Ceria-supported Ruthenium Catalysts
Directed toward Greener Organic Reactions

Hiroki Miura
2012
Contents

General Introduction..1

Chapter 1 A heterogeneous Ru/CeO₂ catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes15

Chapter 2 Recyclable solid ruthenium catalysts for the direct arylation of aromatic C–H bonds ...35

Chapter 3 Catalytic addition of aromatic C–H bonds to vinylsilanes in the presence of Ru/CeO₂ ...61

Chapter 4 Transformation of Ru(IV)=O species supported on CeO₂ to active ruthenium catalysts for the addition of aromatic C–H bonds to unsaturated compounds ..81

Chapter 5 Recyclable solid ruthenium catalysts supported on metal oxides for the addition of carboxylic acids to terminal alkynes ..103

Chapter 6 Selective addition of carboxylic acids to alkynes in the presence of recyclable ruthenium catalysts prepared through phosphine-modification of ruthenium(IV) species supported on ceria ..131

Chapter 7 Intermolecular coupling of alkynes with acrylates by recyclable oxide-supported ruthenium catalysts: Formation of distorted ruthenium(IV)-oxo species on ceria as a key precursor of active species ..159
Chapter 8 Intermolecular hydroacylation of alkynes in the presence of recyclable Ru/CeO₂ catalysts...193

General Conclusion ...213

List of Publications ...217

Acknowledgments ...220
General Introduction

1. Background

1-1. Introduction

In the 21st century, sustainable human progress has been recognized as a high priority worldwide. With regard to this issue, Anastas and Warner developed 12 principles of green chemistry in 1998 [1], which prompted chemists to focus on the development of environmentally-benign processes for synthesizing organic compounds [2]. Particularly, the further development and improvement of catalysts that can make it possible to reduce the environmental load are regarded as the most important issues in the field of industrial chemistry [3].

Catalysts can be divided broadly into two categories: “homogeneous catalysts” and “heterogeneous catalysts”. The former are defined as catalysts that exist in the same phase as the substrates and products, and most are in a liquid phase. Inorganic liquid acid or base catalysts, metal-complex catalysts, organocatalysts and enzymes are representative examples of homogeneous catalysts. In contrast, heterogeneous catalysts are defined as catalysts that exist in a different phase from the products. Solid acid or base catalysts, supported metal catalysts and immobilized metal-complex catalysts are representative heterogeneous catalysts.

Transition-metal complex catalysts are some of the most promising homogeneous catalysts [4]. Ligands and external additives can create precisely controlled active metal species, which can realize highly efficient organic transformations with high selectivity.
under relatively mild reaction conditions. The remarkable progress with homogeneous complex catalysts in the 20th century revolutionized synthetic chemistry, and many chemists who studied homogeneous complex catalysts received the Nobel Prize for their work. For example, the prizewinners in 2010, A. Suzuki, E. Negishi and R. Heck, developed homogeneous Pd-catalyzed cross-coupling reactions, which had a strong impact on synthetic chemistry [5]. However, homogeneous catalysts have some inherent disadvantages, such as the difficulty of recovering and recycling the catalysts after the reaction. Thus, only a few processes are used in industry so far.

In contrast, heterogeneous catalysts can overcome these problems. They can be easily recovered from the reaction mixture without severe contamination of the products by metallic species, and can be easily reused or recycled. Thus, from the viewpoint of green and sustainable chemistry, much attention has been focused on synthetic processes with heterogeneous catalysts [6].

1-2. Heterogeneous catalysts for selective organic transformations

In the field of heterogeneous catalysts, the development of metal complex catalysts immobilized on solid supports as well as solid-supported metal catalysts are major research targets. The following sections describe the features of these two categories.

1-2-1. Immobilized metal-complex catalysts

Immobilized metal-complex catalysts can be defined as catalysts in which a metal-complex is tethered to a solid support or polymer through stable chemical bonds. They can be easily separated from the reaction mixture and can be reused after the reactions. Due to their regulated structure around the active site with ligands, they are
expected to show catalytic activities and selectivities comparable to those of homogeneous metal-complex catalysts. For example, Jacobsen et al. reported the synthesis of chiral Co-salen complexes tethered to a polymer, which showed high catalytic activity for the kinetic resolution of epoxides without any decrease in stereoselectivity compared to those of homogeneous catalysts [7]. Furthermore, a flow system with silica-immobilized Co catalysts has been developed [8].

Steric restriction around active sites by the support can induce unexpected catalytic functions that are difficult to achieve with homogeneous catalysis. For instance, Tada et al. reported that the immobilization of a Ru(II) complex on a silica support greatly improved its catalytic activity for the epoxidation of trans-stilbene [9]. Immobilization on the support is thought to stabilize very unstable active Ru species with O₂ side-on coordination.

Immobilization of complex catalysts could boost their stereoselectivities [10]. A chiral Rh-complex catalyst immobilized inside the pores of mesoporous silica, MCM-41, realized a highly efficient enantioselective hydrogenation of methyl benzoylformate, whereas the parent Rh complex showed no stereoselectivity [11].

Complex catalysts that are directly bound to the surfaces of metal oxide supports also act as heterogeneous catalysts for organic transformations [12]. Basset, Copéret and co-workers focused on the construction of well-defined organometallic species on the surface of metal oxides and studied on their use as heterogeneous catalysts: This strategy is known as “Surface Organometallic Chemistry (SOMC)” [13]. For example, in 1991, they reported the synthesis of d⁰ surface Zr complexes on SiO₂ [14], which are transformed to a Zr-H complex by the reaction with H₂ at 150 °C [15]. Furthermore, such surface metal hydride species have been shown to catalyze the disproportionation of
neopentane to methane and isobutene via a “σ-bond metathesis pathway” [16]. Recent remarkable progress in spectroscopic analysis has greatly contributed to the further development of SOMC: The detailed structure of a Zr-H complex has been determined by using X-ray absorption fine structure (XAFS) analysis and solid-state NMR. Recently, dynamic changes in the surface complex have also been investigated on the basis of in situ and/or time-resolved spectroscopic measurements. These novel techniques facilitate the precise construction of highly active catalytic sites on the solid surface [12]. In this context, the fine structure of Re species of MeReO₃/Al₂O₃ as well as the mechanism for the generation of active Re species for olefin metathesis was proposed by making full use of various spectroscopic analyses and a theoretical study [17].

As discussed above, immobilized catalysts are advantageous in terms of their high activities and selectivities for various organic reactions, and they often show unexpected catalytic functions that are not seen with homogeneous catalysts. However, there are still several intrinsic problems associated with their practical application, such as the cumbersome operations required for their preparation, their low chemical stabilities, and so on.

1-2-2. Supported metal catalysts

Supported metal catalysts are generally considered to be catalysts in which metal particles are dispersed on insoluble solid supports such as metal oxides or activated charcoal. Their higher stabilities simplify their preparation and operation in comparison with immobilized metal-complex catalysts. The state and nature of the surface metallic species are critically influenced by the support, and a particular combination of metallic species with a support can create specific supported metallic species, which could show
unexpected catalytic features [18].

Kaneda et al. reported the synthesis and catalytic properties of Ru catalysts supported on hydroxyapatite (HAP) by the treatment of RuCl₃ n-hydrate with HAP in water [19]. The supported Ru catalysts participated in various organic transformations, such as the oxidation of alcohols with molecular oxygen [19], the oxidation of amines to nitriles [20], the hydration of nitriles [21] and the oxidation of silanes to silanols [21]. Successful reuse of the catalysts was demonstrated and the leaching of Ru species into the reaction mixture is negligible. The formation of isolated 5-coordinated Ru(III)-Cl species on HAP has been proposed on the basis of a detailed XAFS study. Furthermore, treatment of the catalysts with silver(I) triflate transformed the Ru(III) species supported on HAP into cationic Ru species, which functioned as a heterogeneous Lewis acid catalyst for Diels-Alder reactions and aldol-type condensations with high efficiency [22].

Ruthenium catalysts supported on hydrotalcite (HT), which is a clay mineral with a layered structure, were found to be effective for the α-alkylation of nitriles with alcohols [23]. Ru species acted as a dehydrogenation catalyst for alcohols and HT acted as a base catalyst, and the combination of these functionalities has been proposed to be essential for the catalysis. An XAFS study suggested the formation of isolated Ru(IV)-OH species coordinated by two H₂O molecules on the surface of HT.

Such Ru-OH species could be constructed on the surface of various metal oxide supports by a simple impregnation method [24]. Mizuno and co-workers reported the Ru(OH)ₓ/Al₂O₃-catalyzed selective synthesis of nitriles from alcohol with NH₃ [25]. The solid catalysts showed higher activities than previously reported homogeneous Ru complex catalysts, Ru/C or Ru/HAP catalysts. Moreover, Rh(OH)ₓ/Al₂O₃ prepared by a similar method as Ru(OH)ₓ/Al₂O₃ functioned as a very effective catalyst for the one-pot
synthesis of primary-amides from aldehydes with hydroxylamine [26]. Despite very low selectivities in classical acid-catalyzed reactions [27], the supported Rh catalysts gave the products with excellent selectivities.

The development of supported metal catalysts that are effective for carbon–carbon bond-forming reactions, such as Suzuki–Miyaura coupling, with supported metal catalysts has also been extensively studied, especially in the past decade [28]. For example, perovskite-type LaFe$_{0.57}$Co$_{0.38}$Pd$_{0.05}$O$_3$, which is well known as an effective catalyst for automobile emission control, a so-called “intelligent catalyst” [29], showed high activities for Suzuki–Miyaura coupling to achieve a high turnover number (TON) of over 200,000 [30]. Okumura et al. reported the formation of atomic Pd species encapsulated in a cage of USY zeolite and their excellent activity for Suzuki–Miyaura coupling. The USY zeolite-supported Pd catalysts were reported to show a much higher TON (over 10,000,000) than conventional Pd/C, Pd/Al$_2$O$_3$ and homogeneous Pd(OAc)$_2$ catalysts [31].

As mentioned above, recent improvements in supported metal catalysts have realized various organic transformations, including those that have been considered to be difficult even with the use of homogeneous metal-complex catalysts. However, there are still several problems. For example, the scope of the reactions with supported catalysts is rather limited to specific types, such as oxidation, hydrogenation and acid- or base-mediated reactions, probably because of the difficulty of fine-tuning the electronic and steric state of the active metal species. Thus, the application of supported metal catalysts for highly selective organic reactions such as C–C bond-formations via the activation of C–H or C–C bonds, remains a challenge in synthetic chemistry.
1-2-3. Ceria-supported Ru catalysts

In current catalyst chemistry, ceria (CeO\textsubscript{2}) has drawn much attention as an attractive catalyst or catalyst support due to its high oxygen-storage capacity and metal-dispersion ability [18b,32]. CeO\textsubscript{2}-supported noble-metal catalysts have been reported to show excellent activities for various reactions, such as the hydrogenation or oxidation of CO [33], the reduction of nitrogen oxides [34] and the combustion of hydrocarbons [35]. In particular, CeO\textsubscript{2}-supported Ru catalysts (Ru/CeO\textsubscript{2}) are known to be effective for the combustion of hydrocarbons [36], the synthesis of ammonia [37] and the wet oxidation of waste water [38]. In organic synthetic reactions, the selective oxidation of alcohols to the corresponding aldehydes and ketones has been achieved in the presence of Ru/CeO\textsubscript{2} [39] and RuCo/CeO\textsubscript{2} catalysts [40], whereas there have been no previous examples of the application of the Ru/CeO\textsubscript{2} catalysts to other types of organic transformations, such as C–C bond-forming reactions.

2. Scope and outline of the present thesis

Based on above background, this thesis focuses on the development of novel solid catalytic systems for highly selective organic syntheses in a green manner. In particular, ceria- or zirconia-supported Ru catalysts have been found to be very effective for various C–C or C–O bond-forming reactions, which have never been accomplished with other supported metal catalysts.

This thesis consists of eight chapters. Chapter 1 describes heterogeneous Ru-catalyzed sequential transfer-allylation and isomerization from tertiary homoallyl alcohols to aldehydes. Ru/CeO\textsubscript{2} and Ru/ZrO\textsubscript{2} showed activity for the reaction. In contrast,
Ru catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO were not effective at all. No additives such as phosphines, bases or CO are required, which facilitates the reuse of the catalysts without a significant loss of activity.

Chapter 2 describes the solid Ru catalysts for the direct arylation of aromatic C–H bonds with aryl halides. Ru/CeO$_2$ and Ru/ZrO$_2$ showed high activities for the reactions to give unsymmetrical biaryl compounds in high yields, even in the absence of phosphine ligands. Furthermore, reductive pretreatment of Ru/CeO$_2$ in the presence of PPh$_3$ under a hydrogen atmosphere markedly enhanced its catalytic activity, and the reaction with aryl chlorides proceeded efficiently to afford the products in excellent yields. A hot filtration test suggested that the solid Ru catalyst worked heterogeneously.

Chapter 3 reports the addition of aromatic C–H bonds to vinylsilanes in the presence of solid Ru catalysts. The reactions take place in the presence of Ru/CeO$_2$ or Ru/ZrO$_2$ catalysts together with PPh$_3$ to give the products in high yields. Moreover, Ru/CeO$_2$ catalysts that were pretreated together with PPh$_3$ under a hydrogen atmosphere showed very high activities and the reaction went to completion within a short reaction period at lower temperature.

Chapter 4 deals with further modification of the Ru/CeO$_2$ catalytic system for the addition of aromatic C–H bonds to alkenes (hydroarylation). The treatment of Ru/CeO$_2$ with PPh$_3$ and an aqueous solution of HCHO in 2-methoxyalcohol enhanced the catalytic activities and broadened the scope of substrates for hydroarylation. The solid Ru/CeO$_2$ could be recycled for several times after the reaction of unsaturated hydrocarbons.

Chapter 5 describes the addition of carboxylic acids to terminal alkynes by Ru catalysts supported on solid oxides. Ru/CeO$_2$ and Ru/ZrO$_2$ catalysts prepared from a Ru precursor with chloro ligands produced the corresponding vinyl esters in high yields. In
the present catalytic system, the E-isomers of anti-Markovnikov adducts were obtained as the major products.

Chapter 6 reports the regio- and stereo-selective production of vinyl esters via the addition of carboxylic acids to terminal alkynes by the use of Ru/CeO$_2$ catalysts. With the solid Ru/CeO$_2$ catalysts treated in the presence of 1,4-(bisdiphenylphosphino)butane (dppb) under a hydrogen atmosphere, the Z-isomers of anti-Markovnikov adducts were obtained in high yields with excellent selectivities. On the other hand, P(10Oct)$_3$-modified Ru/CeO$_2$ catalysts gave Markovnikov adducts as the major products.

Chapter 7 describes the intermolecular coupling of alkynes with acrylates by Ru catalysts supported on metal oxides. The reactions occurred in the presence of Ru/CeO$_2$ or Ru/ZrO$_2$ with a catalytic amount of sodium formate. The coupling of different alkenes was also realized. The results of a detailed spectroscopic analysis suggest the formation of distorted Ru(IV)-oxo species on the surface of the CeO$_2$ support, which were then transformed into catalytically active low-valent Ru species at the initial stage of the reaction.

Chapter 8 deals with the Ru-catalyzed intermolecular hydroacylation of alkynes. Ru/CeO$_2$ catalyst showed activity for the reaction in the presence of sodium formate and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) to give the corresponding conjugated enones in moderate to high yields. Various aromatic aldehydes with or without coordinating groups could be used for the reactions. The solid Ru/CeO$_2$ catalysts could be recycled several times without a significant loss of activity.
References

2001, 461.

2007, 46, 5202; b) H. Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi, N.

1988, 35, 1.

Chapter 1
A heterogeneous Ru/CeO$_2$ catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes

1.1 Introduction

As discussed in the general introduction, the development of heterogeneous catalysts that show high catalytic activities and selectivities towards organic synthesis is of great significance from both industrial and environmental points of view [1–3]. Although recent progress on homogeneous catalysts has realized selective cleavage of carbon–carbon bonds under mild and neutral conditions [4], for example, transfer-allylation reactions [5,6], there is no reported example of solid oxide catalysts that are effective for these carbon–carbon bond cleaving reactions.

This chapter describes the heterogeneous Ru/CeO$_2$ catalyst [7] effective for transfer-allylation from homoallyl alcohols to aldehydes, followed by isomerization to give the corresponding saturated ketones in high yields, which proceeds via a different mechanism from that of Lewis acid-mediated reactions [8]. The present solid oxide-catalyzed reaction proceeds without additives such as phosphines, bases, and CO [5,6].
1.2 Results and discussion

The treatment of a homoallyl alcohol (1a) and benzaldehyde (2a) at 170 °C under an argon atmosphere in the presence of the Ru(2.0 wt%)/CeO₂ (0.025 mmol as Ru) gave saturated ketone 4a in a good yield. As summarized in Table 1, the reaction was almost completed within 6 h (entries 3 and 4). No catalytic activity was observed below 150 °C (entry 5). The addition of phosphines to this Ru/CeO₂ catalyst completely suppressed the reaction, and no 4a was obtained (entry 6). The reaction was sensitive to the molar ratio of homoallyl alcohols and aldehyde. The desired ketone, 4a, was obtained in the best yield in the reaction of 0.50 mmol of 2a with 1.0 mmol of 1a. The effect of the catalyst support on the performance was examined. Among the supported Ru catalysts examined, only the Ru/CeO₂ catalyst showed the activity (entries 3, 7–10) [9]. As shown in entries 11–14, other transition metals supported on CeO₂ did not exhibit any catalytic activity either. Note that Lewis acidic TiO₂ (ST-01) [10] and/or Ru/TiO₂ catalyst gave 1,1,3-trimethyl-1H-indene, quantitatively, via the intramolecular Friedel-Crafts-type reaction of 1a (entry 9). These results strongly suggested that the present transfer-allylation was not a carbonyl-ene reaction [8] promoted by acidic sites of the catalysts.

Under the present reaction conditions, the homogeneous Ru₃(CO)₁₂ catalyst gave 4a in a lower yield than with the heterogeneous Ru/CeO₂ catalyst (entry 15). Note that RuCl₂(PPh₃)₃-catalyzed reaction under much more severe conditions afforded an αβ-unsaturated ketone, 3-methyl-1-phenylbut-2-en-1-one, in a low yield (entry 16) [5].
Table 1. Effect of solid oxide-supported catalysts on the transfer-allylation from 1a to 2a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalysta</th>
<th>Yield of 4a (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CeO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ru/CeO$_2$</td>
<td>69</td>
</tr>
<tr>
<td>4c</td>
<td>Ru/CeO$_2$</td>
<td>63</td>
</tr>
<tr>
<td>5d</td>
<td>Ru/CeO$_2$</td>
<td>trace</td>
</tr>
<tr>
<td>6e</td>
<td>Ru/CeO$_2$</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>Ru/SiO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Ru/Al$_2$O$_3$</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Ru/TiO$_2$</td>
<td>0f</td>
</tr>
<tr>
<td>10</td>
<td>Ru/MgO</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Fe/CeO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Cu/CeO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Rh/CeO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Pd/CeO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Ru3(CO)${12}$g</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>RuCl$_2$(PPh$_3$)$_3$g,h</td>
<td>35i</td>
</tr>
</tbody>
</table>

a 2.0 wt%. b Determined by GLC based on 2a. c Reaction time, 6 h.
d At 150 °C. e PPh$_3$ (0.10 mmol) was added. f 1,1,3-Trimethyl-$1H$-indene was obtained, quantitatively. g Homogeneous catalyst. h From ref. 5, 1a (4.0 mmol), 2a (4.0 mmol), Ru
cat. (0.20 mmol), allyl acetate (30 mmol), THF (8.0 mL) under CO (10 atm) at 200 °C for 40 h. The product was 3-methyl-1-phenylbut-2-en-1-one.

The results obtained by the Ru/CeO$_2$-catalyzed transfer-allylation–isomerization from a series of homoallyl alcohols with aldehydes under the optimized reaction conditions are shown in Table 2. The reaction of 1a with aromatic aldehydes 2 proceeded smoothly to give desired ketones 4 in good to high yields. The substituents on the aromatic ring of 2 did not affect the reaction (entries 2–6), and 2-naphthaldehyde (2g) was also applicable (entry 7). Unexpectedly, the reaction of 1b with benzaldehyde 2a gave 4h in a poor yield (entry 8). Aliphatic aldehydes, such as 1-octanal, gave a complex mixture due to the side reactions represented by an aldol condensation.

Table 2. Transfer-allylation from homoallyl alcohols (1) to aromatic aldehydes (2) catalyzed by Ru/CeO$_2$.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>Product</th>
<th>Yield of 4 (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2a</td>
<td>4a</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2b</td>
<td>4b</td>
<td>78</td>
</tr>
</tbody>
</table>
Reaction conditions: 1 (1.0 mmol), 2 (0.50 mmol), mesitylene (2.0 mL), Ru/CeO$_2$ (0.025 mmol as Ru), at 170 °C for 24 h under Ar. b Determined by GLC based on 2. Figures in the parentheses show isolated yields.
Figure 1 shows the time-course of the reaction of 1a with 2a catalyzed by Ru/CeO₂. During the initial stage of the reaction, the formation of secondary homoallyl alcohol 5a was observed in GLC analysis. After 1.5 h of the reaction, with the decrease amount of 5a, the formation of final product 4a was observed. These results clearly reflect the sequential transfer-allylation and isomerization of an intermediate, 5a.

Figure 1. Time-course of the reaction of 1a with 2a during initial 10 h. (a) yield of 4a (filled squares) and (b) yield of 5a (see inset, open triangles). The reaction conditions were identical with those in Table 2.
One of the most advantageous points of heterogeneous catalysts is their high recyclability. The initial run was performed under the conditions shown in Table 3. After separation by the centrifugation, washing three times with diethyl ether (10 mL) at room temperature, and calcination at 400 °C for 30 min in air, the Ru/CeO₂ catalyst was reused for the reaction under the same conditions as for the initial run. Two series of the experiments were performed independently, and the results were shown in Table 3. These results clearly show that the Ru/CeO₂ catalyst was recyclable without a significant loss of activity. Note that reuse without calcination resulted in a poor yield of 4a (less than 10% in the 2nd use), probably because of the significant deposition of a carbonaceous species on the catalyst surface.

Table 3. Activity of the recycled Ru/CeO₂ catalyst.\(^a\)

\[
\begin{array}{ccc}
\text{Series} & \text{Catalyst} & \text{Yield of 4a (\%)}^b \\
1 & 1st use & 69 \\
 & 2nd use & 68 \\
2 & 1st use & 61 \\
 & 2nd use & 59 \\
 & 3rd use & 62 \\
\end{array}
\]

\(^a\) Reaction conditions: 1a (2.0 mmol), 2a (1.0 mmol), mesitylene (2.0 mL), Ru/CeO₂ (0.050 mmol as Ru), at 170 °C for 24 h under Ar.

\(^b\) Determined by GLC based on 2a.
It is important to investigate whether the reaction actually proceeds on the surface of the solid catalyst [11,12]. After the reaction of 1a and 2a at 170 °C for 24 h, the solid catalyst was removed by cold filtration. Subsequent addition of 1a (1.0 mmol) and 2a (0.50 mmol) to the clear filtrate, and heating of the mixture at 170 °C for an additional 24 h resulted in no increase of 4a. ICP analysis revealed that the filtered solution contained only 0.0014 mmol of ruthenium species. Note that hot filtration of the solid catalyst after 3 h suppressed the further formation of the product 4a. These results strongly suggest that the present catalytic reaction occurred on the solid surface, and that CeO₂ acts as a macro-ligand, which stabilizes the catalytically active ruthenium species.

The structure of the Ru/CeO₂ catalyst was investigated by spectroscopic analyses. The Ru(2.0 wt%)/CeO₂ catalyst shows typical type IV nitrogen adsorption/desorption isotherms (Figure 2), indicating that its pore size distributed in the mesopore region. The V-t plot analysis suggests the absence of micropores. The BET surface area of the Ru/CeO₂ catalyst was 92 m²g⁻¹.

Figure 2. Nitrogen adsorption/desorption isotherms of the Ru(2.0 wt%)/CeO₂ catalyst. Open and filled marks stand for adsorption and desorption data, respectively.
Figure 3 shows the XRD patterns of the Ru/CeO$_2$ and Ru/TiO$_2$ catalysts, which only show broad diffraction peaks due to nanocrystalline cubic cerium oxide and anatase, respectively. The crystalline size of CeO$_2$ was estimated to be 11 nm by the Scherrer’s equation from the 111 diffraction peak at 28°. The absence of patterns corresponding to crystalline RuO$_2$ indicated the formation of well-dispersed ruthenium species.

Figure 3. XRD patterns of the Ru(2.0 wt%)/CeO$_2$ and Ru(2.0 wt%)/TiO$_2$ catalysts.
The surface states of the catalyst before and after the catalytic run (Entry 3 in Table 1) were analyzed by XPS. Table 4 shows the surface composition and the binding energy of the Ru(2.0 wt%)/CeO$_2$ catalyst. The atomic ratio of carbon on the surface of the used catalyst was high, more than 18%, probably because of the deposition of carbonaceous materials on the surface during the catalytic run. A large part of carbonaceous species was removed by calcination at 400 °C for 30 min in air. The surface ratio of Ru was almost unchanged throughout the reaction and the subsequent calcination. Lower Ru 3$d_{5/2}$ binding energy found in the used catalyst suggests the reduction of ruthenium(IV) species during the reaction.

Table 4. XPS analysis of the Ru(2.0 wt%)/CeO$_2$ catalyst.

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Surface concentration (atomic %)</th>
<th></th>
<th></th>
<th></th>
<th>Ru$3d_{5/2}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Ru</td>
<td>Ce</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Before the reaction</td>
<td>11.87</td>
<td>1.01</td>
<td>30.28</td>
<td>56.84</td>
<td>280.4</td>
</tr>
<tr>
<td>After the reaction</td>
<td>18.38</td>
<td>1.08</td>
<td>30.63</td>
<td>49.90</td>
<td>279.2</td>
</tr>
<tr>
<td>After the 2nd reaction</td>
<td>11.07</td>
<td>1.08</td>
<td>29.52</td>
<td>58.32</td>
<td>280.6</td>
</tr>
</tbody>
</table>
The diffuse reflectance FTIR measurement of the Ru/CeO$_2$ catalyst showed a distinct band at 975 cm$^{-1}$ that could be assigned to a ruthenium oxo species (Figure 4) [13]. Note that there were no signs of the Ru=O species for ruthenium catalysts supported on other carriers such as TiO$_2$. A previous XANES study revealed the presence of a five-coordinated ruthenium species in the Ru/CeO$_2$ catalyst prepared by a similar method [13].

Figure 4. DRIFT spectra of the (a) Ru(2.0 wt%)/CeO$_2$ catalyst, (b) Ru(2.0 wt%)/TiO$_2$ catalyst, and (c) CeO$_2$.
A temperature-programmed reduction (TPR) measurement in a 1.9% H₂–Ar stream revealed that ruthenium species on CeO₂ were reduced at around 72 °C, which was lower than that in the reduction of bulk RuO₂ (ca. 105 °C) (Figure 5). These results supported an idea of the formation of a well-dispersed five-coordinated ruthenium(IV) oxo specie on the surface of Ru/CeO₂ [13], not on other supported Ru catalysts. Consequently, these oxo species would be reduced to form catalytically active low-valent ruthenium species on CeO₂.

![Figure 5](image_url)

Figure 5. H₂ TPR profiles of the Ru(2.0 wt%)/CeO₂, the Ru(2.0 wt%)/TiO₂, and RuO₂.
Although the reaction mechanism is not clear yet, the initial step might consist of the oxidative addition of an OH group of 1 to an active ruthenium species. The following β-allyl elimination [5] would give 3 and an (allyl)ruthenium intermediate, which would react with an aldehyde to give the homoallyl alcohol (5). The formation of the stable allyl species on the surface of the Ru/CeO$_2$ catalyst has already been proposed on the basis of the spectroscopic study [13], when propene (C$_3$H$_6$) was treated by the Ru/CeO$_2$ catalyst.

1.3 Conclusions

In this chapter, the heterogeneous Ru/CeO$_2$-catalyzed sequential transfer-allylation–isomerization from homoallyl alcohols to aldehydes to give the saturated ketones is described. This simple solid oxide catalyst showed a comparable or superior performance to exquisite homogeneous transition-metal complex catalysts. No additives such as phosphines, bases, and CO were required, which facilitates reuse of the Ru/CeO$_2$ catalyst, and this feature is obviously attractive and advantageous from synthetic, industrial, and environmental perspectives.
1.4 Experimental

1.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Homoallyl alcohols were prepared by the method reported in the literature [14]. Cerium oxide (CeO₂) was prepared by the treatment of a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 38 mL of 28% aqueous ammonia with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation, and then dried at 80 °C overnight. The product was heated in a box furnace at a rate of 10 °C min⁻¹ and maintained at 400 °C for 30 min to afford CeO₂ in an excellent ceramic yield. Titanium oxide (ST-01), γ-alumina (JRC-ALO-8), silica (Cabosil), and MgO (Wako) were used as received. Ceria-supported Fe, Cu, Pd, and Rh catalysts were prepared by the impregnation method using iron(III) acetylacetonate, copper(II) acetate monohydrate, palladium(II) acetate, and tetrarhodiumdodecacarbonyl, respectively.

1.4.2 Characterizations

NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (¹H), 100 MHz (¹³C)) instrument. Chemical shifts (δ) are referenced to SiMe₄. Nitrogen adsorption/desorption isotherms were obtained with a computer-controlled automatic gas sorption system, Quantachrome NOVA 4200e. Samples were degassed at 300 °C for 2 h just before the measurements. The X-ray powder diffraction analyses (XRD: XD-D1, Shimadzu) were performed using Cu Kα radiation and a carbon monochromator. The crystallite size of CeO₂ was calculated from the full width at half maximum (FWHM) of the 111 diffraction peak using Scherrer’s equation. X-ray photoelectron spectra (XPS)
of the catalysts were acquired using an ULVAC-PHI 5500MT system equipped with a hemispherical energy analyzer using Mg Kα radiation (15 kV, 400 W). Samples were mounted on indium foil and then transferred to an XPS analyzer chamber. Binding energies were referenced to the C 1s level of residual graphitic carbon [15]. Samples were sputtered for 1 min by an Xe+ ion beam generated at 3.0 kV to remove carbonaceous contaminants. Diffuse reflectance IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer with DRIFT optical configuration. Temperature-programmed reduction (TPR) was carried out with a flow-type reactor. Hydrogen (1.9 vol.% in argon under atmospheric pressure at 30 mL min⁻¹) was passed through a reaction tube containing 50 mg of the catalyst. The tube was heated with an electric furnace at 2 °C min⁻¹, and the amount of H₂ consumed was monitored with a TC detector of a Shimadzu 4CPT gas chromatograph. Leaching of ruthenium species from the catalysts during the reaction was investigated by the ICP atomic emission spectroscopic analysis by using a Shimadzu ICPS-1000III analyzer. The products of catalytic runs were analyzed by GC-MS (Shimadzu GC-MS Parvum 2, DB-1 capillary column, i.d. 0.33 mm, length 25 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C).

1.4.3 Preparation of supported Ru catalysts

Supported catalysts were prepared by the impregnation method. 1.0 g of CeO₂, prepared by the treatment of cerium(III) nitrate with aqueous ammonia, was added to a solution of 42 mg of Ru₃(CO)₁₂ in 10 mL of THF in air at room temperature. After impregnation, the resulting light yellow powder was calcined in air at 400 °C for 30 min
to afford the Ru(2.0 wt%)/CeO$_2$ catalyst as a dark brown powder.

1.4.4 General procedure for catalytic transfer-allylation–isomerization reaction

Homoallyl alcohol 1 (1.0 mmol), aldehyde 2 (0.50 mmol), and mesitylene (2.0 mL) were placed in a glass Schlenk tube with a balloon under an argon atmosphere together with 125 mg of the Ru(2.0 wt%)/CeO$_2$ catalyst (0.025 mmol as Ru). The reaction mixture was stirred on a hot stirrer at 170 °C with a cooling block for 24 h. The products were identified by GC-MS and NMR measurements, and quantified by GC using naphthalene as an internal standard.
References

Chapter 2

Recyclable solid ruthenium catalysts for the
direct arylation of aromatic C–H bonds

2.1 Introduction

The development of new environmentally benign processes for synthesizing organic compounds is one of the most important issues currently facing synthetic chemists [1].

The formation of C–C bonds by the direct activation of less reactive hydrocarbon C–H bonds by using homogeneous transition-metal catalysts has also attracted considerable attention in modern synthetic chemistry [2]. On the other hand, if efficiencies comparable to those achieved with homogeneous catalysis can be realized, heterogeneous catalysis is quite attractive, because the catalysts can be readily separated from reaction media and re-used [3]. Several solid catalysts have been reported to be effective for use in conventional C–C bond-forming reactions [4]; the arylation of heteroarenes or phenols over heterogeneous Ni, Pd or Ru catalysts have been reported [5]. However, to the best of our knowledge, there have been no previous reports of C–C bond formation by using chelation-assisted activation of stable aromatic C–H bond by solid ruthenium catalysts. Chapter 1 described a heterogeneous Ru/CeO$_2$-catalyzed transfer-allylation of homoallyl alcohols into aldehydes [6], in which the active species was considered to be a low-valent Ru species generated in situ from a Ru(IV) oxide.
species on CeO$_2$.

In this chapter, the Ru/CeO$_2$-catalyzed the nitrogen-directed arylation of aromatic C–H bonds with aryl halides is described. This reaction, for which low-valent Ru complex catalysts are quite effective [7], is one of the most ecological and economical methods available for preparing unsymmetrical biaryls [7–9]. The results in this chapter imply that solid Ru/CeO$_2$ catalyst can be a good alternative to homogeneous Ru catalysts, which are known to be effective for a wide range of C–C bond-forming reactions.

2.2 Results and discussion

The reaction of benzo[h]quinoline (1a) with chlorobenzene (2a) in N-methyl-2-pyrrolidone (NMP) at 170 °C for 18 h in the presence of a Ru/CeO$_2$ catalyst prepared by using Ru$_3$(CO)$_{12}$ as a Ru precursor gave the arylated product 3a selectively in a yield of 61% (Table 1, entry 1). The addition of a small amount of PPh$_3$ to the reaction mixture facilitated the reaction and gave 3a quantitatively (entry 2). The reactions of 1a with bromobenzene (2a’) or iodobenzene (2a”) also produced 3a quantitatively (entries 3 and 4). The catalytic activity was greatly affected by the use of different Ru precursors. Catalysts prepared from Cl-containing Ru precursors such as [RuCl$_2$(CO)$_3$]$_2$, [RuCl$_2$(p-cymene)]$_2$ or RuCl$_3$.nH$_2$O gave 3a in higher yields than that prepared from Ru(cod)(cot) (entries 5–8). The reaction that was carried out at 150 °C gave only a trace amount of the biaryl product (entry 9); this indicates that a high reaction temperature is required to generate the highly active catalytic species in situ from the ruthenium(IV) species supported on CeO$_2$ [6,10].
Table 1: Effect of ruthenium precursor.a

![Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru precursor</th>
<th>PPh\textsubscript{3} (mmol)</th>
<th>2</th>
<th>X</th>
<th>Temp. (\textdegree C)</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>0.10</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>0.10</td>
<td>2a\textquotesingle</td>
<td>Br</td>
<td>170</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>0.10</td>
<td>2a\textquotesingle\textquotesingle</td>
<td>I</td>
<td>130</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>RuCl\textsubscript{3}:nH\textsubscript{2}O</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>[RuCl\textsubscript{2}(CO)\textsubscript{3}]\textsubscript{2}</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>[RuCl\textsubscript{2}(p-cymene)]\textsubscript{2}</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>Ru(cod)(cot)</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>170</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>-</td>
<td>2a</td>
<td>Cl</td>
<td>150</td>
<td>trace</td>
</tr>
</tbody>
</table>

a CeO\textsubscript{2} was prepared by using an aqueous solution of NH\textsubscript{3}.b Determined by GLC and based on 1a.
Next, the effects of pretreatment of the Ru/CeO$_2$ catalyst were examined, and the PPh$_3$ modification of Ru/CeO$_2$ was found to greatly increase the catalytic activity. PPh$_3$-modified solid Ru catalysts were prepared as follows: Treatment of Ru/support at 100 °C for 20 min in the presence of PPh$_3$ in a hydrogen atmosphere afforded PPh$_3$-modified Ru catalysts, designated as xPPh$_3$–Ru/support ($x =$ molar ratio of PPh$_3$:Ru; Scheme 1).

![Scheme 1](image)

Scheme 1. Preparation of PPh$_3$–Ru/support catalysts.

In the presence of the PPh$_3$-modified Ru/CeO$_2$ catalyst, 3PPh$_3$–Ru/CeO$_2$, the reaction of 1a with 2a’ gave 3a in a yield of 81% under much milder conditions: 120 °C for 2 h (Table 2, entry 1). The PPh$_3$-modified solid Ru catalyst supported on ZrO$_2$ gave 3a in a good yield (entry 2), but catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO (entries 3–6) did not show any catalytic activity [11]. The precipitant used for the preparation of CeO$_2$ also affected the catalytic activity, with KOH giving the best results (entry 9). Furthermore, the molar ratio of PPh$_3$ used for the modification, as well as the pretreatment conditions, significantly affected the catalytic activity; 3PPh$_3$–Ru/CeO$_2$ showed the highest activity (entries 9–11). Note that it has also been reported that C–H alkylation catalyzed homogeneous ruthenium complexes by is also affected by the number of phosphine ligands coordinated to the Ru center [12]. Catalysts reduced in the absence of PPh$_3$ did not produce 3a at all (entry 12), even if PPh$_3$ was added to the reaction mixture (entry 13). Note that the quantity of Ru species that leached into the solution after the reaction shown in entry 9 was 0.00065 mmol (2.6% of Ru species in the fresh catalyst), as calculated by ICP-AES analysis.
Table 2. Direct arylation by PPh$_3$-modified solid Ru catalysts.a

![Diagram showing the reaction of 1a with 2a' to form 3a.]

<table>
<thead>
<tr>
<th>Entry</th>
<th>x</th>
<th>Ru precursor</th>
<th>Supportb</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>CeO$_2$ (NH$_3$)</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>ZrO$_2$ (JRC-ZRO-3)</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>SiO$_2$ (Cabosil)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>TiO$_2$ (JRC-TIO-4)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>Al$_2$O$_3$ (JRC-ALO-8)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>MgO (NH$_3$)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (NH$_3$)</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>CeO$_2$ (KOH)</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (KOH)</td>
<td>98 (99)d</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (KOH)</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (KOH)</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (KOH)</td>
<td>0</td>
</tr>
<tr>
<td>13e</td>
<td>0</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>CeO$_2$ (KOH)</td>
<td>0</td>
</tr>
</tbody>
</table>

a **Reaction conditions:** 1a (0.50 mmol), 2a’ (0.75 mmol), xPPh$_3$–Ru/support (0.025 mmol as Ru atom), K$_2$CO$_3$ (1.0 mmol), NMP, 2.0 mL.
b The support or precipitant used to prepare the support is shown parenthesis.
c Determined by GLC and based on 1a.
d **Reaction condition:** 1a (1.0 mmol), 2a’ (1.5 mmol), xPPh$_3$–Ru/CeO$_2$ (0.050 mmol as Ru atom), K$_2$CO$_3$ (2.0 mmol), NMP (2.0 mL).
e 0.075 mmol of PPh$_3$ was added to the reaction mixture.
The catalytic reactions of chloroarenes were examined by using the 3PPh$_3$–Ru/CeO$_2$ catalyst, which showed the highest activity in Table 2 (entry 9), and the results are summarized in Table 3. While the reaction with chlorobenzene at 120 °C provided arylated product 3a in a moderate yield (entry 1), the reaction at 140 °C proceeded efficiently to afford 3a in 94% yield within 6 h (entry 2). Various chloroarenes with para functional groups and 2-chloronaphthalene could also be used in this reaction and the desired products 3b–3g were obtained in excellent yields (entries 3–8). Also, the reactions with heterocyclic chlorides, 2-chlorothiophene and 2-chloropyridine, gave 3h and 3i, respectively, with satisfactory yields (entries 9 and 10). The reactions with other directed C–H activation substrates were also examined; treatment of 2-phenylpyridine (1b) and 1-phenyl-2-pyrazol (1c) with 4-chloroacetophenone (2d) produced mixtures of the mono- (3j and 3k) and diarylated (4j and 4k) products (entries 11 and 12).
Table 3. Direct arylation with aryl chlorides.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>3a (R = H)</td>
<td>12</td>
<td>58d</td>
</tr>
<tr>
<td>2</td>
<td>3a (R = H)</td>
<td>6</td>
<td>94d</td>
</tr>
<tr>
<td>3</td>
<td>3b (R = Me)</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>3c (R = OMe)</td>
<td>12</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>3d (R = COMe)</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>3e (R = CO$_2$Me)</td>
<td>5</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>3f (R = CF$_3$)</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>3g</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>3h</td>
<td>4</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>3i</td>
<td>6</td>
<td>53</td>
</tr>
</tbody>
</table>
\[\text{Reaction condition: 1, 0.50 mmol; 2, 0.75 mmol; 3PPh}_3-\text{Ru/CeO}_2, (0.025 mmol as Ru atom); K}_2\text{CO}_3, 1.0 \text{ mmol; NMP, 2.0 mL; 140 }^\circ\text{C.} \]

\[\text{Isolated yield based on 1.} \]

\[\text{Re...} \]

\[\text{Yield determined by GLC.} \]

\[\text{Molar ratio of 3 : 4.} \]
It is important to investigate whether or not the reaction actually occurs on the solid surface. To this end, hot filtration of the solid catalyst was carried out (Figure 1): After the reaction of 1a and 2a' in the presence of 3PPh3–Ru/CeO2 at 120 °C had proceeded for 0.5 h, hot filtration completely suppressed further progress of the reaction. This result strongly suggests that the catalyst works heterogeneously.

Figure 1. Result of the hot filtration test of Ru/CeO2 catalyst.
One of the major advantages of solid catalysts is their recyclability. After performing the reaction under the condition shown in Table 2, entry 9, the solid catalyst was separated from the reaction mixture by centrifugation and washed with diethyl ether and methanol/H$_2$O. The resulting solid was calcined in air at 400 °C for 30 min to recover Ru/CeO$_2$. Modification by PPh$_3$ was then performed through the aforementioned procedure to give the PPh$_3$–Ru/CeO$_2$ catalyst for reuse. As shown in Scheme 2, the catalyst was recyclable and produced the biaryl product quantitatively within short reaction periods. Furthermore, at a higher temperature of 170 °C, the reaction went to completion within 0.5 h and the catalyst could be used at least three times without any loss of activity.

Scheme 2. Recycle of solid Ru catalyst for the direct arylation of aromatic C–H bonds.
The catalytic systems were analyzed by various spectroscopic methods. XRD patterns of supported-Ru catalysts prepared from Ru$_3$(CO)$_{12}$ are shown in Figure 2. Although the peaks due to crystalline RuO$_2$ were observed for the Ru catalysts supported on ZrO$_2$, SiO$_2$, Al$_2$O$_3$ and MgO, they did not appear for Ru/CeO$_2$. This indicates that Ru species on CeO$_2$ are highly dispersed. Although the peaks due to RuO$_2$ were not observed on Ru/TiO$_2$, this catalyst did not show any catalytic activity. Note that, the BET surface areas of the Ru/CeO$_2$, Ru/ZrO$_2$, Ru/SiO$_2$, Ru/Al$_2$O$_3$, Ru/TiO$_2$, and Ru/MgO catalysts were 92, 108, 259, 144, 46, and 42 m2g$^{-1}$, respectively.

![Figure 2. XRD patterns of Ru/supports.](image-url)
The H$_2$-TPR profiles of the supported Ru catalysts prepared from Ru$_3$(CO)$_{12}$ are shown in Figure 3. For Ru/CeO$_2$ and Ru/ZrO$_2$ that showed catalytic activities for the title reaction, the reduction peaks appeared at <60 °C, whereas the other supported-Ru catalysts were reduced at >70 °C. This indicates that Ru species on CeO$_2$ or ZrO$_2$ are reduced much easily.

Figure 3. TPR profiles of supported Ru catalysts.
The H₂-TPR profiles of Ru/CeO₂ catalysts prepared from two different Ru precursors, Ru₃(CO)₁₂ and [RuCl₂(CO)₃]₂, are shown in Figure 4. For the both precursors, most of the ruthenium species on ceria was reduced at <100°C, whereas bulk ruthenium(IV) oxide was reduced at 105 °C (data not shown).

![Figure 4](image-url)
Figure 4. TPR profiles of Ru/CeO₂ prepared from different Ru precursors.
The Ru/CeO$_2$ catalysts prepared from Ru$_3$(CO)$_{12}$ and [RuCl$_2$(CO)$_3$]$_2$ were also characterized by nitrogen gas adsorption/desorption. The results are summarized in Table 4. All of the Ru/CeO$_2$ catalysts showed typical type IV nitrogen adsorption/desorption isotherms, indicating that their pore sizes distributed in the mesopore region.

Table 4. Characterization data by nitrogen gas adsorption/desorption of Ru/CeO$_2$ catalysts.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru precursor</th>
<th>Precipitant</th>
<th>Surface area (m2g$^{-1}$)</th>
<th>Pore volume (cm3g$^{-1}$)</th>
<th>Average pore radius (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru3(CO)${12}$</td>
<td>NH$_3$</td>
<td>79</td>
<td>0.137</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>NH$_3$</td>
<td>69</td>
<td>0.147</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>Ru3(CO)${12}$</td>
<td>KOH</td>
<td>91</td>
<td>0.162</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>KOH</td>
<td>108</td>
<td>0.150</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Diffuse reflectance FTIR spectra (900–1100 cm\(^{-1}\)) of Ru/CeO\(_2\) (KOH) prepared from [RuCl\(_2\)(CO)\(_3\)]\(_2\) before and after the reaction and recovered Ru/CeO\(_2\) were shown in Figure 5. The distinct peak at 975 cm\(^{-1}\) attributed to Ru=O species was observed in fresh Ru/CeO\(_2\). However, the peak disappeared in Ru/CeO\(_2\) after the reaction. This result suggests that at the initial stage of the reaction, Ru species on CeO\(_2\) was reduced to low-valent one, which showed the activity toward the reaction. In addition, the peak due to Ru=O species was also observed in the used Ru/CeO\(_2\) after washing and calcination. Therefore, this catalyst was proved to be revived by washing and calcination.

![Figure 5](attachment:image.png)

Figure 5. IR spectra of Ru/CeO\(_2\).
The surface states of the Ru/CeO$_2$ (KOH) catalyst prepared from [RuCl$_2$(CO)$_3$]\cdot_2 before and after the reaction were investigated by XPS. Table 5 summarizes the surface composition and the binding energy of Ru species, whereas overlapping of C 1s, K 2p, and Ru 3d peaks partly disturbed the precise estimation of surface atomic ratios and binding energies. For the fresh catalyst, presence of Cl originating from the Ru precursor, [RuCl$_2$(CO)$_3$]\cdot_2, together with a small amount of K from KOH, a precipitant for ceria, was confirmed. The Ru 3$d_{5/2}$ binding energy of 282.4 eV is consistent with the formation of Ru(IV) oxide on ceria [13]. The ratio of carbon atoms on the surface of the used catalyst before calcination was much higher than the fresh one indicating the strong deposition of carbonaceous materials on the surface. The Ru 3$d_{5/2}$ peak appeared at 281.3 eV, indicating the formation of reduced species during the reaction, probably Ru(II) not Ru(0) [13]. Note that surface ratio of potassium atoms significantly increased, probably due to the deposition of K species from K$_2$CO$_3$, while surface chloride species were found to be removed by washing after the reaction. After calcination in air, a part of carbonaceous species was removed, and the Ru 3$d_{5/2}$ peak appeared at 282.5 eV, again. Note that there were no sign of residual phosphorous species on the surface of these catalysts, indicating that PPh$_3$ was completely removed from the surface by thorough washing.
Table 5. XPS analysis of the Ru/CeO$_2$ catalyst prepared from [RuCl$_2$CO)$_3$]$_2$.a

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Surface concentration (atomic %)</th>
<th>Ru 3$d_{5/2}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Ru</td>
</tr>
<tr>
<td>Fresh Ru/CeO$_2$</td>
<td>15.32</td>
<td>1.34</td>
</tr>
<tr>
<td>After 1st useb and washed</td>
<td>20.76</td>
<td>0.80</td>
</tr>
<tr>
<td>After 1st use,b washed and calcined</td>
<td>13.42</td>
<td>1.50</td>
</tr>
</tbody>
</table>

a Measured at -100 °C.

b Reaction condition is shown in Table 2.

The FTIR and XPS spectra revealed that the surface state of the used catalyst after calcination was almost identical to that of the fresh Ru/CeO$_2$ catalyst. Triphenylphosphine is found to be removed completely during the washing procedure, suggesting that triphenylphosphine weakly coordinates to the surface Ru species. Currently, it is speculated that calcination of the used catalysts required to regenerate surface ruthenium-oxo species as well as for removal of surface carbonaceous species.
2.3 Conclusions

In this chapter, the chelation-assisted direct arylation of an aromatic C–H bond by solid Ru catalysts is described. PPh$_3$-modified Ru/CeO$_2$ showed excellent catalytic activity, and various aryl chlorides could be used in the reaction. These results indicate that catalytically active species generated from Ru(IV) oxide species on CeO$_2$ can be an attractive alternative to homogeneous Ru catalysts. Moreover, the present heterogeneous catalytic system is quite advantageous from both environmental and practical perspectives, since these catalysts can be easily recovered and repeatedly used.

2.4 Experimental

2.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Triirutheniumdodecacarbonyl, dichlorotricarbonylruthenium(II) dimer, di-μ-chlorobis[(p-cymene)chlororuthenium(II)] (Strem), ruthenium trichloride hydrate (Tanaka Kikinzoku), all the aryl halides (TCI), benzo[h]quinoline (TCI), 2-phenylpyridine, 1-phenyl-2-pyrazole (Aldrich), cerium(III) nitrate hexahydrate, potassium hydroxide, N-methyl-2-pyrrolidone, tetrahydrofurane (Wako), potassium carbonate, aqueous ammonia solution (28%) (Nacalai) were obtained commercially and used without further purification. Ru(cod)(cot) was prepared as described in the literature [14]. Ceria was prepared by treating a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 38 mL of 28% aqueous ammonia with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation and then air-dried overnight at 80 °C. The product was
heated in a box furnace at a rate of 10 °C min\(^{-1}\) and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Magnesium oxide was prepared from magnesium nitrates by a method similar to that used to obtain ceria. Zirconia (JRC-ZRO-3), titania (JRC-TIO-4), \(\gamma\)-alumina (JRC-ALO-8) and silica (Cabosil) were used as received.

2.4.2 Characterizations

The products of catalytic runs were analyzed by GC-MS (Shimadzu QP 2010, CBP10-S25-050 capillary column, i.d. 0.33 mm, length 25 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C). NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz \(^1\)H), 100 MHz \(^{13}\)C) instrument. Chemical shifts (\(\delta\)) are referenced to SiMe\(_4\). High-resolution mass spectra (FAB) were recorded on a JEOL SX102A spectrometer with \(m\)-nitrobenzyl alcohol (\(m\)-NBA) as a matrix. FT-IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer.

The oxide catalysts were analyzed by XRD, nitrogen gas adsorption, \(H_2\)-TPR and FTIR. X-ray powder diffraction analyses were performed using Cu \(K\alpha\) radiation and a carbon monochromator (XRD: XD-D1, Shimazu). Nitrogen adsorption/desorption isotherms were obtained with a computer-controlled automatic gas sorption system, Quantachrome NOVA 4200e. Samples were degassed at 300 °C for 2 h just before the measurements. Temperature-programmed reduction (TPR) was carried out with a flow-type reactor. Hydrogen (1.9 vol.% in Ar under atmospheric pressure at 30 mL min\(^{-1}\)) was passed through a reaction tube containing the catalyst. The tube was heated with an electric furnace at 2 °C min\(^{-1}\), and the amount of \(H_2\) consumed was monitored...
with a TC detector on a Shimadzu 4CPT gas chromatograph. Diffuse reflectance IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer with DRIFT optical configuration. X-ray photoelectron spectra (XPS) of the catalysts were acquired using an ULVAC-PHI 5500MT system equipped with a hemispherical energy analyzer using Mg Kα radiation (15 kV, 400 W). Samples were mounted on indium foil and then transferred to an XPS analyzer chamber. Binding energies were referenced to the C 1s level of residual graphitic carbon [13].

Leaching of ruthenium species from the catalysts during the reaction was investigated by the ICP atomic emission spectroscopic analysis by using a Shimadzu ICPS-1000III analyzer.

2.4.3 Preparation of catalysts

Supported catalysts were prepared by the impregnation method. 1.0 g of support was added to a solution of Ru3(CO)12 (42 mg, 0.067 mmol) in 10 mL of THF in air at room temperature. After impregnation, the resulting powder was calcined in air at 400 °C for 30 min to afford the Ru/Support catalyst. When [RuCl2(CO)3]2 and Ru(cod)(cot) were used as precursors, THF was used as a solvent for impregnation, while methanol was used with RuCl3·nH2O and [RuCl2(p-cymene)]2.

2.4.4 Preparation of PPh3-modified Ru/Support catalyst

Ru/support was stirred in the presence of PPh3 at 100 °C in a hydrogen atmosphere (1 bar) on a hot stirrer with a cooling block for 20 min to give PPh3–Ru/support.
2.4.5 General procedure for direct arylation of aromatic C–H bonds by Ru/CeO$_2$

Benzo[h]quinoline 1a (89.5 mg, 0.50 mmol), 4-chloroacetophenone 2d (116 mg, 0.75 mmol), K$_2$CO$_3$ (138 mg, 1.0 mmol) and NMP (2.0 mL) were placed in a glass Schlenk tube (20 mL) under an argon atmosphere together with the 3PPh$_3$–Ru/CeO$_2$ catalyst (0.025 mmol as Ru). The reaction mixture was stirred at 140 °C for 3 h on a hot stirrer with a cooling block. After the reaction, the reaction solution was separated from the reaction mixture by centrifugation and concentrated under reduced pressure. The products were isolated by column chromatography (hexane : EtOAc = 3 : 1, v/v) to give the product 3d as a white solid (141.7 mg, 95%).

2.4.6 Recovery of 3PPh$_3$–Ru/CeO$_2$ catalyst

After the reaction (Scheme 2), the solid was separated from the reaction mixture by centrifugation and completely washed with 10 mL of diethyl ether, 10 mL of methanol/H$_2$O (1 : 1, v/v) and 10 mL of diethyl ether, in this order. The resulting solid was dried overnight at 80 °C and calcined in air at 400 °C for 30 min to recover Ru/CeO$_2$. Modification by PPh$_3$ was then performed through the aforementioned procedure to give the PPh$_3$–Ru/CeO$_2$ catalyst for reuse.

2.4.7 Hot filtration tests

A 20 mL Schlenk tube was charged with benzo[h]quinoline 1a (79.5 mg, 0.50 mmol), bromobenzene 2a’ (0.75 mmol), K$_2$CO$_3$ (138 mg, 1.0 mmol), the 3PPh$_3$–Ru/CeO$_2$ catalyst (125 mg, 0.025 mmol as Ru), and NMP (2.0 mL) together with an internal standard (o-terphenyl, ca. 50 mg) under an argon atmosphere. The mixture was filtered, after the reaction was allowed to proceed for 30 min at 120 °C, through a
0.45 µm syringe filter (Millipore Millex LH) into another preheated Schlenk tube. The filtrate was stirred at 120 °C together with K₂CO₃ (138 mg, 1.0 mmol). The conversion and yields of the product after filtration were followed by GC and GC-MS analyses.

2.4.8 Characterization of new compounds (3e, 3f, 3g and 3i)

Methyl 4-(benzo[h]quinolin-10-yl)benzoate (3e): White solid; m.p. 105–106 °C. 1H NMR (400 MHz, CDCl₃, ppm) δ 8.37 (dd, J = 3.9, 1.5 Hz, 1H), 8.07 (m, 3H), 7.94 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.71–7.63 (m, 2H), 7.49 (d, J = 7.3 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.31 (dd, J = 8.0, 4.4 Hz, 1H), 3.99 (s, 3H). 13C NMR (100 MHz, CDCl₃, ppm) δ 167.6, 151.6, 146.9, 146.4, 140.5, 135.2, 134.9, 131.0, 128.8, 128.7, 128.4, 128.2, 127.4, 127.2, 127.0 126.1, 121.2, 52.0 FT-IR (KBr, cm⁻¹) 1713. HRMS: Calculated for C₂₁H₁₆NO₂ (M+H): 314.1181; found: 314.1179.

10-(4-(Trifluoromethyl)phenyl)benzo[h]quinoline (3f): White solid; m.p. 70–71 °C. 1H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (dd, J = 3.9, 1.5 Hz, 1H), 8.08 (dd, J = 8.2, 1.9 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.71–7.62 (m, 4H), 7.48 (d, J = 7.3 Hz, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.31 (dd, J = 8.3, 3.9 Hz, 1H). 13C NMR (100 MHz, CDCl₃, ppm) δ 150.2, 146.9, 146.4, 140.2, 135.3, 135.0, 131.1, 129.0, 128.8, 128.2, 127.9, 127.6, 127.2, 127.1, 126.1, 124.3, 124.2, 123.4, 121.3 HRMS: Calculated for C₂₀H₁₃NF₃ (M+H): 324.1001; found: 324.1000.

10-(Naphthalen-2-yl)benzo[h]quinoline (3g): White solid; m.p. 118–119 °C. 1H NMR (400 MHz, CDCl₃, ppm) δ 8.31 (dd, J = 3.9, 1.5 Hz, 1H), 8.08 (dd, J = 8.2, 1.5
Hz, 1H), 7.96 (dd, J = 7.8, 1.5 Hz, 1H), 7.92–7.86 (m, 4H), 7.76 (d, J = 8.8 Hz, 1H), 7.74–7.63 (m, 2H), 7.63 (dd, J = 7.3, 1.5 Hz, 1H), 7.50–7.46 (m, 2H), 7.43 (dd, J = 8.3, 1.5 Hz, 1H), 7.29 (dd, J = 7.8, 4.4 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 146.9, 146.7, 144.5, 141.4, 135.2, 135.0, 133.7, 132.1, 131.9, 129.4, 129.0, 128.3, 128.1, 128.0, 127.6, 127.2, 127.1, 126.0, 125.6, 125.5, 125.4, 125.1, 121.1 HRMS: Calculated for C$_{23}$H$_{16}$N (M+H): 306.1283; found: 306.1288.

10-(Pyridin-2-yl)benzo[h]quinoline (3i): Light brown liquid. 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.66 (dd, J = 4.4 Hz, 1H), 8.36 (dd, J = 4.4, 1.5 Hz, 1H), 8.07 (dd, J = 7.8, 1.5 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.71 (m, 3H), 7.63 (d, J = 5.8 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.30 (m, 2H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 164.1, 148.5, 147.0, 146.3, 140.3, 135.2, 134.8, 130.3, 129.1, 128.7, 128.1, 127.3, 127.1, 126.0, 123.9, 121.1, 120.9 HRMS: Calculated for C$_{18}$H$_{13}$N$_2$ (M+H): 257.1079; found: 257.1079.
References

[8] For a recent Rh-catalyzed example, see: M. Kim, J. Kwak, S. Chang, *Angew.*

Note that Ru catalysts supported on SiO₂, Al₂O₃ and TiO₂ were also ineffective under the conditions described in Table 1.

Chapter 3

Catalytic addition of aromatic C–H bonds to vinylsilanes in the presence of Ru/CeO$_2$

3.1 Introduction

Low-valent ruthenium species show unique catalytic properties and enable various organic transformations [1], such as C–C bond formations through cleavage of stable aromatic C–H bonds [2–4]. In particular, the RuH$_2$(CO)(PPh$_3$)$_3$-catalyzed selective addition of aromatic C–H bonds to unsaturated compounds has made it possible to rapidly construct carbon skeletons with excellent atom efficiency [3]. However, in preparing and handling such low-valent complexes, difficulties are often encountered because they are highly sensitive toward air and moisture. As an alternative approach, the catalytically active species, generated in situ from catalytically inactive but air stable Ru(II) complexes, has been adapted for these reactions [5], although it is essential to create an optimized coordination environment with suitable additives. However, problems remain in the separation of the catalysts from the products. In contrast, the use of solid catalysts, in particular simple solid oxides, are advantageous from environmental and industrial perspectives because they are thermally and chemically quite stable and can be readily separated from the products [6]. However, there have been few previous examples of reactions involving C–H bond activation in the presence of solid catalysts [7], and the development of new strategies for the preparation of active
low-valent Ru species on solid surfaces remains a challenge.

In the previous chapters, C–C bond-forming reactions through the activation of C–H or C–C bonds in the presence of simple metal oxide catalysts Ru/CeO₂ and Ru/ZrO₂ were described, whereas other solid Ru catalysts supported on SiO₂, Al₂O₃, MgO and TiO₂ showed no catalytic activities [8,9]. The catalytically active species in these reactions were considered to be low-valent Ru species generated from Ru(IV) species on CeO₂. From these backgrounds, various selective C–C bond forming reactions are expected to be realized on the solid catalysts, if the coordination sites of low-valent Ru species can be controlled by an appropriate choice of additives and pretreatment conditions. In this chapter, the catalytic addition of C–H bonds of aromatic ketones to vinylsilanes in the presence of Ru/CeO₂ is described. The reactions proceeded smoothly in association with appropriate phosphines to selectively give alkylated compounds in high yields. Furthermore, the pretreatment of Ru/CeO₂ under appropriate conditions increased the catalytic activities so markedly that the reaction rapidly went to completion at lower temperatures.

3.2 Results and discussion

The reaction of aromatic ketone (1a, 1.0 mmol) with vinylsilane (2a 2.0 mmol) in the presence of 125 mg of Ru(2.0 wt%)/CeO₂ (0.025 mmol as Ru) and 0.10 mmol of PPh₃ in mesitylene at 170 °C gave the product 3a quantitatively (Table 1, entry 1). The product formed was regioselectively alkylated at the ortho position of the carbonyl group. The reaction below 160 °C resulted in a lower yield of 3a (entries 2 and 3). Ru/ZrO₂ showed an activity comparable to that of the CeO₂-supported Ru catalyst (entry 4). On the other hand, Ru catalysts supported on SiO₂, Al₂O₃, TiO₂ and MgO...
prepared by the same method as Ru/CeO$_2$ showed no catalytic activity (entries 5–8).

Table 1. Effect of supports.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Support</th>
<th>Temperature (°C)</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CeO$_2$</td>
<td>170</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>CeO$_2$</td>
<td>160</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>CeO$_2$</td>
<td>150</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>ZrO$_2$</td>
<td>170</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>SiO$_2$</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Al$_2$O$_3$</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>TiO$_2$</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>MgO</td>
<td>170</td>
<td>0</td>
</tr>
</tbody>
</table>

aYield determined by GLC.
The class and amount of phosphorous additives greatly affected the reaction efficiency (Table 2). In the absence of PPh$_3$, the reaction did not take place at all (entry 1). When 0.10 mmol of PPh$_3$ (4.0 equivalents to Ru atom) was added, 3a was obtained in the highest yield (entries 2–6). Besides PPh$_3$, P(p-F-C$_6$H$_4$)$_3$ was also suitable among the various phosphorous additives examined (entry 7). Other phosphorous additives, such as sterically hindered triarylphosphine (entry 9), alkyl phosphines (entries 10 and 11), diphosphine (entry 12), phosphite (entry 13), and phosphine oxide (entry 14), were not effective. Although the exact role of the phosphine is not clear at present, the results of phosphine screening for the catalytic reactions were very similar to those for homogeneous systems [3,5]. Thus, they are currently speculated to serve as ligands of catalytically active Ru species.
Table 2. Effect of phosphorous additives.a

\begin{align*}
\text{Entry} & \quad \text{Additive} & \quad \text{Additive loading (mmol)} & \quad \text{Yield (\%)}^b \\
1 & \text{None} & - & 0 \\
2 & \text{PPh}_3 & 0.025 & 28 \\
3 & \text{PPh}_3 & 0.050 & 47 \\
4 & \text{PPh}_3 & 0.075 & 60 \\
5 & \text{PPh}_3 & 0.10 & 78 (99) \\
6 & \text{PPh}_3 & 0.15 & 67 \\
7 & \text{P}(p-F-C\text{\textsubscript{6}}\text{H}_4)_3 & 0.10 & 66 (99) \\
8 & \text{P}(p\text{-tolyl})_3 & 0.10 & 7 (11) \\
9 & \text{P}(o\text{-tolyl})_3 & 0.10 & 0 \\
10 & \text{P}^\text{\textsuperscript{\textsubscript{\textalpha}}\text{Bu}}_3 & 0.10 & 0 \\
11 & \text{PCy}_3 & 0.10 & 0 \\
12 & \text{dppe}^c & 0.050 & 0 \\
13 & \text{P(OPh)}_3 & 0.10 & 0 \\
14 & \text{O=PPh}_3 & 0.10 & 0 \\
\end{align*}

a Reaction Conditions: \textbf{1a} (1.0 mmol), \textbf{2a} (2.0 mmol), Ru/CeO\textsubscript{2} (0.025 mmol as Ru atom), mesitylene (2.0 mL), 170 °C, 6 h. b Determined by GLC (values in parenthesis refer to yields at time = 24 h). c dppe = 1,2-bis(diphenylphosphino)ethane.
After the reaction for 24 h shown in entry 5 in Table 2, the amount of Ru species that leached into the solution, as estimated by ICP-AES, was 0.00075 mmol (3.0% of Ru species in the fresh catalyst). Hot filtration of the solid oxide after the reaction had proceeded for 3 h suppressed further progress of the reaction (Figure 1). This result indicates that the presence of solid Ru catalyst is indispensable for the reaction.

Figure 1. Hot filtration of Ru/CeO$_2$ catalyst.
The Ru/CeO$_2$-catalyzed reaction was applied to a range of aromatic ketones and vinylsilanes under the optimized conditions (Table 3). Both aromatic and heterocyclic ketones were found to react smoothly with triethoxyvinylsilane to afford the alkylated products in high yields (entries 1–3). For substrates 1e and 1f with two ortho C–H bonds, the corresponding products, 3e and 3f, were obtained with selectivities similar to those in the case of homogeneous systems (entries 4 and 5) [10]. From tert-butyl phenyl ketone 1g, monoalkylated product was obtained selectively, probably because of steric hindrance [3b]. In addition, dimethylethoxyvinylsilane 2b could also be used, and the reaction with 1b afforded 3h in high yield (entry 7). However, other alkenes, such as trimethylvinylsilane, allyltrioxysilane and styrene, were not applicable under the present conditions.

Table 3. Ru/CeO$_2$-catalyzed addition of C–H bonds of aromatic ketones to vinylsilanes.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>2a</td>
<td>3b</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>1c</td>
<td>2a</td>
<td>3c</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>1d</td>
<td>2a</td>
<td>3d</td>
<td>Yield</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1e</th>
<th>2a</th>
<th>3e</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1f</th>
<th>2a</th>
<th>3f</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1g</th>
<th>2a</th>
<th>3g</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1b</th>
<th>2b</th>
<th>3h</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>

*a Reaction Conditions: 1 (1.0 mmol), 2 (2.0 mmol), Ru/CeO₂ (0.025 mmol as Ru), mesitylene (2.0 mL), 170 °C, 24 h. *b* Isolated yields. *c* The ratios of mono- to di-substituted products are given in parentheses.
From a practical point of view, it is very important that the reaction can be carried out on a large scale without solvent. The reaction of 35 mmol of 1a with 80 mmol of 2a proceeded efficiently and afforded 3a with TON of 837 (Scheme 1).

Scheme 1. Large-scale reaction without solvent.
It is generally accepted that low-valent Ru species are responsible for the activation of an aromatic C–H bond [3,4]. The diffuse reflectance FTIR spectrum of Ru/CeO$_2$ before the reaction showed a distinct band at 975 cm$^{-1}$, which was assigned to Ru(IV)-oxo species [11]. The presence of such an oxo species was also proposed in Ru/ZrO$_2$ [12]. The peak disappeared after heating in mesitylene at 170 °C for 1.5 h, which suggests that the Ru(IV)-oxo species were reduced to low-valent species at the initial stage of the reaction. As described above, a high reaction temperature around 170 °C is needed to obtain alkylated compounds in high yields. This result indicates that high temperatures are essential for transforming Ru(IV)-oxo species on CeO$_2$ into catalytically active species.

![Figure 2. DRIFT spectra of Ru/CeO$_2$.](image-url)
To generate highly active Ru species efficiently at lower temperature, the effects of pretreatment of Ru/CeO$_2$ were examined. The treatment of Ru/CeO$_2$ at 100 °C for 20 min under a hydrogen atmosphere in the presence of 4 equivalents of PPh$_3$ gave a PPh$_3$-modified catalyst (designated as 4PPh$_3$–Ru/CeO$_2$). As in chapter 2 [9], the reaction of 1a with 2a was complete within 90 min, even at 140 °C (bath temperature) in the presence of 4PPh$_3$–Ru/CeO$_2$ (Scheme 2). The amount of Ru species that had leached into the reaction mixture after the reaction was 2.0% of that from the fresh Ru/CeO$_2$. The catalytic activities were quite sensitive to the pretreatment conditions. For example, when Ru/CeO$_2$ reduced in the absence of PPh$_3$ was used for the reaction, the reaction did not occur at all, even in the presence of PPh$_3$.

4PPh$_3$–Ru/ZrO$_2$ showed comparable activity under identical conditions (yield of 3a; 99% for 90 min). PPh$_3$-modified Ru catalysts supported on the other oxides listed in Table 1 did not show any activities.

Scheme 2. Effect of pretreatment of the Ru/CeO$_2$ catalyst.
After the reaction (entry 1 of Table 1), the Ru/CeO$_2$ catalyst was recovered from the reaction mixture by centrifugation and washed three times with 10 mL of diethyl ether, followed by drying overnight at 80 °C. The recovered catalyst was then calcined in air at 400 °C for 30 min to give a re-calcined catalyst. The reaction under conditions identical to those in entry 1 in Table 1 in the presence of the recovered Ru/CeO$_2$ catalysts gave 3a in a very low yield (8%). The re-calcined Ru/CeO$_2$ catalyst did not show any catalytic activity. DRIFT spectra of the recovered Ru/CeO$_2$ catalysts with or without calcination are shown in Figure 3. The spectrum of the recovered and washed catalyst showed strong absorption bands at 800–1200 cm$^{-1}$, which could be assigned to Si–O stretching of siliceous materials such as silica or silsesquioxanes. The bands still existed after calcination, while the other bands at 1300–1700 cm$^{-1}$ which are assigned to carbonate species disappeared.

![Figure 3. DRIFT-IR spectra of Ru/CeO$_2$ before and after the reaction.](image-url)
Table 4 shows the result of XPS measurements. The atomic ratio of surface Ru species greatly decreased after the reaction. A significant amount of siliceous material was deposited on the surface of the recovered catalysts. There were no signs of residual phosphorous species on the recovered catalysts. Note that precise estimation of Ru 3\(d_{5/2}\) binding energies was hampered by the severe overlapping of C 1\(s\) peaks.

Table 4. Surface composition of the recovered Ru(2.0wt%)/CeO\(_2\) catalysts estimated by XPS.

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Surface concentration (atomic %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Fresh Ru/CeO(_2)</td>
<td>16.54</td>
</tr>
<tr>
<td>Recovered and washed</td>
<td>20.84</td>
</tr>
<tr>
<td>Recovered, washed and calcined</td>
<td>9.87</td>
</tr>
</tbody>
</table>

The combined XPS and DRIFT results indicate that the surface Ru species in the recovered catalysts were irreversibly covered with siliceous materials derived from triethoxyvinylsilane. These results are in a sharp contrast to the cases in chapters 1 and 2, where Ru(IV)-oxo species were regenerated by calcination after the reaction to exhibit high catalytic activity. In the present case, the irreversible deposition of siliceous residues derived from vinylsilanes would prevent the regeneration of the Ru(IV)-oxo species.
3.3 Conclusion

As described in this chapter, the catalytic addition of a C–H bond of aromatic ketones to vinylsilanes can be achieved in the presence of Ru/CeO$_2$. The PPh$_3$-modified Ru/CeO$_2$ catalyst showed excellent catalytic activity without any significant leaching into the reaction mixture. The present results demonstrate the possible application of Ru/CeO$_2$ as a precursor of low-valent Ru species effective for various organic transformations.

3.4 Experimental

3.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Trirutheniumdodecacarbonyl (Strem), all of the aromatic ketones and vinylsilanes (TCI), cerium(III) nitrate hexahydrate, tetrahydrofuran (THF; Wako), and aqueous ammonia solution (28%) (Nacalai) were obtained commercially and used without further purification. Ceria was prepared by treating a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 38 mL of 28% aqueous ammonia with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation and then dried overnight at 80 °C. The product was heated in a box furnace at a rate of 10 °C min$^{-1}$ and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Zirconium oxide and magnesium oxide were prepared from zirconium(IV) dinitrate oxide and magnesium nitrate by a method similar to that used to obtain ceria. Titania (JRC-TIO-4), γ-alumina (JRC-ALO-8) and silica (Cabosil) were used as received.
3.4.2 Physical and analytical measurements

The products of catalytic runs were analyzed by GC-MS (Shimadzu QP 2010, CBP10-S25-050 capillary column, i.d. 0.33 mm, length 25 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C). NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (\(^1\)H), 100 MHz (\(^{13}\)C)) instrument. Chemical shifts (\(\delta\)) are referenced to SiMe\(_4\).

Diffuse reflectance IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer with DRIFT optical configuration. X-ray photoelectron spectra (XPS) of the catalysts were acquired using an ULVAC-PHI 5500MT system equipped with a hemispherical energy analyzer using Mg K\(\alpha\) radiation (15 kV, 400 W). Samples were mounted on indium foil and then transferred to an XPS analyzer chamber. Binding energies were referenced to the C 1s level of residual graphitic carbon [13].

Leaching of ruthenium species from the catalysts during the reaction was investigated by ICP atomic emission spectroscopic analysis by using a Shimadzu ICPS-1000III analyzer.

3.4.3 A typical method for the preparation of Ru/Support catalysts

Supported catalysts were prepared by an impregnation method. 1.0 g of support was added to a solution of Ru\(_3\)(CO)\(_{12}\) (42 mg, 0.067 mmol) in 10 mL of THF in air at room temperature. After impregnation, the resulting powder was calcined in air at 400 °C for 30 min to afford the Ru(2.0 wt%)/Support catalyst.

3.4.4 Preparation of PPh\(_3\)-modified Ru/Support catalyst

Ru/Support was stirred in the presence of PPh\(_3\) (\(x\) equivalent to Ru species) at
100 °C in a H₂ atmosphere (1 bar) on a hot stirrer with a cooling block for 20 min to give xPPh₃–Ru/Support.

3.5.5 Representative procedure for the addition of aromatic C–H bond to vinylsilane in the presence of Ru/CeO₂ catalysts

α-Tetralone 1a (146 mg, 1.0 mmol), triethoxyvinylsilane 2a (380 mg, 2.0 mmol), PPh₃ (26.2 mg, 0.10 mmol) and mesitylene (2.0 mL) were placed in a glass Schlenk tube (20 mL) under an argon atmosphere together with 125 mg of the Ru/CeO₂ catalyst (0.025 mmol as Ru). The reaction mixture was stirred at 170 °C for 24 h on a hot stirrer with a cooling block. The product was identified by GC-MS and NMR measurements, and quantified by GC using naphthalene as an internal standard.

3.4.5 Hot filtration tests

A 20 mL Schlenk tube was charged with α-tetralone 1a (146 mg, 1.0 mmol), triethoxyvinylsilane 2a (380 mg, 2.0 mmol), the Ru/CeO₂ catalyst (125 mg, 0.025 mmol as Ru), PPh₃ (26.3 mg, 0.10 mmol) and mesitylene (2.0 mL) together with an internal standard (naphthalene, ca. 30 mg) under an argon atmosphere. After the reaction was allowed to proceed for 3 h at 170 °C, the mixture was filtered through a 0.45 μm syringe filter (Millipore Millex LH) into another preheated Schlenk tube. The filtrate was stirred at 170 °C. The conversion and yields of the product after filtration were followed by GC and GC-MS analyses.

3.4.6 Characterization of new compound (3h)

1-(2-(2-(ethoxydimethylsilyl)ethyl)naphthalen-1-yl)ethanone (3h): dark brown oil; ¹H
NMR (400 MHz, CDCl₃, ppm) δ 7.79–7.84 (m, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.4–7.5 (m, 2H), 7.37 (d, J = 8.2 Hz, 1H), 3.70 (q, J = 6.8 Hz, 2H), 2.68–2.72 (m, 2H), 2.64 (s, 3H), 1.02–1.24 (t, J = 6.8 Hz, 3H), 1.00–1.02 (m, 2H), 0.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 210.3, 139.9, 139.5, 133.9, 131.2, 131.0, 130.4, 129.2, 129.0, 127.6, 126.2, 60.5, 35.5, 29.1, 21.4, 20.7, 2.2 HRMS: Calculated for C₁₆H₁₉OSi (M-OEt): 255.1205; found: 255.1208.
References

Chapter 4

Transformation of Ru(IV)=O species supported on CeO$_2$ to active ruthenium catalysts for the addition of aromatic C–H bonds to unsaturated compounds

4.1 Introduction

From the perspective of sustainable chemistry, the development of greener and environmentally-benign catalytic processes for the synthesis of organic molecules has attracted considerable attention in the 21st century [1]. The use of supported metal catalysts is a promising strategy for decreasing the environmental load because of their simple preparation, high stability and facile recyclability, as well as minimal contamination of the products by metallic species [2]. However, since the electronic and steric control of active metal species on the surface of the solid support is much more difficult than with homogeneous complex catalysts, highly selective organic transformation with supported catalysts is still a challenge. Against this background, in the previous chapters, the properties of Ru/CeO$_2$ catalysts toward organic syntheses and the fine structure of Ru species on CeO$_2$ have been investigated [3a–c]. The specific feature of Ru/CeO$_2$ is the formation of Ru(IV)-oxo species on the surface of CeO$_2$, and the Ru(IV)-oxo species could be transformed into low-valent Ru species, which showed high activities for various types of organic transformations [3]. In contrast, other Ru
catalysts supported on SiO₂, Al₂O₃, TiO₂ or MgO did not show any activities for the reactions due to the absence of Ru(IV)-oxo species on the metal oxides [3]. These results indicate that different types of active Ru species could be generated from Ru(IV)-oxo species on CeO₂ through the appropriate choice of additives or pretreatment conditions.

Transition metal-catalyzed C–C bond-forming reactions that involve the cleavage and subsequent transformation of less-reactive C–H bonds are central issues in current synthetic chemistry [4]. In particular, the direct addition of aromatic C–H bonds to unsaturated carbon–carbon bonds (hydroarylation) is one of the most straightforward and atom-efficient methods for the synthesis of alkylated or alkenylated aromatic compounds [5]. Since the pioneering works with homogeneous Ru complexes, such as RuH₂(CO)(PPh₃)₃, by Murai, Kakiuchi, et al. [6], various catalytic systems that use transition-metal species and are effective for the hydroarylation of unsaturated compounds have been developed [7]. As described in chapters 2 and 3, Ru/CeO₂ that have been pretreated under a hydrogen atmosphere in the presence of PPh₃ (PPh₃-modified Ru/CeO₂) showed excellent catalytic activities for the addition of aromatic C–H bonds to alkoxyvinylsilanes as well as the direct arylation of aromatic C–H bonds with aryl chlorides [3b,c]. However, in our previous catalytic system for hydroarylation, recycling of the catalysts, which is a major advantage of solid catalysts, could not be achieved because of the irreversible deposition of siliceous residues derived from vinylsilanes on surface Ru species. Moreover, the catalytic system could not be applied to the reaction of unsaturated compounds other than alkoxyvinylsilanes.

In this chapter, the transformation of Ru(IV)-oxo species on CeO₂ to active Ru
catalysts for the hydroarylation of unsaturated compounds is described. The catalytic system showed much higher efficiency than our previous PPh₃-modified Ru/CeO₂ catalysts, and a variety of unsaturated compounds could be used. Furthermore, the solid Ru catalysts could be easily recycled and used several times without a significant loss of activity.

4.2 Results and discussion

4.2.1 Addition of aromatic C–H bonds to alkenes by modified Ru/CeO₂ catalysts

The methods for the preparation of supported Ru catalysts are summarized in Scheme 1. CeO₂-supported Ru catalysts (Ru/CeO₂) were prepared by impregnation of a solution of Ru(acac)₃, followed by calcination in air at 400 °C for 30 min. The Ru/CeO₂ catalyst was then heated at 100 °C for 20 min under a hydrogen atmosphere (1 atm) without any solvent in the presence of PPh₃ (4 molar equivalents to Ru) to give a phosphine-modified Ru/CeO₂ catalyst (4PPh₃–Ru/CeO₂). On the other hand, Ru/CeO₂ catalysts were treated in 2-methoxyethanol in the presence of PPh₃ with or without formaldehyde (36% aqueous solution; aq. HCHO) at 140 °C for 30 min, followed by removal of the solvent under reduced pressure to afford (HCHO+4PPh₃)–Ru/CeO₂ or (4PPh₃)–Ru/CeO₂, respectively.
As mentioned in chapter 3, the irreversible deposition of siliceous residues derived from vinylsilanes on surface Ru species hampered recycling of the solid catalysts [3c]. Therefore, efforts were made to realize the addition of aromatic C–H bonds with simple unsaturated hydrocarbons. An attempt to add α-tetralone (1a) to styrene (2a) in the presence of Ru/CeO₂ and PPh₃ (4 equivalents to Ru) resulted in no reaction (Table 1, entry 1). 4PPh₃–Ru/CeO₂, which showed excellent activity for the addition to triethoxyvinylsilane [3c], also did not show any activity for the reaction of 2a (entry 2). On the other hand, (HCHO+4PPh₃)–Ru/CeO₂ showed excellent activity to give alkylated aromatic ketones 3a and 4a in a yield of 85% as a mixture of regioisomers (linear : branch = 3 : 1) (entry 3). In contrast, (4PPh₃)–Ru/CeO₂, which was treated in alcohol in the absence of HCHO, was ineffective at all (entry 4). The reaction did not occur with Ru/CeO₂ in the presence PPh₃ and aq. HCHO as external additives (entry 5).
These results indicated that pretreatment in 2-methoxyethanol with aq. HCHO is essential for the transformation of Ru(IV)-oxo species to active Ru catalysts for the hydroarylation of styrene. Other Ru catalysts supported on ZrO₂, SiO₂, Al₂O₃, TiO₂ or MgO treated with PPh₃ and HCHO in 2-methoxyethanol gave no hydroarylation products at all (entries 6–10). Note that the amount of Ru species leached into the solution after the reaction of 1a with 2a by (HCHO+4PPh₃)–Ru/CeO₂ catalyst was 7.4% of the Ru species in the fresh catalyst.
Table 1. Hydroarylation of styrene in the presence of supported Ru catalysts

![Reactions](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru catalyst</th>
<th>Additive</th>
<th>Total yield of 3aa and 4aa (%)<sup>b</sup></th>
<th>Selectivity (3aa : 4aa)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru/CeO<sub>2</sub></td>
<td>PPh<sub>3</sub> (0.20 mmol)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4PPh<sub>3</sub>−Ru/CeO<sub>2</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/CeO<sub>2</sub></td>
<td>-</td>
<td>85</td>
<td>75 : 25</td>
</tr>
<tr>
<td>4</td>
<td>(4PPh<sub>3</sub>)−Ru/CeO<sub>2</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Ru/CeO<sub>2</sub></td>
<td>PPh<sub>3</sub> (0.20 mmol) aq. HCHO (0.50 mL)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/ZrO<sub>2</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/SiO<sub>2</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/Al<sub>2</sub>O<sub>3</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/TiO<sub>2</sub></td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>(HCHO+4PPh<sub>3</sub>)−Ru/MgO</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1_a (1.0 mmol), 2_a (3.0 mmol), toluene (2.0 mL), Ru catalyst (0.050 mmol as Ru), at 140 °C for 3 h under Ar.
^b Total yield of 3aa and 4aa after silica gel chromatography.
^c Molar ratio of isomers determined by ¹H NMR.
(HCHO+4PPh₃)–Ru/CeO₂ showed high catalytic activity for the hydroarylation of a wide range of alkenes (Table 2). Styrene derivatives 2b–2d efficiently coupled with 1a to afford alkylated aromatic ketones in high yields. The linear selectivities of the products 3ab, 3ac and 3ad were around 75% (entries 1–3). The catalytic system also showed excellent activities in the reaction of 1a with vinylsilanes. The reaction of triethoxyvinylsilane (2e) went to completion within 30 min (entry 4), although the previous 4PPh₃–Ru/CeO₂ catalysts needed 90 min to finish the reaction. Furthermore, other vinylsilanes without an alkoxy substituent could be used in the present catalytic system and the products 3af and 3ag were obtained in excellent yields (entries 5 and 6). Hydroarylation of 2-norbornene (2h) also occurred and led to the product in a high yield (entry 7), whereas 1-hexene 2i was not a good substrate under the present reaction conditions (entry 8).

Table 2. Hydroarylation of alkenes by (HCHO+4PPh₃)–Ru/CeO₂ catalyst.⁶

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Product</th>
<th>Total yield of 3 and 4 (%)</th>
<th>Selectivity (3 : 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>3</td>
<td>3ab, 4ab</td>
<td>90</td>
<td>75 : 25</td>
</tr>
</tbody>
</table>

⁶ Ru/CeO₂ catalyst prepared by mixing HCHO, 4PPh₃, and CeO₂ in toluene under Ar.
| | Reaction conditions: 1a (0.50 mmol), 2 (1.5 mmol), toluene (1.0 mL), (HCHO+4PPh₃)–Ru/CeO₂ catalyst (0.025 mmol as Ru), under Ar. b Isolated yield. c Molar ratio of regioisomers determined by ¹H NMR. d 1.0 mmol of 2e was used. e Product was obtained as an exo-isomer. |
The scope of aromatic compounds that could be used in this catalytic system was also examined (Table 3). The addition of aromatic ketones 1b and 1c to 2a took place in the presence of (HCHO+4PPh₃)–Ru/CeO₂ (entries 1 and 2). The reactions of heterocyclic ketones 1d and 1e gave the corresponding products 3da and 3ea in high yields (entries 3 and 4). However, the present catalytic system was not effective for the addition of aromatic C–H bonds of methyl benzoate or benzonitrile.
Table 3. Addition of aromatic compounds to styrene by (HCHO+4PPh$_3$)–Ru/CeO$_2$ catalysts.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Products</th>
<th>Total yield of 3 and 4 (%)b</th>
<th>Selectivity (3 : 4)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3ba, 4ba</td>
<td>99</td>
<td>25 : 75</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>3ca, 4ca</td>
<td>67</td>
<td>77 : 23</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3da, 4da</td>
<td>98</td>
<td>75 : 25</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3fa, 4fa</td>
<td>75</td>
<td>75 : 25</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>3ha</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>3ia</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

aReaction conditions: 1 (0.50 mmol), 2a (1.5 mmol), toluene (1.0 mL), (HCHO+4PPh$_3$)–Ru/CeO$_2$ catalyst (0.025 mmol as Ru), at 140 °C under Ar.

b Isolated yield. c Molar ratio of isomers determined by 1H NMR.
4.2.2 Characterization of (HCHO+4PPh₃)–Ru/CeO₂ catalysts

To elucidate the state of the active Ru species in the present catalytic system, (HCHO+4PPh₃)–Ru/CeO₂ was characterized by spectroscopic analyses. The diffuse reflectance infrared Fourier transform (DRIFT) spectrum of the Ru/CeO₂ catalyst after treatment with PPh₃ and aq. HCHO is shown in Figure 1. Whereas a peak due to a Ru=O bond was observed at 980 cm⁻¹ in the spectrum of Ru/CeO₂ as described in the previous chapters, this peak disappeared in the spectrum of (HCHO+4PPh₃)–Ru/CeO₂. On the other hand, small peaks that could be assigned to Ru-CO or Ru-H species were observed at around 1900–2050 cm⁻¹.

Figure 1. DRIFT spectrum of (HCHO+4PPh₃)–Ru/CeO₂.
Figure 2 shows the X-ray absorption near-edge structure (XANES) spectra of Ru catalysts. The absorption-edge of the (HCHO+4PPh₃)−RuCeO₂ catalyst shifted to a lower energy than that of Ru/CeO₂ before treatment and was very close to that of a Ru(II) complex with PPh₃ and CO ligand, whereas the shape of the spectrum was significantly different. This result indicates that the treatment of Ru(IV)=O on CeO₂ with PPh₃ and HCHO in 2-methoxyethanol produced Ru(II) species.

![XANES spectra of Ru/CeO₂ before and after the treatment.](image)

Figure 2. XANES spectra of Ru/CeO₂ before and after the treatment.
A recent mechanistic investigation of the alkylation of aromatic C–H bonds with homogeneous Ru complex catalysts revealed the importance of a CO ligand coordinating active Ru(0) species [7c]. Hiraki et al. reported that the reaction of a low-valent Ru complex with alkoxyvinylsilanes produced Ru-CO species via the oxidative addition of Ru accompanying the cleavage of a Si-O bond of alkoxyvinylsilanes, followed by abstraction of β-hydride from the alkoxo ligand and decarbonylation of the resulting aldehyde [8]. In previous catalytic systems that used untreated Ru/CeO₂ together with PPh₃ or PPh₃–Ru/CeO₂ as catalysts, alkoxyvinylsilanes could act as a source of CO ligand, which might explain the absence of any activity for the reaction of alkenes other than alkoxyvinylsilanes. On the other hand, in the present catalytic system, treatment with PPh₃ and HCHO in alcohol is thought to generate Ru(II) species coordinated by CO and PPh₃, which are transformed, at the initial stage of the reactions, to active Ru(0) species that are effective for the catalytic addition of aromatic C–H bonds to unsaturated carbon–carbon bonds [7c].
4.2.3 Recycling of solid Ru catalysts

One major advantage of solid catalysts is their high recyclability. After the reaction, the present solid Ru catalyst was washed with diethyl ether, dried in air at 80 °C, and then calcined in air at 400 °C to be recovered as Ru/CeO$_2$. The thus-obtained solid was re-treated with PPh$_3$ and HCHO in 2-methoxyethanol to give the reproduced (HCHO+4PPh$_3$)–Ru/CeO$_2$ for the next catalytic run (Scheme 2).

![Scheme 2. Recycling of Ru/CeO$_2$ catalysts.](image)

With the recycled catalysts, the reaction of 1d with 2a successfully proceeded to give the corresponding products 3da and 4da in a high total yield. Unlike the reaction of vinylsilanes, the surface state of the original Ru/CeO$_2$ catalysts after the reaction of unsaturated hydrocarbons was restored by washing and re-calcination in air. Thus, the recycled catalysts showed high activities for hydroarylation without a significant loss of activity.
4.2.4 Addition of aromatic C–H bonds to alkyne by utilizing supported Ru catalysts

Multi-substituted alkenes are important organic molecules in material science. Hydroarylation of alkynes is the most atom-economical method for the synthesis of these compounds and a (HCHO+4PPh₃)–Ru/CeO₂ catalyst was found to be effective for the hydroarylation of alkyne (Scheme 3). The reaction of 1a with diphenylacetylene (5) in the presence of a (HCHO+4PPh₃)–Ru/CeO₂ catalyst proceeded efficiently to give triaryl-substituted alkene 6 in 88% yield. Furthermore, the catalyst, recycled by same method as described above, was also effective for the hydroarylation of alkyne 5 to afford 6 in a high yield.

Scheme 3. Hydroarylation of alkyne by (HCHO+4PPh₃)–Ru/CeO₂.
4.3 Conclusions

This chapter described a novel procedure for the generation of highly active and recyclable catalysts that are effective for the addition of aromatic C–H bonds to unsaturated compounds. The treatment of Ru(IV)-oxo species on CeO₂ with PPh₃ and HCHO in 2-methoxyethanol transformed them to active Ru species, which showed high activities for the hydroarylation of various alkenes and alkynes. The present catalytic system is very attractive from practical and environmental points of view because of its simple handling, high recyclability and low contamination of the products by metallic species.
4.4 Experimental

4.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Ruthenium(III) acetylacetonate (Aldrich), all of the aromatic ketones, alkenes and alkynes (TCI) and potassium hydroxide, cerium(III) nitrate hexahydrate, tetrahydrofuran (THF; Wako) were obtained commercially and used without further purification. Ceria was prepared by treating a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 40 mL of 3M KOH aqueous solution with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation and then dried overnight at 80 °C. The product was heated in a box furnace at a rate of 10 °C min⁻¹ and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Zirconium oxide and magnesium oxide were prepared from zirconium(IV) dinitrate oxide and magnesium nitrate by a method similar to that used to obtain ceria. Titania (JRC-TIO-4), γ-alumina (JRC-ALO-8) and silica (Cabosil) were used as received.

4.4.2 Physical and analytical measurements

The products of catalytic runs were analyzed by GC-MS (Shimadzu GC-MS Parvum 2, Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C). NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (¹H), 100 MHz (¹³C)) instrument. Chemical shifts (δ) are referenced to SiMe₄. The oxide catalysts were analyzed by FTIR and XAFS. Diffuse reflectance IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer with DRIFT optical
configuration. Ru K-edge XAFS measurements were performed at BL01B1 beam line at SPring-8 operated at 8 GeV using a Si(311) two-crystal monochromator. XAFS spectra were taken at room temperature. XANES and EXAFS were analyzed using the REX2000 version 2.5 program (Rigaku). Leaching of ruthenium species from the catalysts during the reaction was investigated by ICP atomic emission spectroscopic analysis by using a Shimadzu ICPS-1000III analyzer.

4.4.3 A typical method for the preparation of Ru/Support catalysts
Supported catalysts were prepared by the impregnation method. 1.0 g of a support was added to a solution of Ru(acac)$_3$ (79.5 mg, 0.20 mmol) in 10 mL of THF in air at room temperature. After impregnation, the resulting powder was calcined in air for 30 min to afford the Ru(2.0 wt%)/Support catalyst.

4.4.4 Preparation of 4PPh$_3$–Ru/CeO$_2$
Ru/CeO$_2$ (125 mg, 0.025 mmol as Ru) was stirred in the presence of PPh$_3$ (26.3 mg, 0.10 mmol) at 100 °C under a hydrogen atmosphere (1 bar) on a hot stirrer with a cooling block for 20 min to give 4PPh$_3$–Ru/CeO$_2$.

4.4.5 Preparation of (HCHO+4PPh$_3$)–Ru/CeO$_2$ catalyst
Ru/CeO$_2$ (125 mg, 0.025 mmol as Ru) was stirred in the presence of PPh$_3$ (26.3 mg, 0.10 mmol) and 36% aq. HCHO (0.25 mL) in 2-methoxyethanol (2 mL) at 140 °C under an argon atmosphere on a hot stirrer with a cooling block for 30 min. The resulting solvents and HCHO were removed under reduced pressure at room temperature to give (HCHO+4PPh$_3$)–Ru/CeO$_2$. The treated catalyst was used for the catalytic reaction.
without exposure to open air.
References

Chapter 5

Recyclable solid ruthenium catalysts supported on metal oxides for the addition of carboxylic acids to terminal alkynes

5.1 Introduction

Homogeneous catalysts play a significant role in organic syntheses, and can be used to achieve excellent yields and/or control the selectivity through the choice of suitable ligands and additives. However, they are often associated with practical and environmental disadvantages, and the use of heterogeneous catalysts, particularly solid oxide catalysts, is an attractive alternative to overcome these drawbacks, as discussed in General Introduction.

On the other hand, vinyl esters are important reactants and useful intermediates for many organic reactions because of their numerous industrial applications [1–8], and the addition of carboxylic acids to alkynes has been shown to be an atom-economical route to vinyl esters [9,10]. Low-valent ruthenium complexes have been reported to act as excellent homogeneous catalysts for this reaction [11–18]. Whereas the activities of ruthenium complex catalysts immobilized onto phosphine-modified resin [19a] as well as related Pd [19b] and Au [19c] catalysts for analogous reactions have been reported, there have been no previous reports on the application of solid oxide-supported ruthenium catalysts. In the previous chapters, Ru/CeO₂ have been found to be effective
for various synthetic reactions [20,21]. These results suggest that an Ru/CeO$_2$ catalyst may be a good alternative to homogeneous ruthenium catalysts.

In this chapter, solid oxide-supported ruthenium catalysts that are effective for the synthesis of vinyl esters by the addition of carboxylic acids to terminal alkynes is described. Simple catalysts, Ru/CeO$_2$ and Ru/ZrO$_2$, showed excellent activities and could be used for the reactions of a variety of substrates. These catalysts were recyclable without a significant loss of activity, and the leaching of ruthenium species was not observed after cooling the reaction mixture. The effects of ruthenium precursors were examined and the catalysts were characterized by spectroscopic techniques.
5.2 Results and discussion

The reaction of benzoic acid 1a with ethynylbenzene 2a at 130 °C for 12 h in the presence of a catalytic amount of Ru/CeO₂ afforded adducts in an excellent total yield of 96% (entry 1 in Table 1). The Ru/CeO₂ catalysts were prepared by the impregnation of [RuCl₂(p-cymene)]₂ on cerium oxide followed by calcination at 400 °C. The major product of the reaction was the E-isomer of the anti-Markovnikov adducts (E-3aa), with 74% selectivity, and was obtained together with the Z-isomer (Z-3aa) and a small amount of the Markovnikov adduct 4aa. There was no sign of dimers or oligomers of 2a. The reaction at 120 °C afforded the adducts in a lower total yield (entry 2). The reaction proceeded even in the open air, whereas the yield of the products was moderate (entry 3). The activity of the present solid catalyst is comparable to that of a homogeneous ruthenium carbonyl catalyst [12a]. Under the present conditions, the reaction catalyzed by Ru₃(CO)₁₂ afforded the vinyl esters in a total yield of 77% with 73% selectivity for E-3aa (entry 9). [RuCl₂ (p-cymene)]₂, the precursor of the supported Ru catalysts, showed a lower activity (entry 10), whereas several homogeneous ruthenium complex catalysts bearing phosphorus ligands [13–18,22] have been reported to show excellent activities at lower temperatures. The activity of the catalysts was significantly affected by the catalyst support (entries 4–8). The ZrO₂-supported catalyst showed activity comparable to that of the CeO₂-supported catalyst. The other ruthenium catalysts supported on Al₂O₃, TiO₂, SiO₂, or MgO were not effective. Note that a similar trend was observed in the C–C bond-forming reactions with supported Ru catalysts, as described in the previous chapters.
Table 1. Activity of ruthenium catalysts for the addition of benzoic acid 1a to ethynylbenzene 2a.a

![Chemical reaction diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Total yield (%)b</th>
<th>Selectivity (%)c (E-3aa : Z-3aa : 4aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru/CeO$_2$</td>
<td>96</td>
<td>74 : 21 : 5</td>
</tr>
<tr>
<td>2d</td>
<td>Ru/CeO$_2$</td>
<td>69</td>
<td>74 : 20 : 6</td>
</tr>
<tr>
<td>3e</td>
<td>Ru/CeO$_2$</td>
<td>46</td>
<td>65 : 33 : 2</td>
</tr>
<tr>
<td>4</td>
<td>Ru/ZrO$_2$</td>
<td>94</td>
<td>73 : 21 : 6</td>
</tr>
<tr>
<td>5</td>
<td>Ru/Al$_2$O$_3$</td>
<td>8</td>
<td>75 : 25 : 0</td>
</tr>
<tr>
<td>6</td>
<td>Ru/TiO$_2$</td>
<td>7</td>
<td>71 : 29 : 0</td>
</tr>
<tr>
<td>7</td>
<td>Ru/SiO$_2$</td>
<td>trace</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Ru/MgO</td>
<td>trace</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>Ru3(CO)${12}$f</td>
<td>77</td>
<td>73 : 19 : 8</td>
</tr>
<tr>
<td>10</td>
<td>[RuCl$_2$(p-cymene)]$_2$f</td>
<td>54</td>
<td>52 : 43 : 5</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), mesitylene (1.0 mL), Ru/CeO$_2$ catalyst (0.025 mmol as Ru), at 130 °C for 12 h. b Total yield of E-3aa, Z-3aa and 4aa determined by GLC. c Molar ratio of isomers determined by GLC. d At 120 °C. e Reaction under the air atmosphere. f Homogeneous catalyst.
As shown in Table 2, the activity of Ru/CeO$_2$ catalysts was markedly affected by the ruthenium precursors used for their preparation. In general, catalysts prepared from precursors with chloride ligands showed high activities. However, the ruthenium precursors did not influence the selectivity. Among the precursors examined, [RuCl$_2$(p-cymene)$_2$] was found to be most suitable. The Ru/CeO$_2$ catalyst prepared from Ru$_3$(CO)$_{12}$ which has no chloride ligands showed low activity, but the addition of ammonium chloride (10 equivalents to Ru) to the reaction mixture gave a higher activity than the catalyst without NH$_4$Cl (entries 5 and 6). This result clearly indicates that the chloride species has a promoting effect. Catalysts prepared from [RuCl$_2$(p-cymene)$_2$] were used in the following study.

Table 2. Effect of ruthenium precursors of Ru/CeO$_2$ catalysts.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Precursor</th>
<th>Total yield (%)b</th>
<th>Selectivity (%)c (E-3aa : Z-3aa : 4aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[RuCl$_2$(p-cymene)$_2$]</td>
<td>96</td>
<td>74 : 21 : 5</td>
</tr>
<tr>
<td>2</td>
<td>RuCl$_3$ • nH$_2$O</td>
<td>91</td>
<td>73 : 22 : 5</td>
</tr>
<tr>
<td>3</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>72</td>
<td>72 : 22 : 6</td>
</tr>
<tr>
<td>4</td>
<td>Ru(acac)$_3$</td>
<td>20</td>
<td>70 : 25 : 5</td>
</tr>
<tr>
<td>5</td>
<td>Ru3(CO)${12}$</td>
<td>14</td>
<td>64 : 29 : 7</td>
</tr>
<tr>
<td>6</td>
<td>Ru3(CO)${12}$d</td>
<td>43</td>
<td>65 : 26 : 9</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), mesitylene (1.0 mL), Ru/CeO$_2$ catalyst (0.025 mmol as Ru), at 130 °C for 12 h. b Total yield of E-3aa, Z-3aa and 4aa determined by GLC. c Molar ratio of isomers determined by GLC. d NH$_4$Cl (10 eq. to Ru) was added to the reaction mixture.
The effects of ruthenium precursors on the surface composition of the fresh catalysts were examined by XPS. As shown in Table 3, residual chloride species were observed on the surface of the catalysts prepared using Cl-containing ruthenium complexes, while there were no significant differences in the atomic ratios of the surface ruthenium species. The Ru 3d$_{5/2}$ binding energies of these catalysts indicated the presence of surface Ru(IV) species [23], but the electronic effects of Cl species were not distinctly recognized.

Table 3. XPS analysis of Ru/CeO$_2$ catalysts prepared from various precursors.a

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Surface concentration (atomic %)</th>
<th>Ru 3d$_{5/2}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Ru</td>
</tr>
<tr>
<td>[RuCl$_2$(p-cymene)]$_2$</td>
<td>12.00</td>
<td>1.37</td>
</tr>
<tr>
<td>RuCl$_3$ · nH$_2$O</td>
<td>17.39</td>
<td>1.21</td>
</tr>
<tr>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>17.50</td>
<td>1.29</td>
</tr>
<tr>
<td>Ru3(CO)${12}$</td>
<td>20.13</td>
<td>1.36</td>
</tr>
<tr>
<td>Ru(acac)$_3$</td>
<td>17.50</td>
<td>1.34</td>
</tr>
</tbody>
</table>

a Measured at -100 °C.
To investigate whether the reaction proceeded on the surface of the solid catalyst [24,25], the effect of removal of the catalysts by hot filtration through a PTFE filter (pore size 0.45 nm) was examined. Figure 1 shows the time course of the reaction of 1a with 2a at 130 °C. Formation of the vinyl esters was greatly suppressed, but not completely stopped by removal of the solid catalyst. Note that ruthenium species was not detected in the cold filtrate after the reaction at 130 °C for 12 h by ICP-AES. These results indicate that the reaction basically requires the presence of the solid catalyst. The ceria support might act as a macroligand that stabilizes and/or holds the catalytically active ruthenium species. However, the contribution of soluble ruthenium species or nano-sized ruthenium colloids, which passed through the filter, could not be completely ruled out.

![Graph showing the effects of catalyst removal by hot filtration on the reaction of 1a with 2a at 130 °C.](image)

Figure 1. Effects of catalyst removal by hot filtration on the reaction of 1a with 2a at 130 °C. The reaction conditions were identical to those for entry 1 in Table 1.
The Ru/CeO$_2$ catalyst could be used with a variety of substrates. The results of the reaction of various carboxylic acids 1b–i with 2a at 130 °C for 12 h are shown in Table 4. The reaction with aromatic carboxylic acids with both electron-donating and electron-withdrawing substituents (1b–e) proceeded smoothly to afford adducts in moderate to high yields. A bulky substrate (1f) and carboxylic acids with thiophene and furan rings (1g and 1h) were also applicable. The reaction with an aliphatic carboxylic acid (1i) also gave the desired adduct in a moderate yield. In all of the cases examined, the major products were E-isomers of anti-Markovnikov adducts.
Table 4. Scope of substrates (carboxylic acids).a

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>R^1</th>
<th>Total yield (%)b</th>
<th>Selectivity (%)c $(E\text{-}3 : Z\text{-}3 : 4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>4-CH$_3$C$_6$H$_4$</td>
<td>58</td>
<td>79 : 17 : 4</td>
</tr>
<tr>
<td>2</td>
<td>1c</td>
<td>3-MeO-C$_6$H$_4$</td>
<td>90</td>
<td>76 : 18 : 6</td>
</tr>
<tr>
<td>3</td>
<td>1d</td>
<td>3-NO$_2$-C$_6$H$_4$</td>
<td>87</td>
<td>48 : 34 : 18</td>
</tr>
<tr>
<td>4</td>
<td>1e</td>
<td>4-CF$_3$-C$_6$H$_4$</td>
<td>82</td>
<td>66 : 24 : 10</td>
</tr>
<tr>
<td>5</td>
<td>1f</td>
<td>2,4,6-(CH$_3$)$_3$C$_6$H$_2$</td>
<td>92</td>
<td>71 : 27 : 2</td>
</tr>
<tr>
<td>6</td>
<td>1g</td>
<td>2-thienyl</td>
<td>81</td>
<td>56 : 38 : 6</td>
</tr>
<tr>
<td>7</td>
<td>1h</td>
<td>3-furyl</td>
<td>76</td>
<td>72 : 22 : 6</td>
</tr>
<tr>
<td>8</td>
<td>1i</td>
<td>n-C7H${15}$</td>
<td>40</td>
<td>75 : 21 : 4</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1 (1.0 mmol), 2a (1.3 mmol), mesitylene (1.0 mL), Ru/CeO$_2$ catalyst (0.025 mmol as Ru), at 130 °C for 12 h. b Isolated yield. c Molar ratio of isomers determined by 1H NMR.
The reactions with 1a and various alkynes 2 were examined. As shown in Table 5, the reactions of terminal alkynes with phenyl groups (2b and 2c) and that with a thiophene ring (2d) afforded the adducts in high yields, while the reaction with 2-ethynylpyridine (2e) resulted in a low yield of vinyl esters. The selectivity greatly depended on the alkynes. High selectivity of a Markovnikov adduct (4) was observed with an alkyn bearing a pyridyl group (2e). On the other hand, the reactions of a terminal alkyne with a trimethylsilyl substituent (2f) and internal alkynes (2g and 2h) did not proceed under the present conditions.

Table 5. Scope of substrates (alkynes).

<table>
<thead>
<tr>
<th>Entry</th>
<th>2 R²</th>
<th>R³</th>
<th>Total yield (%)<sup>b</sup></th>
<th>Selectivity (%)<sup>c</sup> (E-3 : Z-3 : 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2b</td>
<td>4-CH₃C₆H₄</td>
<td>H</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>2c</td>
<td>4-MeO-C₆H₄</td>
<td>H</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>2d</td>
<td>3-thienyl</td>
<td>H</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>2e</td>
<td>2-pyridyl</td>
<td>H</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>2f</td>
<td>(CH₃)₃Si</td>
<td>H</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>2g</td>
<td>n-C₃H₇</td>
<td>n-C₃H₇</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2h</td>
<td>Ph</td>
<td>Ph</td>
<td>0</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1a (1.0 mmol), alkyne 2 (1.3 mmol), mesitylene (1.0 mL), Ru/CeO₂ catalyst (0.025 mmol as Ru), at 130 °C for 12 h. ^b Isolated yield. ^c Molar ratio of isomers determined by ¹H NMR.
To date, several mechanisms have been proposed for homogeneously catalyzed reactions (Scheme 1) [9,18b]. One plausible mechanism involves the formation of vinylidene intermediates (cycle B) [16b,17b], while another probable cycle is likely to start with the coordination of an alkyne to a ruthenium species, followed by the addition of a carboxylate nucleophile to the η^2-coordinated alkyne (cycle A) [16b]. We examined the reaction of 1a with PhC≡CD (2a-\textit{d}1), and the deuterium shifting from the terminal to the 2-position was found to be predominant, which supported the formation of the ruthenium vinylidene species as an intermediate (cycle B). In entry 4 of Table 5 (the reaction of 1a with 2e), the strong coordination of a pyridyl group to a ruthenium center would promote the formation of a η^2-alkyne intermediate, which leads to a Markovnikov product through cycle A.

Scheme 1. Proposed catalytic mechanisms for the addition of carboxylic acids to terminal alkynes. *Cycle A*: Markovnikov addition; *Cycle B*: anti-Markovnikov addition.
One major advantage of heterogeneous catalysts is their reusability. Therefore, the changes in the activity of Ru/\(\text{CeO}_2\) catalyst over the course of repeated uses were examined, as shown in Table 6. After the first run, which gave the adducts in 96% yield, the catalyst was recovered from the reaction mixture by centrifugation followed by washing three times with diethyl ether (10 mL) at room temperature, and then calcined at 400 °C for 30 min in air. The recovered Ru/\(\text{CeO}_2\) catalyst gave the adducts in 93% yield in the 2nd use, although the yields decreased to some extent in the 3rd and 4th uses. Reuse of the catalyst without calcination resulted in a significant decrease in catalytic activity. The severe deposition of organic species on the surface would suppress the activity of the catalyst.

Table 6. Activities of fresh and reused Ru/\(\text{CeO}_2\) catalysts.\(^a\)

<table>
<thead>
<tr>
<th>Treatment of recovered catalyst</th>
<th>Catalyst</th>
<th>Total yield ((%))^b</th>
<th>Selectivity ((%))^c ((E\text{-}3\text{aa} : Z\text{-}3\text{aa} : 4\text{aa}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh(^d)</td>
<td>96</td>
<td>74 : 21 : 5</td>
<td></td>
</tr>
<tr>
<td>Washing + drying + calcination</td>
<td>2nd use</td>
<td>93</td>
<td>75 : 20 : 5</td>
</tr>
<tr>
<td></td>
<td>3rd use</td>
<td>72</td>
<td>72 : 21 : 7</td>
</tr>
<tr>
<td></td>
<td>4th use</td>
<td>71</td>
<td>72 : 23 : 5</td>
</tr>
<tr>
<td></td>
<td>4th use(^e)</td>
<td>82</td>
<td>73 : 22 : 5</td>
</tr>
<tr>
<td>Washing + drying</td>
<td>2nd use</td>
<td>79</td>
<td>72 : 23 : 5</td>
</tr>
<tr>
<td></td>
<td>3rd use</td>
<td>43</td>
<td>70 : 23 : 7</td>
</tr>
<tr>
<td></td>
<td>4th use</td>
<td>28</td>
<td>71 : 22 : 7</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1\text{a} (1.0 mmol), 2\text{a} (1.3 mmol), mesitylene (1.0 mL), Ru/\(\text{CeO}_2\) catalyst (0.025 mmol as Ru) prepared from [\(\text{RuCl}_2(p\text{-cymene})\)]\(_2\), at 130 °C for 12 h.
\(^b\) Total yield of \(E\text{-}3\text{aa}\), \(Z\text{-}3\text{aa}\) and \(4\text{aa}\) determined by GLC.
\(^c\) Molar ratio of isomers determined by GLC.
\(^d\) Entry 1 in Table 1.
\(^e\) Reaction time, 18 h.
To examine the properties of the Ru/CeO$_2$ catalyst before and after the reaction, H$_2$ temperature-programmed reduction (TPR) measurements were performed, as shown in Figure 2. In the profile of the fresh catalyst, two peaks appeared at a low-temperature range, one at ca. 50 °C and one at 75 °C. The reduction of ruthenium species on other supports such as titania occurred at a temperature higher than 200 °C, and a temperature higher than 100 °C was required for the reduction of bulk RuO$_2$[20,26]. These results indicate that the surface ruthenium species on ceria is easily reduced. The used catalyst after the calcination showed a profile similar to that of the fresh catalyst, suggesting that the original surface ruthenium species are regenerated by calcination of the used catalyst.

![H$_2$ TPR profiles of (a) fresh and (b) used Ru(2.0 wt%)/CeO$_2$ catalyst prepared from [RuCl$_2$(p-cymene)]$_2$. The used catalyst was calcined in air at 400 °C for 30 min.](image)

Figure 2. H$_2$ TPR profiles of (a) fresh and (b) used Ru(2.0 wt%)/CeO$_2$ catalyst prepared from [RuCl$_2$(p-cymene)]$_2$. The used catalyst was calcined in air at 400 °C for 30 min.
The surface states of the Ru/CeO$_2$ catalyst before and after the reaction were also examined by XPS, DRIFTS, and TG. According to the XPS results shown in Table 7, a large part of the surface of the used catalyst was covered by carbonaceous materials, probably because of the deposition of benzoate species on the surface during the catalytic run, as suggested by DRIFTS (data was not shown). TG analysis of the catalyst after the first use showed *ca*. 4 wt% weight decrease due to the combustion of organic species adsorbed on the surface. Unfortunately, severe overlapping with C 1s peaks disturbed the precise measurement of the Ru 3$d_{5/2}$ binding energy of the used catalyst. Most of the carbonaceous species was removed by calcination at 400 °C for 30 min in air. The surface atomic ratio of Cl greatly decreased after the 1st use, indicating that some of the chloride species were leached from the surface during the catalytic run. A slight decrease in the surface ruthenium ratio of the used catalyst after calcination can be attributed to the sintering of ruthenium species during the regeneration procedure, since the leaching of ruthenium species was not observed after cold filtration of the catalyst.

Table 7. XPS analysis of the Ru(2.0 wt%)/CeO$_2$ catalyst prepared from [RuCl$_2$(p-cymene)]$_2$.a

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Surface concentration (atomic %)</th>
<th>Ru 3$d_{5/2}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Ru</td>
</tr>
<tr>
<td>fresh catalyst</td>
<td>12.00</td>
<td>1.37</td>
</tr>
<tr>
<td>after 1st use</td>
<td>40.62</td>
<td>1.02</td>
</tr>
<tr>
<td>after 1st use, calcined</td>
<td>12.35</td>
<td>1.10</td>
</tr>
</tbody>
</table>

a Measured at -100 °C.
Figure 3 shows DRIFT spectra of the Ru/CeO$_2$ catalyst in the range of 800 to 1100 cm$^{-1}$ before and after the catalytic run (entry 1 of Table 1). The spectrum of the fresh catalyst showed a distinct band at 984 cm$^{-1}$ that could be assigned to a ruthenium oxo (Ru=O) species [26]. Although such a distinct peak was not recognized for Ru/ZrO$_2$, the formation of similar ruthenium–oxygen species has also been proposed for the the zirconia-supported catalyst [27]. There were no signs of oxo species for ruthenium catalysts supported on Al$_2$O$_3$, TiO$_2$, SiO$_2$, or MgO. The characteristic band at 984 cm$^{-1}$ of Ru/CeO$_2$ disappeared after the reaction (Fig. 3(c)), suggesting that the ruthenium oxo species were transformed to other catalytically active species during the reaction. The band at 980 cm$^{-1}$ reappeared in the spectrum of the used catalyst after calcination, indicating that ruthenium oxo species were regenerated (Fig. 3(d)).

Figure 3. DRIFT spectra of (a) CeO$_2$, (b) fresh Ru/CeO$_2$ catalyst prepared from [RuCl$_2$(p-cymene)]$_2$, (c) used catalyst, and (d) used catalyst after calcination.
5.3 Conclusions

In this chapter, solid oxide-supported ruthenium catalysts that are effective for the addition of a variety of carboxylic acids to terminal alkynes are described: Ru/CeO$_2$ and Ru/ZrO$_2$ showed excellent activities. A variety of carboxylic acids and terminal alkynes could be used with this catalyst. The present Ru/CeO$_2$ catalyst was recyclable, and the leaching of ruthenium species was not observed after the reaction. These features are quite attractive and advantageous from synthetic, industrial, and environmental points of view.
5.4 Experimental

5.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Di-μ-chlorobis[(p-cymene)chlororuthenium(II)] (Strem Chemicals), dodecacarbonyltriruthenium (Strem Chemicals), ruthenium trichloride n-hydrate (Tanaka Kikinzoku Kogyo), ruthenium(III) acetylacetonate (Aldrich), dichlorotricarbonylruthenium(II)dimer (Strem Chemicals), cerium(III) nitrate hexahydrate (Wako), zirconium oxynitrate (Nakalai Tesque), magnesium nitrate hexahydrate (Wako), aqueous ammonia solution (28%, Nakalai Tesque), biphenyl (Wako), benzoic acid (Nakalai Tesque), ethynylbenzene (TCI), ammonium chloride (Nakalai Tesque), p-toluic acid (TCI), m-anisic acid (TCI), 3-nitrobenzoic acid (TCI), α,α,α-trifluoro-p-toluic acid (Aldrich), 2,4,6-trimethylbenzoic acid (TCI), 2-thiophenecarboxylic acid (Wako), 3-furancarboxylic acid (Wako), octanoic acid (Wako), p-ethynyltoluene (Wako), 4-ethynylanisole (Aldrich), 3-ethynylthiophene (Aldrich), 2-ethynylpyridine (Wako), trimethylsilylacetylene (TCI), 4-octyne (Wako), diphenylacetylene (Aldrich), mesitylene (Nakalai Tesque), diethyl ether (Nakalai Tesque), methanol (Wako), tetrahydrofuran (Wako), hexane (Nakalai Tesque), ethyl acetate (Nakalai Tesque), phenylacetylene-d_1 (Isotech), chloroform-d (Acros Organics), and dichloromethane-d_2 (Acros Organics) were obtained commercially and used without further purification. Cerium oxide was prepared by the treatment of a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 38 mL of 28% aqueous ammonia with stirring for 1 h at room temperature. The resulting precipitate was collected by centrifugation, and then air-dried at 80 °C overnight. The product was heated in a box furnace at a rate of 10 °C min$^{-1}$ and
maintained at 400 °C for 30 min to afford ceria in excellent ceramic yield. Zirconium oxide and magnesium oxide were prepared by the same method using zirconium oxynitrate and magnesium nitrate hexahydrate, respectively. Titanium oxide (JRC-TIO-8), γ-alumina (JRC-ALO-8), and silica (CAB-O-SIL) were used as received.

5.4.2 Characterization

NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (\(^1\)H)) instrument. Chemical shifts (\(\delta\)) are referenced to SiMe\(_4\). High-resolution mass spectra (FAB) were recorded on a JEOL SX102A spectrometer with \(m\)-nitrobenzyl alcohol as a matrix. The oxide catalysts were analyzed by XPS, DRIFT, H\(_2\)-TPR, and TG-DTA. X-ray photoelectron spectra (XPS) of the catalysts were acquired using an ULVAC-PHI 5500MT system equipped with a hemispherical energy analyzer. Samples were mounted on indium foil and then transferred to the XPS analyzer chamber. The residual gas pressure in the chamber during data acquisition was less than 1 x 10\(^{-8}\) Torr (1 Torr = 133.3 N m\(^{-2}\)). The spectra were measured at \(ca.\) -100 °C by Mg Ka radiation (15 kV, 400 W). The electron take-off angle was set at 45 deg. Binding energies were referenced to the C 1s level of residual graphitic carbon [23]. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was carried out using a Nicolet Magna-IR 560 FT-IR spectrometer with a DRIFT optical configuration. Temperature-programmed reduction (TPR) was carried out with a flow-type reactor. Hydrogen (1.9 vol.%) in Ar was passed at 30 cm\(^3\) min\(^{-1}\) under atmospheric pressure through a reaction tube containing 50 mg of the catalysts. The tube was heated with an electric furnace at 2 °C min\(^{-1}\), and the amount of H\(_2\) consumed was monitored with a TC detector of a Shimadzu 4CPT gas chromatograph. Thermogravimetry (TG) and differential thermal analysis (DTA) were
performed using a Rigaku TG8120 system. The sample (ca. 5 mg) was heated at a rate of 10 °C min⁻¹ in an air flow (50 mL min⁻¹). The leaching of ruthenium species from the catalysts during the reaction was investigated by the inductively coupled plasma-atomic emission spectroscopy (ICP-AES) using a Shimadzu ICPS-1000III analyzer. The products of catalytic runs were analyzed by GC-MS (Shimadzu GC-MS Parvum 2; Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, at 50–250 °C) and gas-liquid chromatography (GL Sciences GC353; Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C).

5.4.3 Preparation of the Ru/CeO₂ catalysts

Supported catalysts were prepared by the impregnation method through the use of various supports and ruthenium complexes. A typical procedure is as follows: 1.0 g of CeO₂ was added to a solution of [RuCl₂(p-cymene)]₂ (62 mg, 0.10 mmol, 20 mg as Ru) in 10 mL of methanol at 50 °C. After impregnation, the resulting light yellow powder was calcined in air at 400 °C for 30 min to afford Ru(2.0 wt%)/CeO₂ as a dark brown powder.

5.4.4 General procedure for the addition of carboxylic acids to terminal alkynes

All of the reactions were performed by the use of hot stirrers equipped with cooling blocks for refluxing the solution. A typical reaction procedure is as follows: A mixture of carboxylic acid (1.0 mmol) and terminal alkyne (1.3 mmol) in mesitylene (1.0 mL) was placed in a 20 mL glass Schlenk tube with a balloon under an Ar atmosphere together with 125 mg of the Ru(2.0wt%)/CeO₂ catalyst (0.025 mmol as Ru). The reaction mixture was stirred at 130 °C for 12 h, and then cooled rapidly in an ice
bath. The products were identified by GC-MS, 1H and 13C NMR, and quantified by 1H NMR and GLC analyses using biphenyl as an internal standard.

5.4.5 Hot filtration test

A 20 mL Schlenk tube was charged with benzoic acid (1a, 122 mg, 1.0 mmol), ethynylbenzene (2a, 0.15 mL, 1.3 mmol), mesitylene (1.0 mL), and 125 mg of the Ru(2.0 wt%)/CeO$_2$ catalyst (0.025 mmol as Ru) together with an internal standard (biphenyl, ca. 46 mg) under an argon atmosphere. After the reaction was allowed to proceed for 1 h at 130 °C, the mixture was filtered through a 0.45 μm syringe filter (Millipore Millex LH) into another preheated Schlenk tube. The filtrate was stirred at 130 °C, and the conversion and yields of the product after filtration were followed by GC and GC-MS analyses.
5.4.6 Characterization of products

Styryl 4-methylbenzoate (E-3ba, Z-3ba and 4ba): Light brown oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3ba): 8.09 (d, $J = 12.6$ Hz, 1H), 8.03–7.23 (m, 9H), 6.58 (d, $J = 12.6$ Hz, 1H), 2.44 (s, 3H). Z-isomer (Z-3ba): 5.84 (d, $J = 7.6$ Hz, 1H), 2.45 (s, 3H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl 3-nitrobenzoate, 4ba): 5.59 (d, $J = 2.0$ Hz, 1H), 5.15 (d, $J = 2.0$ Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C$_{16}$H$_{14}$O$_2$ (M): 238.0994; found: 238.0999.

Styryl 3-methoxybenzoate (E-3ca, Z-3ca and 4ca): Light brown oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3ca): 8.09 (d, $J = 12.6$ Hz, 1H), 7.78–7.15 (m, 9H), 6.59 (d, $J = 12.6$ Hz, 1H), 3.88 (s, 3H). Z-isomer (Z-3ca): 5.86 (d, $J = 7.2$ Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl 3-methoxybenzoate, 4ca): 5.59 (d, $J = 2.0$ Hz, 1H), 5.16 (d, $J = 2.0$ Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C$_{16}$H$_{15}$O$_3$ (M+H): 255.1021; found: 255.1014.

Styryl 3-nitrobenzoate (E-3da, Z-3da and 4da): Yellowish white solid. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3da): 9.00 (t, $J = 1.0$ Hz, 1H), 8.51–8.46 (m, 2H), 8.08 (d, $J = 12.8$ Hz, 1H), 7.78–7.15 (m, 6H), 6.69 (d, $J = 12.8$ Hz, 1H). Z-isomer (Z-3da): 9.02 (m, 1H), 5.96 (d, $J = 7.2$ Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl 3-nitrobenzoate, 4da): 5.62 (d, $J = 2.4$ Hz, 1H), 5.21 (d, $J = 2.4$ Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C$_{15}$H$_{11}$NO$_4$ (M): 269.0688; found: 269.0692.
Styryl 4-(trifluoromethyl)benzoate (E-3ea, Z-3ea and 4ea): Light yellow solid. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3ea): 8.29–8.25 (m, 2H), 8.08 (d, J = 12.8 Hz, 1 H), 7.80–7.25 (m, 7H), 6.63 (d, J = 12.8 Hz, 1H). Z-isomer (Z-3ea): 5.91 (d, J = 7.2 Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl 4-(trifluoromethyl)benzoate, 4ea): 5.61 (d, J = 2.6 Hz, 1H), 5.19 (d, J = 2.6 Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C$_{18}$H$_{11}$F$_3$O$_2$ (M): 292.0711; found: 292.0718.

Styryl 2,4,6-trimethylbenzoate (E-3fa, Z-3fa and 4fa): Orange oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3fa): 8.11 (d, J = 12.4 Hz, 1H), 7.57–7.19 (m, 5H), 6.90 (s, 2H), 6.48 (d, J = 12.4 Hz, 1H), 2.36 (s, 6H), 2.31 (s, 3H). Z-isomer (Z-3fa): 6.91 (s, 2H), 5.81 (d, J = 7.2 Hz, 1H), 2.34 (s, 6H), 2.32 (s, 3H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl 2,4,6-trimethylbenzoate, 4fa): 5.56 (d, J = 1.6 Hz, 1H), 5.19 (d, J = 1.6 Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C$_{18}$H$_{19}$O$_2$ (M+H): 267.1385; found: 267.1383.

Styryl thiophene-2-carboxylate (E-3ga, Z-3ga and 4ga): Light brown oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, E-isomer (E-3ga): 8.02 (d, J = 12.8 Hz, 1H), 7.97–7.14 (m, 8H), 6.56 (d, J = 12.8 Hz, 1H). Z-isomer (Z-3ga): 5.82 (d, J = 7.2 Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl thiophene-2-carboxylate, 4ga): 5.58 (d, J = 2.8 Hz, 1H), 5.18 (d, J = 2.8 Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for
Styryl furan-3-carboxylate (E-3ha, Z-3ha and 4ha): Light brown oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\), E-isomer (E-3ha): 8.17–8.14 (m, 1H), 8.01 (d, \(J = 12.6\) Hz, 1H), 7.62–7.22 (m, 6H), 6.83 (m, 1H), 6.51 (d, \(J = 12.6\) Hz, 1H). Z-isomer (Z-3ha): 5.81 (d, \(J = 7.2\) Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl furan-3-carboxylate, 4ha): 5.56 (d, \(J = 2.4\) Hz, 1H), 5.14 (d, \(J = 2.4\) Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C\(_{13}\)H\(_{10}\)O\(_3\) (M): 214.0630; found: 214.0635.

Styryl octanoate (E-3ia, Z-3ia and 4ia): Orange oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\), E-isomer (E-3ia): 7.87 (d, \(J = 12.6\) Hz, 1H), 7.59–7.20 (m, 5H), 6.38 (d, \(J = 12.6\) Hz, 1H), 2.54–2.41 (m, 2H), 1.77–1.65 (m, 2H), 1.35–1.29 (m, 8H), 0.90–0.87 (m, 3H). Z-isomer (Z-3ia): 5.69 (d, \(J = 7.2\) Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-phenylvinyl octanoate, 4ia): 5.46 (d, \(J = 2.0\) Hz, 1H), 5.01 (d, \(J = 2.0\) Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C\(_{16}\)H\(_{22}\)O\(_2\) (M): 246.1620; found: 246.1626.

4-Methoxystyryl benzoate (E-3ac, Z-3ac and 4ac): Brown oil. \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\), E-isomer (E-3ac): 8.20–8.13 (m, 2H), 7.99 (d, \(J = 12.6\) Hz, 1H), 7.65–7.31 (m, 5H), 6.95–6.85 (m, 2H), 6.55 (d, \(J = 12.6\) Hz, 1H), 3.81 (s, 3H). Z-isomer (Z-3ac): 5.80 (d, \(J = 6.8\) Hz, 1H), 3.83 (s, 3H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-(4-methoxyphenyl)vinyl benzoate, 4ac): 5.46 (d, \(J = 2.2\) Hz, 1H), 5.05 (d, \(J = 2.2\) Hz, 1H), 3.79 (s, 3H), other peaks were
overlapped with those of the other isomers. HRMS: Calculated for C_{16}H_{14}O_{3} (M): 254.0943; found: 253.0940.

2-(Thiophen-3-yl)vinyl benzoate (E-3ad, Z-3ad and 4ad): Dark brown oil. 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\), E-isomer (E-3ad): 8.20–8.16 (m, 2H), 8.01 (dd, \(J = 12.8\), 1.6 Hz, 1H), 7.64–7.16 (m, 6H), 6.60 (d, \(J = 12.8\) Hz, 1H). Z-isomer (Z-3ad): 5.94 (d, \(J = 7.6\) Hz, 1H), other peaks were overlapped with those of the other isomers. Markovnikov adduct (1-(thiophen-3-yl)vinyl benzoate, 4ad): 5.47 (m, 1H), 5.11 (m, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C\textsubscript{13}H\textsubscript{10}O\textsubscript{2}S (M): 230.0402; found: 230.0400.

1-(Pyridin-2-yl)vinyl benzoate (E-3ae and 4ae): Dark brown oil. 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\), Markovnikov adduct (4ae): 8.62–8.59 (m, 1H), 8.23–8.11 (m, 2H), 7.69–7.14 (m, 6H), 6.21 (d, \(J = 1.6\) Hz, 1H), 5.36 (d, \(J = 1.6\) Hz, 1H). E-isomer ((E)-2-(pyridin-2-yl)vinyl benzoate, E-3ae): 8.52 (d, \(J = 12.8\) Hz, 1H), 6.66 (d, \(J = 12.8\) Hz, 1H), other peaks were overlapped with those of the other isomers. HRMS: Calculated for C\textsubscript{14}H\textsubscript{12}NO\textsubscript{2} (M+H): 226.0868; found: 226.0864.
References

The heterogeneously-catalyzed gas-phase addition of acetic acid over Zn(OAc)$_2$/charcoal or other catalysts has been used for the industrial manufacture of vinyl acetate. See ref. [3], p.228–229.

Chapter 6

Selective addition of carboxylic acids to alkynes in the presence of recyclable ruthenium catalysts prepared through phosphine-modification of ruthenium(IV) species supported on ceria

6.1 Introduction

The development of highly selective catalytic reactions with high atom efficiencies is quite important, since such processes should give the desired products without by-products or wastes [1]. To achieve such goals, transition-metal complexes have been widely applied as homogeneous catalysts, mainly because fine-tuning of their active sites by ligands or additives can induce the excellent activities and selectivities. In this context, ruthenium complex catalysts together with suitable phosphine ligands have been used to accomplish the regio- and stereo-selective addition of carboxylic acid to alkynes [2–10], which is the most atom-economical route for the synthesis of vinyl esters [11].

The use of solid catalysts, particularly oxide-supported metal catalysts, is quite attractive because of their simple preparation, high stability and facile reusability, as well as minimal contamination of the products by metallic species [12]. As described in the previous chapters, Ru/CeO$_2$ is quite effective catalysts for various synthetic reactions including the addition of carboxylic acids to terminal alkynes [13,14].
Furthermore, the heating of the Ru/CeO$_2$ catalysts in a hydrogen atmosphere in the presence of a small amount of phosphines (phosphine-modification) was found to greatly improve the activities of the resulting Ru catalysts for the arylation [13c] and alkylation [13d] of aromatic C–H bonds. On the basis of these results, modifications of Ru/CeO$_2$ by suitable phosphines are expected to generate highly active Ru catalysts for the regio- and stereo-selective syntheses of vinyl esters via the addition of carboxylic acids to alkynes.

In this chapter, a simple method for the preparation of active Ru catalysts that are applicable to the selective addition of carboxylic acids to terminal alkyne is described. The conditions of the pretreatment of Ru/CeO$_2$ catalysts greatly affected their catalytic behavior. The states of catalytically active species are discussed on the basis of spectroscopic characterization.
6.2 Results and discussion

The methods for the preparation of supported Ru catalysts are summarized in Scheme 1. The CeO$_2$-supported Ru catalysts (Ru/CeO$_2$) were prepared by the impregnation of a solution of a Ru precursor, such as RuCl$_3$·nH$_2$O or Ru(acac)$_3$, on CeO$_2$ followed by calcination in air at 400 °C for 30 min. The Ru/CeO$_2$ catalyst was then heated at 100 °C for 20 min under a hydrogen atmosphere (1 atm) without any solvent in the presence of phosphines to give xphosphine–Ru/CeO$_2$ (phosphine modification), where x shows the molar ratio of phosphine to ruthenium. In contrast, the Ru/CeO$_2$ catalyst that was reduced under similar conditions in the absence of any additives was designated as Ru/CeO$_2$(Reduced).

Scheme 1. Method for the preparation of supported Ru catalysts.
1,4-Bis(diphenylphosphino)butane-modified Ru/CeO₂ catalyst (dppb-Ru/CeO₂) showed excellent activity for the selective addition of benzoic acid (1a) to ethynylbenzene (2a) to afford the corresponding vinyl ester 3aa quantitatively, with high selectivity for the (Z)-isomer (Table 1, entry 1). On the other hand, the reaction catalyzed by unmodified Ru/CeO₂ without any external additives mainly afforded the (E)-isomer of 3aa (entry 2). Note that Ru/CeO₂-catalyzed reaction at 130 °C gave the product E-3aa in a high yield as described in chapter 5 [14]. Ruthenium complexes with the dppb ligand were reported to act as effective homogeneous catalysts to afford the (Z)-isomer of vinyl esters with excellent selectivities [7]. The addition of dppb to the unmodified Ru/CeO₂-catalyzed system produced the (Z)-isomer of 3aa with a high selectivity, whereas the total yield of vinyl esters was very low (entry 3). The pre-reduction of Ru/CeO₂ with molecular hydrogen did not have a positive effect (entry 4) and the reaction of 1a with 2a carried out under a hydrogen atmosphere resulted in a moderate total yield of 3aa (entry 5). These results indicated that the reductive treatment of Ru/CeO₂ catalysts in the presence of phosphine is essential for generating Ru species with high catalytic activity and selectivity.
Table 1. Effect of pretreatment of Ru/CeO$_2$ catalysts.a

Entry	Ru catalyst	Total yield (%)b	Selectivity (%)c
1	2dppb–Ru/CeO$_2$	99	90 : 10 : 0
2	Ru/CeO$_2$	24	13 : 83 : 4
3	Ru/CeO$_2$ + dppb	18	89 : 11 : 0
4	Ru/CeO$_2$ (Reduced) + dppb	18	90 : 10 : 0
5d	Ru/CeO$_2$ + dppb	50	90 : 10 : 0

a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), toluene (1.0 mL), Ru/CeO$_2$ (prepared from RuCl$_3$ \cdot nH$_2$O, 0.025 mmol as Ru), dppb (0.050 mmol), at 80 °C for 24 h under Ar. b Total yield of 3aa and 4aa based on 1a, determined by GLC. c Molar ratio of isomers determined by GLC. d Reaction under H$_2$ (1 atm).
Effect of Ru precursors and support for the activities of dppb-modified Ru catalysts was examined (Table 2, entries 1–5). The solid Ru/CeO$_2$ catalyst prepared using Ru(acac)$_3$ showed the highest selectivity and the reaction was complete in the shortest time (8 h, entry 5). The Ru/ZrO$_2$ catalyst modified by dppb also showed the catalytic activity for the selective addition (entry 6). In contrast, the dppb-modified Ru catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO did not show any activity (entries 7–10). Such a marked effect of the support has been observed in our previous studies on C–C bond-forming reactions [13] as well as the addition of carboxylic acids to alkynes by unmodified catalysts [14]. As discussed in the previous chapters, highly-dispersed Ru(IV)-oxo species is selectively formed on the surface of ceria and zirconia, which would be a good precursor of the catalytically active Ru species. In contrast, Ru species formed on the surface of the other supports had a microstructure similar to that of crystalline RuO$_2$, which could not be transformed into the active catalysts.
Table 2. Effect of Ru precursor and support.a

![Reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Support</th>
<th>Ru precursor</th>
<th>Total yield (%)b</th>
<th>Selectivity (%)c Z-3aa : E-3aa : 4aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CeO\textsubscript{2}</td>
<td>RuCl\textsubscript{3} \cdot nH\textsubscript{2}O</td>
<td>99</td>
<td>90 : 10 : 0</td>
</tr>
<tr>
<td>2</td>
<td>CeO\textsubscript{2}</td>
<td>[RuCl\textsubscript{2}(\textit{p}-cymene)]\textsubscript{2}</td>
<td>64</td>
<td>97 : 3 : 0</td>
</tr>
<tr>
<td>3</td>
<td>CeO\textsubscript{2}</td>
<td>[RuCl\textsubscript{2}(CO)]\textsubscript{2}</td>
<td>99</td>
<td>91 : 9 : 0</td>
</tr>
<tr>
<td>4</td>
<td>CeO\textsubscript{2}</td>
<td>Ru\textsubscript{3}(CO)\textsubscript{12}</td>
<td>83</td>
<td>91 : 9 : 0</td>
</tr>
<tr>
<td>5d</td>
<td>CeO\textsubscript{2}</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>99</td>
<td>98 : 2 : 0</td>
</tr>
<tr>
<td>6</td>
<td>ZrO\textsubscript{2}</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>71</td>
<td>98 : 2 : 0</td>
</tr>
<tr>
<td>7</td>
<td>SiO\textsubscript{2}</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>TiO\textsubscript{2}</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>MgO</td>
<td>Ru(acac)\textsubscript{3}</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), toluene (1.0 mL), Ru/support (prepared from RuCl\textsubscript{3} \textit{n}H\textsubscript{2}O, 0.025 mmol as Ru, dppb 0.050 mmol), at 80 °C for 24 h under Ar.

b Total yield of 3aa and 4aa based on 1a, determined by GLC.

c Molar ratio of isomers determined by GLC.

d Reaction for 8 h.
To examine the state of ruthenium species on Ru/CeO$_2$ before and after modification with dppb, Ru K-edge X-ray absorption near edge structure (XANES) spectra were recorded, and the results are shown in Figure 1 together with the spectra of RuO$_2$ and Ru metal. The XANES spectrum of unmodified Ru/CeO$_2$ showed a characteristic pre-edge peak at around 22110 eV, which is assignable to Ru(IV) species with a distorted coordination structure bearing a Ru=O bond [13e,15]. After dppb-treatment, the pre-edge peak disappeared, and the absorption-edge of the catalyst shifted to a lower energy but did not coincide with that of Ru metal. This result indicates that the Ru(IV) species are reduced to low-valent Ru species, probably Ru(II) species, with a loss of the Ru=O structure.

![Figure 1. Ru K-edge XANES spectra of the catalysts.](image-url)
One major advantage of solid catalysts is their high recyclability. Scheme 2 shows an outline of the successful regeneration procedure and the results of catalytic reactions with the recycled catalysts. After the reaction, the dppb-modified Ru/CeO$_2$ catalyst was washed with diethyl ether (10 mL, 3 times), dried in air at 80 °C, and then calcined in air at 400 °C to be recovered as Ru/CeO$_2$. The thus-obtained solid was re-modified with dppb under a hydrogen atmosphere to give the regenerated dppb–Ru/CeO$_2$ for the next catalytic run. Whereas a slightly decreased amount of the recycled catalyst was used, Z-3aa was successfully obtained in excellent yields and selectivities in the 2nd and 3rd runs. On the other hand, the reaction using recovered Ru catalysts without calcination and further dppb-modification resulted in low yields of 3aa, probably because of the deactivation of Ru catalys.

Scheme 2. Recycling of the dppb-modified Ru/CeO$_2$ catalyst.
The results of the reactions of various carboxylic acids with terminal alkynes by the dppb-modified Ru/CeO$_2$ catalyst are summarized in Table 3. The reaction with aromatic carboxylic acids bearing an electron-donating or -withdrawing substituent on the phenyl ring as well as 2-naphthoic acid proceeded smoothly to afford the corresponding vinyl esters in high yields with excellent (Z)-isomer selectivities. The reaction with an aliphatic carboxylic acid (1h) also gave the desired (Z)-adduct with a high selectivity. The reactions of 1a with aromatic and heteroaromatic terminal alkynes also produced the (Z)-isomer of the adducts with excellent selectivities. Note that formation of the Markovnikov adducts (4) was not observed at all in the reaction shown in Table 3.

Table 3. Z-Selective addition of carboxylic acids to terminal alkynes by dppb–Ru/CeO$_2$ catalyst.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>Product</th>
<th>Yield (%)b of 3</th>
<th>Sel. (Z : E)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2a</td>
<td>3ba</td>
<td>88</td>
<td>98 : 2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2a</td>
<td>3ca</td>
<td>95</td>
<td>100 : 0</td>
</tr>
</tbody>
</table>
3 \[
\text{O}_2\text{N} - \text{C}_6\text{H}_4\text{COOH} \rightarrow 2a \quad 3\text{da} \quad 76 \quad 98:2
\]

4 \[
\text{F}_3\text{C} - \text{C}_6\text{H}_4\text{COOH} \rightarrow 2a \quad 3\text{ea} \quad 61 \quad 98:2
\]

5 \[
\text{C}_6\text{H}_4\text{COOH} \rightarrow 2a \quad 3\text{fa} \quad 90 \quad 93:7
\]

6 \[
\text{C}_6\text{H}_4\text{COOH} \rightarrow 2a \quad 3\text{ga} \quad 42 \quad 85:15
\]

7 \[
\text{n-C}_7\text{H}_{15}\text{COOH} \rightarrow 2a \quad 3\text{ha} \quad 48 \quad 94:6
\]

8 \[
\text{1a} \quad \begin{array}{c}
\text{C}_6\text{H}_4\text{C} = \text{C}\end{array} \quad 3\text{ab} \quad 65 \quad 100:0
\]

9 \[
\text{1a} \quad \begin{array}{c}
\text{MeO} - \text{C}_6\text{H}_4\text{C} = \text{C}\end{array} \quad 3\text{ac} \quad 66 \quad 98:2
\]

10 \[
\text{1a} \quad \begin{array}{c}
\text{S} - \text{C}_6\text{H}_4\text{C} = \text{C}\end{array} \quad 3\text{ad} \quad 94 \quad 100:0
\]

\textit{a} Reaction conditions: 1 (1.0 mmol), 2 (1.3 mmol), toluene (1.0 mL), dpb-Ru/CeO\(_2\) (0.025 mmol, prepared from Ru(acac), dpb 0.050 mmol), at 80 °C for 24 h under Ar.

\textit{b} Isolated yield. \textit{c} Molar ratio of isomers determined by 1H NMR.
The amount of ruthenium species leached from the solid Ru catalysts into the liquid phase after the reactions of 1a with 2a under the condition shown in Table 1 were examined by inductively coupled plasma atomic emission spectrometry (ICP-AES). From the 2dppb–Ru/CeO₂ catalyst, 0.54 µmol of Ru species were found to be leached into toluene solution after it was allowed to cool to room temperature, which corresponds to 2.2% of ruthenium species in the fresh 2dppb–Ru/CeO₂ catalyst. The amount of ruthenium species leached from the zirconia-supported catalyst was below the detection limit in the ICP-AES measurement. To investigate the contribution of the soluble ruthenium species generated from the 2dppb–Ru/CeO₂ catalyst, the effects of the removal of the solid catalysts by hot filtration through a PTFE filter (pore size 0.45 µm) were examined [16,17]. Figure 2 shows the time-course of the reactions with or without hot filtration. Removal of the solid catalyst after the reaction for 1 h did not stop further progress of the reaction. ICP-AES showed that the solution after hot filtration contained 1.3% of Ru species in the fresh catalyst. The results of the present hot filtration tests are very different than those observed in the C–C bond-forming reactions by PPh₃-modified Ru/CeO₂ catalyst, where removal of the solid catalysts stopped further progress of the reactions [13c]. These suggest that the contribution of dissolved ruthenium species depends on the type of the reaction, and that in the present catalytic reaction, Ru/CeO₂ acted as an excellent source for extremely active, soluble ruthenium species.
Figure 2. Effects of catalyst removal by hot filtration on the reaction of 1a with 2a at 80 °C catalyzed by 2dppb–Ru/CeO₂ catalysts.
Next, we focused our efforts on the selective production of Markovnikov-adducts 4 by the use of the Ru/CeO₂ catalysts. Effects of the class of phosphines for the reaction of 1a with 2a at 80 °C in toluene were examined (Table 4). Tributylphosphine-, 1,1-bis(diphenylphosphino)methane- (dppm-) or trioctylphosphine-modified Ru/CeO₂ catalyst have been found to give 4aa as a major product (entries 2, 8 and 9). The modification by other phosphines, PPh₃, rac-BINAP, and 1,2-bis(diphenylphosphino)ethane (dppe) completely suppressed the activity under the present conditions (entries 1, 3 and 7).

Table 4. Effect of phosphines for modification of Ru/CeO₂.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Phosphine</th>
<th>Total yield (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z-3aa : E-3aa : 4aa</td>
</tr>
<tr>
<td>1</td>
<td>PPh₃</td>
<td>trace</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>dppm</td>
<td>68</td>
<td>26 : 8 : 66</td>
</tr>
<tr>
<td>3</td>
<td>dppe</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>dppp</td>
<td>7</td>
<td>86 : 14 : 0</td>
</tr>
<tr>
<td>5ᵈ</td>
<td>dppb</td>
<td>99</td>
<td>98 : 2 : 0</td>
</tr>
<tr>
<td>6</td>
<td>dpppe</td>
<td>7</td>
<td>100 : 0 : 0</td>
</tr>
<tr>
<td>7</td>
<td>rac-BINAP</td>
<td>trace</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>P(”Bu)₃</td>
<td>57</td>
<td>11 : 7 : 82</td>
</tr>
<tr>
<td>9</td>
<td>P(”Oct)₃</td>
<td>71</td>
<td>11 : 21 : 68</td>
</tr>
</tbody>
</table>

Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), toluene (1.0 mL), Ru catalyst (0.025 mmol as Ru, prepared from Ru(acac)₃, phosphine 0.050 mmol), at 80 °C for 24 h under Ar. Total yield of 3aa and 4aa based on 1a, determined by GLC. Molar ratio of isomers determined by GLC. Reaction time, 8 h.
Then, further optimization of the reaction conditions for the selective synthesis of Markovnikov-adducts was examined (Table 5). When the reaction was carried out at 120 °C, 3aa and 4aa was obtained in the highest total yield, whereas the selectivity of 4aa was moderate (entries 1–3). However, the addition of a small amount of ammonium chloride was found to induce the Markovnikov-selective addition, and the addition of 0.10 mmol (4 eq. to Ru) of NH₄Cl was found to be suitable in terms of both the yield of vinyl esters and the selectivity for 4aa (entry 9). The addition of a larger or smaller amount of NH₄Cl decreased the total yield and the selectivity for 4aa (entries 10–12).
Table 5. Effect of reaction temperature and additives on the reaction catalyzed by \(P(n\text{Oct})_3 \)-modified Ru/CeO\(_2\).\(^d\)

![Reaction scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive (mmol)</th>
<th>Temperature (°C)</th>
<th>Total yield (%)(^b)</th>
<th>Selectivity (%)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^d)</td>
<td>None</td>
<td>80</td>
<td>71</td>
<td>11 : 21 : 68</td>
</tr>
<tr>
<td>2(^d)</td>
<td>None</td>
<td>120</td>
<td>99</td>
<td>26 : 27 : 47</td>
</tr>
<tr>
<td>3(^d)</td>
<td>None</td>
<td>140</td>
<td>81</td>
<td>31 : 7 : 62</td>
</tr>
<tr>
<td>4</td>
<td>KI (0.10)</td>
<td>120</td>
<td>92</td>
<td>28 : 33 : 39</td>
</tr>
<tr>
<td>5</td>
<td>KBr (0.10)</td>
<td>120</td>
<td>99</td>
<td>26 : 15 : 59</td>
</tr>
<tr>
<td>6</td>
<td>KCl (0.10)</td>
<td>120</td>
<td>99</td>
<td>24 : 11 : 65</td>
</tr>
<tr>
<td>7</td>
<td>LiCl (0.10)</td>
<td>120</td>
<td>92</td>
<td>28 : 50 : 22</td>
</tr>
<tr>
<td>8</td>
<td>NaCl (0.10)</td>
<td>120</td>
<td>83</td>
<td>19 : 6 : 75</td>
</tr>
<tr>
<td>9(^e)</td>
<td>NH(_4)Cl (0.10)</td>
<td>120</td>
<td>99</td>
<td>15 : 8 : 77</td>
</tr>
<tr>
<td>10</td>
<td>NH(_4)Cl (0.050)</td>
<td>120</td>
<td>69</td>
<td>29 : 28 : 43</td>
</tr>
<tr>
<td>11</td>
<td>NH(_4)Cl (0.20)</td>
<td>120</td>
<td>82</td>
<td>15 : 21 : 64</td>
</tr>
<tr>
<td>12</td>
<td>NH(_4)Cl (0.40)</td>
<td>120</td>
<td>88</td>
<td>39 : 20 : 41</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1\(a\) (1.0 mmol), 2\(a\) (1.3 mmol), mesitylene (1.0 mL), Ru catalyst (0.025 mmol as Ru, prepared from Ru(\text{acac})\(_3\), P(n\text{Oct})\(_3\), 0.050 mmol), for 18 h under Ar.

\(^b\) Total yield of 3\(aa\) and 4\(aa\) based on 1\(a\), determined by GLC.

\(^c\) Molar ratio of isomers determined by GLC.

\(^d\) Reaction time, 24 h.

\(^e\) Reaction time, 6 h.
Although there is still room for further optimization of the reaction conditions, various Markovnikov adducts 4 were obtained in good to high selectivities under the present conditions (Table 6): for example, the reaction of 1d with 2a in the presence of 2P(”Oct)3–Ru/CeO2 catalyst together with NH4Cl in mesitylene at 120 °C produced 4da with 91% selectivity (entry 4).

Table 6. Addition of various carboxylic acids to terminal alkynes by P(”Oct)3–Ru/CeO2 catalyst.a

\begin{tabular}{|c|c|c|c|c|}
\hline
Entry & 1 & 2 & Products & Total yield (%)b & Selectivity (Z-3 : E-3 : 4)c \\
\hline
1a & 1a & 2a & 3aa + 4aa & 99 & 15 : 8 : 77 \\
2 & 1a & 2b & 3ab + 4ab & 81 & 9 : 6 : 85 \\
3 & 1d & 2a & 3da + 4da & 68 & 5 : 4 : 91 \\
4 & 1c & 2a & 3ca + 4ca & 80 & 18 : 32 : 50 \\
5 & 1a & 2e & 3ae + 4ae & 37 & 0 : 9 : 91 \\
\hline
\end{tabular}

a Reaction conditions: 1 (1.0 mmol), 2 (1.3 mmol), mesitylene (1.0 mL), P(”Oct)3–Ru/CeO2 (0.025 mmol as Ru, prepared from Ru(acac)3, P(”Oct)3 0.050 mmol), NH4Cl (0.10 mmol), at 120 °C for 18 h under Ar. b Isolated yield. c Molar ratio of isomers determined by 1H NMR. d Reaction for 6 h.
6.3 Conclusions

In this chapter, the simple modification of Ru/CeO₂, i.e., reduction under a hydrogen atmosphere in the presence of suitable phosphines, was found to generate Ru catalysts that are effective for regio- and stereo-selective addition of carboxylic acids to alkynes. The 2dppb–Ru/CeO₂ catalyst gave (Z)-isomers of anti-Markovnikov adducts with excellent selectivities. On the other hand, the P(nOct)₃-modified Ru/CeO₂ catalysts gave the Markovnikov adducts as major products. These catalysts could be used for a variety of carboxylic acids and terminal alkynes and could be recycled without a significant loss of activity. Hot filtration tests and the ICP-AES analyses suggest that a very small amount of ruthenium species acted as catalysts in the solution phase. The catalysts demonstrated in the present study are attractive and advantageous from synthetic, industrial, and environmental points of view.
6.4 Experimental

6.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Dehydrated methanol, tetrahydrofuran (THF), and toluene were obtained from Wako and were used as received. Other organic and inorganic reagents were commercially available and used without further purification. Cerium oxide was prepared by the treatment of a solution of cerium(III) nitrate hexahydrate (Wako, 12.6 g, 29 mmol) in 400 mL of deionized water with 40 mL of 3 M KOH aqueous solution with stirring for 2 h at room temperature. The resulting precipitate was collected by centrifugation, and then air-dried overnight at 80 °C. The product was heated in a box furnace at a rate of 10 °C min\(^{-1}\) and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Zirconium oxide and magnesium oxide were prepared by the same method using zirconium oxynitrate and magnesium nitrate hexahydrate, respectively. Titanium oxide (JRC-TIO-4) and γ-alumina (JRC-ALO-8) were obtained from the Catalysis Society of Japan. Silica (CAB-O-SIL) was obtained from Cabot and used as received.

6.4.2 Characterizations

NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (\(^1\)H)) instrument. \(^1\)H and \(^{13}\)C\(^{1}H\) chemical shifts (\(\delta\)) were referenced to SiMe\(_4\). High-resolution mass spectra (FAB) were recorded on a JEOL SX102A spectrometer with \(m\)-nitrobenzyl alcohol as a matrix. Ru K-edge X-ray absorption fine structure (XAFS) measurements were performed at the BL01B1 beam line at SPring-8 operated at 8 GeV using a Si(311) two-crystal monochromator at room temperature. X-ray
absorption near edge structure (XANES) spectra were analyzed using the Rigaku REX 2000 version 2.5 program.

The leaching of ruthenium species from the catalysts during the reaction was investigated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using a Shimadzu ICPS-1000III analyzer. The products of catalytic runs were analyzed by GC–MS (Shimadzu GC–MS Parvum 2; Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, at 50–250 ºC) and gas–liquid chromatography (GL Sciences GC353; Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 ºC).

6.4.3 Preparation of supported Ru catalysts

Supported catalysts were prepared by the impregnation method using various supports and ruthenium complexes. A typical procedure is as follows: 1.0 g of metal oxide was added to a solution of 79 mg (0.20 mmol, 20 mg as Ru) of Ru(acac)₃ (Aldrich) in 10 mL of THF under air at room temperature. For Ru₃(CO)₁₂ (Strem Chemicals) and [RuCl₂(CO)₃]₂ (Strem Chemicals), THF was used as a solvent, while RuCl₃·nH₂O (Tanaka Kikinzoku Kogyo) and [RuCl₂(p-cymene)]₂ (Strem Chemicals) were impregnated from their methanol solutions. After impregnation and drying overnight in air at 80 ºC, the resulting powder was calcined in air at 400 ºC for 30 min to afford the Ru(2.0 wt%)/support catalyst.

6.4.4 Modification of the catalysts by phosphines

Modification of the Ru/support catalysts by dppb was performed as follows: 125 mg (0.025 mmol as Ru) of Ru/support and dppb (22 mg, 0.050 mmol) were heated at 100 ºC for 20 min under a hydrogen atmosphere (1 atm) without any solvent. The
resulting catalysts were designated as \(x\text{dppb–Ru/support}\) (\(x = \) molar ratio of dppb to Ru). \(\text{P(”Oct)}_3\)-modified Ru/support catalysts were prepared by the same method using 19 mg (0.050 mmol) of \(\text{P(”Oct)}_3\) instead of dppb. These phosphine-modified Ru/CeO\(_2\) were used for the catalytic reaction without exposing to open air.

6.4.5 General procedure for the addition of carboxylic acids to terminal alkynes

All of the reactions were performed by the use of hot stirrers equipped with cooling blocks for refluxing the solution. A typical reaction procedure is as follows: A mixture of carboxylic acid (1.0 mmol) and terminal alkyne (1.3 mmol) in toluene (1.0 mL) was placed in a 20 mL glass Schlenk tube with a balloon under an Ar atmosphere together with the phosphine-modified Ru(2.0 wt%)/CeO\(_2\) catalyst (0.025 mmol as Ru, 125 mg as Ru/CeO\(_2\)). The reaction mixture was stirred at 80 °C for 24 h, and then cooled rapidly in an ice bath. After the reaction, the solid catalyst was removed by passing the mixture through a 0.45 μm PTFE filter (Millipore Millex LH), and the filtrate was concentrated under reduced pressure. The products were isolated by column chromatography (silica gel, 4:1; hexane/EtOAc, v/v), identified by GC–MS, \(^1\)H and \(^{13}\)C NMR, HRMS, and quantified by GLC analyses using biphenyl as an internal standard.

6.4.6 Recovery of the 2dppb–Ru/CeO\(_2\) catalyst

After the reaction, the solid was separated from the reaction mixture by centrifugation and washed three times with 10 mL of diethyl ether. The resulting solid was dried overnight at 80 °C and calcined in air at 400 °C for 30 min to recover Ru/CeO\(_2\). Modification of Ru by 2 equivalents of dppb was then performed through the aforementioned procedure to give the 2dppb–Ru/CeO\(_2\) catalyst for reuse.
6.4.7 Hot filtration test

A 20 mL Schlenk tube was charged with benzoic acid (1a, 2.0 mmol), ethynylbenzene (2a, 2.6 mmol), toluene (2.0 mL), and the 2dppb–Ru(2.0 wt%)/CeO₂ catalyst (0.050 mmol as Ru) together with an internal standard (biphenyl, ca. 46 mg) under an argon atmosphere. After the reaction was allowed to proceed for 1 h at 80 °C, the mixture was filtered through a 0.45 mm syringe filter (Millipore Millex LH) into another preheated Schlenk tube. The filtrate was stirred at 80 °C, and the conversion and yields of the product after filtration were monitored by GC and GC–MS analyses.

6.4.8 Characterization Data of the Products

(Z)-Styryl 3-methoxybenzoate (Z-3ca): Orange oil. \(^1\)H NMR (400 MHz, CDCl₃, ppm) \(\delta\), 7.74 (m, 1H), 7.65 (m, 3H), 7.53 (d, \(J = 7.1\) Hz, 1H), 7.37 (m, 3H), 7.25 (m, 1H), 7.13 (m, 1H), 5.83 (d, \(J = 7.1\) Hz, 1H), 3.82 (s, 3H). \(^1\)C NMR (100 MHz, CDCl₃, ppm) \(\delta\), 163.1, 159.6, 134.1, 134.0, 130.1, 129.6, 129.1, 128.4, 127.3, 122.4, 120.4, 114.2, 112.5, 55.2. HRMS: Calculated for C₁₆H₁₅O₃ (M+H): 255.1021; found: 255.1027.

(Z)-Styryl 3-nitrobenzoate (Z-3da): Yellowish white solid. \(^1\)H NMR (400 MHz, CDCl₃, ppm) \(\delta\), 9.02 (m, 1H), 8.48 (m, 2H), 7.74 (t, \(J = 8.3\) Hz, 1H), 7.65 (d, \(J = 7.8\) Hz, 2H), 7.54 (d, \(J = 7.0\) Hz, 1H), 7.44 (t, \(J = 8.3\) Hz, 2H), 7.32 (m, 1H), 5.95 (d, \(J = 7.0\) Hz, 1H). \(^1\)C NMR (100 MHz, CDCl₃, ppm) \(\delta\), 161.4, 147.0, 135.6, 133.7, 133.5, 130.8, 130.1, 129.2, 128.6, 128.1, 127.8, 125.1, 113.8. HRMS: Calculated for C₁₅H₁₁NO₄ (M): 269.0688; found: 269.0680.
(Z)-Styryl 4-(trifluoromethyl)benzoate (Z-3ea): Light yellow solid. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, 8.25 (d, $J = 7.8$ Hz, 2H), 7.77 (d, $J = 7.8$ Hz, 2H), 7.62 (d, $J = 7.8$ Hz, 2H), 7.52 (d, $J = 7.0$ Hz, 1H), 7.39 (t, $J = 7.8$ Hz, 2H), 7.29 (m, 1H), 5.89 (d, $J = 7.0$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ, 162.3, 135.1 (q, $J = 33.1$ Hz), 133.9, 133.8, 132.2 (m), 131.5, 130.5, 129.2, 128.5, 127.6, 125.8 (m), 113.4. HRMS: Calculated for C$_{16}$H$_{11}$F$_3$O$_2$ (M): 292.0711; found: 292.0717.

(Z)-Styryl 2-naphthoate (Z-3fa): Light yellow solid. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, 8.75 (br s, 1H), 8.17 (dd, $J = 1.5$, 8.3 Hz, 1H), 8.01–7.91 (m, 3H), 7.73 (d, $J = 7.3$ Hz, 2H), 7.66–7.57 (m, 3H), 7.43 (t, $J = 7.8$ Hz, 2H), 7.31 (t, $J = 7.3$ Hz, 1H), 5.91 (d, $J = 6.8$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ, 163.6, 135.9, 134.3, 134.2, 132.5, 132.2, 129.5, 129.3, 128.8, 128.6, 128.5, 127.9, 127.4, 127.0, 126.1, 125.2, 112.7. HRMS: Calculated for C$_{19}$H$_{15}$O$_2$ (M+H): 275.1072; found: 275.1064.

(Z)-Styryl octanoate (Z-3ha): Orange oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, 7.58 (d, $J = 7.3$ Hz, 2H), 7.36–7.22 (m, 4H), 5.69 (d, $J = 7.3$ Hz, 1H), 2.52 (t, $J = 7.3$ Hz, 2H), 1.73 (m, 2H), 1.40–1.28 (m, 8H), 0.88 (t, $J = 7.3$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ, 170.3, 134.1, 133.9, 129.1, 128.4, 127.2, 111.7, 34.2, 21.6, 29.0, 28.9, 24.7, 22.6, 14.0. HRMS: Calculated for C$_{16}$H$_{23}$O$_2$ (M+H): 247.1698; found: 247.1685.

(Z)-2-(Thiophen-3-yl)vinyl benzoate (Z-3ad): Dark brown oil. 1H NMR (400 MHz, CDCl$_3$, ppm) δ, 8.26 (d, $J = 7.3$ Hz, 2H), 7.63 (m, 1H), 7.53–7.46 (m, 5H), 7.33 (dd, $J = 2.9$, 4.9 Hz, 1H), 5.94 (d, $J = 7.3$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ, 163.4, 134.8, 133.7, 133.2, 130.0, 129.0, 128.7, 128.4, 125.4, 124.2, 107.2. HRMS: Calculated
for C_{13}H_{10}O_{2}S (M): 230.0402; found: 230.0405.

1-Phenylvinyl 3-nitrobenzoate (a mixture of 4da, E-3da and Z-3da (91 : 4 : 5)): Orange oil. For 4da, 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm) \(\delta\), 9.03 (m, 1H), 8.51 (m, 2H), 7.73 (t, \(J = 7.8\) Hz, 1H), 7.52 (m, 2H), 7.38 (m, 3H), 5.63 (d, \(J = 2.5\) Hz, 1H), 5.21 (d, \(J = 2.5\) Hz, 1H). 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm) \(\delta\), 162.7, 153.0, 148.4, 135.7, 133.7, 131.2, 129.9, 129.3, 128.7, 128.0, 125.0, 124.9, 102.8.
References

Technol, 2011, 1, 1340-1346

Chapter 7

Intermolecular coupling of alkynes with acrylates by recyclable oxide-supported ruthenium catalysts:
Formation of distorted ruthenium(IV)-oxo species on ceria as a key precursor of active species

7.1 Introduction

Highly efficient organic transformations with solid catalysts [1], in particular inorganic oxide-supported catalysts, contribute to the realization of green sustainable chemistry [2,3]. In general, the states of supported metal species are critically affected by the supports, and a particular support may completely change the nature of the metal species, which could show unexpected features in catalytic reactions [4].

As shown in previous chapters, various efficient organic transformations, such as the arylation of aromatic C–H bonds, in the presence of Ru/CeO₂ and Ru/ZrO₂ catalysts have been developed [5–8]. These simple catalysts could be recycled several times without a significant loss of ruthenium species from the oxide support. Ruthenium catalysts supported on SiO₂, Al₂O₃, TiO₂ and MgO were totally ineffective for these reactions, which demonstrates the specific effects of the combination of Ru species and CeO₂ or ZrO₂.

On the other hand, substituted 1,3-dienes are important organic intermediates in modern industrial chemistry and materials science [9]. Various methods for their
preparation through the use of organometallic reagents have been proposed [10]. Above all, the intermolecular coupling of alkynes with alkenes is one of the most atom-efficient strategies and has been achieved with a series of transition-metal complex catalysts, including Ru [11], Rh [12], Pd [13], Co [14] and Ni [15]. However, these homogeneous complex catalysts are difficult to prepare, highly sensitive toward air and moisture, and they often require the use of toxic phosphines as ligands for efficient catalysis. To the best of our knowledge, there has been no example of the synthesis of substituted 1,3-dienes via the intermolecular coupling of alkynes with alkenes by simple, stable and recyclable solid catalysts. In this chapter, the intermolecular coupling of alkynes with acrylates by oxide-supported catalysts, Ru/CeO₂ and Ru/ZrO₂, in the presence of sodium formate is described. Furthermore, the coupling of two different alkenes was also realized through the use of these simple catalysts. The solid catalysts could be recycled several times without a significant loss of activity. A detailed characterization of the supported Ru catalysts suggests that the distorted Ru(IV)-oxo species is present in the ceria support which was transformed into low-valent Ru species at the initial stage of the reaction, leading to efficient catalytic reactions.
7.2 Results and discussion

Supported Ru catalysts were prepared by an impregnation method using Ru(acac)$_3$ as a Ru precursor, followed by calcination in air, and are designated as Ru/support-XXcal (where XX indicates the calcination temperature in Celsius).

The reaction of diphenylacetylene (1a) with methyl acrylate (2a) in the presence of Ru/CeO$_2$-400cal (125 mg, 0.025 mmol as Ru) together with a catalytic amount of sodium formate in N,N-dimethylacetamide (DMA) at 110 °C for 3 h gave 1,3-diene 3a in a yield of 98% with a high Z selectivity at the γ,δ-position (Table 1, entry 1). No reaction occurred in the absence of sodium formate, even at a higher temperature (entries 2 and 3). The use of sodium acetate instead of sodium formate did not afford 3a at all (entry 4). The treatment of Ru complexes by formate has been reported to produce Ru–H species [16, 17a], which were thought to play a key role in the present coupling reaction [17]. The addition of sodium borohydride, 2-propanol or isobutyril chloride as hydride sources to the reaction mixture was ineffective, and the reaction under an hydrogen atmosphere resulted in a low yield of 3a (entries 5–8). The addition of PPh$_3$ completely suppressed the reaction (entry 9), although ruthenium phosphine complexes have been reported to be effective precursors for homogeneous catalysts [11c,g].

Among other supported Ru catalysts examined, Ru/ZrO$_2$ showed high activity (entry 10). In contrast, no reaction took place with Ru catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO (entries 11–14). Note that air- and moisture-stable Ru complexes, Ru(acac)$_3$, RuCl$_3$·nH$_2$O and [RuCl$_2$(p-cymene)]$_2$, were not very effective under the present conditions (entries 15–17).
Table 1. Effects of additives and supports.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru catalyst</th>
<th>Additive (mmol)</th>
<th>Yield (%)<sup>a,b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>98 (93:7)</td>
</tr>
<tr>
<td>2</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>3<sup>c</sup></td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>CH<sub>3</sub>CO<sub>2</sub>Na (0.15)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>NaBH<sub>4</sub> (0.15)</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>2-PrOH (0.30)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>Isobutyryl chloride (0.15)</td>
<td>0</td>
</tr>
<tr>
<td>8<sup>d</sup></td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>H<sub>2</sub> (1 atm)</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Ru/CeO<sub>2</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>trace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPh<sub>3</sub> (0.050)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ru/ZrO<sub>2</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>93 (95:5)</td>
</tr>
<tr>
<td>11</td>
<td>Ru/SiO<sub>2</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Ru/Al<sub>2</sub>O<sub>3</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>trace</td>
</tr>
<tr>
<td>13</td>
<td>Ru/TiO<sub>2</sub>-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Ru/MgO-400cal</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>trace</td>
</tr>
<tr>
<td>15</td>
<td>Ru(acac)<sub>3</sub></td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>trace</td>
</tr>
<tr>
<td>16</td>
<td>RuCl<sub>3</sub>·nH<sub>2</sub>O</td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>HCO<sub>2</sub>Na (0.15)</td>
<td>15</td>
</tr>
</tbody>
</table>

^a Determined by GLC.
^b γ,δ-Z/E-Selectivities in parentheses.
^c Reaction at 170 °C.
^d Reaction under H₂ (1 atm) atmosphere.
In previous chapters, although Ru/CeO$_2$- and Ru/ZrO$_2$-catalyzed organic synthetic reactions were described [5–8], the effects of the support have not been fully explained. Therefore, the states of Ru species on the supported catalysts before the catalytic runs were investigated by various method including detailed spectroscopic analyses.

The BET surface areas of supported Ru catalysts calcined at 400 °C were characterized by nitrogen gas adsorption. The results are summarized in Table 2. The surface areas of Ru/CeO$_2$ and Ru/ZrO$_2$ were 102 and 95 m2g$^{-1}$, respectively. Although Ru/SiO$_2$, Ru/Al$_2$O$_3$ and Ru/MgO have higher surface areas, they were not effective catalysts for the present reactions.

Table 2. Characterization data of supported Ru catalysts by nitrogen gas adsorption.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru catalyst</th>
<th>Surface area (m2g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru/CeO$_2$-400cal</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>Ru/ZrO$_2$-400cal</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>Ru/SiO$_2$-400cal</td>
<td>269</td>
</tr>
<tr>
<td>4</td>
<td>Ru/Al$_2$O$_3$-400cal</td>
<td>142</td>
</tr>
<tr>
<td>5</td>
<td>Ru/MgO-400cal</td>
<td>148</td>
</tr>
<tr>
<td>6</td>
<td>Ru/TiO$_2$-400cal</td>
<td>49</td>
</tr>
</tbody>
</table>
XRD patterns of supported Ru catalysts calcined at 400 °C are shown in Figure 1. Although the peaks due to crystalline RuO₂ were observed for Ru catalysts supported on SiO₂ and Al₂O₃, they did not appear for Ru/CeO₂. This indicates that Ru species on CeO₂ are highly dispersed. Although peaks due to RuO₂ were not observed on MgO or TiO₂, these catalysts did not show any catalytic activities.

Figure 1. XRD patterns of supported Ru catalysts calcined at 400 °C.
K-edge extended X-ray absorption fine structure (EXAFS) spectra of supported Ru catalysts calcined at 400 °C and RuO₂ measured in transmission mode are shown in Figure 2. The oscillations of Ru catalysts supported on SiO₂, Al₂O₃ and TiO₂ resembled that of RuO₂. On the other hand, the oscillations of Ru/CeO₂ and Ru/MgO were very weak and completely different from that of RuO₂. This suggests that Ru species are highly dispersed on CeO₂ and MgO.

Figure 2. Ru K-edge oscillations of EXAFS spectra of supported Ru catalysts calcined at 400 °C.
Fourier transforms of EXAFS spectra are shown in Figure 3. The peaks at 2.0–4.0 Å due to a second coordination sphere in the spectrum of Ru/CeO$_2$ were very weak, presumably because of the presence of highly dispersed Ru species on CeO$_2$. On the other hand, the spectra of Ru catalysts on SiO$_2$, Al$_2$O$_3$ and TiO$_2$ closely resembled that of crystalline RuO$_2$. Ru species on MgO seems to be highly dispersed but were not effective for the catalytic reaction. This indicates that a characteristic feature other than the dispersion of Ru species must be important for the catalysis, as described below.

Figure 3. Ru K-edge FT of EXAFS spectra of supported Ru catalysts calcined at 400 °C.
As shown in Figure 4, the X-ray absorption near-edge structure (XANES) spectra of Ru catalysts supported on SiO$_2$, Al$_2$O$_3$ and TiO$_2$ are almost identical to that of rutile-type RuO$_2$. In contrast, the coordination environment of Ru species on CeO$_2$ was distinctly different: a pre-edge peak appeared at 22110 eV, indicating the formation of Ru(IV) species in a distorted coordination environment on CeO$_2$ [18]. Furthermore, the diffuse reflectance infrared Fourier transformed (DRIFT) spectrum of Ru/CeO$_2$ showed a characteristic peak at 980 cm$^{-1}$ that could be assigned to the Ru=O vibration mode [18], while such a peak was not observed for RuO$_2$ and Ru catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO, as mentioned in previous chapters [6].

![Figure 4. Ru K-edge XANES spectra of supported Ru catalysts calcined at 400 °C.](image-url)
A pre-edge peak was observed in the XANES spectrum of Ru/ZrO$_2$ (Figure 5). The formation of Ru-oxo species on ZrO$_2$ has also been proposed previously [19,20]. These results suggest that the combination of Ru with CeO$_2$ or ZrO$_2$ creates the highly dispersed Ru(IV)-oxo species with a distorted coordination environment [5,18,19].

![XANES spectra of Ru/ZrO$_2$ calcined at 400 °C and RuO$_2$.](image)

Figure 5. XANES spectra of Ru/ZrO$_2$ calcined at 400 °C and RuO$_2$.

- 168 -
The calcination temperature of the catalysts greatly affected the fine structure of Ru species on CeO$_2$ (Figure 6). The XANES spectrum of Ru/CeO$_2$ before calcination was very similar to that of Ru(acac)$_3$. In contrast, a pre-edge peak appeared in the spectra of Ru/CeO$_2$ calcined above 200 $^\circ$C and the intensity increased with an increase in the calcination temperature.

![Figure 6](image_url) Ru K-edge XANES spectra of Ru/CeO$_2$ calcined at various temperatures.
TG-DTA profiles of as-impregnated Ru/CeO$_2$ in air showed an exothermic weight decrease at around 200 °C (Figure 7). The extent of the weight decrease is almost consistent with the weight of acetylacetonato ligands (5.6%).

Figure 7. TG and DTA profiles of uncalcined Ru/CeO$_2$.
In DRIFT spectra of Ru/CeO$_2$ calcined above 200 °C, a peak due to Ru-oxo species was observed, while such a peak was not seen for catalysts calcined below 150 °C (Figure 8). These results indicated the presence of a Ru(acac)$_3$ or Ru(acac)$_3$-like species on uncalcined Ru/CeO$_2$ and the formation of a distorted Ru(IV)-oxo species after the combustion of acetylacetonato ligands.

![Figure 8. DRIFT spectra of Ru/CeO$_2$ calcined at various temperatures.](image-url)
Figure 9 shows the yield of 3a from the reaction at 110 °C for 1 h with Ru/CeO₂ calcined at various temperatures. Ru/CeO₂ before calcination did not show catalytic activity, and the reaction with Ru/CeO₂-150cal resulted in a low yield of 3a. On the other hand, the reactions with the catalysts calcined above 300 °C proceeded efficiently, and Ru/CeO₂-600cal showed the highest activity. There was a good correlation between the catalytic activity and the intensity of the pre-edge peaks in XANES spectra (Figure 6), while calcination above 700 °C decreased the catalyst activity.

![Figure 9](image-url)

Figure 9. Effect of calcination temperature of Ru/CeO₂ catalysts.
To investigate the state of Ru species during the reaction, XANES spectrum of the sample after the treatment of Ru/CeO$_2$-600cal with HCO$_2$Na in DMA at 110 °C for 15 min was obtained as shown in Figure 10. The absorption-edge of the XANES spectrum of the treated catalyst shifted to a lower energy, while Ru metal showed a completely different spectrum.

Figure 10. Ru K-edge XANES spectra of Ru/CeO$_2$-600cal before and after treatment in DMA.
Moreover, the peak due to Ru-oxo species in the DRIFT spectrum disappeared after the treatment (Figure 11). These results indicate that the Ru(IV) species are reduced to low-valent Ru species, but not to Ru metal, with a loss of a Ru=O bond at the initial stage of the reaction.

![Figure 11. DRIFT spectra of Ru/CeO$_2$-600cal before and after treatment in DMA.](image)

Considering the combined results of the catalytic reactions and spectroscopic analyses, the critical reason for the specific catalysis of Ru/CeO$_2$ or Ru/ZrO$_2$ is considered to be the formation of Ru(IV)-oxo species having a distorted coordination environment on the supports. The Ru(IV)-oxo species transform into catalytically-active low-valent Ru species under appropriate reaction conditions.
The results of the coupling reaction of various alkynes with acrylates using Ru/CeO$_2$-600cal are summarized in Table 3. The reaction of 1a with 2a was completed within 4 h even at 100 °C (entry 2). Ethyl, butyl and tert-butyl acrylate also gave the corresponding dienes in high yields (entries 3–5). With diarylacetylenes having MeO- or Cl substituent at para position of aromatic ring, the reactions proceeded smoothly to give the corresponding dienes in good yields. As for an unsymmetrical internal alkyne, 1-phenyl-1-propyne (1b) was examined and the corresponding dienes were obtained as a mixture of regioisomers (entry 8). The reaction with aliphatic internal alkynes, such as 4-octyne, gave a complex mixture of unidentified compounds.
Table 3. Reaction of internal alkynes with acrylate derivatives by Ru/CeO₂.

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>2</th>
<th>Time (h)</th>
<th>3</th>
<th>Yield (%)<sup>a</sup></th>
<th>A : B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2a (R<sup>3</sup> = Me)</td>
<td>2</td>
<td>3a</td>
<td>98<sup>b</sup> (93 : 7)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(R<sup>1</sup>, R<sup>2</sup> = Ph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2<sup>c</sup></td>
<td>1a</td>
<td>2a</td>
<td>4</td>
<td>3a</td>
<td>98<sup>b</sup> (95 : 5)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(R<sup>1</sup>, R<sup>2</sup> = Ph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3<sup>c</sup></td>
<td>1a</td>
<td>2a (R<sup>3</sup> = Et)</td>
<td>4</td>
<td>3b</td>
<td>86 (99 : 1)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>2a (R<sup>3</sup> = n-Bu)</td>
<td>4</td>
<td>3c</td>
<td>87 (94 : 6)</td>
<td>-</td>
</tr>
<tr>
<td>5<sup>d</sup></td>
<td>1a</td>
<td>2a (R<sup>3</sup> = t-Bu)</td>
<td>2</td>
<td>3d</td>
<td>92 (85 : 15)</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>2a (R<sup>3</sup> = Me)</td>
<td>6</td>
<td>3e</td>
<td>73 (99 : 1)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(R<sup>1</sup>, R<sup>2</sup> = 4-MeO-C₆H₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1c</td>
<td>2a (R<sup>3</sup> = Me)</td>
<td>24</td>
<td>3f</td>
<td>43 (72 : 28)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(R<sup>1</sup>, R<sup>2</sup> = 4-Cl-C₆H₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8<sup>c</sup></td>
<td>1d</td>
<td>2a (R<sup>3</sup> = Me)</td>
<td>4</td>
<td>3g</td>
<td>76 (3g<sup>A</sup> = 95 : 5, 3g<sup>B</sup> = 95 : 5)</td>
<td>87 : 13</td>
</tr>
<tr>
<td></td>
<td>(R<sup>1</sup> = Ph, R<sup>2</sup> = Me)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Isolated yields. ^b Determined by GLC. ^c Reaction at 100 °C. ^d Reaction at 120 °C.
After the reaction, the catalyst could be easily separated from the reaction mixture by centrifugation. The resulting solid was washed and then calcined at 600 °C to recover Ru/CeO$_2$ for reuse (eq. 1). As shown in Table 4, the solid catalyst could be recycled at least three times without a significant loss of the activity.

![Reaction scheme](image)

Table 4. Recycle of Ru/CeO$_2$ catalyst.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Recycle</th>
<th>Amount of catalyst (mg)</th>
<th>Yield of 3a (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 h</td>
</tr>
<tr>
<td>1</td>
<td>Fresh</td>
<td>250</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>1st</td>
<td>244</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>2nd</td>
<td>236</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>3rd</td>
<td>226</td>
<td>85</td>
</tr>
</tbody>
</table>

a Determined by GLC.
Note that the amounts of Ru species that leached into the solution after the reactions in Table 3, entries 1 and 2 were only 0.00105 mmol and 0.00033 mmol (2.1% and 0.66% of Ru species in the fresh catalyst), respectively. On the other hand, hot filtration of solid Ru catalysts after the reaction for 45 min did not completely stop the reaction, which suggests that not only Ru species on the solid surface but also a very small amount of soluble Ru species is responsible for the reaction.

Figure 12. Hot filtration of Ru/CeO₂-600cal catalyst.
The coupling reactions of terminal alkynes with acrylate by the Ru/CeO\(_2\) catalyst were also examined (Scheme 1). The addition of lithium iodide enhanced the yield of 5a [11d], while the reaction in the absence of sodium formate did not give 1,3-dienes. Various terminal alkynes and 1,3-enzyme could be used in the present catalytic system.

Scheme 1. Reactions of terminal alkynes with methyl acrylate by Ru/CeO\(_2\)-600cal catalyst.
Several ruthenium complexes have been reported to catalyze the intermolecular couplings of two different alkenes [11e,21]. The coupling reactions of 2-norbornene with acrylates proceeded in the presence of Ru/CeO$_2$ catalysts together with sodium formate to give \textit{exo}-alkenylated norbornanes in good yields with high E selectivities (>40 : 1) (Scheme 2).

![Scheme 2. Ru/CeO$_2$–catalyzed coupling of 2-norbornene with acrylates.](image)

<table>
<thead>
<tr>
<th>Product</th>
<th>GLC Yield</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7a$ ($R = \text{Me}$)</td>
<td>66%</td>
<td>1 h</td>
</tr>
<tr>
<td>$7b$ ($R = \text{Et}$)</td>
<td>80%</td>
<td>2 h</td>
</tr>
<tr>
<td>$7c$ ($R = \text{"Bu}$)</td>
<td>76%</td>
<td>1 h</td>
</tr>
</tbody>
</table>
Several mechanisms for the coupling reaction of alkynes with alkenes have been proposed under homogeneous catalysis conditions. The first is a pathway via the formation of a ruthenacycle intermediate (Scheme 3, path A) [11a,f] and the second involves the generation of Ru hydride species, followed by the successive insertion of alkyne and alkene to Ru–H or Ru–C bonds (path B) [11e,22,23]. Although a mechanism that includes the activation of an sp^2 C–H bond of acrylate has also been proposed [11g,12c], the absence of the formation of a cis isomer at the α,β position of dienes and no isomerization in the course of the reaction suggest that the pathway via sp^2 C–H bond activation seems to be unlikely in the present case.

Scheme 3. Possible mechanisms for the coupling of alkynes with acrylates by low-valent Ru species generated from Ru(IV)-oxo species.
The reaction of D-labeled phenylacetylene with methyl acrylate was carried out (Scheme 4). After the reaction, 1,3-diene $5a$ was isolated in a yield of 69%. Deuterium was scrambled in the β, δ and γ positions of $5a$ (E/Z). This suggests the generation of a Ru hydride species in the course of the reaction. The relatively low D-content at δ position of $5a$ suggests the absence of 1,2-migration during the reaction. Therefore, the reaction mechanism through a Ru-vinylidene species [11b] could be excluded.

\[\text{Scheme 4. Deuterium-labeling experiment.} \]
Although path A can not be completely excluded because of the formation of non-hydride low-valent Ru species from Ru dihydride species [17a], it is highly possible that Ru(IV)-oxo species in the presence of HCO₂Na transformed into Ru hydride species, which catalyzed the reaction via path B.

7.3 Conclusions

In this chapter, a highly efficient coupling of alkynes with acrylates by Ru/CeO₂ or Ru/ZrO₂ catalysts in the presence of sodium formate is described. The coupling of two different alkenes was also realized with this catalytic system. Spectroscopic studies suggested that Ru(IV)-oxo species with a distorted coordination environment on the inorganic supports, CeO₂ and ZrO₂, were transformed into catalytically active low-valent Ru species. The very simple and stable solid catalysts could be recycled without a significant loss of metal species from the oxide support.
7.4 Experimental

7.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Ruthenium(III) acetylacetonate (Aldrich), di-μ-chlorobis[(p-cymene)chlororuthenium(II)] (Strem), ruthenium trichloride hydrate (Tanaka Kikinzoku), all of the acrylic compounds (TCI), 1-phenyl-1-propyne (TCI), diphenylacetylene, all of the terminal alkynes, sodium formate, N,N-dimethylacetamide (Aldrich), cerium(III) nitrate hexahydrate, potassium hydroxide, and tetrahydrofuran (THF; Wako) were obtained commercially and used without further purification. Ceria was prepared by treating a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 40 mL of 3M KOH aqueous solution with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation, washed thoroughly with deionized water and then air-dried overnight at 80 °C. The product was heated in a box furnace at a rate of 10 °C min⁻¹ and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Magnesium oxide was prepared from magnesium nitrates by a method similar to that used to obtain ceria. Zirconia (JRC-ZRO-3), titania (JRC-TIO-4), γ-alumina (JRC-ALO-8) and silica (Cabosil) were used as received.

7.4.2 Physical and Analytical Measurements

The products of the catalytic runs were analyzed by GC-MS (Shimadzu GC-MS Parvum 2, Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C). NMR spectra were recorded on a JEOL JNM-EX-400 (FT,
400 MHz \((^1\text{H})\), 100 MHz \((^{13}\text{C})\)) instrument. Chemical shifts \(\delta\) are referenced to SiMe\(_4\).

High-resolution mass spectra (FAB) were recorded on a JEOL SX102A spectrometer with \(m\)-nitrobenzyl alcohol \((m\text{-NBA})\) as a matrix. IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer.

The solid catalysts were analyzed by XRD, nitrogen gas adsorption, FTIR and XAFS. X-ray powder diffraction analyses were performed using Cu \(K\alpha\) radiation and a carbon monochromator (XRD: XD-D1, Shimadzu). Nitrogen adsorption isotherms were obtained with a computer-controlled automatic gas sorption system (Quantachrome NOVA 4200e). Samples were degassed at 300 \(^\circ\)C for 2 h just before the measurements. Diffuse reflectance infrared Fourier transformed (DRIFT) spectra was recorded using a Nicolet Magna-IR 560 FT-IR spectrometer with DRIFT optical configuration. Ru K-edge XAFS measurements were performed at the BL01B1 beam line in the SPring-8 operated at 8 GeV using a Si(311) two-crystal monochromator. XAFS spectra were taken at room temperature. XANES and EXAFS were analyzed using the REX2000 version 2.5 program (Rigaku). Leaching of ruthenium species from the catalysts during the reaction was investigated by ICP atomic emission spectroscopic analysis with a Shimadzu ICPS-1000III.
7.4.3 Preparation of supported Ru catalysts

Supported catalysts were prepared by the impregnation method. 1.0 g of a support was added to a solution of Ru(acac)$_3$ (79.5 mg, 0.20 mmol) in 10 mL of THF in air at room temperature. After impregnation, the resulting powder was calcined in air for 30 min to afford the Ru(2.0 wt%)/Support catalyst.

7.4.4 General procedure for coupling of alkynes with acrylates by Ru/CeO$_2$ catalysts

Diphenylacetylene 1a (178 mg, 1.0 mmol), ethyl acrylate 2b (0.20 mL, 2.0 mmol), sodium formate (20.4 mg, 0.30 mmol) and N,N-dimethylacetamide (2.0 mL) were placed in a glass Schlenk tube under an argon atmosphere together with 250 mg of the Ru/CeO$_2$-600cal (0.050 mmol as Ru). The reaction mixture was stirred at 100 °C for 4 h on a hot stirrer equipped with a cooling block. After the reaction, the solution was separated from the reaction mixture by centrifugation and concentrated under reduced pressure. The products were isolated by column chromatography (hexane : ethyl acetate = 10:1, v/v) to give the product 3b as a white solid; yield: 239 mg (86%).

7.4.5 Hot filtration tests

A 20 mL Schlenk tube was charged with diphenylacetylene 1a (178 mg, 1.0 mmol), methyl acrylate 2a (0.18 mL, 2.0 mmol), Ru/CeO$_2$-600cal catalyst (250 mg, 0.050 mmol as Ru), sodium formate (20.4 mg, 0.30 mmol) and DMA (2.0 mL) together with an internal standard (o-terphenyl, ca. 50 mg) under an argon atmosphere. After the reaction was allowed to proceed for 45 min at 110 °C, the mixture was filtered through a 0.45 μm syringe filter (Millipore Millex LH) into another preheated Schlenk tube. The
filtrate was stirred at 110 °C. The conversion and yields of the product after filtration were followed by GC and GC-MS analyses.

7.4.6 Characterization of new compounds (3e, 3f, 5d, 5e)

Methyl 4,5-bis(4-methoxyphenyl)penta-2,4-dienoate (2E/4Z) (3e): white solid; m.p. 104 °C. 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.66 (d, $J = 16.1$, 1H), 7.06 (d, $J = 8.8$ Hz, 2H), 6.94 (m, 4H), 6.84 (s, 1H), 6.67 (d, $J = 8.8$ Hz, 2H), 5.47 (d, $J = 15.1$, 1H) , 3.85 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 167.9, 159.6, 159.1, 150.6, 138.6, 137.2, 131.6, 130.4, 129.2, 128.6, 118.5, 114.7, 113.7, 55.3, 55.2, 51.4. FT-IR (neat) 1705 cm$^{-1}$. HRMS: Calculated for C$_{20}$H$_{20}$O$_4$ (M): 324.1362; found: 314.1368.

Methyl 4,5-bis(4-chlorophenyl)penta-2,4-dienoate (2E/4Z) (3f): white solid; m.p. 114 °C. 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.64 (d, $J = 14.8$, 1H), 7.41 (d, $J = 8.8$ Hz, 2H), 7.10 (m, 4H), 6.87 (m, 3H), 5.48 (d, $J = 15.6$, 1H) , 3.73 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 167.4, 148.9, 138.8, 137.5, 134.9, 134.3, 133.8, 131.1, 130.6, 129.6, 128.6, 120.4, 51.6. FT-IR (neat) 1705 cm$^{-1}$. HRMS: Calculated for C$_{18}$H$_{14}$Cl$_2$O$_2$ (M): 332.0371; found: 312.0369.

Methyl 5-(thiophen-3-yl)penta-2,4-dienoate (2E/4E) (5d): Orange solid; m.p. 99 °C. 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.41 (dd, $J = 15.1$, 11.2 Hz, 1H), 7.33–7.27 (m, 3H), 6.90 (d, $J = 15.6$ Hz, 1H), 6.69 (dd, $J = 15.5$, 11.2 Hz, 1H), 5.96 (d, $J = 15.6$ Hz, 1H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, ppm) δ 167.5, 145.0, 139.1, 134.3, 126.7, 126.2, 125.3, 124.9, 120.3, 51.5. FT-IR (neat) 1706 cm$^{-1}$. HRMS: Calculated for C$_{10}$H$_{11}$O$_2$S (M+H): 195.0480; found: 195.0475.
Methyl 5-cyclohexenylpenta-2,4-dienoate (2E/4E) (5e): Orange liquid; \(^1^H\) NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.33 (dd, \(J = 15.1, 11.2\) Hz, 1H), 6.54 (d, \(J = 15.1, 1\)H), 6.21 (dd, \(J = 15.1, 11.2\) Hz, 1H), 5.98 (m, 1H), 5.85 (d, \(J = 15.1\) Hz, 1H), 3.74 (s, 3H), 2.18 (m, 4H), 1.69 (m, 2H), 1.61 (m, 2H). \(^1^C\) NMR (100 MHz, CDCl\(_3\), ppm) \(\delta\) 167.7, 145.8, 144.6, 135.8, 135.3, 122.8, 119.1, 51.4, 26.4, 24.3, 22.2. FT-IR (neat) 1722 cm\(^{-1}\).

HRMS: Calculated for C\(_{12}\)H\(_{16}\)O\(_2\) (M): 192.1150; found: 192.1144.
References

Chapter 8

Intermolecular hydroacylation of alkynes

in the presence of recyclable Ru/CeO$_2$ catalysts

8.1 Introduction

Carbon–carbon bond-forming reactions that involve the activation and subsequent functionalization of C–H bonds catalyzed by transition-metals are the most important reactions in current organic chemistry [1]. The intra- and inter-molecular hydroacylation of C–C multiple bonds is a promising method for the preparation of ketones and conjugated enones because of its inherent 100% atom-efficiency [2]. Although transition-metal catalysts can cleave C–H bonds of formyl groups to give acyl–metal species which are key intermediates in catalytic hydroacylation, these intermediates often undergo rapid decomposition into metal carbonyl species and reduced molecules before coupling across C–C multiple bonds. To suppress the decarbonylation and to obtain hydroacylation products in high yields, various strategies have been developed: a) chelation-controlling with S or O substituents [3], b) imination of aldehydes, followed by C–C coupling and hydrolysis [4], c) use of pressurized of CO [5], and d) an alternative reaction pathway through the coupling of allyl–metal species with aldehydes [6]. However, the development of new catalytic systems that could broaden the scope of substrates for intermolecular hydroacylation is still a challenge.
On the other hand, highly selective organic transformation with recyclable solid catalysts has attracted much attention from the perspective of green and sustainable chemistry [7]. As described in the previous chapters, CeO$_2$-supported Ru catalysts (Ru/CeO$_2$) showed excellent catalytic performance and recyclability for various synthetic reactions such as the direct arylation of aromatic C–H bonds and the intermolecular coupling of alkynes with alkenes [8]. These results indicate that the Ru/CeO$_2$ is an attractive catalyst candidate for new synthetic reactions.

In this chapter, the catalytic intermolecular hydroacylation of alkynes in the presence of solid Ru/CeO$_2$ is described. Various aromatic aldehydes with or without coordinating groups can be used in the present catalytic system. The solid Ru catalysts are recyclable without a significant loss of activity.

8.2 Results and discussion

The intermolecular coupling of aromatic aldehyde (1a) with diphenylacetylene (2) took place in the presence of a catalytic amount of Ru/CeO$_2$ (5.0 mol% as Ru) together with 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) and HCO$_2$Na in N,N-dimethylacetamide (DMA) at 150 °C under an Ar atmosphere to give the corresponding conjugated enone 3a in a yield of 52% (Table 1, entry 1). The reaction in the absence of either HCO$_2$Na or Xantphos did not take place at all (entries 2 and 3). Among other phosphorous ligands examined [9], PPh$_3$, dppe, dppp, dppb, dpppe, dppf, rac-BINAP, DPEphos and tBu-Xantphos were not effective (entries 4–11). As a reaction solvent, DMA, N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) were suitable (entries 1, 12 and 13). In contrast, toluene, mesitylene, 1,4-dioxane and diglyme were totally ineffective (entries 1 and 14–17).
Table 1. Effects of phosphines and solvents on Ru/CeO₂-catalyzed hydroacylation.¹

![Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Phosphine</th>
<th>Solvent</th>
<th>Yield of 3a (%)ᵇ</th>
<th>Sel. (E : Z)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Xantphos</td>
<td>DMA</td>
<td>52</td>
<td>64 : 36</td>
</tr>
<tr>
<td>2ᶜ</td>
<td>Xantphos</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>PPh₃</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>dppe</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>dppb</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>dpppe</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>dppf</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>rac-BINAP</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>DPEPhos</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>‘Bu-Xantphos</td>
<td>DMA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Xantphos</td>
<td>DMF</td>
<td>50</td>
<td>64 : 36</td>
</tr>
<tr>
<td>13</td>
<td>Xantphos</td>
<td>NMP</td>
<td>40</td>
<td>64 : 36</td>
</tr>
<tr>
<td>14</td>
<td>Xantphos</td>
<td>toluene</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Xantphos</td>
<td>mesitylene</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Xantphos</td>
<td>1,4-dioxane</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Xantphos</td>
<td>diglyme</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Reaction conditions: 1a (0.50 mmol), 2 (1.5 mmol), solvent (2.0 mL), Ru/CeO₂ 125 mg (0.025 mmol as Ru), HCO₂Na (0.15 mmol), phosphine (0.050 mmol as P) at 150 °C for 12 h under Ar. ᵇ Determined by GLC. ᶜ Without HCO₂Na.
The effects of various transition-metal catalysts on the intermolecular hydroacylation of 2 with 1a were examined (Table 2). Ru/CeO₂ and Ru/ZrO₂ catalysts showed activities for the present reaction, whereas 3a was not obtained at all with other solid Ru catalysts supported on SiO₂, Al₂O₃, TiO₂ or MgO (entries 1–6). Among homogeneous Ru complex catalysts, [RuCl₂(p-cymene)]₂ and [RuCl₂(CO)₃]₂ showed moderate activities under the present reaction conditions (entries 7 and 8). On the other hand, as with Ru/CeO₂, these Ru complex catalysts showed no activities without HCO₂Na (entry 9). Darses and co-workers reported that the reaction of [RuCl₂(p-cymene)]₂ with formate salts gave RuH₂ species, which are easily reduced to Ru(0) species by the reaction of unsaturated compounds [10]. In the presence of other transition-metal complex catalysts, Ru₃(CO)₁₂, RuHCl(CO)(PPh₃)₃, [RhCl(cod)]₂, [IrCl(cod)]₂ and Pd(OAc)₂, the reaction of 1a with 2 resulted in low yields of 3a (entries 7–13).
Table 2. Effects of catalysts on the intermolecular hydroacylation of 2a.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time</th>
<th>Yield of 3a (%)b</th>
<th>Sel. (E : Z)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru/CeO$_2$</td>
<td>12</td>
<td>52</td>
<td>64 : 36</td>
</tr>
<tr>
<td>2c</td>
<td>Ru/ZrO$_2$</td>
<td>12</td>
<td>36</td>
<td>64 : 36</td>
</tr>
<tr>
<td>3</td>
<td>Ru/SiO$_2$</td>
<td>12</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Ru/Al$_2$O$_3$</td>
<td>12</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Ru/TiO$_2$</td>
<td>12</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Ru/MgO</td>
<td>12</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>[RuCl$_2$(CO)$_3$]$_2$</td>
<td>3</td>
<td>41</td>
<td>64 : 36</td>
</tr>
<tr>
<td>8</td>
<td>[RuCl$_2$(p-cymene)]$_2$</td>
<td>3</td>
<td>49</td>
<td>64 : 36</td>
</tr>
<tr>
<td>9c</td>
<td>[RuCl$_2$(p-cymene)]$_2$</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10c</td>
<td>Ru3(CO)${12}$</td>
<td>12</td>
<td><5</td>
<td>-</td>
</tr>
<tr>
<td>11c</td>
<td>RuHCl(CO)(PPh$_3$)$_3$</td>
<td>12</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>[RhCl(cod)]$_2$</td>
<td>12</td>
<td><5</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>[IrCl(cod)]$_2$</td>
<td>12</td>
<td><5</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Pd(OAc)$_2$</td>
<td>12</td>
<td>6</td>
<td>64 : 36</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.50 mmol), 2 (1.5 mmol), solvent (2.0 mL), catalyst (0.025 mmol as metal), HCO$_2$Na (0.15 mmol), phosphine (0.050 mmol as P) at 150 °C for 12 h under Ar. bDetermined by GLC. cWithout HCO$_2$Na.
Under the optimized reaction conditions, the intermolecular hydroacylation of 2 with various aldehydes was examined in the presence of the solid Ru/CeO$_2$ catalyst (Table 3). The reaction of 1a with 2 went to completion within 6 h when an increased amount of ligand (Xantphos/Ru = 2) was used (entry 1). From p-substituted aromatic aldehydes, the corresponding conjugated enones 3b–3f were obtained in moderate yields (entries 2–5). 2-Naphthaldehyde and N-methyl-2-pyrrolecarbaldehyde could be used (entries 7 and 8). On the other hand, the reactions of aromatic aldehydes with substituents at the ortho-position gave the desired products (3i–3k) in high yields (entries 9–11). From aldehydes with substituents at both the ortho-positions of aromatic rings, the conjugated enones 3l and 3m were obtained in high yields and with excellent E selectivities (entries 12 and 13). In contrast, an ortho-S-substituted aldehyde (1n) did not participate in the present catalytic reaction (entry 14), although in Rh-complex-catalyzed reactions the methyl sulfide group functions as a good coordinating substituent to afford the hydroacylation products in high yields [3c–f,h,i,k,l]. Unfortunately, aromatic aldehydes with a chloro or nitro substituent at the ortho-position and simple aliphatic aldehydes, such as 1-octanal, could not be used in the present catalytic system (entries 15–17).
Table 3. Ru/CeO$_2$-catalyzed hydroacylation of 2 with various aldehydes.a

\[
\begin{array}{ccc}
\text{Entry} & \text{Time (h)} & \text{Product} & \text{Yield of 3 (%)b} & \text{Sel. (E : Z)c} \\
1 & 6 & 3a & 52 & 64 : 36 \\
2 & 12 & 3b & 58 & 68 : 32 \\
3 & 12 & 3c & 46 & 68 : 32 \\
4 & 12 & 3d & 53 & 57 : 43 \\
5 & 12 & 3e & 43 & 75 : 25 \\
6 & 12 & 3f & 19 & 53 : 47 \\
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>Structure</th>
<th>Reaction</th>
<th>Yield (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1g</td>
<td>3g</td>
<td>44</td>
<td>65 : 35</td>
</tr>
<tr>
<td>8</td>
<td>1h</td>
<td>3h</td>
<td>54</td>
<td>60 : 40</td>
</tr>
<tr>
<td>9</td>
<td>1i</td>
<td>3i</td>
<td>72</td>
<td>72 : 28</td>
</tr>
<tr>
<td>10</td>
<td>1j</td>
<td>3j</td>
<td>80</td>
<td>70 : 30</td>
</tr>
<tr>
<td>11</td>
<td>1k</td>
<td>3k</td>
<td>64</td>
<td>98 : 2</td>
</tr>
<tr>
<td>12</td>
<td>1l</td>
<td>3l</td>
<td>86</td>
<td>99 : 1</td>
</tr>
<tr>
<td>13</td>
<td>1m</td>
<td>3m</td>
<td>81</td>
<td>98 : 2</td>
</tr>
<tr>
<td>14</td>
<td>1n</td>
<td>3n</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Reaction conditions: 1 (0.50 mmol), 2 (1.5 mmol), DMA (2.0 mL), Ru/CeO₂ (0.025 mmol as Ru), HCO₂Na (0.15 mmol), Xantphos (0.050 mmol, 0.10 mmol as P) under Ar.

b Isolated yield. c Determined by ¹H NMR.
One of the most advantageous features of solid catalysts is their high recyclability. After the reaction of 1a or 1l with 2a, the solid Ru catalyst was separated from the reaction mixture by centrifugation and washed with diethyl ether and water/methanol. The resulting powder was calcined in air at 400 °C for 30 min to recover Ru/CeO$_2$ for subsequent catalytic runs. As shown in Scheme 1, the solid Ru/CeO$_2$ continued to show catalytic activity and gave 3a and 3l without significant decreases in yields for at least three times (Scheme 1). Note that the amount of Ru species leached into the solution after the reaction of 1l with 2 by the fresh Ru/CeO$_2$ catalyst was only 2.0% of the Ru species in the fresh catalyst.

Scheme 1. Recycling of the Ru/CeO$_2$ catalyst.
Although the reaction mechanisms in the present Ru/CeO$_2$ catalytic system are not yet fully understood, a plausible mechanism is shown in Scheme 2 [2,5h,11]. An X-ray absorption fine structure (XAFS) study revealed that Ru(IV) species on CeO$_2$ were transformed into low-valent Ru species, probably Ru(II) species, by treatment with HCO$_2$Na and Xantphos in DMA at 150 °C (Figure 1). In the course of the reaction, the Ru(II) species could be reduced by alkynes to Ru(0) species with Xantphos ligand [12], which cleaved the formyl C–H bonds to give acyl–Ru intermediate A. Alkynes then inserted into Ru–C or Ru–H bonds, and reductive elimination gave conjugate enones 3. The decarbonylation from intermediate A may be suppressed by the steric hindrance of substituents on the ortho-position of aromatic aldehydes and/or that of Xantphos ligand.

\[
\begin{align*}
\text{Ar-C=O} & \quad \text{Ru(II)} \quad \text{L} \\
\text{H} & \quad \text{Ru(II)} \quad \text{L} \\
\text{R} & \quad \text{Ru(II)} \quad \text{L} \\
\text{Ru(II)} \quad \text{L} & \quad \text{Ru(II)} \quad \text{L} \\
\end{align*}
\]

Scheme 2. Plausible reaction mechanism for intermolecular hydroacylation by Ru/CeO$_2$.
Figure 1. X-ray absorption near-edge structure of Ru/CeO$_2$.

8.3 Conclusions

This chapter described the Ru/CeO$_2$/Xantphos-catalyzed intermolecular hydroacylation of alkynes. The reaction of aldehydes with or without coordinating groups gives the corresponding conjugated enones in good yields. In particular, aromatic aldehydes with substituents at the ortho-positions of aromatic rings are transformed to the products in high yields. The present solid Ru catalytic system shows high environmental compatibility because of their high recyclability and the very low contamination of the products by metallic species.
8.4 Experimental

8.4.1 Materials and methods

All manipulations were performed under an argon atmosphere using standard Schlenk techniques. Ruthenium(III) acetylacetonate (Aldrich), all of the aldehydes (TCI), diphenylacetylene, sodium formate, N,N-dimethylacetamide (Aldrich), cerium(III) nitrate hexahydrate, potassium hydroxide, and tetrahydrofuran (THF; Wako) were obtained commercially and used without further purification. Ceria was prepared by treating a solution of cerium(III) nitrate hexahydrate (12.6 g, 29 mmol) in 400 mL of deionized water with 40 mL of 3M KOH aqueous solution with stirring for 1 h at room temperature. The resulting precipitates were collected by centrifugation, washed thoroughly with deionized water and then air-dried overnight at 80 °C. The product was heated in a box furnace at a rate of 10 °C min⁻¹ and maintained at 400 °C for 30 min to afford ceria in an excellent ceramic yield. Magnesium oxide was prepared from magnesium nitrates by a method similar to that used to obtain ceria. Zirconia (JRC-ZRO-3), titania (JRC-TIO-4), γ-alumina (JRC-ALO-8) and silica (Cabosil) were used as received.

8.4.2 Physical and analytical measurements

The products of the catalytic runs were analyzed by GC-MS (Shimadzu GC-MS Parvum 2, Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, at 50–250 °C) and gas chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m at 50–250 °C). NMR spectra were recorded on a JEOL JNM-EX-400 (FT, 400 MHz (¹H), 100 MHz (¹³C)) instrument. Chemical shifts (δ) are referenced to SiMe₄.
High-resolution mass spectra (FAB) were recorded on a JEOL SX102A spectrometer with \(m \)-nitrobenzyl alcohol (\(m \)-NBA) as a matrix. IR spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer.

The solid catalysts were analyzed by XAFS. Ru K-edge XAFS measurements were performed at BL01B1 beam line at SPring-8 operated at 8 GeV using a Si(311) two-crystal monochromator. XAFS spectra were taken at room temperature. XANES and EXAFS were analyzed using the REX2000 version 2.5 program (Rigaku). Leaching of ruthenium species from the catalysts during the reaction was investigated by ICP atomic emission spectroscopic analysis with a Shimadzu ICPS-1000III.

8.4.3 Preparation of supported Ru catalysts

Supported catalysts were prepared by the impregnation method. 1.0 g of a support was added to a solution of Ru(acac)\(_3\) (79.5 mg, 0.20 mmol) in 10 mL of THF in air at room temperature. After impregnation, the resulting powder was calcined in air at 400 °C for 30 min to afford the Ru(2.0 wt%)/Support catalyst.

8.4.4 General procedure for the hydroacylation of alkynes by Ru/CeO\(_2\) catalysts

2,6-Dimethylbenzaldehyde 11 (67 mg, 0.50 mmol), diphenylacetylene 2a (267 mg, 1.5 mmol), sodium formate (10.2 mg, 0.15 mmol), Xantphos (28.9 mg, 0.050 mmol) and \(N,N \)-dimethylacetamide (2.0 mL) were placed in a glass Schlenk tube under an argon atmosphere together with 125 mg of Ru/CeO\(_2\) (0.025 mmol as Ru). The reaction mixture was stirred at 150 °C for 5 h on a hot stirrer equipped with a cooling block. After the reaction, the solution was separated from the reaction mixture by centrifugation and concentrated under reduced pressure. The products were isolated by a
column chromatography (hexane : ethyl acetate = 20:1, v/v) to give the product 3l as a white solid; yield: 146 mg (86%).
References

[9] Abbreviations: dppe, 1,2-bis(diphenylphosphino)ethane; dppb, 1,4-bis(diphenylphosphino)butane; dppe, 1,5-bis(diphenylphosphino)pentane; dppf, 1,1’-bis(diphenylphosphino)ferrocene; rac-BINAP, racemic-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl; DPEphos, bis[(2-diphenylphosphino)phenyl] ether; ‘Bu-Xantphos, 4,5-bis(di-tert-butylphosphino)-9,9-dimethylxanthene.

General Conclusion

In this thesis, the development of supported Ru catalysts effective for various organic synthetic reactions is described. The general outline of this thesis is as follows; In chapter 1, sequential transfer-allylation–isomerization of homoallyl alcohols to aldehydes by a heterogeneous Ru catalyst was examined. The reaction took place in the presence of Ru/CeO$_2$ catalysts to give saturated ketones in good to high yields. The reaction did not require any additives such as bases, phosphines, or CO. The solid Ru catalysts worked heterogeneously and could be recycled several times without a loss of activity. In contrast, the Ru catalysts supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$ or MgO did not show any activities.

In chapter 2, the direct arylation of aromatic C–H bonds with aryl halides in the presence of oxide-supported Ru catalysts was described. Ru/CeO$_2$ and Ru/ZrO$_2$ showed activities for the reaction to afford the corresponding unsymmetrical biaryl compounds in high yields. Furthermore, pretreatment of Ru/CeO$_2$ in the presence of PPh$_3$ under a hydrogen atmosphere markedly increased its catalytic activity. The reaction of aromatic C–H bond with various aryl chlorides in the presence of the PPh$_3$-modified Ru/CeO$_2$ catalysts (PPh$_3$–Ru/CeO$_2$) proceeded efficiently to give the products in excellent yields. Successful recycling of the solid Ru/CeO$_2$ catalysts was also demonstrated.

In chapter 3, the catalytic addition of aromatic C–H bonds to vinylsilanes in the presence of supported Ru catalysts was examined. The reaction occurred in the presence of Ru/CeO$_2$ together with a catalytic amount of PPh$_3$. Moreover, PPh$_3$-modified Ru/CeO$_2$ catalysts showed very high activities. However, the recycling of the Ru/CeO$_2$ catalysts
were not realized due to the irreversible deposition by siliceous compounds on the surface Ru species, and the catalytic system were not effective for the reaction of alkenes other than alkoxyvinylsilanes.

In chapter 4, the hydroarylation of various alkenes in the presence of Ru/CeO$_2$ catalysts was reported. The treatment of Ru/CeO$_2$ with PPh$_3$ and HCHO in 2-methoxyethanol was found to generate highly active Ru catalysts for the hydroarylation of various unsaturated compounds. The solid Ru catalysts could be recycled several times without a significant loss of activity.

In chapter 5, the addition of carboxylic acids to terminal alkynes by solid oxide-supported Ru catalysts was examined. Ru/CeO$_2$ and Ru/ZrO$_2$ catalysts showed activities for the reaction to give the corresponding vinyl esters in high yields. In the present catalytic system, E-isomer of anti-Markovnikov adducts were obtained as the major products and the solid Ru/CeO$_2$ catalysts could be recycled for several times without a significant loss of activity.

Chapter 6 described the preparation of active Ru catalysts from Ru/CeO$_2$ by phosphine-modification, which were effective for the regio- and stereo-selective addition of carboxylic acids to terminal alkynes. Ru/CeO$_2$ catalysts modified by dppb under a hydrogen atmosphere gave Z-isomers of anti-Markovnikov adducts in high yields with excellent selectivities. In contrast, Ru/CeO$_2$ catalysts modified by P(5Oct)$_3$ were effective for the selective production of Markovnikov adducts.

In chapter 7, the intermolecular coupling of alkynes with acrylates in the presence of supported Ru catalysts was described. Ru/CeO$_2$ and Ru/ZrO$_2$ showed high catalytic activities for the reactions in the presence of a catalytic amount of sodium formate. Detailed spectroscopic analyses indicated that the formation of distorted Ru(IV)-oxo
species on CeO$_2$ and ZrO$_2$, which was transformed into catalytically active low-valent Ru species at the initial stage of the reaction. The solid Ru catalysts could be applied for the reaction with both of internal and terminal alkynes and could be recycled without a loss of activity. Furthermore, the cross coupling reaction of two different alkenes was also realized by this catalytic system.

Chapter 8 described the intermolecular hydroacylation of alkynes by recyclable Ru catalysts. Ru/CeO$_2$ catalyst showed activity toward the reaction in the presence of sodium formate and Xantphos to give the corresponding conjugated enones in moderate to high yields. Various aromatic aldehydes with or without coordinating groups could be used for the reactions. The solid Ru/CeO$_2$ catalysts could be recycled for several times without a significant loss of activity.

In summary, Ru/CeO$_2$ and Ru/ZrO$_2$ catalysts are found to show high catalytic performance for various organic synthetic reactions. As described in this thesis, the present catalytic systems have excellent environmentally-compatibility due to their high recyclability and low contamination of the products by metallic species. The most characteristic feature of the Ru/CeO$_2$ and Ru/ZrO$_2$ catalysts is the formation of Ru(IV)-oxo species on CeO$_2$ and ZrO$_2$, which were not observed in SiO$_2$-, Al$_2$O$_3$-, TiO$_2$- and MgO-supported Ru catalysts. Under appropriate conditions, such special Ru-oxo species can be transformed into catalytically active Ru species effective for various synthetic reactions. The present catalysis is completely different from classical oxide-based catalysts and supported Ru catalysts in terms of their diversity of applicable reactions. These new findings will contribute to the progress of green-sustainable organic synthesis.
List of Publications

Chapter 1
“A heterogeneous Ru/CeO$_2$ catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes”
Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masahiro Sai, Teruyuki Kondo, Masashi Inoue

Chapter 2
“Recyclable solid ruthenium catalysts for the direct arylation of aromatic C–H bonds”
Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masashi Inoue,

Chapter 3
“Catalytic addition of aromatic C–H bonds to vinylsilanes in the presence of Ru/CeO$_2$”
Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masashi Inoue,
Chapter 4

“Transformation of ruthenium(IV)-oxo species on CeO$_2$ to active ruthenium catalysts for the addition of aromatic C–H bonds to unsaturated compounds”

Hiroki Miura, Masahiro Nagao, Kenji Wada, Saburo Hosokawa, Masashi Inoue,

Manuscript under preparation.

Chapter 5

“Recyclable solid ruthenium catalysts supported on metal oxides for the addition of carboxylic acids to terminal alkynes”

Masami Nishiumi, Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masashi Inoue

Chapter 6

“Selective addition of carboxylic acids to alkynes in the presence of recyclable ruthenium catalysts prepared through phosphine-modification of ruthenium(IV) species supported on ceria”

Masami Nishiumi, Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masashi Inoue

Submitted for publication.
Chapter 7

“Intermolecular coupling of alkynes with acrylates by recyclable oxide-supported ruthenium catalysts: Formation of distorted ruthenium(IV)-oxo species on ceria as a key precursor of active species”
Hiroki Miura, Shun Shimura, Saburo Hosokawa, Seiji Yamazoe, Kenji Wada, Masashi Inoue

[Highlighted in Synfacts, 2012, 111]

Chapter 8

“Intermolecular hydroacylation of alkynes in the presence of recyclable Ru/CeO₂ catalysts”
Hiroki Miura, Kenji Wada, Saburo Hosokawa, Masashi Inoue

Manuscript under preparation.

Papers not included in this thesis

“Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization”
Shun Shimura, Hiroki Miura, Kenji Wada, Saburo Hosokawa, Seiji Yamazoe, Masashi Inoue

Acknowledgments

The present thesis summarizes the author’s studies carried out during 2007–2012 at Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University.

First of all, the author wishes to express his deepest gratitude to Professor Masashi Inoue for his invaluable advice and suggestion throughout the course of this work.

The author is also grateful to Professor Yasushi Tsuji and Professor Kouichi Ohe for their kind guidance and comments that helped him in the completion of this thesis.

A special word of thanks is conveyed to Professor Kenji Wada for his patient and kind guidance, valuable discussion and support. The author is profoundly grateful to Professor Saburo Hosokawa for his valuable discussions, precious suggestions and heartwarming supports.

Sincere gratitude is also expressed to Professor Hiroyoshi Kanai, Professor Seiichiro Imamura and Professor Shinji Iwamoto for their valuable suggestions, kind advices and helpful discussions. Thanks are also directed to Mr. Toshiaki Hattori for his hearty encouragement.

The author wishes to express his deep appreciation to Professor Teruyuki Kondo for his intelligible advices and discussions. Hearty thanks are made to Professor Seiji Yamazoe of Ryukoku University for his technical aids and helpful discussions in the measurement and analysis of X-ray absorption fine structure. Gratitude is also expressed to Mr. Masahiro Sai who has collaborated on the study described in chapter
1.

The author wishes to thank his junior fellows, Messrs. Masami Nishiumi, Shun Shimura and Masahiro Nagao for their assistance in carrying out the present works at Professor Inoue’s laboratory. The author also thanks all the members of Professor Inoue’s Laboratory who worked together during 2007–2012 for their kind encouragement, support, and collaboration. Especially, the author appreciates Mrs. Yuko Yoshitake for her hearty support.

Finally, the author sincerely thanks his parents Hiromichi and Kyoko Miura, and his grandfather Akitsugu Fukuda, for their understanding, affectionate support, and continuous encouragement throughout his study.

Hiroki Miura

2012