound RB(Sum)∗ RB(Sum) RB(Sum) RB(Sum) RB(Sum)

1 11112.0
77.7

(8640.0)

77.7

(8640.0)

77.7

(8640.0)

77.7

(8640.0)

77.7

(8640.0)

2 86016.0
97.1

(83494.4)

99.0

(85120.0)

99.3

(85376.0)

97.9

(84224.0)

99.3

(85376.0)

3 53500.0
99.6

(53262.5)

99.6

(53262.5)

99.6

(53262.5)

97.9

(52350.0)

99.6

(53262.5)

4 2720640.0
85.8

(2333440.0)

85.8

(2333440.0)

84.8

(2307840.0)

85.8

(2333440.0)

85.8

(2333440.0)

5 653750.0
75.8

(495500.0)

88.9

(581250.0)

89.3

(583750.0)

88.6

(579250.0)

88.6

(579250.0)

6 143424.0
96.4

(138240.0)

97.3

(139584.0)

98.5

(141216.0)

96.2

(137952.0)

97.6

(139968.0)

7 20203.2
82.5

(16668.0)

86.2

(17409.0)

84.2

(17004.0)

85.4

(17262.0)

85.3

(17226.0)

8 77986.8
84.3

(65741.0)

88.0

(68645.6)

88.6

(69121.2)

89.4

(69747.2)

91.3

(71236.4)

9 139356.0
85.9

(119772.0)

92.5

(128952.0)

95.9

(133632.0)

92.3

(128556.0)

93.9

(130860.0)

10 15360.0
100.0

(15360.0)

100.0

(15360.0)

100.0

(15360.0)

100.0

(15360.0)

100.0

(15360.0)

11 68353.2
73.1

(49995.0)

77.8

(53202.8)

77.4

(52873.6)

77.8

(53202.8)

77.8

(53202.8)

12 24964.0
94.3

(23529.0)

97.1

(24235.2)

94.8

(23673.0)

96.1

(23990.4)

96.1

(23990.4)

13 36556.8
100.0

(36556.8)

100.0

(36556.8)

100.0

(36556.8)

100.0

(36556.8)

100.0

(36556.8)

14 71552.0
78.9

(56492.8)

91.3

(65316.8)

96.0

(68723.2)

96.0

(68723.2)

96.0

(68723.2)

15 42922.8
87.5

(37558.8)

92.6

(39727.2)

91.8

(39382.2)

94.6

(40590.0)

94.6

(40590.0)

16 666829.6
83.5

(556458.0)

89.3

(595770.0)

88.7

(591535.0)

85.7

(571290.0)

90.4

(603000.0)

Ave. 87.6 91.4 91.8 91.3 92.1

∗Here RB is the ratio (%) of the sum of the values of the packed items to the bound;

Sum is the sum of the values of the packed items.

one container type for all the test cases, the number of containers used as well
as the volume utilization ratio is shown. The proposed algorithm obtained the
highest average volume utilization over all 17 test cases. For test cases 8, 10
and 14, new best solutions were found.

54

Table 19: Running Time (Sec.) for One Test Case

Test Cases Max. Min. Ave.

IV1 49 < 1 8

IV2 59 1 20

MO 110 2 42

Table 18 shows the comparative results for MO. Here, the objective was
not to maximize the sum volume, but the sum value of the packed items. The
second column is an upper bound that was calculated in Eley (2003) by using
integer programming. The ratio of the sum of the values of the packed items
to the upper bound and the sum of the values of the packed items is shown.
Again, the proposed algorithm obtained the highest sum value over all 16 test
cases. For test cases 8 and 16, new best solutions were found.

The running times of the proposed algorithm is shown in Table 19. The
running time increased with the number of different item types and container
types, and for each test case it was less than 2 minutes.

3.6 Conclusions

In the literature not much work has been done on the multiple container loading
problem because of the larger number of complexities occurring as compared to
packing problems in lower dimensions. An exact algorithm (EXAC MCLP) has
been proposed for the problem, which calls the exact algorithm (EXAC SCLP)
for the single container loading problem. Moreover, the distribution of items
into containers has been treated as partition of multiset. In consequence rep-
etitions caused by same size items were avoided and the computing time was
reduced.

For reducing computing time, a heuristic algorithm is proposed and in-
corporated into algorithm EXAC MCLP. This is the priority-considering ap-
proach. The assignment of some large or awkwardly formed items is crucial for
the whole packing. These items have been set to high priority and preferen-
tially assigned. Within the proposed approach algorithm EXAC SCLPSP has
been used for solving the single container loading problem with the priority
constraint.

The proposed algorithms have achieved the best known results for the test
cases suggested by Ivancic et al. (1989) and Mohanty et al. (1994) with reason-
able computing time. Moreover, some results have been proved by algorithm
EXAC SCLP to be optimal solutions.

Further research is required to find a more efficient criterion to identify the
large and small items for reducing the computational effort. The consideration
of additional practical constraints, such as separation of items or complete
shipment of items, is also an issue for future research.

55

In line-haul transportation, usually the route is simple and constant, and
the loading of containers directly related to cost, fuel consumption and CO2
emissions. However in branch transportation, both the container loading and
vehicle routes must be taken into account. Therefore in next chapter we ad-
dress the three-dimensional loading capacitated vehicle routing problem.

56

4.

Chapter 4

The Three-Dimensional Loading

Capacitated Vehicle Routing Prob-

lem

4.1 Problem Description of 3L-CVRP

Let V = {0, 1, . . . , f} be a set of f+1 vertices corresponding to a depot (vertex
0) and f customers (vertices 1, . . . , f), and E a set of edges (i, j) connecting
all vertex pairs. Let G = (V,E) be the induced graph and denote by aij the
distance of edge (i, j) (i, j ∈ V). In most practical contexts it is assumed that
the distances satisfy the triangle inequality aij ≤ aik + akj (i, j, k ∈ V), which
is easily imposed by defining each distance aij as the shortest path from i to j.
Let Γ be the number of available identical vehicles. Each vehicle has a container
whose loading space is defined by length L, widthW and heightH. The weight
capacity of each vehicle is T . A set of items I = {1 · n1, . . . ,m · nm} should
be delivered by the vehicles from the depot to the customers, and especially
items of type k should be delivered to customer vk ∈ V \ {0} (k = 1, . . . ,m).
For simplicity, we assume that each vehicle travels with a const speed.

The 3L-CVRP calls for finding a set of at most Γ vehicle routes (one per
vehicle, called single route), each one starting and ending at the depot, such
that the following constraints are satisfied:

• Item Clustering Constraint: Each customer is served by exactly one ve-
hicle.

• Completeness Constraint: All the items demanded by the customer must
be delivered to the customers.

57

• Weight Constraint: No vehicle carries a total weight exceeding its capac-
ity.

• Loading Constraint: A three-dimensional feasible loading is ensured for
each vehicle. The three-dimensional feasible loading has also been men-
tioned is section 3.2, however, in the vehicle routing context, considering
the item (cargo) stability and practical policies in transportation, some
additional constraints should also be satisfied. They will be mentioned
in Section 4.2.

In the conventional VRP, the objective is to find the minimum distance,
or the minimum cost, which is usually assumed to be proportional to the
distance. In this paper, for dealing with green logistics issue, we consider the
fuel consumption and GHG emissions.

A solution of the 3L-CVRP can be generated by the following steps:

• Divide the set customers (or items, if the item clustering constraint is
ignored) into subsets.

• For each subset, call an CLP algorithm to check whether the items in
the group can be packed into a vehicle.

• For each subset, call an TSP algorithm to find a optimal (minimum dis-
tance, minimum fuel consumption, or minimum GHG emissions) route.

The rest of this chapter is organized as follows. Sections 4.2 explains the
NP-hard problem with NP-hard constraint. Sections 4.3 mentions the prac-
tical loading constraints in vehicle routing context. Section 4.4 provides ex-
act algorithm for 3L-CVRP. Section 4.5 provides relaxation algorithm for 3L-
CVRP, which is a heuristic algorithm based on the exact algorithm. Section
4.6 mentions the formulas for fuel consumption and GHG emissions. Section
4.7 provides algorithm for TSP with fuel consumption, which can be used in
3L-CVRP considering different objectives. Section 4.8 provides algorithms for
generalized 3L-CVRPs for real-world instances. Section 4.9 presents the com-
putational results of the algorithms, and Section 4.10 summarizes the paper.

4.2 NP-Hard problem with NP-Hard Constraint

Different from other variants of the VRP, in the 3L-CVRP the loading con-
straint itself is a NP-hard problem. Therefore, we call that the 3L-CVRP is
a NP-hard problem with NP-hard constraint. More formally, for a problem
A, given a feasible solution sol of A and a additional constraint B, define the
decision problem D:

‘Whether sol satisfies constraint B?’

If D is a NP-hard problem, the constraint B is called a NP-hard constraint.

For example, for the VRP problem, the constraint of time windows is not a
NP-hard constraint, and the constraint of three-dimensional loading is. Obvi-
ously a NP-hard problem with NP-hard constraint is much more difficult than
a conventional NP-hard problem.

58

Figure 20: Supporting Area.

In the literature, some VRP instances with more than 100 customers have
been solved optimally. However, for the 3L-CVRP, optimal solutions cannot
be obtained even for instances with less than 20 customers. The reasons are
the following:

• For each vehicle route, a SCLP algorithm should be used the test whether
the items in the route can be loaded into a container, i.e., the SCLP
algorithm is called very often for the 3L-CVRP.

• The SCLP algorithm must be flexible, since they should be adaptable to
take into account all practical constraints in transportation.

Both reasons make the 3L-CVRP algorithm very time consuming and diffi-
cult to obtain good result. Most existing algorithms for the 3L-CVRP are
heuristics or metaheuristics, which speed up the process of finding a satisfac-
tory solution, however don’t search for optimal solution in the global solution
space. Therefore usually only some of the possible solutions are tried, and
better solutions may be missed, even for small-scale instances.

4.3 Practical Loading Constraints in Vehicle

Routing Context

In the definition of the SCLP in Section 2.1, only the maximum volume uti-
lization of the container has been considered and practical constraints result-
ing from transportation have been ignored. However, in the vehicle routing
context, considering the item (cargo) stability and practical policies in trans-
portation, the following constraints should also be satisfied:

• Fragility constraint: Items are divided into two groups: fragile and non-
fragile. Non-fragile items cannot be stacked on top of fragile ones, while
fragile items can be placed on top of each other. Also non-fragile items
can be placed on top of each other.

59

• Supporting area constraint: When an item pi is placed on top of other
items, its base must be supported by a minimum supporting area. This
means that the items that are placed under pi, and with their top touch-
ing directly the bottom of pi, should form a cumulative area Ā ≥ αliwi,
where 0 ≤ α ≤ 1 is a given parameter representing the minimum fraction
of the area of pi to be supported (Figure 20).

• LIFO (Last In First Out) policy: The items are loaded into some vehicles
(containers) starting from the depot, and when the vehicles visit each
customer a set of items required by the customer are unloaded. For the
convenience of unloading, the loading order of items should be inverse to
visiting order of customers.

Algorithm EXAC SCLP is flexible and easy to modify for consideration
of the additional constraints. When loading an item in a possible point, all
the three constraints above should be tested. If one of the constraints is not
satisfied, the item cannot be loaded and the next item is tested.

4.4 Exact Algorithm For 3L-CVRP

Optimization of the VRP is increasingly considered to be a more practical
approach for real problems than it used to be in the past. This change of
viewpoint is the result of the fact that rapidly decreasing computation costs
are making higher quality solutions more desirable, even at the expense of
more computation. Even if exact algorithms are not run to full optimality,
the solutions obtained are likely to be better than what existing heuristics can
provide, with an increasing robustness since a bound on the amount by which
a particular solution differs from optimality can also be guaranteed.

Many exact algorithms for the VRP are based on the set partitioning for-
mulation, which was first provided by Balinski and Quandt (1964). Let ω
denote a single route, let biω be a binary coefficient equal to 1 if and only if
vertex i ∈ V \ {0} belongs to route ω , let σω be the optimal distance of route
ω, and let ζω be a binary variable equal to 1 if and only if route ω is used in
the optimal solution. The problem is then

Maximize
∑
ω

σωζω, (4.1)

subject to
∑
ω

biω = 1, i ∈ V \ {0}. (4.2)

A direct application of this formulation is impractical because of the large
number of potential single routes encountered in most nontrivial instances and
of the difficulty of computing the σω coefficients which requires solving an
exponential number of instances of TSP. Especially, for the 3L-CVRP, a large
number of instances of SCLP should be solved, which makes the 3L-CVRP
algorithm very time consuming.

60

Table 20: Algorithm EXAC 3LCVRP

Input: items, vehicles, roads.
Output: MinC (minimum distance of vehicles).
initialize MinC by using the saving method;
initialize t by using the MCLP algorithm;
while (t > 0)

if t = Γ then
return;

endif
t = t+ 1;

partial solution list:= {(0, . . . , 0)};
for k = 0, . . . , t− 1 do

temp partial solution list:= ∅;
for all partial solution in partial solution list do
for all possible values of ωk+1 which satisfy (4.6)-(4.8) do

generate a new partial solution;
if the sum volume of items represented by ωk+1 is larger than
the volume of container then

continue;
endif
if the items represented by ωk+1 cannot be packed into a
container by using the SCLP algorithm then

continue;
endif
calculate the q-route lower bound;
if MinC < the lower bound of the new partial solution then

continue;
endif
add the new partial solution to temp partial solution list;
calculate upper bound of the new partial solution by using
saving method and TSP algorithm;
if MinC > the upper bound of the new partial solution then

MinC := the upper bound of the new partial solution;
endif

endfor
endfor
if temp partial solution list= ∅ then

return;
endif

partial solution list:=temp partial solution list;
endfor

endwhile

In this section we generate set partitions in a branching tree. A solution of
the 3L-CVRP is denoted by a set of single routes {ω1, . . . ,ωt} (t is the number
of vehicles). Each single route is denoted by ωj = (ω1j, . . . , ωfj), where ωij is

61

a binary variable equal to 1 if and only if customer i is included in the j-th
single route (i = 1, . . . , f ; j = 1, . . . , t). Let gi and ηi denote the total weight
and total volume of items demanded by customer i, respectively. The following
constraints should be satisfied:

t∑
j=1

ωij = 1, (4.3)

f∑
i=1

ωijgi ≤ T, ∀j = 1, . . . , t, (4.4)

and each vehicle is feasibly loaded. (4.5)

Constraint (4.3) requires that each customer is served by exactly one ve-
hicle, and constraint (4.4) prevents the weight of items in each vehicle from
exceeding the weight capacity of the vehicle. Note that if constraint (4.5) is
not considered, the problem is the general VRP.

Without loss of generality, we assume that the loaded vehicles are sorted in
nonincreasing order of volume utilization. Obviously the following constraints
hold, which greatly reduce the search scope:

f∑
i=1

ωi(k+1)ηi ≤
f∑

i=1

ωikηi, ∀k = 1, . . . , t− 2, (4.6)

f∑
i=1

ωi(k+1)ηi ≥ (

f∑
i=1

ηi −
k∑

j=1

f∑
i=1

ωijηi)/(t− k),

∀k = 0, . . . , t− 2, (4.7)
f∑

i=1

ωitηi =

f∑
i=1

ηj −
t−1∑
j=1

f∑
i=1

ωijηi. (4.8)

The 3L-CVRP algorithm (algorithm EXAC 3LCVRP) iteratively calls a
branch-and-bound algorithm. First we initialize the number of containers t
by using the MCLP algorithm mentioned in Chapter 3. Then the number t
is increased by one until t = Γ. For each value of t, we use a branching tree
to assign items to t vehicles. The root node is (0, . . . , 0), which means that
no item has been assigned to the vehicles. Each node in depth k of the tree
denotes a partial solution {ω1, . . . ,ωk}, and all of the possible values of ωk+1

that satisfy (4.6) - (4.8) are generated in its child nodes.

For decreasing the computing time, we calculate the upper bound of each
node by using the saving method to assign the residual customers. The saving
method was first proposed in Clarke and Wright (1964). It starts with an
initial solution made up of back-and-forth single routes. At each iteration, it
merges one single route with another single route, maximizing the saving of
distance, and provided the merge is feasible. The process stops when it is no
longer possible to merge routes.

The lower bound is the q-route lower bound. A q-routes is the minimum-
cost single single route whose loaded weight is equal to a fix value q. In

62

detail, let Λ be the ordered set of all possible loaded weight of a single route,
starting with the smallest value. Let q(j) be the value of the j-th element of
Λ. Christofides et al. (1981) proved that that all the q-routes q(1), . . . , q(|Λ|)
can be generated in pseudo-polynomial time. Let ψ(i) be the value of a least
distance single route passing through i, and having a loaded weight equal to
q(j), it is proved that

f∑
i

min
j=1,...,|Λ|

{ψ(i)gi/q(j)} (4.9)

is a valid lower bound on the cost of an optimal VRP solution. This bound is
the sum, over all customers i, of a lower bound on the contribution made by i
to the routing cost.

The minimum value of the upper bounds serves as the current solution. If
the lower bound of a node is more than the current solution, then the node is
killed. Algorithm EXAC 3LCVRP is described by the pseudo-code in Table
20.

4.5 Relaxation Method For 3L-CVRP

Most VRP algorithms consist of solving the set partitioning formulation with a
subset of promising single routes. Most algorithm works with a set partitioning
formulation in which the columns correspond to q-routes. However, for the 3L-
CVRP the number of q-routes is still too large to compute because for each
single route we must check the loading constraint.

In this section, a relaxation method is proposed for the 3L-CVRP. We
attempt to replace loading constraint (4.5) with the following constraint:

f∑
i=1

ωijηi ≤ ρLWH, ∀j = 1, . . . , t, (4.10)

The constraint requires that the volume of items in each vehicle cannot exceed
a given ratio ρ of the vehicle space.

The method hierarchically consists of a subordinated and a superior mod-
ule. The subordinated module is the algorithm EXAC 3LCVRP, however in
which constraint (4.5) is replaced by constraint (4.10).

The superior module is a heuristic algorithm (algorithm RELAX 3LCVRP)
which varies parameter ρ (multiplied by a parameter Θ, 0 < Θ < 1) and
iteratively calls algorithm EXAC 3LCVRP until all the items are loaded. For
decreasing computing time, only a fixed number (parameterM1) best solutions
are kept, and a fixed number (parameter M2) of feasible single routes are
selected from the M1 best solutions. Then we use algorithm EXAC 3LCVRP
to deal with the selected feasible single routes. Algorithm RELAX 3LCVRP
is described as follows:

[RELAX 3LCVRP]

63

Input: items, vehicles, roads.

Output: Minimum cost.

Parameter: ρ,M1,M2,Θ.

• Step 0 (Initialize):
Use the CLP algorithm to load the items into a vehicle, and initialize ρ
to the volume ratio of the loaded vehicle.

• Step 1 (Solve Relaxed Problem):
Use the EXAC 3LCVRP to solve the relaxed problem. Keep the M1
best solutions.

• Step 2 (Select Feasible Single Routes):
Use the SCLP algorithm to check the M1 best solutions. Select the
feasible routes in which the items can be wholly loaded into a vehicle. If
the number of feasible routes is equal to M2, go to Step 4.

• Step 3 (Reduce Volume Ratio):
Let ρ := ρΘ. If ρ > 0 go to Step 2.

• Step 4 (Deal with Feasible Single Routes):
Use algorithm EXAC 3LCVRP to solve the 3L-CVRP, in which only the
selected M2 feasible routes are allowed.

4.6 Fuel Consumption and GHG Emissions

In the conventional VRP, the objective is to find the minimum distance, or
the minimum cost, which is usually assumed to be proportional to the dis-
tance. In this paper, for dealing with green logistics issue, we consider the
fuel consumption and GHG emissions. In late 2008, European Committee
for Standardization (CEN) founded a working group CEN/TC 320 Trans-
port - Logistics and Services WG10 Methodology for calculation, declaration
and reporting on energy consumption and GHG emissions in transportation
(http://lipasto.vtt.fi/indexe.htm). As mentioned in the report, for a certain
vehicle travelling with a constant speed, the fuel consumption is approximately
proportional to the travelling distance and linear correlate to the weight of
loaded items, i.e.,

Q(K,R) = (Q0 + βK)R, (4.11)

M(K,R) = (M0 + γK)R, . (4.12)

Where F (K,R) andM(K,R) are the fuel consumption (g) and CO2 emissions
(ml), respectively, of an vehicle whose loaded weight (tone) isK, and travel dis-
tance is R (kilometre); Q0 andM0 are the fuel consumption and CO2 emission
per kilometre of an empty vehicle, respectively; β is the unit fuel consumption
(g/tone-kilometre) and γ is the unit CO2 emissions (ml/tone-kilometre). For a
given truck in a certain condition, Q0,M0, β and γ are constant. For example,

64

for an Euro 4 15T truck in delivery driving, the fuel consumption and CO2
emissions are the following:

Q(K,R) = (154 + 7K)R,

M(K,R) = (483 + 22K)R, .

Emissions of the other GHGs have similar function as CO2. Therefore all
the GHGs emissions can be represented by the CO2 emissions.

Note that the fuel consumption or CO2 emissions are not only determined
by the distance. Therefor many effective algorithms for conventional VRP or
TSP cannot be used directly.

4.7 The Traveling Salesman Problem with Fuel

Consumption

The classical TSP is to find a route of minimum distance. Let V ′ = {0, 1, . . . , δ}
be a set of δ + 1 vertices corresponding to a depot (vertex 0) and δ customers
(vertices 0, 1, . . . , δ), and E′ a set of edges (i, j) connecting all vertex pairs.
Let G′ = (V ′, E′) be the induced graph and denote by aij the distance of edge
(i, j). A route starting and ending at the depot, and visiting each custom in V ′
can be denoted by 0, c1, . . . , cδ, 0 according to visiting order, where {c1, . . . , cδ}
is a permutation of {1, . . . , δ}.

From (4.11), the total fuel consumption of the route is

Q =
δ∑

i=0

acici+1
(Q0 + β(D −

i∑
j=1

gcj)).

Where gci is the weight of items demanded by customer cj, D =
∑δ

j=1 gcj is
the weight of all the items demanded by the customers, and c0 = cδ+1 = 0.

The TSPFC is formulated as follows:

Maximize Q, (4.13)

subject to {c1, . . . , cδ} is a permutation of {1, . . . , δ}. (4.14)

Note that if the objective function is replaced by
∑δ

i=0 acici+1
, the problem

is the classical TSP.

Example 4.1: Four vertices (depot 0, customer 1, 2 and 3) and the distance
between every two vertices are shown in Figure 21 (a). Assume the distance
matrix is symmetric. The weight of items demanded by each customer is 3
tones. In Figure 21 (b) the route is {0, 1, 2, 3, 0} and in (c) that is {0, 1, 3,
2, 0}. Assume the vehicle is Euro 4 15T truck. The distance of (b) is

2 + 10 + 10 + 2 = 24.

65

Figure 21: The TSP Considering Distance or Fuel Consumption.

And the distance of (c) is

2 + 2 + 10 + 11 = 25.

The fuel consumption of (b) is

(154 + 7× 9)× 2 + (154 + 7× 6)× 10 + (154 + 7× 3)× 10 + 154× 2

= 4452.

And the fuel consumption of (c) is

(154 + 7× 9)× 2 + (154 + 7× 6)× 2 + (154 + 7× 3)× 10 + 154× 11

= 4270.

The route of (b) has the minimum distance, but does not have minimum fuel
consumption.

The 3L-CVRP is especially relevant for the cases that deal with large items.
There are not many items are loaded in each vehicle, therefore each vehicle
will not travel many customers. Therefore we expected to solve the TSPFC
by using exact method, but not some metaheuristic such as genetic algorithm,
ant colony algorithm or particle swarm algorithm, because those algorithms
are more suitable for large-scale instances. There are some high-efficiency
exact algorithms have been proposed for the TSP, such as Carpaneto algorithm
(Carpaneto et al., 1995). However, they are not suitable for the TSPFC,
because the cost (fuel consumption) between every two vertices is not constant
and therefore it is difficult to estimate the upper bound or lower bound.

We propose a branch and bound algorithm (algorithm EXAC TSPFC) to
solve the TSPFC. First at all we use the Lin-Kernighan algorithm (Lin and
Kernighan, 1973) to get a minimum-distance route, which serves as the current
solution. Then we process a breadth-first search in a branching tree. The root
node of the tree is 0, which means that each route starts form the depot 0.

66

Each node in depth k represents the first k visited customers (0 < k < δ),
which denoted by {c1, . . . , ck}. The upper bound and lower node of each node
in depth k are calculated as follows.

Let

Q1 =
k−1∑
i=0

acici+1
(Q0 + β(D −

i∑
j=1

gcj)),

which means that the fuel consumption of visiting the first k customers.

For any permutation of the residual δ − k customers ck+1, . . . , cδ, the fuel
consumption of visiting the residual customers and ending at the depot is

Q2 =
δ∑

i=k

acici+1
(Q0 + β(D −

i∑
j=1

gcj)).

For any r ∈ {k + 1, . . . , δ}, we have

Q2 =
r−1∑
i=k

acici+1
(Q0 + β(D −

i∑
j=1

gcj)) +
δ∑

i=r

acici+1
(Q0 + β(D −

i∑
j=1

gcj))

≥
r−1∑
i=k

acici+1
(Q0 + βgcr) +

δ∑
i=r

acici+1
Q0

≥ ackcr(Q0 + βgcr) + acr0Q0.

Note that Q = Q1 +Q2. Therefore a lower bound of Q is

QL1 = Q1 + max
cr∈{ck+1,...,cδ}

(ackcr(Q0 + βgcr) + acr0Q0)

= Q1 + max
i∈V ′\{0,c1,...,ck}

(acki(Q0 + βgi) + ai0Q0)

On the other hand,

Q2 = ackck+1
(Q0 + β(D −

k∑
j=1

gcj)) +
δ∑

i=k+1

acici+1
(Q0 + β(D −

i∑
j=1

gcj))

≥ ackck+1
(Q0 + β(D −

k∑
j=1

gcj)) +
δ∑

i=r

acici+1
Q0

≥ ackck+1
(Q0 + β(D −

k∑
j=1

gcj)) + Π(ck+1, 0, {ck+2, . . . , cδ})Q0.

Here Π(ck+1, 0, {ck+2, . . . , cδ}) is the minimum-distance route staring from ck+1,
visiting customers ck+2, . . . , cδ, and ending at depot 0, which can be obtained
by Carpaneto algorithm (Carpaneto et al., 1995).

Therefor

Q2 ≥ max
i∈V ′\{0,c1,...,ck}

(acki(Q0 + β(D −
k∑

j=1

gcj))

+Π(ck + 1, 0, V ′ \ {0, c1, . . . , ck, i})Q0).

67

And another lower bound of Q is

QL2 = Q1 + max
i∈V ′\{0,c1,...,ck}

(acki(Q0 + β(D −
k∑

j=1

gcj))

+Π(ck + 1, 0, V ′ \ {0, c1, . . . , ck, i})Q0).

We use QL = min{QL1, QL2} as the lower bound.

Then use the Lin-Kernighan heuristic (Lin Kernighan, 1973) to get a route
which visits the residual customers and ends at the depot. The upper bound
QU is the fuel consumption of the route.

For each of the nodes, we get the lower bound and upper bound. The
minimum value of the upper bounds serves as the current solution. If the
lower bound of a node is more than the current solution, then the node is
killed.

If the objective is minimum CO2 emissions, we can get a similar algorithm.
Therefore three kinds of TSP algorithms can be used for 3L-CVRP according
to different objectives: minimum distance, minimum fuel consumption and
minimum CO2 emissions.

4.8 The 3L-CVRP with Item Partition and

Shipment Priority

In the real world instance, the routing and loading problem may be much
different with archetypal versions of the 3L-CVRP. Particularly, for some cases
the item clustering constraint or completeness constraint may not be satisfied.
In detail:

• The items demanded by one customer may exceed the capacity of one
vehicle. Therefore one customer may be served by more than one vehicle,
and the items belong to the same customer must be partitioned into
different vehicles.

• The total volume or total weight of items may exceed the capacity of
vehicles. Therefore not all the items demanded by the customer must be
delivered. Usually some items are more urgently demanded than others,
i.e., they are of high priority, and these items can be wholly loaded by
the given Γ vehicles.

The problem is called the 3L-CVRP with item partition (3L-CVRPNIP),
for the former case, and the 3L-CVRP with shipment priority (3L-CVRPNSP),
for the latter case. In the residual part of this section, algorithms are proposed
for the two problems, respectively. Note that the objective function is not
specified. Therefore the algorithms can be applied for minimize either the
total distance or the fuel consumption.

A exact algorithm is proposed for the 3L-CVRPNIP. Because one customer
cannot be served by exactly one vehicle, the partition of items, but not of cus-

68

tomers, is considered. The multiset I is partitioned into t subsets. Each subsets
of items is loaded and delivered by a vehicle. For simplicity, the algorithm is
not described in detail, because it is similar to algorithm EXAC MCLP pro-
posed in Section 3.3, except that a TSP algorithm is used to find the best
single route of each vehicle.

However for large-scale instance the exact algorithm for the 3L-CVRPNIP
is very time consuming, because there are much more possible partitions of
items than that of customers. A heuristic algorithm (HEURI 3LCVRPNIP)
is proposed, in which we use the following direct-delivery criterion to deduce
the computational complexity: Use the MCLP algorithm to load the items de-
manded by each customer independently. If the volume utilization of a vehicle
exceeds a given parameter (V direc), the vehicle is directly delivered, i.e., the
route is back-and-forth single route, which visits only one customer. The items
in other vehicles are dealt with by using algorithm EXAC 3LCVRPNIP.

Algorithm HEURI 3LCVRPNIP is described as follows.

[HEURI 3LCVRPNIP]

Input: items, vehicles, roads.

Output: Minimum cost.

• Step 1 (Load):
For each customer, use algorithm EXAC MCLP to load the items de-
manded.

• Step 2 (Directly Deliver):
If the volume utilization of a vehicle is larger than V direc, the vehicle is
directly delivered.

• Step 3 (Deliver Other Items):
Use algorithm EXAC 3LCVRPNIP to deliver items in other vehicles.

It is easy to solve the 3L-CVRPNSP by incorporating the SCLPSP algo-
rithm. The algorithm (algorithm 3LCVRPNSP) is described as follows.

[HEURI 3LCVRPNSP]

Input: items, vehicles, roads.

Output: Minimum cost.

• Step 1 (Deliver High-priority Items):
Use the 3L-CVRP algorithm as mentioned before to deliver items.

• Step 2 (Add the Low-priority Items):
For each packed vehicle generated in Step 1, use the SCLPSP algorithm
to add low-priority items to the vehicle, if the high-priority items of
the same customer have already loaded into the vehicle. Note that the
SCLPSP algorithm should be modified to satisfy the additional con-
straints mentioned in Section 4.3.

69

4.9 Computational Results

4.9.1 Computational Results for Distance

The test cases for the 3L-CVRP are the data suggested by Gendreau et al.
(2006) (GE data). In these instances, the graphs, the weights demanded by
the customers and the container weight capacities were taken from 27 Eu-
clidean CVRP instances suggested by Toth and Vigo (2005) for a detailed
description of CVRP test bed instances. For all the 27 test cases, the number
of customers ranges from 15 to 100, and the number of item types ranges from
32 to 198. The container has dimensions W = 25, H = 30 and L = 60. For
each customer, the number of requested items was uniformly and randomly
generated between 1 and 3. Each item dimension was randomly generated
according to a uniform distribution in the interval between 20% and 60% of
the corresponding container volume.

The proposed RELAX 3LCVRP algorithms has been compared with the
following approaches:

• GE 2006: a tabu search algorithm (Gendreau et al., 2006).

• FU 2010: an ant colony optimization algorithm (Fuellerer et al, 2010).

Similar as Gendreau et al. (2006) and Fuellerer et al. (2010) the input
threshold α for the minimum supporting area (see Section 2.3) was set to 0.75.

In algorithm RELAX 3LCVRP, the parameter Θ is set to 0.95. The pa-
rameter M1 is set to 0.5f and M2 is set to 2f (f is the number of customers).
A large number of experiments were carried out for the setting of parameters.
For simplicity they are not mentioned here in detail.

The comparative results are shown in Table 21. The RELAX 3LCVRP
algorithm obtained the minimum costs for almost all the cases, and, significant
smaller average cost than that of other algorithms.

The average running time for all of the cases are shown in Table 22. The
RELAX 3LCVRP algorithm obtained much better results, however with much
more running time.

In Table 23 we examine the effect of the loading constraints discussed
in Section 2.3, namely fragility, supporting area and LIFO policy. The RE-
LAX 3LCVRP was used. Columns two refer to the results in which all con-
straints are imposed (i.e., they give the same values of the last column of
Table 21). The four next pairs of columns report the results without the
fragility constraint, without the supporting area constraint, without the LIFO
constraint, and with none of these constraints. Strong reduction of average
cost was obtained by removing the supporting area constraint (3.96%) and
the LIFO constraint (3.81%). Removing the fragility constraint leaded to the
lowest reduction of average cost (2.58%). The removal of all three constraints
yielded an overall average cost reduction of 6.68%.

70

Table 21: Comparative Results for GE Data.

Case GE 2006 FU 2010 RELAX 3LCVRP

1 291.00 291.00 291.00

2 334.96 334.96 334.96

3 447.73 409.79 393.98

4 448.48 440.68 441.44

5 464.24 453.19 466.20

6 504.46 501.47 500.49

7 831.66 797.47 776.17

8 871.77 820.67 801.39

9 666.10 635.50 621.73

10 911.16 841.12 803.25

11 819.36 821.04 768.91

12 651.58 629.07 616.11

13 2928.34 2739.80 2591.00

14 1559.64 1472.26 1377.02

15 1452.34 1405.48 1325.58

16 707.85 698.92 691.28

17 920.87 870.33 881.36

18 1400.52 1261.07 1069.71

19 871.29 781.29 739.53

20 732.12 611.26 550.03

21 1275.20 1124.55 1029.44

22 1277.94 1197.43 1061.20

23 1258.16 1171.77 1041.92

24 1307.09 1148.70 1090.91

25 1570.72 1436.32 1352.14

26 1847.95 1616.99 1430.15

27 1747.52 1573.50 1415.11

Ave. 1041.68 966.67 906.00

Table 22: Average Running Time.

GE 2006 FU 2010 RELAX 3LCVRP

2058.9 1746.6 6724.3

71

Table 23: Results for Different Loading Constraints.

All constraints No fragility No support No LIFO 3D loading only

1 291.00 291.00 291.00 291.00 291.00

2 334.96 334.96 334.96 334.96 334.96

3 393.98 386.77 372.56 364.28 364.28

4 441.44 441.44 441.44 441.44 430.88

5 466.20 442.45 409.89 409.89 391.69

6 500.49 500.49 498.65 496.40 496.40

7 776.17 776.17 740.27 740.27 721.09

8 801.39 746.14 746.14 801.39 741.59

9 621.73 621.73 607.65 607.65 607.65

10 803.25 803.25 705.24 705.24 705.24

11 768.91 710.92 710.92 710.92 703.73

12 616.11 610.37 610.37 610.37 610.37

13 2591.00 2314.88 2292.55 2292.55 2292.55

14 1377.02 1377.02 1347.78 1349.38 1168.11

15 1325.58 1325.58 1325.58 1325.58 1165.46

16 691.28 691.28 691.28 691.28 691.28

17 881.36 881.36 881.36 862.18 862.18

18 1069.71 1069.71 1046.95 1069.71 1046.95

19 739.53 703.28 739.53 703.28 689.36

20 550.03 550.03 516.96 550.03 516.96

21 1029.44 1029.44 974.03 1029.44 969.90

22 1061.20 1036.29 1036.29 1030.75 1023.77

23 1041.92 1041.92 1010.31 1010.31 991.70

24 1090.91 1090.91 1090.91 1058.10 1058.10

25 1352.14 1317.04 1352.14 1317.04 1215.00

26 1430.15 1411.40 1411.40 1401.17 1430.15

27 1415.11 1325.49 1308.02 1325.49 1308.52

Ave. 906.00 882.64 870.15 871.49 845.51

(%*) 2.58% 3.96% 3.81% 6.68%

*%: reduction of cost.

4.9.2 Computational Results for Fuel Consumption and

CO2 Emissions

We still use the GE data, assuming the vehicle is Euro 4 15T truck. As
mentioned in Section 4.6, the fuel consumption and CO2 emissions are the

72

following:

Q(K,R) = (154 + 7K)R,

M(K,R) = (483 + 22K)R, .

The results are shown in Table 24. Algorithm RELAX 3LCVRP was used,
with different objectives. Column 2-4 are the distance, fuel consumption and
CO2 emissions obtained when the objective is minimum distance. Column 5-7
are the results obtained when the objective is minimum fuel consumption. The
results for the latter objective saved fuel consumption by about 3%, and CO2
emissions also by about 3%, compare to that of the former objective. The
distance increased by about 2.2%. Especially, for case 6 the fuel consumption
and CO2 emissions decreased by more than 10% and the distance increased
by about only 1.4%. These results indicate that the algorithm can reduce fuel
consumption and CO2 emissions, and especially for some cases there may be
significant savings of fuel consumption and CO2 emissions, with very little
increase in distance.

The minimum CO2 emission objective was also tested for the GE data. The
results are exactly the same as that of minimum fuel consumption, because
the CO2 emissions are nearly proportional to the fuel consumption.

4.9.3 Computational Result for an Real-World Instance

The real-world instance was provided by a third-part logistics company in
Japan. The items are divided into groups according to their due date. This
company makes transportation plan according to each date, and the instance
came from one day’s transportation plan. The vehicles have dimensions L =
5.89,W = 2.35 and H = 2.2. There are one depot and 31 customers. The de-
mands of each customer consist of three-dimensional rectangular items. These
items are divided into groups according to their due dates of delivery. Some
items must be delivered in this day (high-priority items). Other items (low-
priority items) also lie in the depot, but their due dates are later. The infor-
mation of items is not described in detail. Only some statistic properties are
shown in Table 25.

The distances between customers and depot were obtained by a GIS. For
simplicity, only the distance between each customer and the depot are shown
in the second column of Table 25.

In the last years, the company applied an existing TMS, which used a
heuristic algorithm (old algorithm). In this paper we used algorithm HEURI
3LCVRPNIP and algorithm HEURI 3LCVRPNSP (new algorithms) for this
instance. In algorithm HEURI 3LCVRPNIP the parameter V direc is set to
80%. The comparative results are shown in Table 26. We can see that volume
utilization was increased, and the number of vehicles was reduced. The total
distance is reduced by about 5%. And particularly, the fuel consumption and
CO2 emissions were reduced by about 8%.

73

74

75

4.10 Conclusions

The 3L-CVRP is a combination of the VRP and CLP, and both are strongly
NP-hard. Mostly heuristic or metaheuristic algorithms have been proposed for
the 3L-CVRP. An exact algorithm (EXAC 3LCVRP) has been proposed for
solving the 3L-CVRP, which is base on the model of set partition. A highly
sophisticated heuristic algorithm (RELAX 3LCVRP) has proposed, which is
based on the exact algorithm. It is time consuming but much better results
are obtained. The validity of the proposed algorithms has been examined by
computational experiments.

Considering the issue of green logistics, we have taken the fuel consumption
and CO2 emissions into account. The traditional models and algorithms can
not be applied directly. We have addressed the TSP with fuel consumption,
and have proposed algorithms for solve them. Because the CO2 emission
has similar function to the fuel consumption, the similar algorithms can also
be proposed for minimizing the CO2 emissions. The TSP algorithms with
different objectives can be used in the 3L-CVRP algorithm.

Moreover, in the real world instance, for improving the utilization of vehi-
cles, the completeness constraint or cluster constraint may be violated. Algo-
rithms for the generalized 3L-CVRPs have also been proposed. The computa-
tional results for real-world data show that proposed algorithms are fast and
high-quality for solving practical problems.

In this paper, only rectangular items have been considered. Further re-
search is required to deal with other shapes of items, such as circular column,
sphere or irregular items. The consideration of additional practical constraints,
such as the time windows, multiple depots, irregular items and variable speed,
is also an issue for future research.

76

5.

Chapter 5

Conclusions
Green Logistics is concerned with producing and distributing goods in a sus-
tainable way, taking account of environmental and social factors. Transporta-
tion management is the main part of the logistics processes. Vehicle loading
and routing optimization is core function of transportation management. In
most transportation management systems the CLP and VRP were treated
separately, and the green logistics issues were not been taken into account.

In this paper, we proposed algorithms for solving the single and multiple
CLP. It can be used in many processes in green logistics, including mate-
rial handling, waste management, packaging, warehousing and transportation.
Furthermore, the combination of VRP and CLP, know as the 3L-CVRP has
been addressed. Some well defined data structures are used, such as the stair-
case packing and the multiset partition. Simple exact, heuristic or metaheuris-
tic algorithms can not be applied directly. Therefore we proposed different
kinds of exact and heuristic algorithms. The integration of the exact and
heuristic algorithms obtained excellent results, both for test data that come
from the literature and for real-world instance.

Algorithms for routing and loading optimization is, in the real world, just
part of the story. The algorithms have to be embedded in a system that
enables the decision-maker to actually use it. The system has to be integrated
into the information system of the enterprize, which can be a formidable task.
Database and user interface are also important part of the system. The system
usually has to interact with a number of different systems in an organization.
It may receive information from a higher level system and provide information
to a lower systems.

Robustness and reactive decision making is also an important issue in the
real world. In practice, it often happens that soon after a vehicle schedule has
been generated, an unexpected event happens that forces the decision-maker
to make changes. Such an event may, for example, be change of the demand

77

of items, or congesting in a road. In a reactive process, the decision-maker
tries to accommodate the original objectives, and also tries to make the new
schedule look, as much as possible, like the original one in order to minimize
confusion. In order to do so, it is necessary for the original schedule to be
robust so that the changes after a disruption are minimal.

Due to limited space, these issues are not mentioned in detail in this paper.
They are issues for future research.

78

References

[1] Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J. (2007) The
Traveling Salesman Problem: A Computational Study, Princeton Univer-
sity Press, Princeton.

[2] Aprile, D., Egeblad, J., Garavelli, A., Lisi, S. and Pisinger, D. (2007) ‘Lo-
gistics optimization: vehicle routing with loading constraints’, Proceedings
of 19th International Conference on Production Research.

[3] Baldacci, R., Christofides, N. and Mingozzi, A. (2008) ‘An exact algorithm
for the vehicle routing problem based on the set partitioning formulation
with additional cuts’, Mathematical Programming., Vol. 115, pp.351-385.

[4] Balinski, M. and Quandt, R. (1964) ‘On an integer program for a delivery
problem’, Operations Research., Vol. 12, pp.300-304.

[5] Bischoff, E.E. and Ratcliff, M.S.W. (1995) ‘Issues in the development
of approaches to container loading’, Omega - International Journal of
Management Science, Vol. 23, pp.377-390.

[6] Bischoff, E.E. (2006) ‘Three dimensional packing of items with lim-
ited load bearing strength’, European Journal of Operational Research,
Vol. 168, pp.952-966.

[7] Blum, C. and Roli, A. (2003) ‘Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison’, ACM Computing Surveys,
Vol. 35, pp.268-308.

[8] Bortfeldt, A. (2000) ‘Eine heuristik für multiple containerladeprobleme’,
OR Spektrum, Vol. 22, pp.239-262.

[9] Bortfeldt, A. and Gehring, H. (1998) ‘Ein Tabu Search-Verfahren fúr Con-
tainerbeladeprobleme mit schwach heterogenem Kistenvorrat’, OR Spek-
trum, Vol. 20, pp.237-250.

[10] Bortfeldt, A. and Gehring, H. (2001) ‘A hybrid genetic algorithm for the
container loading problem’, European Journal of Operational Research,
Vol. 131, pp.143-161.

[11] Carpaneto, G., Dell’Amico, M. and Toth, P. (1995) ‘Exact Solution of
Large Scale Asymmetric Travelling Salesman Problems’, ACM Transac-
tions on Mathematical Software, Vol. 21, pp.394-409.

[12] Christensen, S.G. and Rousøe, D.M. (2009) ‘Container loading with multi-
drop constraints’, International Transactions in Operational Research,
Vol. 16, pp.727-743.

[13] Christofides, N., Mingozzi, A and Toth, P. (1981) ‘Exact algorithms for
the vehicle routing problem, based on spanning tree shortest path relax-
ations’, Mathematical Programming, Vol. 20, pp.255-282.

[14] Clarke, G. and Wright, J. W. (1964) ‘Scheduling of vehicles from a cen-
tral depot to a number of delivery points’, Operations Research, Vol. 12,
pp.568-581.

[15] Cook, S. (1971) ‘The complexity of theorem proving procedures’, Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pp.151-158.

[16] Dantzig, G. B. (1957) ‘Discrete variable extremum problems’, Operations
Research, Vol. 5, pp.266-277.

79

[17] Davies, A.P. and Bischoff, E.E. (1999) ‘Weight distribution considerations
in container loading’, European Journal of Operational Research, Vol. 114,
pp.509-527.

[18] Dyckhoff, H. (1990) ‘A typology of cutting and packing problems’, Euro-
pean Journal of Operational Research, Vol. 44, pp.145-159.

[19] Edmonds, J. (1962) ‘Covers and packings in a family of sets’, Bulletin of
the American Mathematical Society, Vol. 68, pp.494-499.

[20] Eley, M. (2002) ‘Solving container loading problems by block arrange-
ment’, European Journal of Operational Research, Vol. 141, pp.393-409.

[21] Eley, M. (2003) ‘A bottleneck assignment approach to the multiple con-
tainer loading problem’, OR Spectrum, Vol. 25, pp.45-60.

[22] Fanslau, T. and Bortfeldt, A. (2010) ‘A tree search method for solving
the container loading problem’, Informs Journal on Computing, Vol. 22,
pp.222-235.

[23] Gehring, H. and Bortfeldt, A. (2002) ‘A Parallel Genetic Algorithm for
Solving the Container Loading Problem’, International Transactions in
Operational Research, Vol. 9, pp.497-511.

[24] George, J.A. and Robinson, D.F. (1980) ‘A heuristic for packing boxes
into a container’, Computer and Operations Research, Vol. 7, pp.147-156.

[25] Ivancic, N. J., Mathur, K. and Mohanty, B. B. (1989) ‘An integer-
programming based heuristic approach to the three-dimensional packing
problem’, Journal of Manufacturing and Operations Management, Vol. 2,
pp.268-298.

[26] Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M. and Nagamochi, H.
(2009) ‘Exact algorithms for the two-dimensional strip packing problem
with and without rotations’, European Journal of Operational Research,
Vol. 2, pp.268-298.

[27] Liang, S., Lee, C. and Huang, S. (2007) ‘A Hybrid Meta-heuristic for
the Container Loading Problem’, Communications of the IIMA, Vol. 7,
pp.73-84.

[28] Lin, L. (2011) ‘Analasys to logistics cost as a percentage of GDP in China’,
Economic and Trade Update, Vol. 199, pp.27-28 (In Chinese).

[29] Lin, S. and Kernighan, B. W. (1973) ‘An effective heuristic algorithm for
the traveling-salesman problem’, Operations Research, Vol. 21, pp.498-
516.

[30] Jin, Z., Ohno, K. and Du, J. (2004) ‘An efficient approach for the three-
dimensional container packing problem with practical constraints’, Asia-
Pacific Journal of Operational Research, Vol. 21, pp.279-295.

[31] Mack, D., Bortfeldt, A. and Gehring, H. (2004) ‘A parallel hybrid local
search algorithm for the container loading problem’, International trans-
actions in operational research, Vol. 11, pp.511-533.

[32] Martello, S., Pisinger, D. and Vigo, D. (2000) ‘The three-dimensional bin
packing problem’, Operations Research, Vol. 48, pp.256-267.

[33] Mohanty, B.B., Mathur, K. and Ivancic, N. (1994) ‘Value considerations
in three-dimensional packing - a heuristic procedure using the fractional

80

knapsack problem’, European Journal of Operational Research, Vol. 74,
pp.143-151.

[34] Moura, A. and Oliveira, J.F. (2005) ‘A GRASP approach to the container-
loading problem’, IEEE Intelligent Systems, Vol. 20, pp.50-57.

[35] Moura, A. and Oliveira, J.F. (2009) ‘An integrated approach to the vehicle
routing and container loading problems’, OR Spectrum, Vol. 31, pp.775-
800.

[36] Parreño, F., Alvarez-Valdes, R., Tamarit, J.M. and Oliveira, J.F. (2008)
‘A maximal-space algorithm for the container loading problem’, Informs
Journal on Computing, Vol. 20, pp.412-422.

[37] Pisinger, D. (1998) ‘A tree search heuristic for the container loading prob-
lem’, Ricerca Operativa, Vol. 28, pp.31-48.

[38] Pisinger, D. (2002) ‘Heuristics for the container loading problem’, Euro-
pean Journal of Operational Research, Vol. 141, pp.382-392.

[39] Raidl, R. and Puchinger, J. (2008) ‘Combining (integer) linear program-
ming techniques and metaheuristics for combinatorial optimization’, Hy-
brid Metaheuristics, Vol. 114, pp.31-62.

[40] Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘A tree search method for the
container loading problem with shipment priority’, European Journal of
Operational Research, Vol. 214, pp.526-535.

[41] Rota, G. (2011) ‘The number of partitions of a set’, American Mathemat-
ical Monthly, Vol. 71, pp.498-504.

[42] Sbihi,A. and Eglese, R. W. (2007).‘Combinatorial optimization and Green
Logistics’, Omega - International Journal of Management Science, Vol. 5,
pp.99C116.

[43] Takahara, S. (2008) A multi-start local search approach to the multiple
container loading problem. In: Advances in Greedy Algorithms, Witold
Bednorz, I-Tech, Vienna, Austria, pp.586-599.

[44] Techanitisawad, A. and Tangwiwatwong, P. (2004) ‘A GA-based Heuristic
for the interrelated container selection and loading problems’, Industrial
Engineering and Management System, Vol. 3, pp.22C37.

[45] Terno, J., Scheithauer, G., Sommerwei, U. and Riehme, J. (2000) ‘An
efficient approach for the multi-pallet loading problem’, European Journal
of Operational Research, Vol. 123, pp.372-381.

[46] Toth, P., and Vigo, D. (2005) The Vehicle Routing Problem, SIAM Mono-
graphs on Discrete Mathematics and Applications., Society for Industrial
and Applied Mathematics, Philadelphia.

[47] Wallenburg, C., Cahill, D., Michael Knemeyer, A. and Goldsby, T. (2011)
‘Commitment and trust as drivers of loyalty in logistics outsourcing re-
lationships: cultural differences between the united states and germany‘,
Journal of Business Logistics, Vol. 32, pp.83C98.

[48] Wang, Z., Li, K. and Levy, J.K. (2008) ‘A heuristic for the container
loading problem: a tertiary-tree-based dynamic space decomposition ap-
proach‘, European Journal of Operational Research, Vol. 191, pp.86C99.

[49] Wayne, D.B. (1989) ‘Multiset theory‘, Notre Dame Journal of Formal
Logic, Vol. 30, pp.36C66.

81

[50] Wächer, G., Haussner, H. and Schumann, H. (2007) ‘n Improved Typol-
ogy of Cutting and Packing Problems‘, European Journal of Operational
Research, Vol. 183, pp.1109-1130.

[51] Wirth, N. (1976) Algorithms + Data Structures = Programs, Englewood
Cliffs, New Jersey.

[52] Woeginger, G. J. (2001) ‘A note on the depth function of combina-
torial optimization problems’, Discrete Applied Mathematics, Vol. 108,
pp.325C328.

[53] Yorgey, B. and Parker, C. (2007) ‘Generating multiset partitions’, The
Monad Reader, Vol. 8, pp.5-20.

82

Published Papers

Journal Papers

1. Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘A tree search method for the
container loading problem with shipment priority’, European Journal of Oper-
ational Research, Vol. 214, pp.526-535.

2. Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘A priority-considering approach
for the multiple container loading problem’, International Journal of Meta-
heuristics, Vol. 1, pp.298-316.

3. Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘An exact algorithm for the
three-dimensional loading capacitated vehicle routing problem’, International
Journal of Business Performance and Supply Chain Modelling, (Submitted
and in review).

4. (Paper related to this research) Sawaragi, T., Xu, H., Tian, Y., Horiguchi,
Y. and Ren, J. (2011) ‘A TZBM-based algorithm for flow shop scheduling
problem considering the decision makers preference’, Tetsu-to-Hagane,The Iron
and Steel Institute of Japan, Vol. 97, pp.352-359 (In Japanese).

International Conference Papers

1. Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘A priority-considering approach
for the three-dimensional bin packing problem’, Proc. of the Conference for
the International Federation of Operation Research Societies, pp.14

2. Ren, J., Tian, Y. and Sawaragi, T. (2011) ‘An relaxation method for the
three-dimensional loading capacitated vehicle routing problem’, Proc. of the
International Symposium on System Integration, pp.45.

Japanese Conference Papers

1. Ren, J., Tian, Y. and Sawaragi, T. (2010) ‘A tree search for container
loading problem’, Proc. of the SICE (the Society of Instrument and Control
Engineers) Kansai Chapter Young Researcher Conference, pp.35-38.

2. (Paper related to this research) Tian, Y., Xu, H., Ren, J., Sawaragi, T. and
Horiguchi, Y. (2010) ‘TZBM-based decision making for production scheduling
problem’, Proc. of the 37rd SICE Symposium on Intelligent Systems, pp.303-
308 (In Japanese).

83

