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Weak-value amplification in a shot-noise-limited interferometer
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We study the weak-value amplification (WVA) in a phase measurement with an optical interferometer in which
shot noise limits the sensitivity. We compute the signal and the shot noise including the full-order interaction
terms of the WVA, and show that the shot-noise contribution to a phase shift in a pointer variable is always larger
than the final variance of the pointer variable. This yields the difference in estimating the noise level up to a
factor of 1.5. To clarify an advantage for practical uses of the WVA, we discuss the signal-to-noise ratio and its
optimization in the presence of the shot noise.
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I. INTRODUCTION

The idea of weak-value amplification (WVA) was originally
introduced by Aharonov, Albert, and Vaidman (AAV) in 1988
[1] (see Refs. [2,3] for a review). For a weak interaction
between a system and a measuring device, they showed that the
measurement results can be much larger than the eigenvalues
of the observables by appropriately selecting the initial and
final states of the system. This theoretical prediction has been
demonstrated in various experiments: the rotation of photon
polarization [4–6], quantum box problem [7], the arrival time
of a single photon [8], the spin Hall effect of light [9], the beam
deflection and phase measurements in a Sagnac interferometer
[10–13], and charge sensing [14].

In the original proposal of AAV [1], they considered the
situation of the measurement in which the interaction between
the system and the measuring device is so weak that the linear
approximation with respect to the interaction strength is valid.
If one specifies the initial and final states |ψi〉 and |ψf 〉 of the
system, which are called preselected and postselected states,
the outcome of the measurement (i.e., the shift in the pointer
variable of the measuring device after the postselection)
becomes the so-called weak value

Aw ≡ 〈ψf |A|ψi〉
〈ψf |ψi〉 , (1)

where A is an observable associated with the system to be
measured. If the outcome of the measurement is exactly
this weak value, it seems that we have an arbitrarily large
outcome when the preselections and postselections are nearly
orthogonal [15]. However, when the weak value becomes
large, the nonlinear effects of the von Neumann measurement
affect the outcome of the measurement [16–19]. As a result,
the shift of the pointer variable has a maximum value and
vanishes when the preselected and postselected states are
exactly orthogonal. This means that there exists the optimal
strength of the interaction and the optimal choice of the
preselected and postselected states.

Among the above application of the weak measurements,
the effects measured in Refs. [10,11] are an optical beam
deflection transverse to the light propagation direction in
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a Sagnac interferometer. The authors have experimentally
demonstrated that the small tilt of a mirror is actually
amplified and detected. They also applied this technique
to the measurement of tiny phase shift [12] and frequency
stabilization [13]. These series of experiments have shown that
the WVA significantly improves signal-to-noise ratio (SNR)
in the situation where technical noise (e.g., alignment noise)
dominates [11]. Also Brunner and Simon [20] investigated the
WVA for the measurement of a small longitudinal phase shift
and concluded that WVA has the potential to outperform a
standard interferometry by three orders of magnitude in the
presence of technical noise. However, as pointed out in [11], if
photon shot noise dominates, no such significant improvement
of the SNR is achieved. Nevertheless, there is an interesting
feature that the SNR is linearly proportional to the initial
variance of the pointer variable of the measuring device.
More recently, Parks and Gray [21] discussed that the final
variance of the pointer variable could be arbitrarily small if the
preselected state is tuned so as to cancel the initial variance.
However, from a practical point of view, the photon shot noise
always exists and it is unclear whether the above small final
variance of a pointer variable actually improves the SNR in
real experiments. In addition, we note that the research in
Refs. [11,20,21] are based on the linear approximation of the
interaction strength and do not include nonlinear effects due
to the von Neumann interaction. Therefore, the improvement
of the SNR and the advantage of the WVA are still ambiguous
in an optical phase measurement, especially, in the situation
where photon shot noise dominates.

In this paper, we study the phase measurement with the
WVA in an optical interferometer, in which the phase shift is
induced by small mirror displacement. Taking the full-order
evaluation of the von Neumann interaction and the shot
noise due to photon-number fluctuations into consideration,
we derive the formula for the shot noise and discuss the
optimization of the SNR. As a result, we find that the shot noise
is always larger than the final variance of a pointer variable.
We also discuss the detection limit of mirror displacement and
the improvement of the sensitivity by WVA compared with
standard interferometry.

This paper is organized as follows. In Sec. II, we explain
the WVA and compute the expectation value of the nth power
of a pointer variable, which can be applied to the arbitrary
strength of the interaction and the arbitrary initial state of
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the pointer variable. In Sec. III, we derive the formula of
shot noise and evaluate SNR in the presence of the shot
noise. In Sec. IV, based on the expression of SNR found in
Sec. III, we discuss the detection limit of mirror displacement.
Section V is devoted to conclusions and discussions. Through-
out this paper we adopt the unit c = h̄ = 1.

II. WEAK-VALUE AMPLIFICATION

We consider a small displacement measurement of a mirror
in an optical interferometer, particularly concentrating on a
Mach-Zehnder interferometer. This does not lose generality
and our analysis here can also be applied to other optical
configurations such as Michelson and Sagnac interferometers.
The Mach-Zehnder interferometer we consider is shown in
Fig. 1. A light beam that enters the interferometer takes two
paths after being divided by a 50:50 beam splitter. One of the
beams on the upper path is phase shifted by θ (preselection),
which introduces a constant phase difference between beams
on the upper and lower paths. Then each beam senses small
differential displacements � of mirrors (weak interaction) and
is recombined at the second beam splitter. Finally, the light is
detected at one of the output ports that is tuned to a nearly dark
port by controlling the initial phase difference θ (pos-selection
and sequential ideal measurement).

We present the theoretical description of WVA in this
section for a single photon. However, the results can be
easily generalized to a macroscopic beam. In our optical
setup, we regard the beam which-path information as the
system in weak measurement, which is the linear system
spanned by the base states {| ↑ 〉, | ↓ 〉}. Here, | ↑〉 and | ↓〉
are the states that a photon propagates on the upper and lower
optical paths of the interferometer, respectively. We regard the
photon momentum as the pointer variable of the measuring
device, which measures the phase shift induced by the mirror
displacements in the Mach-Zehnder interferometer.

The preselected state of the system (photon propagation
state) is denoted by

|ψi〉 = 1√
2

(eiθ/2| ↑ 〉 + e−iθ/2| ↓ 〉).

Here the initial phase offset θ is symmetrized merely for
simplicity of calculation. The initial state of the measuring

FIG. 1. Mach-Zehnder interferometer.

device (the probability distribution of photon momentum) is

|�〉 =
∫

dp �(p)|p〉.

Since we measure the small displacement of the mirror at
the asymmetric output port of this optical configuration, the
observable is

√
2�A where A = | ↑ 〉〈 ↑ | − | ↓ 〉〈 ↓ |. The

Hamiltonian of the interaction at the time t0 is written as

H = gδ(t − t0) A ⊗ p. (2)

Here we define g ≡ √
2�. After the interaction given in Eq. (2)

and the postselection by the final state of the system |ψf 〉 =
(| ↑ 〉 − | ↓ 〉)/√2, the final state of the device is

|�′ 〉 = 〈ψf |e−igAp|ψi〉|�〉
=

∫
dp �(p)|p〉〈ψf |e−igAp|ψi〉.

Since the operator A satisfies the property A2 = 1, this
expression can be exactly evaluated including nonlinear terms
in the coupling [19] as

|�′ 〉 =
∫

dp �(p)|p〉〈ψf |ψi〉(cos gp − iAw sin gp), (3)

where Aw is the weak value defined in Eq. (1) and is given in
this case by

Aw = −i cot
θ

2
. (4)

Since the product of the initial and final states of the system
is 〈ψf |ψi〉 = i sin(θ/2), the state |�′ 〉 is not normalized. Here
we define the density matrix of the measuring device

ρ
′
d ≡ |�′ 〉〈�′ |

〈�′ |�′ 〉 . (5)

From Eqs. (3) and (5), the expectation value of the nth power
of p is

〈pn〉′ = Tr[pnρ
′
d ]

= 〈pn〉+(|Aw|2 − 1)〈pn sin2 gp〉 + ImAw〈pn sin 2gp〉
1 + (|Aw|2 − 1)〈sin2 gp〉+ImAw〈sin 2gp〉 .

(6)

The brackets 〈· · ·〉 and 〈· · ·〉′
denote averaging over the initial

and final states of the measuring device, respectively.
If we measure the shift of the pointer variable 〈p〉′

, the
variance Var[p]

′ = 〈p2〉′ − (〈p〉′
)2 makes the pointer variable

fluctuate and is regarded as frequency noise. However, in an
optical experiment, shot noise coming from the fluctuation of
the photon number also contributes. In the next section we will
show that the shot noise is always larger than the frequency
noise.

III. SHOT NOISE AND SNR

We consider the shot noise in an optical experiment of
WVA and evaluate its contribution to the total noise. We
note that the ingredients in Sec. III A are independent of the
details of the interferometer setup and are applicable to other
interferometers. We will also consider the optimization of the
SNR. Hereafter we use frequency ω for photons instead of
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momentum p in the previous section, though both variables
denote the same quantity.

A. Derivation

At the output port of the interferometer we obtain a
frequency spectrum of the photon number n(ω), where ω is
the frequency of a photon. To estimate the frequency shift of
the photon-number distribution we need to spectroscopically
detect the output light with a multichannel photodetector. For
a single photon, the frequency shift is given by

〈ω〉′ =
∫

dω ω〈ω|ρ ′
d |ω〉,

where 〈ω|ρ ′
d |ω〉 is the probability distribution function of a

photon after the postselection and satisfies the normalization
condition ∫

dω 〈ω|ρ ′
d |ω〉 = 1.

For Nout output photons, the averaged photon-number distri-
bution can be written as

n(ω) = Nout〈ω|ρ ′
d |ω〉.

Here we assume that the output light in each frequency mode
is a coherent state. The expectation value of the frequency shift
is given by

〈ω〉′ = 1

Nout

∫
dω ω n(ω).

In a real experiment, since the photon number fluctuates
around the expectation value as n(ω) = n(ω) + 	n(ω), the
observed frequency shift also fluctuates as

ω̃ = 1

Nout

∫
dω ωn(ω), = 〈ω〉′ + 	ω,

where

	ω ≡ 1

Nout

∫
dω ω	n(ω) .

Here 	ω is the shot noise due to photon-number fluctuations.
Since the output in each frequency mode is a coherent
state, the photon number fluctuates according to the Poisson
distribution. We denote averaging over the Poisson distribution
in each frequency mode by a bracket with the subscript P .
Then the expectation value is 〈	ω〉P = 0 by definition. The
variance is

Var[	ω] = 〈(	ω)2〉P
= 1

N2
out

∫
dω

∫
dω

′
ωω

′ 〈	n(ω)	n(ω
′
)〉P

= 1

N2
out

∫
dω ω2n(ω) = 1

Nout
〈ω2〉′

, (7)

where we used mode independency

〈	n(ω)	n(ω
′
)〉P = n(ω)δ(ω − ω

′
). (8)

Therefore the SNR is

SNR = |〈ω〉′ |√
Var[	ω]

=
√

Nout
|〈ω〉′ |√
〈ω2〉′ . (9)

As this result shows, the shot noise is always larger than the
frequency noise

√
Var[ω]′ =

√
〈ω2〉′ − (〈ω〉′ )2, which is often

regarded as a fundamental noise in weak measurement. This
fact means that we have to take the shot noise into account
when we evaluate the improvement of SNR by the WVA.

In the derivation, we take the infinitesimal frequency bins
for the convenience of the computation. However, it can be
easily verified that dividing into finite bins also leads to the
same result, though the frequency integrals in an expectation
value is replaced with summations.

B. Evaluation

To evaluate the dependence of the shot noise on the
experimental parameters (s defined below and θ ), we consider
a single-photon case and assume that the initial momentum
distribution of a photon is nonzero-mean Gaussian (for
multiple photons, a pulsed laser whose central frequency is
mode locked to ω0)

�(ω) =
(

1

2πσ 2
ω

)1/4

exp

[
− (ω − ω0)2

4σ 2
ω

]
.

Here σ 2
ω is the variance of ω − ω0. For this Gaussian initial

state, using Eq. (6), we obtain the first and second powers of
ω − ω0

g〈ω − ω0〉′ = s e−s{(|Aw|2 − 1) sin β + 2 ImAw cos β}
2Z

,

(10)

g2〈(ω − ω0)2〉′

= s

2

[
1 + s e−s

Z
{(|Aw|2 − 1) cos β − 2 ImAw sin β}

]
,

(11)

where

s ≡ 2g2σ 2
ω , β ≡ 2gω0 ,

Z ≡ 1 + 1
2 (|Aw|2 − 1)(1 − e−s cos β) + e−sImAw sin β.

The parameter s can be interpreted as the measurement
strength since large g means strong coupling of the interaction
and large σω denotes the narrow temporal distribution of the
photons. Equivalently, substituting the explicit expression of
Aw in Eq. (4), the above equations are written as

g〈ω − ω0〉′ = − s e−s sin(θ − β)

1 − e−s cos(θ − β)
, (12)

g2〈(ω − ω0)2〉′ = s

2

[
1 + 2s e−s cos(θ − β)

1 − e−s cos(θ − β)

]
. (13)

In a typical experiment, θ is technically limited to above
∼10−3 and β is ∼ �ω0 ∼ �/λ0. If we focus on the sensitive
experiment measuring a small phase shift, β can be neglected
and the initial distribution can be well approximated by the
zero-mean Gaussian. Therefore, hereafter we set β = 0 or
ω0 = 0.

In Fig. 2, the frequency shifts as a function of measurement
strength s for fixed θ are shown. For s � 1, which is a weak
measurement regime, the frequency shift linearly increases
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FIG. 2. (Color online) Frequency shift g〈ω〉′
as a function of s.

Each curve is for θ = 10−4 (red solid line), 10−3 (orange dashed line),
10−2 (green dotted line), and 10−1 (blue dotted-dashed line).

as s is large. However, the amplification is saturated in an
intermediate regime and rapidly drops in a strong measurement
regime (s � 1). This behavior results from a nonlinear aspect
of the WVA [16–19]. Note that the maximum value of the
frequency shift is larger as θ increases. In Fig. 3, the shot noise
as a function of measurement strength s for fixed θ is shown.
The magnitude of the shot noise linearly increases in the broad
range of the measurement strength. However, it hardly depends
on θ . These facts mean that the main contribution of the
shot noise comes from the initial variance of the measuring
device s/2. As is obvious from the definitions of the shot
noise and the frequency noise (the final variance of the pointer
variable), the shot noise coincides with the frequency noise for
small values of the frequency shift. However, the shot noise
deviates from the frequency noise at most by a factor of 1.5
for the Gaussian initial state. Note that the difference can be
striking and qualitatively important for a non-Gaussian initial
state because the frequency noise can be tuned to zero by
appropriately selecting the initial state [21].

Although the frequency shift is actually amplified, the most
important quantity in a real experiment is SNR. To see the
dependence of the parameters s and θ , we set Nout = 1 in
Eq. (9). From Eqs. (9), (10), and (11) the SNR is given by

SNR =
√

2s e−s sin θ√
(1 − e−s cos θ ){1 − (1 − 2s)e−s cos θ} . (14)

FIG. 3. (Color online) Shot noise g2〈ω2〉′
as a function of s. The

curve types are the same as in Fig. 2.

FIG. 4. (Color online) SNR as a function of s. The curve types
are the same as in Fig. 2.

In Fig. 4, the SNRs as a function of measurement strength s for
fixed θ are shown. In contrast to the frequency shift, the SNR
has a peak at a certain s. The optimal measurement strength
is larger for a larger θ . Unless the shot noise is properly taken
into account, the SNR would be overestimated at most by a
factor of 1.5 around the peaks of the SNR.

C. Optimization of signal-to-noise ratio

As seen in the previous section, the SNR has a maximum
value for each fixed θ . Next, we optimize the SNR and calculate
the optimal s and θ .

For a given θ , the condition ∂ SNR
∂s

= 0 is reduced to the
equation to determine the optimal s (sopt),

cos θ = esopt
[
1 + s2

opt − sopt
(
1 +

√
3 − 2sopt + s2

opt

)]
. (15)

Figure 4 indicates that the SNR for smaller θ is optimized by
smaller s. So for sopt � 1, Eq. (15) can be expanded in powers
of sopt and gives

sopt ≈ 1 − cos θ√
3

≈ θ2

2
√

3
.

This relation well agrees with the locations of the SNR peaks in
Fig. 4. The maximum value of the SNR is obtained when θ →
0 and sopt → 0 and is given by SNRmax =

√
2/(2 + √

3) ≈
0.732. We note that this SNR is for a single output photon.
In a typical optical experiment, Nout is significantly large and
the SNR is improved proportional to

√
Nout, making the SNR

much larger than unity.

IV. DETECTION LIMIT OF MIRROR DISPLACEMENT

In this section, let us consider the detection limit of mirror
displacement �, which is estimated from the measurement
strength parameter s = 4�2σ 2

ω. Since we found in the previous
section that the SNR rapidly decreases in a strong measurement
regime (s � 1), we concentrate on the weak regime and expand
the SNR in powers of s. From Eq. (14) for Nout output photons,
the leading contribution is

SNR ≈
√

2sNout cot
θ

2
.

The output photon number Nout has θ dependence due
to the choice of preselection and postselection states and
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is significantly suppressed, compared to the initial photon
number Nin, as Nout = Nin sin2(θ/2). Setting SNR = 1 and
solving for �, we obtain the detection limit of �

�min = λ0

4π
√

2Nin cos(θ/2)

(
σω

ω0

)−1

,

where λ0 is the wavelength corresponding to ω0.
Currently available lasers can generate femtosecond pulses.

For example, if the parameters are selected as θ = 10−3,
λ0 = 1 μm, σω/ω0 = 1, and Nin = 1 J/(h̄ω0) ≈ 5 × 1018, the
detection limit is �min ≈ 1.5 × 10−17 m. For 1 s of the integra-
tion time, this is of comparable sensitivity to the measurement
with a continuous monochromatic laser whose power is 1 W
except for the factor (σω/ω0)−1 [22].

V. CONCLUSION AND DISCUSSION

We have studied a phase measurement with the WVA in an
optical (Mach-Zehnder) interferometer, taking shot noise due
to photon-number fluctuations into account. In this optical
configuration, we have derived the formula of the WVA,
namely the expectation value of the nth power of a pointer
variable after postselection. This formula can be applied to
the arbitrary strength of the interaction and the arbitrary initial
state of the pointer variable. Furthermore, we also derived the
formula for the shot noise and discussed the optimization of
the SNR. As a result, we found that the shot noise is always
larger than the frequency noise. Also we showed that the SNR
with smaller fixed θ is optimized by smaller s (sopt ∼ θ2).

Although our results are shown by setting Nout = 1, the SNR
is considerably improved due to a large number of photons
(i.e., SNR ∝ √

Nout).
The detection limit we derived is comparable to the standard

measurement scheme with a continuous monochromatic laser
except for the factor (σω/ω0)−1. This conclusion is consistent
with that of Starling et al. [11] in the measurement of a
transverse beam deflection with a Sagnac interferometer. We
emphasize that our estimation of the photon shot noise is
general and is applicable to many interferometer setups of
phase measurements because the shot-noise formula includes
the nonlinear effects of the von Neumann interaction and
does not depend on a specific optical configuration of the
interferometer.

Finally, we comment on one of the possibilities of the
further improvement of SNR. Although we restrict the initial
state of a probe to the Gaussian distribution, the further
improvement of SNR would be possible by the introduction of
the non-Gaussian initial state of the measuring device [21,23].
Even if we apply non-Gaussian initial states, we have to
take the photon shot noise into account and the arguments
developed in this paper will be necessary. To clarify the
advantage of practical applications of the WVA further detailed
and technical investigations are necessary.
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