Palladium-Catalyzed Construction of Polycyclic Heterocycles by an Alkyne Insertion and Direct Arylation Cascade

Hiroaki Ohno,*^{a,b} Mio Yamamoto,^a Mutsumi Iuchi,^a Nobutaka Fujii,^b Tetsuaki Tanaka*^a

^a Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.

^b Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

Fax: +81-6-6879-8214; E-mail: hohno@pharm.kyoto-u.ac.jp; t-tanaka@phs.osaka-u.ac.jp

Received: The date will be inserted once the manuscript is accepted.

Abstract: Cascade cyclization of bromoenynes bearing an aryl group with catalytic $Pd(OAc)_2$ and Cs_2CO_3 led to direct construction of tri- or tetracyclic heterocycles. Direct arylation of a pyrrole, furan or thiophene ring in the cascade reaction affords the corresponding fused heteroarenes in moderate to good yields.

Key words: tandem reaction, palladium, polycycles, fused-ring systems, ring closure

The development of cascade reactions that realize step-economical synthesis of complex compounds by multiple bond formation represents one of the most attractive subjects in modern organic chemistry.¹ Another challenge in this area is to improve atom economy by minimizing waste product formation.² C-H bond activation (including direct arylation), which avoids pre-activation of the substrate and thus minimizes the production of waste, is an important strategy for this purpose.³ As a result, considerable attention has been paid recently to catalytic cascade reactions including a C-H bond activation step.⁴

Palladium catalysts are well known to promote a variety of transformations including C-H bond activation. Several palladium-catalyzed cascade reactions have been reported recently, including carbopalladation onto a carbon-carbon multiple bond followed by C-H bond activation to form cyclic products.^{4,5} Reactions involving carbopalladation onto a carbon-carbon triple bond are especially useful for direct construction of fused aromatic ring systems^{6,7} such as oxindoles, ^{6a,6b} fluorenes, ^c indoles, ^{6d} phenanthrenes,^{6e} biarylidenes,^{7a,7b} acenaphthylenes,^{7c} and fused fulvenes.^{7d} We recently found that palladium-catalyzed cascade of cyclization 1 bromoenynes provides access direct to benzoisoindole derivatives 2 (Scheme 1).⁸ This reaction proceeds through oxidative addition of a bromoenyne 1 to palladium(0), carbopalladation, and aromatic C-H bond activation. Herein, our detailed studies on this cascade cyclization including aromatic C-H bond activation for the synthesis of various triand tetracyclic heterocycles are reported. A reaction involving direct arylation with heteroarenes is also described.

Scheme 1 Synthesis of Isoindoles by Palladium-Catalyzed Cascade Reaction *via* C-H Bond Activation

The cinnamylamine-type bromoenynes **11** required for the cascade reaction were prepared according to the general route shown in Scheme 2. Carreira asymmetric alkynylation⁹ of aldehydes **5** with alkynes 6 gave propargylic alcohols 7, which were converted to the corresponding protected propargylic amines 8 by Mitsunobu reaction with Boc-amides followed by acid treatment. In some cases. racemic propargylamines, which were readily prepared by reaction of lithium acetylide with aldehydes followed by amination, were used. A second Mitsunobu condensation with 2-bromocinnamyl alcohols 10, which were obtained by Wittig reaction of aldehydes 9 followed by reduction with DIBAL-H, afforded the desired bromoenynes 11 in good yields. Other substrates were also prepared using a similar protocol (see the Supporting Information).

Scheme 2 General Syntheses of Substrates. *Abbreviations*: NME = *N*-methylephedrine, DIAD = diisopropyl azodicarboxylate

First, the reaction conditions were optimized using bromoenyne 11a (Table 1). After considerable experimentation, it was found that the conditions used by Oh et al.¹⁰ [cat. Pd(PPh₃)₄, Cs₂CO₃, EtOH] for a cascade cyclization-cross-coupling reaction of 2bromo-1,6-envnes with an arylboronic acid promoted the desired bis-cyclization to give 12a, albeit in low yield (26%, entry 1). Fortunately, use of $Pd(OAc)_2$ instead of Pd(PPh₃)₄ produced **12a** in 74% yield (entry 2). Decreasing the catalyst loading to 2 mol % slightly decreased the yield (64%, entry 3). A similar result was obtained using Pd₂(dba)₃·CHCl₃ as the catalyst (entry 5). Among several solvents examined, EtOH was the most effective (entries 3, 6, and 7). Other bases such as K₂CO₃ and NaOAc proved ineffective for the reaction.

Table 1Optimization of Reaction Conditions Using Bromoenyne $11a^a$

HO	NMs Br c-Hex	pal ladiur Cs ₂ CO ₃ solven	n catalyst (2 equiv) t, reflux	OH 12a	NMs c-Hex
entry	catalyst (mol %)		solvent	time (h)	yield $(\%)^b$
1	$Pd(PPh_{3})_{4}(6)$		EtOH	1	26
2	$Pd(OAc)_2(6)$		EtOH	2.5	74
3	$Pd(OAc)_2(2)$		EtOH	7	64
4	$Pd(dppf)_2Cl_2(2)$		EtOH	3.5	38
5	Pd ₂ (dba) ₃ ·CHCl ₃ (2	2)	EtOH	5	59
6 ^{<i>c</i>}	$Pd(OAc)_2(2)$		DMF	21	35
7	$Pd(OAc)_2(2)$		dioxane	21	27
^{<i>a</i>} Reactions were performed using Cs ₂ CO ₃ (2 equiv). ^{<i>b</i>} Isolated					

yields. ^c The reaction was performed at 100 °C.

The reactions of various cinnamylamine-type envnes 11 using the optimized reaction conditions shown in entry 3 (Table 1) were investigated. The results of these reactions are summarized in Table 2. The influence of the substituent at the alkyne terminus was *N*-tosylamides examined using 11b-f. 2-Hydroxypropan-2-yl, n-butyl, and unsubstituted derivatives 11b-d gave the corresponding biscyclization products 12b-d in 56-79% yield (entries 1-3). On the other hand, benzyloxymethyl derivative 11e gave a complex mixture of unidentified products (entry 4). For an unclear reason, phenyl substitution also had a negative effect on the reaction, giving 12f in just 27% yield (entry 5). Using different sulfonamide moieties (Ts vs. Ms) was relatively unimportant (Table 2, entry 3 vs. 6, and Table 2, entry 1 vs. Table 1, entry 3). In contrast, the reaction is sensitive to the substituent at the propargylic position (entries 7-11); unfortunately, substitution with a phenyl group was not tolerated (entry 7). The presence of a relatively bulky substituent such as an isopropyl or 1-siloxyethyl group at this position decreased the reaction yield (entries 10 and 11). When tert-butyl derivative 11j was used (Scheme 3), only the monocyclization product 13j was obtained in 7%

yield; the desired bis-cyclization product did not form. These bulky substituents might hamper the access of the palladium(II) intermediate of type **3** (Scheme 1) to the alkyne moiety. It should be noted that enynes **11m** and **11n** without propargylic or nitrogen substitution formed elimination products **14** (Scheme 3).¹² From these observations, the presence of both a substituent with appropriate bulkiness at the propargylic position and at the nitrogen atom are important for the cascade cyclization to proceed. Methoxy substitution at the *para*-position of the benzene ring decreased the reaction yield (37%, entry 13), while *meta*-methoxy substitution was tolerated (57%, entry 12).

Table 2 Synthesis of Benzoisoindole Derivatives^a

^{*a*} Unless otherwise noted, reactions were carried out using Pd(OAc)₂ (2 mol %) and Cs₂CO₃ (2 equiv) in EtOH under reflux. ^{*b*} Isolated yields. ^{*c*} A complex mixture of unidentified products was formed. ^{*d*} An increased amount of Pd(OAc)₂ (4 mol %) was used.

^{*a*} The reactions were carried out using Pd(OAc)₂ and Cs₂CO₃ (2 equiv) in EtOH (under reflux) or DMF (at 120 °C). ^{*b*} Catalyst loading, reaction solvent, and reaction time are shown. ^{*c*} Isolated yields. ^{*d*} The starting material was recovered (27%). Abbreviation: Mts = 2,4,6-trimethylbenzenesulfonyl.

To expand the reaction to construct various heterocyclic ring systems, the direct arylation¹³ of heterocyclic substrates **15a–e** was investigated (Table 3). The reaction of furan-substituted enyne **15a** was complete within 2 h to afford furo[2,3-*f*]isoindole **16a** in moderate yield (43%, entry 1). Bromoenynes **15b–e** bearing a pyrrole ring exhibited relatively low reactivity and thus required an increased loading of the palladium catalyst (entries 2–9). For example, the reaction of tosylamide **15b** with 10 mol % Pd(OAc)₂ and Cs₂CO₃ in DMF did not reach completion within 72 h, giving the desired tetrahydropyrrolo[3,4-*f*]indole **16b** in 27% yield along with the recovered starting material (entry 2). In contrast, the yield of **16b** was

improved to 75% when 20 mol % of the catalyst was used (entry 3). Similar results were obtained using N-Mts derivative 15c (Mts 2,4,6trimethylbenzenesulfonyl, entries 4 and 5). It is worth noting that DMF was the solvent of choice for the reaction of protected pyrroles **15b** and **15c** because the reaction in EtOH was relatively inefficient and caused decomposition of the starting material (entry 6). When 15d. using electron-rich sulfonamide the decomposition of the substrate in EtOH was suppressed to some extent, and the desired fused indole 16d was produced in 52% yield (entry 7). The 2-position of the pyrrole was less reactive toward direct arylation than the 3-position in this cascade reaction (entry 3 vs. entry 9).

Reactions were carried out using Pd(OAC)₂ and Cs₂CO₃ (2 equiv) in EtOH (under reflux) or DMF (at 120 °C). ^b Catalyst loading, reaction solvent, and reaction time are shown. ^c Isolated yields. ^d A complex mixture of unidentified products was formed. ^e The demethoxycarbonylation product was obtained (67%). ^f 2 h with 2 mol % catalyst and a further 3 h with an additional 3 mol % catalyst. Abbreviation: Mts = 2,4,6-trimethylbenzenesulfonyl.

The synthesis of tetracyclic fused ring systems was investigated next (Table 4). Among the protected indole-derived bromoenynes 17a-c (entries 1–4), tosylate 17a proved the most efficient substrate for the cascade reaction, giving the desired tetrahydropyrrolo[3,4-*b*]carbazole 18a upon reaction in DMF (entry 1). The reaction of carbamate 17c in EtOH only promoted demethoxycarbonylation of the substrate (entry 4). Interestingly, the electron-rich *N*- methylindole-derived enyne **17d** was less reactive, affording **18d** in 43% yield using an increased loading of the palladium catalyst (10 mol %, entry 5). These results suggest that the direct arylation of indole derivatives **17** proceeds through a concerted metalation-deprotonation (CMD) pathway rather than electrophilic aromatic substitution (S_EAr).¹⁴ The reaction of benzothiophen-3-yl- and benzofuran-2-ylenynes **17e** and **17f** produced the corresponding benzothiophene- and benzofuran-fused isoindoles **18e** and **18f**, respectively, in moderate yields (entries 6 and 7). 2,3-Dihydronaphtho[2,3-*f*]isoindole **18g** was obtained in 43% yield by activation of the naphthalene C-H bond (entry 8).

Finally, construction of an indane skeleton using malonate congeners **19** was investigated (Table 5). The reaction of **19a** with Pd(OAc)₂ in EtOH produced tricyclic carbocycle **20a** in 68% yield (entry 2). Other palladium catalysts such as Pd₂(dba)₃·CHCl₃ (entry 3) and Pd(PPh₃)₄ (entry 4) were less effective. The presence of a substituent at the propargylic position was important to promote the desired cascade cyclization also in the reactions using malonate derivatives.¹² The reaction of pyrrole-derived malonate **19b** in DMF at 140 °C resulted in the formation of cyclopenta[*f*]indole derivative **20b** in low yield (35%, entry 5).

^{*a*} Unless otherwise stated, reactions were performed using Pd(OAc)₂ and Cs₂CO₃ (2 equiv) in EtOH (under reflux) or DMF (at 120 °C). ^{*b*} Catalyst loading, reaction solvent, and reaction time are shown. ^{*c*} Isolated yields. ^{*d*} A complex mixture of unidentified products was formed. ^{*e*} Pd₂(dba)₃·CHCl₃ was used. ^{*f*} Pd(PPh₃)₄ was used. ^{*g*} The reaction was conducted at 140 °C.

In conclusion, we have developed a palladiumcatalyzed cascade for cyclization of bromoenynes. The reaction proceeds through carbopalladation onto a carbon-carbon triple bond and C-H bond activation of a benzene ring, leading to the direct construction of isoindole derivatives. The presence of a propargylic substituent is quite important for the progress of the reaction. Direct arylation of heteroarenes such as pyrrole, furan, thiophene and their benzene-fused rings allows various types of tri- and tetracyclic heterocycles to be produced from readily prepared enynes.

Melting points are uncorrected. Nominal (LRMS) and exact mass (HRMS) spectra were recorded on a JEOL JMS-700 or JMS-600 mass spectrometer. ¹H NMR spectra were recorded in CDCl₃. Chemical shifts are reported in parts per million downfield from internal Me₄Si (s = singlet, d = doublet, dd = double doublet, ddd = doublet of double doublet, t = triplet, dt = double triplet, tt = triple triplet, q = quartet, m = multiplet). Optical rotations were measured in CHCl₃ with a JASCO DIP-360 digital polarimeter. For flash chromatography, silica gel 60 H (silica gel for thinlayer chromatography, Merck) or silica gel 60 (finer than 230 mesh, Merck) was employed.

General procedure for Synthesis of Bromoenynes (11) by Condensation of Propargyl Amine Derivatives (8) with 3-Aryl-2-bromoprop-2-en-1ols (10)

To a stirred mixture of protected propargylic amine **8** (*ca.* 3 mmol), alcohol **10** (2.2 equiv), and PPh₃ (2.2 equiv) in THF (30 mL) was added dropwise diisopropyl azodicarboxylate (DIAD; 2.2 equiv) at 0 °C. The mixture was stirred for 4 h at room temperature and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with an eluent of *n*-hexane–EtOAc to give **11**.

General Procedure for the Palladium-Catalyzed Cascade Cyclization of Bromoenynes: Synthesis of (1*R*)-1-Cyclohexyl-9-(2-hydroxypropan-2-yl)-2methylsulfonyl-2,3-dihydro-1*H*-benzo[*f*]isoindole (12a) (Table 1, Entry 3)

A mixture of **11a** (124 mg, 0.265 mmol), Cs_2CO_3 (173 mg, 0.531 mmol), and Pd(OAc)₂ (1.2 mg, 0.0531 mmol; 2 mol %) in EtOH (1.5 mL) was heated under reflux for 7 h. After cooling the mixture, saturated NH₄Cl was added. The mixture was then extracted with EtOAc and dried over MgSO₄. Concentration under reduced pressure gave an oily residue, which was purified by column chromatography over silica gel with *n*-hexane–EtOAc (10:1) to give **12a** (65.7 mg, 64% yield) along with an unidentified minor product (2.5 mg, 3% yield).

Compound **12a**: colorless oil; $[\alpha]^{28}_{D}$ +31.4 (*c* 0.62, CHCl₃).

IR (KBr): 3545 (OH), 1336 (NSO₂), 1153 cm^{-1} (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.90-1.28$ (m, 5H), 1.58-1.85 (m, 6H), 1.96 (s, 3H, CMe), 2.03 (s, 3H, CMe), 2.55 (s, 3H, SO₂Me), 4.65 (dd, J = 16.8, 1.2 Hz, 1H, NC*H*H), 4.80 (dd, *J* = 16.8, 1.2 Hz, 1H, NCH*H*), 5.97 (d, *J* = 1.2 Hz, 1H, 1-H), 7.42–7.50 (m, 2H, Ar), 7.61 (s, 1H, Ar), 7.79–7.82 (m, 1H, Ar), 8.25 (dd, *J* = 9.9, 2.7 Hz, 1H, Ar).

¹³C NMR (67.5 MHz, CDCl₃): $\delta = 26.2$, 26.3, 26.7 (2C), 31.4, 32.6, 34.2 (2C), 47.0, 53.4, 71.9, 75.2, 120.8, 125.0, 125.1, 126.5, 129.0, 130.3, 134.6, 136.4, 137.3, 139.0.

MS (FAB): m/z (%) = 388 [MH⁺] (53), 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₂₂H₃₀NO₃S: 388.1946; found: 388.1948.

Minor product: colorless oil; $[\alpha]^{22}_{D}$ –114 (*c* 0.14, CHCl₃).

IR (KBr): 3519 (OH), 1338 (NSO₂), 1159 cm^{-1} (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.10$ (s, 3H, CMe), 1.15–1.96 (m, 12H), 1.31 (s, 3H, CMe), 2.79 (s, 3H, SO₂Me), 4.47 (d, J = 1.2 Hz, 2H), 5.84 (s, 1H, C=CH), 7.13–7.27 (m, 5H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 26.1, 26.2, 26.3, 27.5, 28.8, 29.1, 29.4, 34.5, 43.2, 49.7, 67.6, 70.8, 113.8, 127.4 (2C), 127.6, 128.7 (2C), 136.7, 138.6, 148.9, 149.3.

MS (FAB): m/z (%) = 410 (40) [M + Na⁺], 176 (100).

HRMS–FAB: m/z [M + Na]⁺ calcd for $C_{22}H_{29}NNaO_3S$: 410.1766; found: 410.1789.

(1*R*)-1-Cyclohexyl-9-(2-hydroxypropan-2-yl)-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*benzo[*f*]isoindole (12b)

Bromoenyne **11b** (124 mg, 0.227 mmol) was converted to **12b** (67.6 mg, 64% yield) and minor product (17.1 mg, 16% yield) by the reaction for 2.5 h.

12b: Colorless oil; $[\alpha]_{D}^{23}$ +50.6 (*c* 0.60, CHCl₃).

IR (KBr): 3525 (OH), 1599 (naphthalene), 1340 (NHSO₂), 1161 cm⁻¹ (NHSO₂).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.86-1.94$ (m, 11H), 1.76 (s, 3H, CMe), 1.96 (s, 3H, CMe), 2.12 (s, 3H, PhMe), 4.62 (d, J = 16.5 Hz, 1H, NCHH), 4.75 (d, J = 16.5 Hz, 1H, NCHH), 6.08 (d, J = 1.5 Hz, 1H, 1-H), 7.00 (d, J = 7.9 Hz, 2H, Ph), 7.35–7.40 (m, 3H, Ar), 7.64–7.70 (m, 3H, Ar), 8.14 (d, J = 8.5 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 21.3, 26.27, 26.30, 26.8 (2C), 31.5, 32.3, 33.7, 47.3, 53.5, 72.2, 75.1, 120.2, 124.6, 124.7, 126.4 (2C), 127.5, 128.8 (2C), 129.1, 130.1, 134.3, 135.1, 136.5, 137.4, 138.0, 143.0.

MS (FAB): m/z (%) = 464 (38) [M + H⁺], 380 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₂₈H₃₄NO₃S: 464.2259; found: 464.2270.

Minor product: colorless crystals; Mp 152–154 °C (*n*-hexane–EtOAc); $[\alpha]^{23}_{D}$ +280 (*c* 0.33, CHCl₃).

IR (KBr): 3523 (OH), 1344 (NHSO₂), 1166 cm^{-1} (NHSO₂).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.86-1.98$ (m, 11H), 1.00 (s, 3H, CMe), 1.20 (s, 3H, CMe), 2.41–2.43 (m, 1H), 2.53 (s, 3H, PhMe), 4.36 (s, 1H), 4.41 (s, 1H), 5.93 (s, 1H, C=CH), 6.66 (d, 2H, J = 7.3 Hz, Ar), 7.13–7.35 (m, 5H, Ar), 7.66 (d, 2H, J = 8.5 Hz, Ph).

¹³C NMR (67.8 MHz, CDCl₃): $\delta = 21.8$, 26.2, 26.35, 26.42, 27.8, 29.0, 29.1, 29.2, 43.1, 49.4, 67.3, 70.6, 114.0, 127.2, 127.4 (2C), 128.0 (2C), 128.2 (2C), 129.4 (2C), 133.2, 137.1, 138.5, 143.3, 148.5, 149.1.

MS (FAB): m/z (%) = 464 (56) [M + Na⁺], 154 (100).

HRMS–FAB: m/z [M + Na]⁺ calcd for C₂₈H₃₃NNaO₃S: 486.2074; found: 486.2079.

Anal. Calcd for C₂₈H₃₃NO₃S: C, 72.54; H, 7.17; N, 3.02. Found: C, 72.50; H, 7.19; N, 2.99.

(±)-9-Butyl-1-cyclohexyl-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*benzo[*f*]isoindole (12c)

Bromoenyne **11c** (130 mg, 0.240 mmol) was converted to **12c** (87.8 mg, 79% yield) by the reaction for 6 h.

Colorless oil; IR (KBr): 1346 (NSO₂), 1163 cm^{-1} (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.90-2.16$ (m, 18H), 2.38 (s, 3H, PhMe), 2.81–2.91 (m, 1H, 1'-CHH), 2.95–3.05 (m, 1H, 1'-CHH), 4.71 (d, J = 16.2 Hz, 1H, 3-CHH), 4.83 (d, J = 16.2 Hz, 1H, 3-CHH), 5.12 (s, 1H, 1-H), 6.99 (d, J = 8.1 Hz, 2H, Ph), 7.34–7.46 (m, 3H, Ar), 7.57 (d, J = 8.1 Hz, 2H, Ph), 7.70 (d, J = 7.5Hz, 1H, Ar), 7.92 (d, J = 8.1 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.3, 23.2, 26.1, 26.4, 26.5, 26.7, 29.5, 31.5, 32.9, 45.4, 54.9, 70.4, 118.6, 124.0, 125.3, 125.4, 127.2 (2C), 128.5, 129.3 (2C), 131.5, 132.6, 133.6, 135.1, 135.8, 136.8, 143.1.

MS (FAB): m/z (%) = 462 (60) [M + H⁺], 378 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₂₉H₃₆NO₂S: 462.2467; found: 462.2467.

(±)-1-Cyclohexyl-2-(4-methylphenylsulfonyl)-2,3dihydro-1*H*-benzo[*f*]isoindole (12d)

Bromoenyne **11d** (63.9 mg, 0.131 mmol) was converted to **12d** (29.7 mg, 56% yield) by the reaction for 2 h.

Colorless oil; IR (KBr): 1346 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.89-1.34$ (m, 5H), 1.50–1.75 (m, 6H), 2.24 (s, 3H, PhMe), 4.74 (d, J =15.5 Hz, 1H, 3-CHH), 4.78 (d, J = 15.5 Hz, 1H, 3-CHH), 5.02 (d, J = 4.3 Hz, 1H, 1-H), 7.10 (d, J = 8.4Hz, 2H, Ph), 7.41–7.44 (m, 2H, Ar), 7.53 (d, J = 9.5Hz, 2H, Ar), 7.64 (d, J = 8.4 Hz, 2H, Ph), 7.71–7.79 (m, 2H, Ar).

¹³C NMR (68 MHz, CDCl₃): δ = 21.5, 26.2, 26.3, 26.5, 28.2, 28.8, 45.9, 53.8, 70.6, 120.4, 121.8, 125.7, 125.8,

127.0 (2C), 127.5, 127.9, 129.4 (2C), 132.6, 132.8, 135.2, 135.8, 137.9, 143.1.

MS (FAB): m/z (%) = 406 (70) [M + H⁺], 322 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₂₅H₂₈NO₂S: 406.1841; found: 406.1823.

(1*R*)-1-Cyclohexyl-2-(4-methylphenylsulfonyl)-9-phenyl-2,3-dihydro-1*H*-benzo[*f*]isoindole (12f)

Bromoenyne **11f** (64.0 mg, 0.114 mmol) was converted to **12f** (15.0 mg, 27% yield) by the reaction for 6 h.

Colorless oil; $[\alpha]_{D}^{25}$ –46.5 (*c* 0.60, CHCl₃).

IR (KBr): 1346 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.83-1.05$ (m, 6H), 1.22–1.64 (m, 5H), 2.25 (s, 3H, PhMe), 4.75 (d, J =16.5 Hz, 1H, 3-CHH), 4.93 (d, J = 16.5 Hz, 1H, 3-CHH), 5.02 (d, J = 2.4 Hz, 1H, 1-H), 6.94–6.97 (m, 1H, Ar), 7.13 (d, J = 8.4 Hz, 2H, Ph), 7.28–7.74 (m, 2H, Ar), 7.41 (dd, J = 8.1, 8.1 Hz, 1H, Ar), 7.48–7.51 (m, 5H, Ar), 7.66 (d, J = 8.4 Hz, 2H, Ph), 7.76 (d, J =8.1 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 21.4, 26.1, 26.2, 26.5 (2C), 31.2, 43.7, 55.0, 70.5, 119.9, 125.65, 125.70, 125.9, 127.3 (2C), 127.8 (2C), 128.2, 128.6, 129.1, 129.5 (2C), 130.5, 132.0, 133.3, 134.1, 135.1, 135.8, 137.3, 137.6, 143.4.

MS (FAB): m/z (%) = 482 (6.8) [M + H⁺], 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₃₁H₃₂NO₂S: 482.2154; found: 482.2159.

(±)-1-Cyclohexyl-2-methylsulfonyl-2,3-dihydro-1*H*-benzo[*f*]isoindole (12g)

Bromoenyne **11g** (36.8 mg, 0.0897 mmol) was converted to **12g** (13.7 mg, 46% yield) by the reaction for 6 h.

Colorless oil; IR (KBr): 1346 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.99-1.33$ (m, 6H), 1.61–1.80 (m, 5H), 2.60 (s, 3H, SO₂Me), 4.76 (d, J =16.2 Hz, 1H, 3-CHH), 4.86 (d, J = 16.2 Hz, 1H, 3-CHH), 4.92 (d, J = 4.5 Hz, 1H, 1-H), 7.48–7.51 (m, 2H, Ar), 7.71 (s, 2H, 4-H and 9-H), 7.82–7.87 (m, 2H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 26.1, 26.17, 26.21, 28.5, 28.6, 34.8, 45.3, 53.8, 70.4, 120.9, 122.3, 126.2, 126.3, 127.8, 128.0, 132.9, 133.2, 135.9, 138.2.

MS (FAB): m/z (%) = 330 (34) [M + H⁺], 246 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₁₉H₂₄NO₂S: 330.1528; found: 330.1514.

(±)-9-Butyl-2-(4-methylphenylsulfonyl)-1-pentyl-2,3-dihydro-1*H*-benzo[*f*]isoindole (12i)

Bromoenyne **11i** (72.0 mg, 0.136 mmol) was converted to **12i** (39.9 mg, 65% yield) by the reaction for 3 h.

Colorless oil; IR (KBr): 1346 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, J = 7.2 Hz, 3H, CMe), 0.97 (t, J = 7.2 Hz, 3H, CMe), 1.15–1.28 (m, 5H), 1.39–1.54 (m, 5H), 1.74–1.85 (m, 1H), 1.98– 2.10 (m, 1H), 2.24 (s, 3H, PhMe), 2.88 (dt, J = 13.8, 3.3 Hz, 1H, 1'-CHH), 2.98 (dt, J = 13.8, 3.3 Hz, 1H, 1'-CHH), 4.78 (d, J = 16.5 Hz, 1H, 3-CHH), 4.84 (d, J = 16.5 Hz, 1H, 3-CHH), 5.29 (dd, J = 5.7, 3.3 Hz, 1H, 1-H), 7.09 (d, J = 8.7 Hz, 2H, Ph), 7.39–7.47 (m, 3H, Ar), 7.64 (d, J = 8.7 Hz, 2H, Ph), 7.73 (dd, J = 7.8, 1.8 Hz, 1H, Ar), 7.93 (dd, J = 7.5, 1.8 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 21.3, 22.5, 23.3, 24.1, 29.2, 31.8, 32.8, 36.4, 53.3, 65.4, 119.1, 123.9, 125.4, 125.5, 127.0 (2C), 128.5, 129.5 (2C), 131.5, 132.5, 133.7, 135.2, 135.6, 137.1, 143.2.

MS (FAB): m/z (%) = 450 (62) [M + H⁺], 378 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₂₈H₃₆NO₂S: 450.2467; found: 450.2458.

(±)-2-(4-Methylphenylsulfonyl)-1-pentyl-2,3dihydro-1*H*-benzo[*f*]isoindole (12k)

Bromoenyne **11k** (94.2 mg, 0.199 mmol) was converted to **12k** (37.8 mg, 48% yield) by the reaction for 1.5 h.

Colorless oil; IR (KBr): 1346 (NSO₂), 1163 cm^{-1} (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ (t, J = 6.9 Hz, 3H, CMe), 1.02–1.10 (m, 1H), 1.18–1.25 (m, 4H), 1.39–1.47 (m, 1H), 1.89–2.00 (m, 1H), 2.13–2.25 (m, 1H), 2.31 (s, 3H, PhMe), 4.77 (d, J = 14.7 Hz, 1H, 3-CHH), 4.83 (d, J = 14.7 Hz, 1H, 3-CHH), 5.16 (t, J =4.5 Hz, 1H, 1-H), 7.20 (d, J = 8.1 Hz, 2H, Ph), 7.40– 7.46 (m, 2H, Ar), 7.53 (s, 1H, Ar), 7.57 (s, 1H, Ar), 7.72 (d, J = 8.1 Hz, 2H, Ph), 7.75–7.79 (m, 2H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.4, 22.5, 23.2, 31.8, 37.0, 53.4, 65.5, 120.8, 120.9, 125.88, 125.93, 127.3 (2C), 127.67, 127.68, 127.8, 129.7 (2C), 133.0, 134.9, 135.0, 139.3, 143.4.

(1*R*)-1-Isopropyl-2-(4-methylphenylsulfonyl)-2,3dihydro-1*H*-benzo[*f*]isoindole (12l)

Bromoenyne **111** (52.8 mg, 0.118 mmol) was converted to **121** (10.5 mg, 24% yield) by the reaction for 4 h.

Colorless oil; $[\alpha]^{27}_{D}$ –20.8 (*c* 0.60, CHCl₃).

IR (KBr): 1344 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.80$ (d, J = 6.7 Hz, 3H, CMe), 0.99 (d, J = 7.3 Hz, 3H, CMe), 2.19 (s, 3H, PhMe), 2.32–2.36 (m, 1H, Me₂CH), 4.71 (s, 1H, J = 15.5 Hz, 3-CHH), 4.74 (d, J = 15.5 Hz, 1H, 3-CHH), 4.99 (d, J = 4.3 Hz, 1H, 1-H), 7.06 (d, J = 7.9 Hz, 2H,

Ph), 7.357 (d, *J* = 6.1 Hz, 1H, Ar), 7.365 (d, *J* = 6.1 Hz, 1H, Ar), 7.47 (s, 1H, Ar), 7.50 (s, 1H, Ar), 7.59 (d, *J* = 7.9 Hz, 2H, Ph), 7.66–7.71 (m, 2H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 17.3, 18.4, 21.4, 35.8, 53.8, 70.9, 120.6, 121.9, 125.8, 125.9, 127.1 (2C), 127.6, 128.0, 129.6 (2C), 132.8, 133.0, 135.3, 135.9, 137.6, 143.3.

MS (FAB): m/z (%) = 366 (22) [M + H⁺], 154 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₂₂H₂₄NO₂S: 366.1528; found: 366.1523.

(1*S*)-1-{(1*S*)-1-[*tert*-Butyl(diphenyl)silyloxy]ethyl}-9-methyl-2-(4-methylphenylsulfonyl)-2,3-dihydro-1*H*-benzo[*f*]isoindole (120)

Bromoenyne **110** (57.3 mg, 0.0818 mmol) was converted to **120** (20.0 mg, 39% yield) by the reaction using $Pd(OAc)_2$ (0.8 mg, 0.00327 mmol) for 24 h.

Colorless oil; $[\alpha]_{D}^{23}$ –86.5 (*c* 0.60, CHCl₃).

IR (KBr): 1346 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.63$ (s, 9H, CMe₃), 1.26 (d, J = 6.0 Hz, 3H, CMe), 2.17 (s, 3H, CMe), 2.32 (s, 3H, PhMe), 4.27 (d, J = 6.0 Hz, 1H, OCH), 4.81 (d, J = 15.6 Hz, 1H, 3-CHH), 5.00 (d, J = 15.6Hz, 1H, 3-CHH), 5.13 (s, 1H, 1-H), 6.99–7.02 (m, 6H, Ar), 7.27–7.58 (m, 11H, Ar), 7.75 (d, J = 7.5 Hz, 1H, Ar), 7.90 (d, J = 8.1 Hz, 1H, Ar).

¹³C NMR (68 MHz, CDCl₃): δ = 15.5, 18.8, 21.4, 21.6, 26.6 (3C), 55.0, 70.8, 72.8, 118.7, 123.7, 125.3 (2C), 127.0 (2C), 127.23 (2C), 127.25 (2C), 127.6, 128.2, 129.2 (2C), 129.37, 129.40, 132.1, 132.7, 133.4, 134.1, 135.0, 135.5 (2C), 135.9 (2C), 136.2, 136.8, 143.1.

MS (FAB): m/z (%) = 620 (21) [M + H⁺], 336 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₃₈H₄₂NO₃SSi: 620.2665; found: 620.2663.

(1*R*)-9-Butyl-1-cyclohexyl-6-methoxy-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*-benzo[*f*]iso indole (12p)

Bromoenyne **11p** (60.2 mg, 0.105 mmol) was converted to **12p** (29.4 mg, 57% yield) by the reaction for 5 h.

Colorless oil; $[\alpha]_{D}^{26}$ -63.9 (*c* 0.82, CHCl₃).

IR (KBr): 1348 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.2 Hz, 3H, CMe), 1.11–1.46 (m, 9H), 1.60–1.94 (m, 6H), 2.20 (s, 3H, PhMe), 2.82 (dt, J = 11.7, 4.8 Hz, 1H, 1'-CHH), 3.40 (dt, J = 11.7, 5.1 Hz, 1H, 1'-CHH), 3.91 (s, 3H, OMe), 4.70 (d, J = 16.5 Hz, 1H, NCHH), 4.79 (d, J = 16.5 Hz, 1H, NCHH), 5.10 (s, 1H, 1-H), 6.77 (dd, J = 5.7, 3.3 Hz, 1H, 7-H), 7.01 (d, J = 8.4 Hz, 2H, Ph), 7.26–7.28 (m, 3H, Ar), 7.57 (d, J = 8.4 Hz, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 14.2, 21.3, 23.5, 26.2, 26.5, 26.6, 26.7, 31.5, 33.3, 34.5, 45.7, 55.0, 55.2,

70.8, 105.2, 118.6, 121.3, 123.9, 125.4, 127.2 (2C), 129.4 (2C), 134.1, 135.2, 136.0, 136.4, 137.7, 143.1, 157.7.

MS (FAB): m/z (%) = 492 (38) [M + H⁺], 408 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₃₀H₃₈NO₃S: 492.2572; found: 492.2575.

(1*R*)-9-Butyl-1-cyclohexyl-7-methoxy-2-(4-methylphenylsulfonyl)-2,3-dihydro-1*H*-benzo[*f*]isoindole (12q)

Bromoenyne **11q** (57.6 mg, 0.101 mmol) was converted to **12q** (18.5 mg, 37% yield) by the reaction for 8 h.

Colorless oil; $[\alpha]_{D}^{28}$ -88.2 (*c* 0.40, CHCl₃).

IR (KBr): 1344 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.00$ (t, J = 6.9 Hz, 3H, CMe), 1.10–1.92 (m, 15H), 2.19 (s, 3H, PhMe), 2.81–2.95 (m, 2H, 1'-CH₂), 3.91 (s, 3H, OMe), 4.68 (d, J = 16.2 Hz, 1H, NCHH), 4.78 (d, J = 16.2 Hz, 1H, NCHH), 5.11 (s, 1H, 1-H), 7.01 (d, J = 8.1 Hz, 2H, Ph), 7.09 (dd, J = 9.0, 3.0 Hz, 1H, 6-H), 7.20 (d, J =3.0 Hz, 1H, 8-H), 7.27 (s, 1H, 4-H), 7.59 (d, J = 8.1Hz, 2H, Ph), 7.61 (d, J = 9.0 Hz, 1H, 5-H).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.3, 23.3, 26.2, 26.5 (2C), 26.7, 29.5, 31.6, 32.3, 45.5, 54.8, 55.3, 70.5, 103.1, 117.4, 118.4, 127.2 (2C), 129.0, 129.3 (2C), 129.9, 131.1, 132.6, 133.6, 135.2, 137.4, 143.1, 157.4.

MS (FAB): m/z (%) = 492 (30) [M + H⁺], 408 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₃₀H₃₈NO₃S: 492.2572; found: 492.2581.

(±)-4-[(Z)-Benzylidene]-2-*tert*-butyl-1-(4methylphenylsulfonyl)-3-[(Z)-pentylidene]-1*H*pyrrole (13j)

Bromoenyne **11j** (61.3 mg, 0.119 mmol) was converted to **13j** (3.6 mg, 7% yield) by the reaction for 7 h.

Colorless oil; IR (KBr): 1348 (NSO₂), 1163 cm^{-1} (NSO₂).

¹H NMR (500 MHz, CDCl₃): $\delta = 0.93$ (t, J = 7.5 Hz, 3H, CMe), 0.97 (s, 9H, CMe₃), 1.25–1.37 (m, 4H), 1.89–2.04 (m, 2H), 2.37 (s, 3H, PhMe), 4.24 (s, 1H, 2-H), 4.35 (dd, J = 17.1, 1.8 Hz, 1H, 5-CHH), 4.58 (dd, J = 17.1, 2.4 Hz, 1H, 5-CHH), 5.60 (dd, J = 9.2, 5.5 Hz, 1H, C=CH), 6.48 (s, 1H, C=CH), 7.19–7.21 (m, 4H, Ph), 7.23 (d, J = 7.3 Hz, 1H, Ph), 7.34 (d, J = 7.3Hz, 1H, Ph), 7.36 (d, J = 7.9 Hz, 1H, Ph), 7.63 (d, J =7.9 Hz, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1, 21.5, 22.7, 27.3 (3C), 31.0, 31.7, 38.2, 52.8, 69.6, 118.0, 125.5, 126.9, 127.5 (2C), 128.4 (2C), 128.7 (2C), 129.5 (2C), 135.2, 136.8, 137.4, 138.7, 143.2.

MS (FAB): m/z (%) = 438 (15) [M + H⁺], 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₂₇H₃₆NO₂S: 438.2467; found: 438.2481.

N-(But-2-ynyl)-*N*-(3-phenylprop-2-ynyl)-4methylbenzenesulfonamide (14m)

Bromoenyne 11m (43.7 mg, 0.105 mmol) was converted to 14m (19.2 mg, 54% yield) by the reaction for 0.5 h.

Colorless oil; IR (KBr): 2362 (C=C), 2330 (C=C), 1352 (NSO₂), 1165 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.69$ (t, J = 2.4 Hz, 3H, CMe), 2.35 (s, 3H, PhMe), 4.13 (q, J = 2.4 Hz, 2H, NCH₂), 4.38 (s, 2H, NCH₂), 7.16 (dd, J = 6.6, 1.8 Hz, 2H, Ph), 7.23–7.30 (m, 5H, Ph), 7.75 (dd, J = 6.6, 1.8 Hz, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 3.46, 21.4, 37.0, 37.1, 71.6, 81.6, 81.9, 85.6, 122.2, 128.0 (2C), 128.1 (2C), 128.4, 129.4 (2C), 131.6 (2C), 135.4, 143.6.

(±)-*N*-(1-Cyclohexylhept-2-ynyl)-*N*-(3-phenylprop-2-ynyl)amine (14n)

Bromoenyne **11n** (59.2 mg, 0.152 mmol) was converted to **14n** (12.0 mg, 26% yield) by the reaction for 2.5 h.

Colorless oil; IR (KBr): 3317 (NH), 2237 cm⁻¹ (C=C).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.5 Hz, 3H, CMe), 1.13–1.55 (m, 10H), 1.65–1.85 (m, 5H), 2.22 (td, J = 6.9, 1.8 Hz, 2H, CH₂C=C), 3.42 (dt, J =5.1, 1.8 Hz, 1H, NCH), 3.68 (d, J = 16.8 Hz, 1H, NCHH), 3.84 (d, J = 16.8 Hz, 1H, NCHH), 7.28–7.30 (m, 3H, Ph), 7.39–7.44 (m, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 13.6, 18.4, 22.0, 26.1, 26.2, 26.5, 28.4, 30.2, 31.1, 37.2, 42.5, 55.0, 79.2, 83.1, 85.1, 87.7, 123.3, 127.9, 128.2 (2C), 131.7 (2C).

(5*R*)-4-Butyl-5-cyclohexyl-6-(4methylphenylsulfonyl)-6,7-dihydro-5*H*-furo[2,3*f*]isoindole (16a)

Bromoenyne **15a** (58.2 mg, 0.109 mmol) was converted to **16a** (21.3 mg, 43% yield) by the reaction for 2 h.

Colorless oil; $[\alpha]_{D}^{29}$ -67.2 (*c* 1.02, CHCl₃).

IR (KBr): 1344 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.3 Hz, 3H, CMe), 1.00–1.89 (m, 16H), 2.23 (s, 3H, PhMe), 2.71 (t, J = 6.8 Hz, 2H, 1'-CH₂), 4.63 (d, J = 15.9 Hz, 1H, 7-CHH), 4.72 (d, J = 15.9 Hz, 1H, 7-CHH), 5.02 (s, 1H, 5-H), 6.68 (d, J = 2.2 Hz, 1H, 2-H), 6.97 (s, 1H, 8-H), 7.03 (d, J = 8.4 Hz, 2H, Ph), 7.52 (d, J = 2.2 Hz, 1H, 3-H), 7.56 (d, J = 8.4 Hz, 2H, Ph).

¹³C NMR (68 MHz, CDCl₃): δ = 14.1, 21.4, 23.0, 26.3, 26.5, 26.6, 26.8, 30.5, 31.6, 32.7, 45.6, 55.1, 70.0, 102.4, 105.3, 126.7, 127.1 (2C), 129.2 (2C), 129.5, 132.7, 134.5, 135.1, 143.0, 144.5, 154.7.

MS (FAB): m/z (%) = 452 (45) [M + H⁺], 368 (100). HRMS–FAB: m/z [M + H]⁺ calcd for C₂₇H₃₄NO₃S: 452.2259; found: 452.2258.

(5*R*)-4-Butyl-5-cyclohexyl-1,6-bis(4methylphenylsulfonyl)-1,5,6,7tetrahydropyrrolo[3,4-*f*]indole (16b)

Bromoenyne **15b** (111 mg, 0.162 mmol) was converted to **16b** (73.3 mg, 75%) by the reaction using $Pd(OAc)_2$ (7.7 mg, 0.0346 mmol) in DMF at 120 °C for 2 h.

Colorless oil; $[\alpha]_{D}^{26}$ +79.7 (*c* 0.98, CHCl₃).

IR (KBr): 1597 (NC=C), 1360 (NSO₂), 1346 (NSO₂), 1178 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.1 Hz, 3H, CMe), 1.01–1.37 (m, 8H), 1.61–1.85 (m, 7H), 2.20 (s, 3H, PhMe), 2.38 (s, 3H, PhMe), 2.61–2.67 (m, 2H, 1'-CH₂), 4.63 (d, J = 15.9 Hz, 1H, 7-CHH), 4.76 (d, J = 15.9 Hz, 1H, 7-CHH), 4.97 (s, 1H, 5-H), 6.57 (dd, J = 3.8, 0.7 Hz, 1H, 3-H), 6.97 (d, J = 7.9 Hz, 2H, Ph), 7.25 (d, J = 7.9 Hz, 2H, Ph), 7.46 (d, J = 3.8 Hz, 1H, 2-H), 7.48 (s, 1H, 8-H), 7.53 (ddd, J = 7.9, 1.8, 1.8 Hz, 2H, Ph), 7.73 (ddd, J = 7.9, 1.8, 1.8 Hz, 2H, Ph).

¹³C NMR (126 MHz, CDCl₃): δ = 14.0, 21.3, 21.6, 22.9, 26.2, 26.4, 26.5, 26.7, 30.1, 31.5, 32.6, 45.4, 55.2, 69.9, 104.5, 107.2, 125.8, 126.8 (2C), 127.2 (2C), 129.3 (3C), 129.6, 129.9, 130.0, 133.5, 134.7, 135.1, 135.2, 135.4, 143.0, 145.0.

MS (FAB): m/z (%) = 605 (5.2) [M + H⁺], 521 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for $C_{34}H_{41}N_2O_4S_2$: 605.2508; found: 605.2493.

(5*R*)-4-Butyl-5-cyclohexyl-1-(2,4,6trimethylphenylsulfonyl)-6-(4methylphenylsulfonyl)-1,5,6,7tetrahydropyrrolo[3,4-*f*]indole (16c)

Bromoenyne **15c** (72.0 mg, 0.101 mmol) was converted to **16c** (51.4 mg, 81%) by the reaction using $Pd(OAc)_2$ (4.5 mg, 0.0202 mmol) in DMF at 120 °C for 2 h.

Colorless oil; $[\alpha]_{D}^{26}$ +52.2 (*c* 1.645, CHCl₃).

IR (KBr): 1603 (NC=C), 1350 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (270 MHz, CDCl₃): $\delta = 0.86$ (t, J = 6.9 Hz, 3H, CMe), 0.91–1.34 (m, 8H), 1.40–1.86 (m, 7H), 2.23 (s, 3H, PhMe), 2.32 (s, 3H, PhMe), 2.46 (s, 6H, PhMe), 2.68 (t, J = 6.6 Hz, 2H, 1'-CH₂), 4.54 (d, J =16.0 Hz, 1H, 7-CHH), 4.66 (d, J = 16.0 Hz, 1H, 7-CHH), 4.96 (s, 1H, 5-H), 6.53 (d, J = 3.7 Hz, 1H, 3-H), 6.94–6.99 (m, 5H, Ar), 7.39 (d, J = 3.7 Hz, 1H, 2-H), 7.50 (d, J = 8.1 Hz, 2H, Ph).

¹³C NMR (126 MHz, CDCl₃): δ = 14.0, 21.0, 21.3, 22.5 (2C), 22.9, 26.2, 26.5, 26.7, 30.1, 31.5, 32.7, 45.3, 55.2, 69.9, 103.7, 105.2 (2C), 125.9, 127.2 (2C),

129.2 (3C), 129.3, 129.6, 132.3 (3C), 132.9, 134.6, 134.7, 135.1, 140.1, 143.0, 144.1.

MS (FAB): m/z (%) = 633 (28) [M + H⁺], 549 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for $C_{36}H_{45}N_2O_4S_2$: 633.2821; found: 633.2795.

(5*R*)-4-Butyl-5-cyclohexyl-*N*,*N*-dimethyl-6-(4methylphenylsulfonyl)-6,7-dihydropyrrolo[3,4*f*]indole-1(5*H*)-sulfonamide (16d)

Bromoenyne **15d** (49.7 mg, 0.0778 mmol) was converted to **16d** (22.7 mg, 52%) by the reaction using $Pd(OAc)_2$ (1.8 mg, 0.00802 mmol) for 12 h.

Pale orange oil; $[\alpha]^{25}_{D}$ +37.8 (*c* 0.740, CHCl₃).

IR (KBr): 1599 (NC=C), 1387 (NSO₂), 1344 (NSO₂), 1159 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.1 Hz, 3H, CMe), 1.03–1.54 (m, 9H), 1.61–1.94 (m, 6H), 2.23 (s, 3H, PhMe), 2.71–2.79 (m, 2H, 1'-CH₂), 2.785 (s, 3H, NMe), 2.787 (s, 3H, NMe), 4.63 (d, J = 16.0Hz, 1H, 7-CHH), 4.73 (d, J = 16.0 Hz, 1H, 7-CHH), 5.07 (s, 1H, 5-H), 6.57 (d, J = 3.7 Hz, 1H, 3-H), 7.04 (d, J = 8.3 Hz, 2H, Ph), 7.36 (d, J = 3.7 Hz, 1H, 2-H), 7.42 (s, 1H, 8-H), 7.57 (d, J = 8.3 Hz, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.3, 22.9, 26.2, 26.4, 26.5, 26.7, 30.1, 31.5, 32.6, 38.4 (2C), 45.4, 55.1, 70.0, 104.6, 105.1, 126.6, 127.2 (2C), 129.2, 129.26 (2C), 129.29, 132.9, 134.6, 135.1, 135.3, 143.0.

MS (FAB): m/z (%) = 558 (37) [M + H⁺], 474 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₂₉H₄₀N₃O₄S₂: 558.2460; found: 558.2483.

(7*R*)-8-Butyl-7-cyclohexyl-1,6-bis(4methylphenylsulfonyl)-1,5,6,7tetrahydropyrrolo[3,4-*f*]indole (16e)

Bromoenyne **15e** (53.5 mg, 0.0780 mmol) was converted to **16e** (20.0 mg, 42%) by the reaction using $Pd(OAc)_2$ (3.5 mg, 0.0156 mmol) in DMF at 120 °C for 4 h.

Colorless oil; $[\alpha]_{D}^{26}$ -349.8 (*c* 0.86, CHCl₃).

IR (KBr): 1597 (NC=C), 1369 (NSO₂), 1344 (NSO₂), 1174 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.83-1.47$ (m, 11H), 1.51–1.62 (m, 5H), 1.79–1.85 (m, 2H), 2.25 (s, 3H, PhMe), 2.30 (s, 3H, PhMe), 2.38–2.53 (m, 1H, 1'-CHH), 3.49–3.59 (m, 1H, 1'-CHH), 4.54 (d, J = 15.9Hz, 1H, 5-CHH), 4.69 (dd, J = 15.9, 0.6 Hz, 1H, 5-CHH), 4.95 (s, 1H, 7-H), 6.52 (d, J = 3.8 Hz, 1H, 3-H), 6.91 (s, 1H, 4-H), 7.04 (d, J = 8.1 Hz, 2H, Ph), 7.08 (d, J = 8.1 Hz, 2H, Ph), 7.37 (ddd, J = 8.1, 1.9, 1.9 Hz, 2H, Ph), 7.56 (ddd, J = 8.1, 1.9, 1.9 Hz, 2H, Ph), 7.59 (d, J = 3.8 Hz, 1H, 2-H).

¹³C NMR (126 MHz, CDCl₃): δ = 14.0, 21.4, 21.5, 22.9, 26.2, 26.6 (2C), 26.7, 30.6, 31.0, 32.1, 45.7, 55.0, 70.5, 111.1, 111.9, 126.48, 126.49 (2C), 127.2 (2C),

129.3 (2C), 129.4 (2C), 132.1, 133.9, 134.2, 134.4, 135.1, 135.3, 137.2, 143.2, 144.6.

MS (FAB): m/z (%) = 605 (31) [M + H⁺], 521 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for $C_{34}H_{41}N_2O_4S_2$: 605.2508; found: 605.2531.

(3*R*)-4-Butyl-3-cyclohexyl-2,5-bis(4methylphenylsulfonyl)-1,2,3,5tetrahydropyrrolo[3,4-*b*]carbazole (18a)

Bromoenyne **17a** (74.0 mg, 0.101 mmol) was converted to **18a** (33.8 mg, 51% yield) by the reaction using Pd(OAc)₂ (2.3 mg, 0.0101 mmol) in DMF at 120 °C for 18 h.

Colorless oil; $[\alpha]_{D}^{26}$ –122 (*c* 0.30, CHCl₃).

IR (KBr): 1597 (C=CN), 1367 (NSO₂), 1346 (NSO₂), 1173 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, J = 7.2 Hz, 3H, CMe), 1.11–1.30 (m, 9H), 1.53–1.93 (m, 6H), 2.17 (s, 3H, PhMe), 2.22 (s, 3H, PhMe), 2.63–2.73 (m, 1H, 1'-CHH), 3.84–3.94 (m, 1H, 1'-CHH), 4.61 (d, J= 16.5 Hz, 1H, 1-CHH), 4.76 (d, J = 16.5 Hz, 1H, 1-CHH), 5.07 (s, 1H, 3-H), 6.72 (d, J = 8.4 Hz, 2H, Ph), 6.78 (d, J = 8.4 Hz, 2H, Ph), 7.06 (d, J = 8.1 Hz, 2H, Ph), 7.12 (s, 1H, 10-H), 7.25–7.30 (m, 1H, Ar), 7.40 (dd, J = 7.5, 7.5, 1.5 Hz, 1H, Ar), 7.47 (dd, J = 7.5, 0.6 Hz, 1H, Ar), 7.61 (d, J = 8.4 Hz, 2H, Ph), 8.16 (d, J =7.5 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.4, 21.5, 22.9, 26.3, 26.5, 26.6, 26.7, 31.0, 31.15, 31.20, 45.9, 55.3, 71.0, 110.4, 119.2, 120.6, 125.8, 127.0 (2C), 127.1, 127.3 (2C), 128.3 (2C), 129.5 (2C), 130.0, 131.08, 131.13, 131.9, 135.0, 135.8, 140.17, 140.24, 142.5, 143.4, 144.3.

MS (FAB): m/z (%) = 655 (10) [M + H⁺], 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for $C_{38}H_{43}N_2O_4S_2$: 655.2664; found: 655.2661.

(3*R*)-4-Butyl-3-cyclohexyl-2-(4methylphenylsulfonyl)-5-(2,4,6trimethylphenylsulfonyl)-1,2,3,5tetrahydropyrrolo[3,4-*b*]carbazole (18b)

Bromoenyne **17b** (53.1 mg, 0.0695 mmol) was converted to **18b** (14.9 mg, 31%) by the reaction using $Pd(OAc)_2$ (0.8 mg, 0.00356 mmol) in DMF at 120 °C for 3 h.

Pale yellow oil; $[\alpha]_{D}^{26}$ -107.6 (*c* 0.690, CHCl₃).

IR (KBr): 1601 (NC=C), 1346 (NSO₂), 1162 cm^{-1} (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.1 Hz, 3H, CMe), 1.01–1.37 (m, 8H), 1.61–1.85 (m, 7H), 2.11 (s, 6H, PhMe), 2.20 (s, 3H, PhMe), 2.38 (s, 3H, PhMe), 2.64 (dt, J = 14.6, 5.0 Hz, 1H, 1'-*CH*H), 3.55 (dt, J = 14.6, 5.0 Hz, 1H, 1'-*CHH*), 4.67 (d, J = 15.6Hz, 1H, 1-*CH*H), 4.80 (d, J = 15.6 Hz, 1H, 1-*CHH*), 5.01 (s, 1H, 3-H), 6.67 (s, 2H, Ph), 7.03 (d, J = 7.9 Hz, 2H, Ph), 7.15–7.20 (m, 2H, Ar), 7.35 (s, 1H, 10-H), 7.56–7.59 (m, 1H, Ar), 7.58 (d, *J* = 7.9 Hz, 2H, Ph), 7.66–7.67 (m, 1H, Ar).

¹³C NMR (126 MHz, CDCl₃): $\delta = 14.0$, 20.9, 21.4, 22.5 (2C), 22.9, 26.2, 26.4, 26.6, 26.8, 31.1, 31.2, 31.4, 45.6, 55.3, 71.0, 110.4, 116.7, 119.4 (2C), 124.1, 126.5, 127.1, 127.2 (2C), 128.7, 129.1, 129.5 (2C), 131.8 (2C), 134.1, 134.6, 135.0, 139.9 (2C), 140.1, 141.1, 143.1, 143.3.

MS (FAB): m/z (%) = 683 (16) [M + H⁺], 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for $C_{40}H_{47}N_2O_4S_2$: 638.2977; found: 638.2974.

(3*R*)-4-Butyl-3-cyclohexyl-5-methyl-2-(4methylphenylsulfonyl)-1,2,3,5tetrahydropyrrolo[3,4-*b*]carbazole (18d)

Bromoenyne **17d** (118 mg, 0.20 mmol) was converted to **18d** (43.7 mg, 43%) by the reaction using $Pd(OAc)_2$ (4.5 mg, 0.0198 mmol) for 36 h.

Pale yellow oil; $[\alpha]^{27}_{D}$ +10.2 (*c* 1.28, CHCl₃).

IR (KBr): 1601 (NC=C), 1342 (NSO₂), 1161 (NSO₂), 1092 cm⁻¹ (NC).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.96-1.00$ (m, 4H), 1.04–1.48 (m, 8H), 1.60–1.64 (m, 2H), 1.77–1.92 (m, 4H), 2.19 (s, 3H, PhMe), 2.73–2.82 (m, 1H, 1'-CHH), 3.12–3.19 (m, 1H, 1'-CHH), 3.98 (s, 3H, NMe), 4.74 (d, 1H, J = 15.4 Hz, 1-CHH), 4.83 (d, 1H, J = 15.4 Hz, 1-CHH), 5.06 (s, 1H, 3-H), 7.01 (d, J = 7.9 Hz, 2H, Ph), 7.18 (dd, J = 8.0, 8.0 Hz, 1H, Ar), 7.34 (d, J = 8.0Hz, 1H, Ar), 7.43 (dd, J = 8.0, 8.0 Hz, 1H, Ar), 7.94 (d, J =8.0 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.8, 22.1, 23.6, 27.0, 27.2, 27.3, 27.5, 29.9, 32.3, 32.8, 34.9, 46.7, 56.0, 71.5, 109.5, 111.6, 119.8, 120.3, 120.8, 123.2, 125.1, 126.5, 127.9 (2C), 129.6, 130.1 (2C), 136.0, 138.4, 139.8, 143.1, 143.8.

MS (FAB): m/z (%) = 515 (21) [M + H⁺], 431 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₃₂H₃₉N₂O₂S: 515.2737; found: 515.2747.

(3*R*)-4-Butyl-3-cyclohexyl-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*benzo[4,5]thieno[2,3-*f*]isoindole (18e)

Bromoenyne **17e** (70.4 mg, 0.118 mmol) was converted to **18e** (29.7 mg, 49% yield) by the reaction for 3 h.

Colorless oil; $[\alpha]_{D}^{25} + 27.8$ (*c* 0.40, CHCl₃).

IR (KBr): 1344 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.99$ (t, J = 7.2 Hz, 3H, CMe), 1.05–1.92 (m, 15H), 2.20 (s, 3H, PhMe), 2.72–2.86 (m, 2H, 1'-CH₂), 4.72 (d, J = 15.9 Hz, 1H, 1-CHH), 4.83 (d, J = 15.9 Hz, 1H, 1-CHH), 5.09 (s, 1H, 3-H), 7.03 (d, J = 8.1 Hz, 2H, Ph), 7.40–7.43 (m, 2H, Ar), 7.59 (d, *J* = 8.1 Hz, 2H, Ph), 7.65 (s, 1H, Ar), 7.79–7.83 (m, 1H, Ar), 8.00–8.03 (m, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.3, 23.0, 26.2, 26.4, 26.5, 26.7, 30.7, 31.6, 32.2, 45.4, 55.1, 70.4, 112.3, 121.4, 122.8, 124.4, 126.7, 127.2 (2C), 129.4 (2C), 131.2, 135.0, 135.3, 135.5, 135.6, 137.3, 139.1, 139.3, 143.3.

MS (FAB): m/z (%) = 518 (23) [M + H⁺], 154 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₃₁H₃₆NO₂S₂: 518.2187; found: 518.2188.

(3*R*)-4-Butyl-3-cyclohexyl-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*benzofuro[2,3-*f*]isoindole (18f)

Bromoenyne 17f (62.0 mg, 0.106 mmol) was converted to 18f (31.4 mg, 59% yield) by the reaction for 1 h.

Colorless oil; $[\alpha]_{D}^{26}$ –119 (*c* 0.35, CHCl₃).

IR (KBr): 1346 (NSO₂), 1163 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.00$ (t, J = 6.9 Hz, 3H, CMe), 1.15–1.93 (m, 15H), 2.19 (s, 3H, PhMe), 2.89 (dt, J = 14.1, 6.3 Hz, 1H, 1'-CHH), 3.04 (dt, J =9.0, 5.4 Hz, 1H, 1'-CHH), 4.69 (d, J = 16.5 Hz, 1H, 1-CHH), 4.80 (d, J = 16.5, 1H, 1-CHH), 5.09 (s, 1H, 3-H), 7.03 (d, J = 8.1 Hz, 2H, Ph), 7.06 (s, 1H, Ar), 7.33 (ddd, J = 7.5, 7.5, 0.9 Hz, 1H, Ar), 7.42 (ddd, J = 7.5, 7.5, 0.9 Hz, 1H, Ar), 7.52 (d, J = 7.5 Hz, 1H, Ar), 7.59 (d, J = 8.1 Hz, 2H, Ph), 7.84 (d, J = 7.5 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 21.3, 23.2, 26.2, 26.4, 26.5, 26.7, 30.6, 31.6 (2C), 45.7, 55.4, 70.1, 102.7, 111.6, 122.1, 122.2, 122.8, 123.9, 126.5, 127.2 (2C), 129.4 (2C), 132.5, 133.1, 135.1, 137.3, 143.2, 156.3, 156.4.

MS (FAB): m/z (%) = 502 (36) [M + H⁺], 418 (100).

HRMS–FAB: $m/z [M + H]^+$ calcd for C₃₁H₃₆NO₃S: 502.2416; found: 502.2409.

(1*R*)-11-Butyl-1-cyclohexyl-2-(4methylphenylsulfonyl)-2,3-dihydro-1*H*naphtho[2,3-*f*]isoindole (18g)

Bromoenyne **17g** (132 mg, 0.22 mmol) was converted to **18g** (48.7 mg, 43%) by the reaction using $Pd(OAc)_2$ (1.0 mg, 0.0044 mmol) in DMF at 120 °C for 2 h and a further 3 h with additional $Pd(OAc)_2$ (1.5 mg, 0.0066 mmol).

Colorless oil; $[\alpha]_{D}^{26}$ –165.5 (*c* 0.63, CHCl₃).

IR (KBr): 1344 (NSO₂), 1161 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.95-1.02$ (m, 4H), 1.11–1.61 (m, 10H), 1.79–1.97 (m, 4H), 2.16 (s, 3H, PhMe), 3.09 (td, J = 12.7, 4.6 Hz, 1H, 1'-*CH*H), 3.58 (td, J = 12.7, 4.6 Hz, 1H, 1'-*CHH*), 4.78 (d, J = 16.2Hz, 1H, 3-*CH*H), 4.90 (d, J = 16.2 Hz, 1H, 3-*CHH*), 5.20 (s, 1H, 1-H), 7.00 (d, J = 8.1 Hz, 2H, Ph), 7.41 (s, 1H, Ar), 7.54–7.64 (m, 6H, Ar), 7.86 (dd, *J* = 6.8, 2.2 Hz, 1H, Ar), 8.74 (d, *J* = 7.8 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 21.3, 23.1, 26.2, 26.5, 26.7 (2C), 31.1, 31.5, 33.9, 45.6, 55.3, 71.4, 120.1, 125.8, 125.9, 126.7, 127.2 (3C), 128.0, 128.9, 129.0, 129.4 (2C), 131.1, 133.3, 134.1, 134.6, 135.1, 135.9, 139.8, 143.2.

MS (FAB): m/z (%) = 512 (49) [M + H⁺], 428 (100).

HRMS–FAB: m/z [M + H]⁺ calcd for C₃₃H₃₈NO₂S: 512.2623; found: 512.2661.

Diethyl 9-Butyl-1-pentyl-2,3-dihydro-1*H*cyclopenta[*b*]naphthalene-2,2-dicarboxylate (20a)

Bromoenyne **19a** (48.8 mg, 0.0993 mmol) was converted to **20a** (28.1 mg, 68%) by the reaction using $Pd(OAc)_2$ (1.1 mg, 0.0050 mmol) for 2 h.

Colorless oil; IR (KBr): 1733 cm⁻¹ (C=O).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, J = 6.7 Hz, 3H, CMe), 1.02 (t, J = 7.1 Hz, 3H, CMe), 1.13–1.82 (m, 18H), 2.93–3.02 (m, 1H, 1'-CHH), 3.07–3.17 (m, 1H, 1'-CHH), 3.45 (d, J = 16.7 Hz, 1H, 3-CHH), 3.96–4.37 (m, 6H, 2 × OCH₂, 1-H, and 3-CHH), 7.37 (ddd, J = 8.0, 8.0, 1.1 Hz, 1H, Ar), 7.42 (ddd, J = 8.0, 8.0, 1.1 Hz, 1H, Ar), 7.47 (s, 1H, 4-H), 7.73 (d, J = 8.0Hz, 1H, Ar), 7.97 (d, J = 8.0 Hz, 1H, Ar).

¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 14.0 (2C), 14.1, 22.5, 23.5, 26.9, 29.5, 31.8, 32.3, 32.8, 38.8, 48.2, 61.45, 61.50, 65.4, 121.1, 123.9, 124.8, 124.9, 128.3, 131.6, 133.6, 133.7, 137.4, 142.3, 170.0, 171.6.

MS (FAB): m/z (%) = 461 (8.2) [M + Na⁺], 438 (100).

HRMS–FAB: $m/z [M + Na]^+$ calcd for C₂₈H₃₈NaO₄: 461.2668; found: 461.2650.

Diethyl 4-Butyl-1-(4-methylphenylsulfonyl)-5pentyl-5,7-dihydrocyclopenta[*f*]indole-6,6-(1*H*)dicarboxylate (20b)

Bromoenyne **19b** (104 mg, 0.157 mmol) was converted to **20b** (31.9 mg, 35%) by the reaction using $Pd(OAc)_2$ (1.8 mg, 0.00786 mmol) in DMF at 120 °C for 24 h.

Colorless oil; IR (KBr): 1732 (C=O), 1597 (NC=C), 1373 (NSO₂), 1176 cm⁻¹ (NSO₂).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.80$ (t, J = 7.0 Hz, 3H, CMe), 0.95 (t, J = 7.0 Hz, 3H, CMe), 1.13–1.73 (m, 18H), 2.36 (s, 3H, PhMe), 2.76 (t, J = 7.9 Hz, 2H, 1'-CH₂), 3.37 (d, J = 16.7 Hz, 1H, 7-CHH), 3.91–4.37 (m, 6H, 2 × OCH₂, 5-H, and 7-CHH), 6.61 (d, J = 3.8 Hz, 1H, 3-H), 7.24 (d, J = 8.3 Hz, 2H, Ph), 7.46 (d, J = 3.8 Hz, 1H, 2-H), 7.58 (s, 1H, 8-H), 7.77 (d, J = 8.3 Hz, 2H, Ph).

¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 13.96, 13.99, 14.1, 21.6, 22.4, 23.3, 26.8, 30.2, 31.8, 32.3, 32.7, 39.0, 47.4, 61.4, 61.5, 65.6, 107.0, 107.4, 125.0, 126.9 (2C), 129.5, 129.9 (2C), 130.9, 134.4, 135.5, 136.3, 138.9, 144.7, 170.0, 171.7. MS (FAB): m/z (%) = 604 (100) [M + Na⁺], 604 (100). HRMS–FAB: m/z [M + Na]⁺ calcd for C₃₃H₄₃NNaO₆S: 604.2709; found: 604.2724.

Supporting Information for this article, including experimental procedures and full characterization for the substrates and their synthetic intermediates, is available online at http://www.thieme-connect.de/ejournals/toc/synthesis.

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas "Integrated Organic Synthesis" (H.O.) and for Scientific Research (B) (T.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- For recent reviews on cascade reactions, see: (a) Tietze, L. F. Chem. Rev. **1996**, 96, 115–136. (b) Nicolaou, K.
 C.; Montagnon, T.; Snyder, S. A. Chem. Commun. **2003**, 551–564. (c) Wasilke, J.-C.; Obrey, S. J.; Baker, T.; Bazan, G. C. Chem. Rev. **2005**, 105, 1001–1020. (d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. **2006**, 45, 7134–7186. (e) Kirsch, S. F. Synthesis **2008**, 3183–3204. (f) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. **2009**, 38, 2993–3009. (g) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. **2010**, 2, 167–178. (h) Vlaar, T.; Ruijter, E.; Orru, R. V. A. Adv. Synth. Catal. **2011**, 353, 809–841.
- (2) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
- (3) For recent reviews on C-H activation, see: (a) Thansandote, P.; Lautens, M. Chem. Eur. J. 2009, 15, 5874–5883. (b) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243–2270. (c) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792–9826. (d) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654–2672. (e) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082–1146. (f) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215–1292.
- (4) For reactions including alkene insertion and C-H activation, see: (a) Blaszykowski, C.; Aktoudianakis, E.; Bressy, C.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 2043–2045. (b) Alonso, I.; Alcamí, M.; Mauleón, P.; Carretero, J. C. Chem. Eur. J. 2006, 12, 4576–4583. (c) Ruck, R. T.; Huffman, M. A.; Kim, M. M.; Shevlin, M.; Kandur, W. V.; Davies, I. W. Angew. Chem., Int. Ed. 2008, 48, 4711–4714. (d) Candito, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 6713–6716.
- (5) For recent examples of palladium-catalyzed cascade reactions including C-H activation, see: (a) Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288–5295. (b) Guo, L.-N.; Duan, X.-H.; Liu, X.-Y.; Hu, J.; Bi, H.-P.; Liang, Y. M. Org. Lett. 2007, 9, 5425–5428. (c) Candito, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 6713–6716. (d) Wang, G-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380–1383.
- (6) For reactions including alkyne insertion and C-H activation, see: (a) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927–4930. (b) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291–3295. (c) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 5636–5637. (d) Liu, R.; Zhang, J. Adv. Synth. Catal. 2011, 353, 36–40. For intermolecular

reactions with an alkyne followed by C-H activation, see: (e) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. **1997**, 62, 7536–7537. (f) Dong, C.-G.; Yeung, P.; Hu, Q.-S. Org. Lett. **2007**, *9*, 363–366.

- (7) For reactions using aryl or alkenyl bromides bearing an alkyne moiety, see: (a) Rahman, S. M. A.; Sonoda, M.; Itahashi, K.; Tobe, Y. Org. Lett. 2003, 5, 3411–3414. (b) Rahman, S. M. A.; Sonoda, M.; Ono, M.; Miki, K.; Tobe, Y. Org. Lett. 2006, 8, 1197–1200. (c) Tietze, L. F.; Lotz, F. Eur. J. Org. Chem. 2006, 4676–4684. (d) Tokan, W. M.; Schweizer, S.; Thies, C.; Meyer, F. E.; Parsons, P. J.; de Meijere, A. Helv. Chim. Acta 2009, 92, 1729–1740.
- (8) A portion of this study (Table 1; Table 2: entries 2, 3, 6, 11, 12; Table 4: entries 1 and 7) has already been reported in a preliminary communication: Ohno, H.; Yamamoto, M.; Iuchi, M.; Tanaka, T. *Angew. Chem., Int. Ed.* 2005, 44, 5103–5106.
- (9) (a) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806–1807. (b) Boyall, D.; López, F.; Sasaki, H.; Frantz, D.; Carreira, E. M. Org. Lett. 2000, 2, 4233–4236.
- (10) Oh, C. H.; Lim, Y. M. Tetrahedron Lett. 2003, 44, 267– 270.
- (11) For example, the reaction of **11b** with Pd(OAc)₂ (2 mol %) using K₂CO₃ (2 equiv) as the base stereoselectively gave the monocyclic product **13b** in 94% yield.

(12) A similar result was obtained with malonate congener**19c**, which produced diyne **21** in 69% yield.

- (13) For recent reviews on palladium-catalyzed direct arylation of heteroareres, see: (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. *Angew. Chem., Int. Ed.* 2009, 48, 9792–9826. (b) Bellina, F.; Rossi, R. *Tetrahedron* 2009, 65, 10269–10310.
- (14) (a) Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826–1834. (b) Liégault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org. Chem. 2010, 75, 1047–1060, and references cited therein.

Graphical Abstract

Short Title: Palladium-Catalyzed Cascade Cyclization through Direct Arylation